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ABSTRACT

In this paper we will consider an nth order fractional boundary value problem

with boundary conditions that include a fractional derivative at 1. We will develop

properties of the Green’s Function for this boundary value problem and use these

properties along with the Contraction Mapping Principle, and the Schuader’s,

Krasnozel’skii’s, and Legget-Williams fixed point theorems to prove the existence

of positive solutions under different conditions.
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Chapter 1

Introduction

Taking an nth order derivative of a function, where n is a positive integer,

is an easy to grasp concept. To achieve this result, n derivatives of the function

must be taken. However, when α is a positive value that is not an integer, taking

α derivatives of a function is not as simple to visualize. The same thing can be

said about taking α integrals of a function. For this reason and other contributing

factors, the development of the theory behind fractional calculus was slow. Since

the concept of the fractional derivative was first brought into question in 1695,

many distinguished mathematicians have had a part in the development of this

field.

Until recently, many of the definitions that were developed for fractional op-

erations were very narrow in scope, encompassing only certain types of functions.

There were also definitions that seemed to contradict one another. Today, there

is a unifying system for taking fractional derivatives and integrals, and many of

the properties of this system mirror the properties of integer order calculus.

1.1

History of Fractional Calculus

The study of fractional calculus began as an exploration into whether the

meaning of a derivative
dny

dxn
of integer order could be extended to have meaning

when n was a fractional value. Since then, the question of whether n can be irra-

tional or complex has also been posed. Because it was discovered that the meaning

could be extended to fractional n, the term fractional calculus was adopted and

has since become a misnomer, given that the meaning can be extended to not only

fractional values, but to irrational and complex values as well.

In 1695, L’Hôpital posed a question about what would happen if n were 1
2

to Liebniz, who had invented the notation
dny

dxn
. In response, Liebniz said that

the quantity d1/2xy or d1:2xy could be represented by an infinite series, although

infinite series permitted only the use of exponents that were positive and negative

integers. He then stated (see [15]) that d
1
2x would be equal to x

√
dx : x and that

useful consequences would one day be drawn from this. This prediction was cor-

rect.

Euler (see [15]) contributed to fractional calculus in 1730 when he commented

that, in the case that n is a positive integer, repeated differentiation would achieve
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the result of
dnp

dxn
, but that a way such as this to achieve the result when n was

a fractional value was not evident. He suggested the use of interpolation as was

described in the same paper. In 1731, Euler, while considering fractional differen-

tiation, extended the well-known relation

dnzp

dzn
=

p!

(p− n)!
zp−n (1.1)

to n = α for arbitrary α as

dαzp

dzα
= Dα

z z
p =

Γ(p+ 1)

Γ(p− α + 1)
zp−α. (1.2)

This formula was in fact (see [12]) what led Euler to invent the Gamma function

for factorials of fractional values.

In 1812, L. S. Laplace defined the fractional derivative via an integral, and,

finally, the first appearance of a derivative of arbitrary order appeared in a text

by S. F. Lacroix, although only 2 pages of the 700-page volume was devoted to the

topic (see [15]). In his text, Lacroix develops the nth derivative of y = xm, writing

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n, where m ≥ n. (1.3)

Notice that this definition is stated exactly as that of Euler, with the added stip-

ulation that m ≥ n.

Fractional calculus was also contributed to indirectly by J. L. Lagrange when

he developed the law of indices for differential operators of integer order and Joseph

B. J. Fourier when he used his integral representation of f(x) to obtain a formula

for
du

dxu
f(x) where u is of arbitrary order.

The first to make use of fractional operations was Niels Henrik Abel in 1823.

He applied fractional calculus (see [15]) to solve the integral equation

κ =

∫ x

0

(x− t)−1/2f(t) dt (1.4)

when he noticed that the right-hand side of this equation was a case of fractional

integration with order 1/2 without the multiplicative factor
1

Γ
(
1
2

) . Following this

use of fractional calculus, there were no developments to the subject for almost a

decade, and then the works of Joseph Liouville began to appear.
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Liouville was the first to make a major study of fractional calculus. He

developed two definitions given by

Dv

∞∑
n=0

cne
anx =

∞∑
n=0

cna
v
ne
x
n, where Re an > 0, (1.5)

and

Dvx−a =
(−1)vΓ(a+ v)

Γ(a)
x−a−v, where a > 0. (1.6)

Liouville was also the first to attempt (see [15]) to solve differential equations that

involved fractional operators.

