Eastern Kentucky University Encompass

EKU Faculty and Staff Scholarship

2017

Indoor AIr Quality

Clint Pinion Jr. Eastern Kentucky University, clint.pinion@eku.edu

Follow this and additional works at: https://encompass.eku.edu/fs_research Part of the Occupational Health and Industrial Hygiene Commons

Recommended Citation

Pinion, Clint Jr., "Indoor AIr Quality" (2017). *EKU Faculty and Staff Scholarship*. 259. https://encompass.eku.edu/fs_research/259

This Conference Presentation is brought to you for free and open access by Encompass. It has been accepted for inclusion in EKU Faculty and Staff Scholarship by an authorized administrator of Encompass. For more information, please contact Linda.Sizemore@eku.edu.

Clint Pinion, Dr.PH, RS Eastern Kentucky University

> EKU College of Health Sciences ENVIRONMENTAL HEALTH

Problem:

• Contacted by a school with teachers complaining about sickness they associated with poor indoor air quality at work.

What do we do?

Introduction

- School is required by law in the US
- Pre-school and child care aren't required, but are common
- There is a <u>huge gap in identifying, tracking, and</u> <u>remediating</u> environmental health threats in school, pre-school, and day care¹

¹Paulson and Barnett (2016)

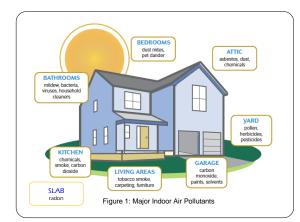
Indoor Air Quality

- Attributes of indoor air affecting a person's wellbeing
 - ♦Pollutant level
 - Air temperature
 - Humidity
 - Air velocity
 - *Odors
 - ◆Etc.

Indoor Air Quality (IAQ) Concerns

- <u>Non-industrial buildings</u> pose a major IAQ health concern²
- Schools are subject to relatively unique pollutant exposure, health, and comfort concerns²
 - mechanically ventilated
 - high occupant densities²

Nonresidential Pollutant Exposures


- Elevated <u>bioeffluent levels</u> associated with high occupant densities and inadequate ventilation
- 2. Emissions from office equipment
- 3. Cross-contamination from contaminantgenerating areas
- 4. Entrainment of contaminants <u>generated</u> <u>outdoors</u>
- 5. Reentry of building exhaust gases

Nonresidential Pollutant Exposures

- 6. <u>Contamination of air-handling units</u> by organisms and biological by-products
- 7. <u>Transmission of contagious diseases</u> such as flu, colds, and tuberculosis
- 8. Exposure to <u>re-suspended surface dusts</u>
- 9. <u>Exposure to ETS</u> where smoking is not restricted

EKU College of Health Sciences ENVIRONMENTAL HEALTH

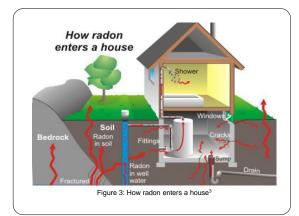
What about schools?

Asbestos

- A collective term for a <u>number of fibrous</u> <u>mineral silicates</u>
- Fire and heat-resistant, with high tensile strength
- Accounted for more than <u>90% of the fibrous</u> <u>mass</u> used in various asbestos-containing products²
- Recognized as a major IAQ concern in the late $\frac{1970s^2}{2}$

Figure 2: ACM Example

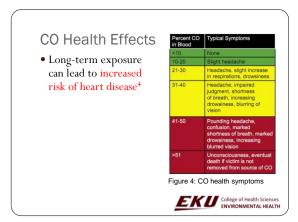
Asbestos


- 1973: Regulated as a hazardous air pollutant²
- 1979: Asbestos-in-Schools program²
- **1986**: Asbestos Hazard Emergency Response Act (AHERA)
- Late 1980s: Scientific and regulatory communities agreed that exposure risk to the general school population was very small

Radon

- Radioactive gas/decay of radium-226
- Common minerals: granite, schist, limestone, etc.²
- As Rn decays, it releases alpha and beta particles and gamma rays
- RDPs readily attach to particles, producing radioactive aerosols

Radon Health Risks


- Lung cancer
- 13,000 16,000 lung cancer deaths a year
- **1998**: U.S. EPA issued a public health advisory recommending all homes be tested and remediation be undertaken²
- Action level: 4 pCi/L

Carbon Monoxide (CO)

- Colorless, odorless, tasteless gas²
- Anthropogenic and natural sources
 Burning of carbon-based materials
 Combustion, industry, biomass burning
- Direct anthropogenic emissions account for approximately 25% to 30% of CO emissions in the northern hemisphere²

EKU College of Health Sciences ENVIRONMENTAL HEALTH

Carbon Dioxide (CO₂)

