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Abstract 

 Antibiotic resistance has been a growing problem in healthcare and agriculture for 

several decades. Antibiotic resistance has been evolving naturally for millions of years, but the 

process is also accelerated by human activities. Wastewater treatment plants have been 

studied as potential sources of antibiotic resistance genes in aquatic environments. In this 

study, several wastewater treatment plants in southern Kentucky were tested for the presence 

of blaSHV, blaCTX, and tet(B) using PCR and gel electrophoresis. Preliminary evidence suggests 

that the wastewater treatment plant at West Hickman may be a source of tet(B) and that the 

wastewater treatment plant at Silver Creek may be a source of blaSHV.  

Introduction 

Antibiotics are compounds that are able to inhibit the growth of bacteria. There are 

many different antibiotics which differ in their effectiveness against different types of bacteria 

and modes of action in order to work. Some antibiotics have developed naturally over time 

through the process of evolution, while others have been synthetically produced by humans 

over the past several decades.  

Through the processes of evolution, some bacteria have developed various mechanisms 

to resist the effects of antibiotic compounds. These traits are genetically coded for by antibiotic 

resistance genes (ARGs). ARGs may give bacteria resistance to one antibiotic or a class of 

antibiotics.  
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ARGs are passed from one generation to another. Additionally, ARGs can spread from 

one bacteria to others through several different mechanisms of DNA transfer:  transformation, 

transduction, and conjugation. Transformation occurs when bacteria obtain free DNA from the 

environment, and transduction occurs when a bacteriophage (a virus that infects bacteria) 

carries DNA from one bacterial cell to another. Of more interest is bacteria gaining ARGs 

through the process of conjugation, which occurs when plasmids are transferred from one 

bacteria cell to another. Plasmids are bacterial DNA that replicate independently of the 

bacterial chromosome, and some, known as conjugative plasmids, are able to move from one 

to another.   

Tetracycline kills bacteria by inhibiting protein synthesis. It does this by preventing the 

attachment of aminoacyl-tRNA to the ribosomal accepter (A) site. Tetracyclines are broad 

spectrum antibiotics and have an absence of major adverse side effects, which has led to their 

extensive use in treating human and animal infections (1). Dozens of tetracycline resistance 

genes exist, and there are several different mechanisms through which the genes confer 

resistance. ARG tet(B) confers resistance to bacteria by encoding an efflux pump mechanism 

(1). Efflux pumps use proteins in order to move compounds across a membrane. The pump 

encoded for by tet(B) exports tetracycline from the inside of the cell to the outside of the cell, 

thereby lowering the concentration of tet(B) inside of the cell (1).  The lower concentration of 

tetracycline inside bacteria protects the ribosomes from being inactivated.  

Beta-lactams are a class that share a common structural component, the beta-lactam 

ring, which gives them their antimicrobial properties. They are often used in order to treat 
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patients who are infected by Gram-negative bacteria (2). Beta-Lactams are able to kill bacteria 

by inhibiting the biosynthesis of bacterial cell walls. Specifically, they halt the activity of 

transpeptidase, an enzyme that is crucial to cell wall biosynthesis in bacteria. The CO-N bond in 

the beta-lactam ring (Figure 1) acts as a substrate analog to the transpeptidase enzyme (3).  

Figure 1 (4): Structure of the beta-lactam ring, a common structural component of beta-lactam antibiotics. The CO-N bond at 
the bottom of the ring gives beta-lactams their antimicrobial properties 

 

Beta-lactamase ARGs encode the bacterial enzyme beta-lactamase. This enzyme 

hydrolyzes the beta-lactam ring, making the entire compound inactive. Beta-lactamases are 

classified into four different groups based on amino acid sequences of the enzyme (3). 