Because the definitions given by Lacroix and Liouville were essentially dif-

ferent, there was much controversy over which system to accept, and many math-

ematicians became distrustful of fractional operations. While Lacroix’s definition

dealt with functions of the form xa, where a > 0, Liouville’s definition dealt with

functions of the form x−a, where a > 0. It was observed by William Center that,

using Lacroix’s definition,
d1/2

dx1/2
x0 =

1√
πx
,

but, using Liouville’s definition,

d1/2

dx1/2
x0 = 0,

because Γ(0) = ∞, even though in both definitions it was assumed that a > 0,

and hence
dux0

dxu
was not defined (see [15]). The debate then became, “What is

dux0

dxu
?” It was suggested (see [12]) by Augustus De Morgan that these definitions

could very well be a part of a system that would incorporate both, and he proved

to be correct.

As a student, G. F. Bernhard Riemann developed his version of the fractional

integral, which he published in 1892. He set out to generalize the Taylor series to

the fractional integral and obtained

D−νf(t) =
1

Γ(ν)

∫ t

c

(t− s)ν−1f(s) ds+ Ψ(t). (1.7)

Here, Riemann added a complementary function Ψ(x) because of the ambiguity in

the lower limit of integration c. He was concerned about the measure of deviation

caused by the law of exponents in the case cD
−µ
t c′D

−ν
t f(t) when c 6= c′. The law

of exponents mentioned here is given by

cD
−µ
t cD

−ν
t f(t) = cD

−µ−ν
t f(t), (1.8)
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where t and c denote the limits of integration. The question of whether or

not this complementary function existed caused confusion among many, includ-

ing A. Cayley who commented that the meaning of this complementary function,

which would contain an “infinity of arbitrary constants,” was the greatest diffi-

culty of Riemann’s theory. Cayley later noted (see [15]) that Riemann was greatly

entangled with the existence of this complementary function.

Liouville also commented on the existence of a complementary function when

he gave an explicit evaluation of his interpretation of this function. However, he

did not consider a special case, which led to a contradiction, thus proving his eval-

uation wrong. Peacock, who agreed that the Lacroix definition of the fractional

derivative was the correct form, also made two errors on the topic of fractional

calculus. This added to the uneasiness surrounding the topic of fractional calculus.

1.2

Riemann-Liouville Fractional Calculus

The work that ultimately led to the Riemann-Liouville definition, which is

most commonly used today, appeared in a paper by N. Ya. Sonin in 1869 that

was entitled “On differentiation with arbitrary index,” whose starting point was

Cauchy’s integral formula. A paper written by A. V. Letnikov in 1872 later followed

that was an extension of this paper. In their work, it was noted that the nth

derivative of Cauchy’s integral formula is given by

Dnf(z) =
n!

2πi

∫
C

f(ξ)

(ξ − z)n+1
dξ. (1.9)

Generalizing n! to arbitrary n can easily be done using the Gamma function.

However, when n is no longer an integer, a problem occurs. The integrand of

(1.9) no longer contains a pole. A branch cut would be required for a contour,

which was discussed but not included (see [15]) in the work of either Sonin or

Letnikov.

In 1884, H. Laurent published a paper which also used Cauchy’s integral

formula as its starting point. The contour that he used was an open circuit on a

Riemann surface. Using this definition of contour integration, Laurent was led to

cD
−ν
t f(t) =

1

Γ(ν)

∫ t

c

(t− s)ν−1f(s) ds, Re ν > 0, (1.10)

for an integral of arbitrary order. Notice that, when t > c, this formula is the

same as that of Riemann, without the addition of a complementary function.
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Now, a sufficient condition that (1.10) converges is that

f

(
1

t

)
= O(t1−ε), for some ε > 0, (1.11)

meaning that there exist constants C and r > 0 such that∣∣∣∣f (1

t

)∣∣∣∣ ≤ C|t1−ε|, for some ε > 0. (1.12)

Functions that are integrable and satisfy condition (1.12) are referred to as func-

tions of the Riemann class.

If c = −∞, then (1.10) becomes

−∞D
−ν
t f(t) =

1

Γ(ν)

∫ t

−∞
(t− s)ν−1f(s) ds, Re ν > 0. (1.13)

A sufficient condition that (1.13) converges is that

f(−t) = O(t−ν−ε), for some ε > 0, (1.14)

meaning that there exist constants C and r > 0 such that

|f(−t)| ≤ C|t−ν−ε|, for some ε > 0. (1.15)

Functions that are integrable and satisfy condition (1.14) are known as functions

of the Liouville class. Notice that both the definitions given by Lacroix and by

Liouville, which had previously sparked a debate in the mathematical community,

hold true under (1.10) and (1.13).