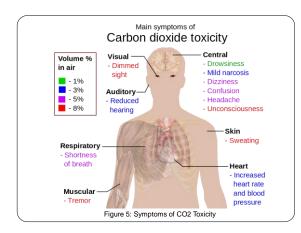

- Relatively abundant
- Aerobic biological processes, combustion, and weathering of carbonates in rock and soil²
- Anthropogenic sources
 Fossil fuel combustion
 Land use conversion
- Airborne concentrations >10% may cause convulsions, coma, and death²

Table 1. CO2 PPM and Health Problems

2000-5000 Head	siness and poor air
stuffy	aches, sleepiness, and stagnant, stale, air.
	concentration, loss of attention, ased heart rate, and nausea
5000 Oxyg	en deprivation could occur

_		

Aldehydes

- Organic substances that belong to a class of compounds called carbonyls²
- Most are sensory (mucous membrane) irritants and skin sensitizers

*Some may be human carcinogens

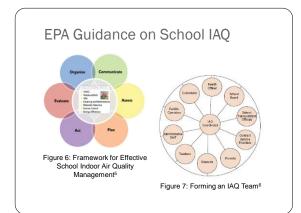
- Aldehydes known to cause serious IAQ contamination or health effects:
 - $\textbf{*}\mathsf{HCHO} \text{ (formaldehyde)}$
 - Acrolein
 - *Glutaraldehyde

Formaldehyde (HCHO)

- Widely used industrial and commercial chemical
 Found in pressed wood materials²
- Potent mucous membrane irritant
- Potent dermal irritant
- Chronic exposure may cause neurological symptoms

EKU College of Health Sciences ENVIRONMENTAL HEALTH

Volatile Organic Compounds (VOCs)


- Emitted from a variety of sources:
 - Building materials and furnishings
 - consumer products
 - $\boldsymbol{\bigstar}$ building maintenance materials
 - **∻**Humans
 - $\textbf{\bullet} office \ equipment$
 - $\\ \textbf{$\star$tobacco smoke}$
- \bullet Sensory irritation and possibly neurological symptoms^2

Mold (Mycotoxins)

- Large molecules produced by many fungal species
- Aspergillus flavus produces aflatoxins
- *S. chartarum* is widely found in building environments
 - face paper of gypsum boardceiling tiles
 - *processed wood fiber materials

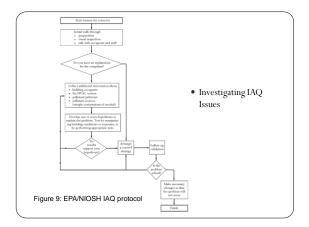
Research Findings on Contaminants in Schools

- In Portugal: CO₂, PM, and formaldehyde above reference levels in Portuguese and WHO guidelines⁷
- In Canada: 11 out of 65 schools studied had at least one radon measurement above Canadian Federal guideline⁸
- In Italy: high concentrations of terpenes⁹
- In US (Michigan)¹⁰ and Serbia¹¹: high concentrations of CO_2
- In Portugal: culturable bacteria above guidelines¹²

Research into mold and submicron fungus

- In 8 schools in South Korea:
 - Researchers looked at airborne mold and smaller fungal particles
 - Study found that airborne mold/bacteria and submicron fungal fragments went down by 35% - 55% after the rainy scason¹³
- Demonstrates that <u>good IAQ is a moving target</u> and methods to handle it must be adjusted seasonally

Research into Effects of Poor IAQ


- Correlated with asthma and other respiratory illnesses¹⁴
- Associated with school-related stress and poor teacher-student relationship $(N = 26946)^{15}$
- Good student perception of IAQ associated with decreased teacher sick leave (N=1678)¹⁶
- Schools with larger maintenance backlogs and smaller janitorial staff showed lower academic performance¹⁷

Addressing risks from IAQ

- One study laid out five ways to address air quality:
 - Type I: Raise Awareness
 - Type II: Change Behavior
 - Type III: Change products/materials and places of activities
 - Type IV: Make technical and technological changes
 - Type V: Make structural changes⁷

Air Quality Guidei	lines	
Parameter	Limit/Range	Reference
Temperature	Summer 74 to 82"F (23 to 28°C) Winter 68 to 78"F (20 to 25.5"C)	ASHRAE Standard 55- 2010 ISO 7730
Relative Humidity	30% to 65%	ASHRAE Standard 55- 2010 ISO 7730
Air Movement	0.8 ft/s or 0.25 m/s	WHO 1SO 7730
Ventilation (fresh air)	15 to 60 cfm/person minimum depending on type of space	ASHRAE Standard 62.1 2010
Ventilation (CO2)	About 700 ppm over outdoor ambient	ASHRAE Standard 62.1- 2010