Additionally, there are two different mechanisms by which beta-lactamases can hydrolyze beta-

lactam rings. One mechanism is serine based and the other mechanism requires zinc (3). ARGs 

blaSHV and blaCTX are in the same group of beta-lactamase resistance genes, ambler molecular 

class A (5). This class of enzymes is known as penicillinases, and they work using the serine 

based mechanism (3).  
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SHV-type extended spectrum beta-lactamases (ESBLs) may be more common in clinical 

isolates than any other type of ESBL (6), highlighting the importance of the blaSHV gene.  Also, 

SHV-type ESBLs are most often found in E. coli and K. pneumoniae (7), raising the potential of 

release near Wastewater Treatment Plants (WWTPs). While it has been hypothesized that SHV 

genes are part of a mobile unit, it has not been proven (7).  

Both blaSHV and blaCTX-M genes have been found on every continent. It is speculated 

that blaCTX-M type ESBLs are now actually the most common worldwide (5). The CTX-M9 gene 

is plasmid encoded, and there is evidence suggesting the mobility of many blaCTX-M genes, 

including blaCTX-M9 specifically (5), meaning these genes can be easily transferred from one 

bacteria to another.  

While blaSHV and blaCTX-M genes share many similarities, there are some differences 

between the two. For example, blaSHV is more effective against penicillin than blaCTX-M genes 

are. CTX-M genes exhibit their highest hydrolytic activity against narrow-spectrum 

cephalosporins. Also, CTX-M genes are enzymatically weak against ceftazidime, marking a 

distinguishing contrast with SHV enzymes (5).  

In this experiment, DNA isolates from samples are tested for the presence of three 

ARGs:  tet(B), blaSHV, and blaCTX-M9. The ARG tet(B) is abundant in nature. For example, tet(B) 

is the most common determinant found in Enterobacteriaceae and it provides bacteria that 

possess it resistance to the antibiotic tetracycline (8). The majority of tet genes are able to 

transfer easily from one bacteria to another because they are associated with various types of 
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mobile units of DNA including mobile plasmids and conjugative transposons (1).  This, in part, 

explains their abundance in nature. 

Polymerase chain reaction (PCR) creates many copies of a targeted DNA sequence 

(Figure 2). First, the sample DNA is combined with primers specific to the sequence that is 

desired to be copied, free nucleotides, and a special DNA polymerase called Taq Polymerase.  

Taq Polymerase is unique in that it works at higher temperatures than typical DNA 

polymerases.  Next, the reaction mixture is heated in order to denature the DNA. This makes 

two single strands of DNA that are now ready for another complimentary strand to be 

synthesized. Once the DNA is denatured, the primers are synthesized onto each of the single 

strands by Taq polymerase, which then continues to synthesize the rest of the complementary 

strands using the free nucleotides.  The result is two copies of the targeted DNA sequence (One 

for each single strand of DNA created by the heating). This process is repeated a number of 

times, usually 25-30, exponentially increasing the number of targeted DNA sequences with each 

cycle. Figure 3 shows the steps in one cycle of PCR. Once the reaction is finished, there are 

millions of copies of the targeted DNA sequence. For this experiment, PCR reactions for specific 

ARGs were used on isolated DNA samples from WWTPs in order to make many copies of the 

gene if it was present in the sample. 



Anthony Jeck 
HON 420 Thesis 
Fall 2015-Spring 2016 
 
Figure 2 (9): Diagram showing the exponential amplification resulting from Polymerase Chain Reaction (PCR). The targeted gene 

is copied, then the original gene and each copy is replicated during each cycle. 

 

Figure 3 (9): Diagramming the different steps of PCR. During denaturation, the DNA is split into two single strands. During 
annealing, the primers attach to the targeted gene. During extension, taq polymerase synthesizes the rest of the targeted gene. 
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Gel electrophoresis (Figure 4) is used in order to visualize the presence of DNA segments 

of certain lengths. After a PCR reaction is performed, the products are placed into an agarose 

gel. The gel is connected to a current, with one side being negatively charged and the other side 

being positively charged. The DNA is loaded into the gel on the negative side. Since DNA is 

negatively charged, the current will cause the DNA to move along the gel, as it is repelled by the 

negative charges where it is loaded and attracted to the positive charges on the opposite end. 