The most frequently used version of (1.10) is when c = 0,

0D
−ν
t f(t) =

1

Γ(ν)

∫ t

0

(t− s)ν−1f(s) ds, Re ν > 0. (1.16)

This is referred to as the standard Riemann-Liouville fractional integral.

In the case that the upper limit of integration is ∞, the Weyl fractional

integral

tW
−ν
∞ f(t) =

1

Γ(ν)

∫ ∞
t

(s− t)ν−1f(s) ds, Re ν > 0, (1.17)

is often used (see [15]) in place of (1.10).

Notice now that we have defined D−ν for Re ν > 0, but we have not yet

defined Dν for Re ν > 0, or, in other words, the fractional derivative. In this

case, let n be the smallest integer greater than Re ν, and let v = n − ν. Then
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0 < Re v ≤ 1, and the fractional derivative of f(t) of arbitrary order ν is

cD
ν
t f(t) = cD

n
t [cD

−v
t f(t)], (1.18)

where t > 0, and 0D
v
t f(t) will denote the standard Riemann-Liouville fractional

derivative of f(t).

For the purposes of this paper, 0D
−ν
∞ f(t) will be denoted by Iν0+f(t) and

0D
ν
∞f(t) will be denoted by Dν

0+f(t).

1.3

Modern Uses of Fractional Differential Equations

Alhough at first it seemed that there was no practical use for fractional

operations, today fractional differential equations are used in almost every branch

of science. The study of fractional Boundary Value Problems (BVP’s) is used

(see [14, 15]) in the fields of physics, biology, medicine, control theory, fluid flow,

rhealogy, diffuse transport akin to diffusion, electrical networks, electromagnetic

theory, and probability. In fact, fractional differential equations model certain

situations, such as the study of heredity and memory problems, better (see [14])

than differential equations of integer order.

Today, there are an increasing number of papers relating to differential equa-

tions of arbitrary order being published. The use of fixed point theory and cone-

theoretic techniques to show the existence of solutions to difference equations,

ordinary differential equations, and singular boundary value problems is abun-

dant, (see [1, 6, 8]) but still far less work has been done to develop the existence of

solutions to fractional, or arbitrary order differential equations, as in [2, 3, 9, 14].
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Chapter 2

The Existence of Positive Solutions to a Family of Fractional Two-Point

Boundary Value Problems

Let n ≥ 2 denote an integer, and let α and β be positive reals such that

n − 1 < α ≤ n and 0 ≤ j ≤ β ≤ n − 1, for some j ∈ {0, 1, . . . , n − 2}. We will

consider the boundary value problem for the fractional differential equation given

by

Dα
0+u+ f(t, u, u′, . . . , u(j)) = 0, where 0 < t < 1, (2.1)

satisfying the boundary conditions

u(i)(0) = 0, for i = 0, 1, . . . , n− 2, and Dβ
0+u(1) = 0, (2.2)

where Dα
0+ and Dβ

0+ are the standard Riemann-Liouville fractional derivatives.

2.1

Preliminary Definitions

In this section, we will collect some essential definitions.

Definition 2.1. For 0 < t <∞, the Gamma Function, Γ(t), is defined by

Γ(t) =

∫ ∞
0

st−1e−s ds. (2.3)

The Gamma Function has the following two properties:

(i) For each t ∈ (0,∞), Γ(t+ 1) = tΓ(t).

(ii) For n ∈ N, Γ(n+ 1) = n!.

Property (i) can be used to extend Definition 2.1 to negative non-integer

numbers. Notice that if n is a nonpositive integer, then Γ(n) is not defined. In

this case, the convention that
1

Γ(n)
= 0 will be adopted.
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Definition 2.2. Let v > 0. The Riemann-Liouville fractional integral of a func-

tion u of order ν, denoted Iν0+u, is defined as

Iν0+u(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1u(s) ds, (2.4)

provided that the right-hand side exists.

Definition 2.3. Let n denote a positive integer, and assume that the positive real

α satisfies n− 1 < α ≤ n. The Riemann-Liouville fractional derivative of order α

of the function u : [0, 1]→ R, denoted Dα
0+u, is defined as

Dα
0+u(t) =

1

Γ(n− α)

∂n

∂tn

∫ t

0

(t− s)n−α−1u(s) ds

= DnIn−α0+ u(t),

(2.5)

provided the right-hand side exists.