Measurement of Indoor Contaminants

- Conducted in most IAQ investigations
- Surface Dust Sampling
- Airborne concentrations of *Gases
 - *Vapors
 - *Biological Contaminants

IAQ Management

• Exclusion

- Avoid use of contaminant emitting products (e.g. HCHO-free)
 Low-emitting products (e.g. Low levels of HCHO)
- Source Removal
- SourceTreatment
 - Treated or modified to reduce contaminant emissions \diamond Encapsulate furniture containing HCHO
- Ventilation
 - $\boldsymbol{\bigstar}$ Infiltration and exfiltration
 - Natural (e.g. open doors and windows)
 - *Mechanical (e.g. general dilution and local exhaust ventilation)

References

1. Paulson JA, Barnett CL. 2016. Public Health Stops at the School House Door. Environ Health Perspect 124(10): A171-A175

2. Godish T, Davis WT, Fu JF. 2014. Air Quality, Fifth Edition. Taylor & Francis Inc, Bosa Roca.

 Hendricks B. 2017. Why You Should Get a Radon Test in Louisville. ABI Home Inspection Service. Available: http://abihomeservices.com/louisville-radontesting/ [accessed 27 September 2017].

4. 2016. Carbon Monoxide Poisoning. Centers for Disease Control and Prevention. Available: https://ephtracking.cdc.gov/showCoRisk.action [accessed

27 September 2017]. 5. 2016. The Framework for Effective School Indoor Air Quality Management: Key Drivers. EPA. Available: https://www.epa.gov/iaq-schools/frameworkeffective-school-indoor-air-quality-management-key-drivers [accessed 27

September 2017]. 6. 2016. Coordinator's Guide for Indoor Air Quality. EPA. Available:

https://www.epa.gov/indoor-air-quality-iaq/printable-version-coordinatorsguide-indoor-air-quality [accessed 27 September 2017].

EKU College of Health Sciences

References

7. Sa JP, Branco PTBS, Alvim-Ferrz MCM, Martins FG, Sousa SIV. 2017. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools. Int J Environ Res Public Health 14(6): 585. 8. Poulin P, Leclerc J-M, Dessau J-C, Deck W, Gagnon F. 2012. Radon Measurement in Schools Located in Three Priority Investigation Areas in the

Province of Quebec, Canada. Radiat Prot Dosimetry 151(2): 278-289. 9. de Gennaro G, Farella G, Marzocca A, Mazzone A, Tutino M. 2013. Indoor and Outdoor Monitoring of Volatile Organic Compounds in School Buildings: Indicators Based on Health Risk Assessment to Single out Critical Issues. Int J Environ Res Public Health 10: 6273-6291.

10. Godwin C, Batterman S. 2006. Indoor air quality in Michigan schools. Indoor Air 17: 109–121.

11. Lazovic I, Stevanovic Z, Jovasevic-Stojanovic M, Zivkovic M, Banjac M. 2016. Impact of CO2 concentration on indoor air quality and correlation with relative humidity and indoor air temperature in school buildings in Serbia. Thermal Science 20: 297–307.

References, continued

 Madureira J, Paciência I, Pereira C, Teixeira JP, Fernandes EDO. 2015. Indoor air quality in Portuguese schools: levels and sources of pollutants. Indoor Air 26: 526–537.

 Seo S, JiYG, YooY, Kwon MH, Choung JT. 2015. Submicron fungal fragments as another indoor biocontaminant in elementary schools. Environ. Sci.: Processes Impacts 17: 1164–1172.

14. Massawe E, Vasut L. 2013. Promoting Healthy School Environments: A Stepby-Step Framework to Improve Indoor Air Quality in Tangipahoa Parish, Louisiana. Advancement of the Science 76: 22–30.

15. Finell E, Haverinen-Shaughnessy U, Tolvanen A, Laaksonen S, Karvonen S, Sund R, et al. 2017. The associations of indoor environment and psychosocial factors on the subjective evaluation of Indoor Air Quality among lower secondary school students: a multilevel analysis. Indoor Air. 27: 329–337.

 Ervasti J, Kivimaki M, Kawachi I, Subramanian SV, Pentti J, Oksanen T, et al. 2012. School environment as predictor of teacher sick leave: data-linked prospective cohort study. BMC Public Health 12:770

 2012. Student Health and Academic Performance. Environmental Protection Agency. Available: https://www.epa.gov/sites/production/files/2014-08/documents/student_performance_findings.pdf [accessed 27 September 2017].

CONTACT INFO: Dr. Clint Pinion clint.pinion@eku.edu

Clint Pinion, Dr.PH, RS Assistant Professor Environmental Health Sciences College of Health Sciences Eastern Kentucky University ENVIRONMENTAL HEALTH P: (859) 622-6330