Agarose gel is like a web that does not allow things to pass through it easily. As a result, larger 

DNA strands will move more slowly through the gel than smaller DNA strands, and relative DNA 

strand lengths can be compared in a given gel. Also, a DNA ladder, which is a solution of DNA 

bands of known lengths, is loaded into each gel. This allows for the estimation of the number of 

base pairs in the bands of DNA seen in the gel. Once the DNA has had sufficient time to move 

through the gel, the gel is disconnected from the current and examined under ultraviolet (UV) 

light, where the DNA bands are visible if present.  

Figure 4: Depiction of the gel electrophoresis process. The negatively charged DNA experiences electrostatic forces that push it 
through the gel. The agarose allows shorter molecules to travel faster and farther than larger moleules. 
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There is already existing research from around the globe that wastewater treatment 

plants and other human activities are likely causing an increase in the prevalence of antibiotic 

resistance genes in aquatic environments (11-25). Several factors pertaining to WWTPs may 

contribute to this increase. Antibiotics in sewage select for ARGs in aquatic environments. Also, 

several studies have shown that chlorine, a common disinfecting agent in WWTPs, selects for 

antibiotic resistant bacteria (ARB), though the mechanism by which chlorine-induced antibiotic 

resistance arises in bacteria is unknown (11). It is also possible that WWTPs create an 

environment in which resistance genes are more likely to be passed from one bacteria to 

another (26), which would not only increase the prevalence of ARGs in water but would also 

increase the likelihood that ARGs become incorporated into the genomes of pathogenic 

bacteria.  

 While there is already a large body of evidence that WWTPs are playing a role in 

increasing the prevalence of antibiotic resistance in aquatic environments, this project is unique 

in that it is examining a geographic region, south and southeastern Kentucky, that has not yet 

been studied.  This study could shed light on whether or not this phenomenon is happening in 

SE KY. Additionally, if there is more evidence pertaining to this phenomenon, there is a chance 

that more attention will be brought to the importance of it, perhaps leading to the idea that 

this problem ought to be addressed through future research. More data may also bring to light 

particular methods of water treatment that are more likely to select for ARGs than other 

methods, which could lead to changes in the way we treat water that could have significant 

impacts in the fight against antibiotic resistance.     
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This research builds on previous work of Brooke Johnson (27). Johnson tested for 

evidence of ARGs tet(A), tet(B), tet(X), and tet(O) at several sites (Figure 5), and the research 

indicated that some sample sites may be increasing the prevalence of tet(A) and tet(X).  

Figure 5: Map of south central KY. Red dots indicate sites of water sources that were sampled. 

 

 In order to determine whether or not WWTPs are increasing the prevalence of ARGs, 

water samples were taken from upstream, effluent, downstream, and from water coming out 

of each of the WWTPs. If ARGs were found downstream, effluent, or in the water, but they 

were not found upstream of the WWTP, then it is possible that it is the WWTP that is causing 

this to happen. If the genes are found upstream in addition to downstream, effluent, or in the 
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water, then it is likely that the source of the ARG(s) is something other than the WWTP. That 

source could be natural or some other anthropogenic influence. 

 One complication of this approach is the fact that many ARGs are naturally occurring 

without any anthropogenic influences. Bacteria have been evolving for billions of years, since 

before humans were around to provide selection pressures on bacteria. Even without humans, 

bacteria have been struggling to survive against natural antibiotics produced by other 

organisms, and these natural antibiotics have selected for ARGs in bacteria without any human 

activity involved at all. As a result, there cannot be certainty that, if ARGs are found 

downstream, effluent, or from the water but not upstream, the WWTP is definitely the cause. It 

is possible that the ARG found is simply naturally occurring.  

 The implication and significance of this research is potentially connected to human 

health and disease.  Antibiotic resistance is an increasingly severe problem for health care 

workers to the point where some bacteria have become so resistant that they are virtually 

untreatable (28).  Given the lack of priority by funding institutions such as the National Institute 

of Health (NIH) in developing new antibiotics and studying antibiotic resistance (29), it is vital 

that humanity does what it can to slow the growth and prevalence of resistance genes.  The 

results of this research could give insight into what human activities could potentially be 

changed in order to slow the process by which resistance genes arise.   
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Materials and Methods 

Each sample was tested for the presence of three antibiotic resistance genes using PCR:  

tet(B), blaCTX, and blaSHV. The different sets of primers and conditions for PCR are shown in 

Table 1 (2, 31). Gel electrophoresis was used to separate the PCR products and visualize the 

presence or absence of the DNA, and the PCR products were stained with gel red and allowed 

to run on 100 volts for 30-40 minutes.  

Table 1. PCR Conditions (2, 30) 

 Tet(B) 
Primers 7, 8 

BlaCTX-M9 
Primers 57, 58 

BlaSHV 
Primers 53, 54 

blaSHV 
Primers 106, 107 

Forward 
Sequence 

TTG GTT AGG 
GGC AAG TTT 

TG 

 
ATGGTGACAAAGAGAGTGCA CTTTACTCGCTTTATCG TTATCTCCCTGTTAGCCACC 

Reverse 
Sequence 

GTA ATG GGC 
CAA TAA CAC 

CG 
CCCTTCGGCGATGATTCTC TCCCGCAGATAAATCACCA GATTTGCTGATTTCGCTCGG 

Annealing 
Temp 

49oC 59 s 49oC 60 s 46oC 30 s 50oC 60 s 

Number of 
cycles 

25? 30 30 30 

 

Results 

Tet(B) was found in some but not all locations (Figure 6). 
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Figure 6. Example of a gel from experiments. Bands at a particular part of the gel indicate evidence of ARGs. The first lane in 
each row is the DNA ladder. The next three lanes in the 1st row are positive controls, and the fifth lane is the negative control. A 

negative result can be seen in lane six, and a strong positive result can be seen in lane 16.  

 

The gel has 20 lanes, 2 rows of 10, with DNA or samples loaded into each of them. The 

first lane on the left of each row is the DNA ladder of a known size. It can be used as a 

comparison for any bands in the rest of the gel in order to estimate the size of any bands in the 

gel. The second, third, and fourth lanes on the top row are the positive controls. The next two 

lanes have no bands at the same length of the positive controls, indicating the absence of ARG 

tet(B) in these samples. The remaining lanes all have bands of varying strengths at the expected 

length for tet(B), indicating a positive result for the gene. Some bands are very strong, such as 

the bands in the sixth, eighth, and last lanes of the second row. These would be examples of 

definite positive results. Other bands, such as the bands in lanes three, five, and seven in the 
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second row and lane eight of the first row, are not as strong. These bands are inconclusive as to 

whether they should be considered positive or not. Bands such as these are considered 

potential positives, meaning any are made with caution. 

Figure 7: blaSHV gel. A positive result can be identified in lane 5. 

 

A band is easily seen there at the top half of the ladder. In the fifth lane of the top row, 

a faint band can be seen at around the same spot as the positive control. This band is evidence 

of the presence of blaSHV in a sample from water in Silver Creek. The bands visible at the 

bottom of each row are from primers and do not indicate ARG.     

Many samples tested positive for the presence of ARG tet(B). Only one sample, a sample 

from Silver Creek, tested positive for blaSHV. None of the samples tested positive for blaCTX. 

Table 2 below summarizes the findings of the experiment. 
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Table 2. Evidence of Antibiotic Resistance by Site and Sampling location 

Site Sampling Location Tet B 
blaSHV 

Primers 53,54 
blaCTX 

blaSHV 
Primers 106, 

107 

Silver Creek  

Water - - - - 

Water - + - - 

Upstream ? - - - 

Effluent ? - - - 

Downstream ? - - - 
      

Otter Creek 
(Berea) 

Water ? - - - 

Water - - - - 

Upstream ? - - - 

Effluent ? - - - 

Downstream ? - - - 
      

Danville 

Water - - - - 

Upstream ? - - - 

Downstream ? - - - 
      

Lake 
Cumberland 

Water + - - - 

      

Pittman Creek 

Water - - - - 

Upstream - - - - 

Effluent - - - - 

Downstream - - - - 
      

Whitley Branch 

Water + - - - 

Upstream + - - - 

Effluent + - - - 

Downstream + - - - 
      

Lynn Camp 

Water - - - - 

Upstream + - - - 

Effluent + - - - 

Downstream + - - - 
      

Town Branch 

Water + - - - 

Upstream + - - - 

Effluent ? - - - 

Downstream ? - - - 
      

West Hickman 

Water - - - - 

Upstream - - - - 

Effluent ? - - - 

Downstream ? - - - 
      

Town Creek 
(Harrodsburg) 

Water ? - - - 

Upstream - - - - 

Effluent - - - - 

Downstream - - - - 



Anthony Jeck 
HON 420 Thesis 
Fall 2015-Spring 2016 
 

 

Discussion 

 For a majority of the WWTPs examined, there was no evidence suggesting that they 

were responsible for the presence of any of the ARGs. None of the samples tested positive for 

blaCTX. This is somewhat surprising, considering blaCTX is often a prevalent ARG in nature. One 

sample tested positive for blaSHV. This is also surprising as it too is one of the most prevalent 

beta lactamase ARGs in nature (2).  

The one sample that tested positive for blaSHV came from DNA isolated from the water 

being released from the WWTP in Silver Creek. Since, the gene was not found upstream of the 

WWTP, there is reason to believe that the WWTP may be responsible for the presence of the 

gene. If the effluent and downstream samples had tested positive, there would be more 

conclusive evidence that this was the case. 

 A majority of the samples tested were positive for tet(B), indicating that tet(B) is a 

common naturally occurring ARG or is a common ARG from anthropogenic influences other 

than WWTPs. While nearly every sampling site tested positive for tet(B) DNA, only two sites 

supplied evidence that WWTPs were responsible for the presence of tet(B). Other sites that 

tested positive showed evidence of tet(B) upstream of the WWTP, indicating that the gene was 

being introduced by some other means.  

One of those sites that did suggest a role from WWTPs in causing the presence of tet(B) 

was Lake Cumberland. Only one sample was taken from Lake Cumberland, and that sample was 
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taken from the water coming from the WWTP. That sample tested positive for tet(B). Since no 

samples were taken upstream of the WWTP in Lake Cumberland, it cannot be known whether 

the gene was also present upstream, which would suggest that perhaps the WWTP was not 

responsible for the prevalence of tet(B). However, since there is an absence of that evidence, it 

can reasonably be inferred that the WWTP at Lake Cumberland is potentially releasing tet(B) 

into the environment. Future research should test samples from upstream and downstream of 

the Lake Cumberland WWTP.  

 The other sampling site for which there was evidence that a WWTP is playing a role in 

increasing the prevalence of tet(B) was at West Hickman. There, the upstream sample indicated 

no presence of tet(B), while the effluent and downstream samples both indicated the presence 

of the gene. This evidence suggests that it is likely the WWTP that is introducing the gene to the 

environment here. Otherwise, it is likely that the gene would have been present upstream in 

addition to effluent and downstream of the WWTP.  

 There are several limitations to the research in this study. Some of the electrophoresis 

results were inconclusive. That is, the bands were very faint or not at the expected spot. Future 

research should try to clarify the findings. Additionally, the fact that ARGs could be naturally 

occurring adds a degree of uncertainty to the findings. Nothing was done in the experiment to 

ensure that any evidence of DNA was from anthropogenic influences. It is also unknown why 

the sample from Silver Creek that tested positive for blaSHV using the first set of PCR conditions 

and primer sets failed to test positive using the second set of PCR conditions and primers for 

blaSHV. Future research should explore any differences in the two sets of conditions and 
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primers and endeavor to answer why different results were obtained for PCR reactions of the 

same gene. 

 In conclusion, it is possible that some of the WWTPs involved in this study are increasing 

the prevalence of ARGs. Specifically, there is preliminary evidence that the WWTP at West 

Hickman is increasing the prevalence of tet(B). Also, there is some evidence that the WWTP at 

Lake Cumberland is increasing the prevalence of tet(B) and the WWTP at Silver Creek is 

increasing the prevalence of blaSHV. There was no evidence that any WWTP in the study are 

playing a role in increasing the prevalence of blaCTX. Future research should reproduce results, 

replicate ambiguous results, test for samples upstream and downstream of the WWTP at Lake 

Cumberland, and test for additional ARGs.   
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