2.2

The Green’s Function

The Green’s Function for the boundary value problem (2.1), (2.2) is given

by (see [5])

G(β; t, s) =


tα−1(1− s)α−1−β

Γ(α)
− (t− s)α−1

Γ(α)
, if 0 ≤ s ≤ t < 1,

tα−1(1− s)α−1−β

Γ(α)
, if 0 ≤ t ≤ s < 1.

(2.6)

Thus, u is a solution of (2.1), (2.2) if and only if

u(t) =

∫ 1

0

G(β; t, s)f(s, u(s), u′(s), . . . , u(j)(s)) ds, 0 ≤ t ≤ 1.

We will develop properties of (2.6) to prove the existence of positive solutions to

(2.1), (2.2).

Lemma 2.1. Let β be a positive real and j ∈ {0, 1, . . . , n− 2} be an integer,

satisfying 0 ≤ j ≤ β ≤ n− 1. The kernel, G(β; t, s), satisfies the following proper-

ties:

∂i

∂ti
G(β; t, s) ≥ 0, (t, s) ∈ [0, 1]× [0, 1), for i = 0, 1, . . . , j, (2.7)

8



max
0≤t≤1

∫ 1

0

∂i

∂ti
G(β; t, s) ds =

(α− i)tα−i−1i − (α− β)tα−1i

Γ(α− i)(α− β)(α− i)
:= Gi, (2.8)

where ti = min

{
(α− 1− i)

(α− β)
, 1

}
.

Proof. Define, for 0 ≤ s ≤ t < 1, the function g1 by

g1(β; t, s) =
tα−1(1− s)α−1−β − (t− s)α−1

Γ(α)
, (2.9)

and define, for 0 ≤ t ≤ s < 1, the function g2 by

g2(β; t, s) =
tα−1(1− s)α−1−β

Γ(α)
, 0 ≤ t ≤ s < 1. (2.10)

In order to prove (2.7), let s and t be positive reals such that 0 ≤ s ≤ t < 1,

and let i ∈ {0, 1, . . . , j}. Then

∂i

∂ti
G(β; t, s) =

∂i

∂ti
g1(β; t, s)

=
∂i

∂ti
tα−1(1− s)α−1−β − (t− s)α−1

Γ(α)

=
1

Γ(α)

∂i

∂ti
[tα−1(1− s)α−1−β − (t− s)α−1]

=
1

Γ(α)

[
(1− s)α−1−βΓ(α)tα−1−i

Γ(α− i)
− Γ(α)(t− s)α−1−i

Γ(α− i)

]
=

1

Γ(α− i)
[(1− s)α−1−βtα−1−i − (t− s)α−1−i]

≥ 1

Γ(α− i)
[(1− s)α−1−itα−1−i − (t− s)α−1−i]

=
1

Γ(α− i)
[(t− ts)α−1−i − (t− s)α−1−i].

But ts < s, and hence
1

Γ(α− i)
[(t − ts)α−1−i − (t − s)α−1−i] > 0, implying that

∂i

∂ti
g1(β; t, s) ≥ 0.

Next, let 0 ≤ t ≤ s < 1 and i ∈ {0, 1, . . . , j}. Then

∂i

∂ti
G(β; t, s) =

∂i

∂ti
g2(β; t, s)

=
∂i

∂ti
tα−1(1− s)α−1−β

Γ(α)

9



=
1

Γ(α)

(1− s)α−1−βΓ(α)tα−1−i

Γ(α− i)

=
1

Γ(α− i)
(1− s)α−1−βtα−1−i

≥ 0,

and hence
∂i

∂ti
G(β; t, s) ≥ 0, when i ∈ {0, 1, . . . , j}. This proves (2.7).

Now,∫ t

0

∂i

∂ti
g1(β; t, s) ds =

∫ t

0

∂i

∂ti

(
tα−1(1− s)α−1−β − (t− s)α−1

Γ(α)

)
ds

=

∫ t

0

tα−1−i(1− s)α−1−β − (t− s)α−1−i

Γ(α− i)
ds

=
1

Γ(α− i)

[
−tα−1−i(1− s)α−β

α− β
+

(t− s)α−i

α− i

]t
0

=
1

Γ(α− i)

[
−tα−1−i(1− t)α−β

α− β
+
tα−1−i

α− β
− tα−i

α− i

]
=

1

Γ(α− i)

[
tα−1−i − tα−1−i(1− t)α−β

α− β
− tα−1

α− i

]
=
tα−1−i(α− i)− tα−1−i(1− t)α−β(α− i)− tα−i(α− β)

Γ(α− i)(α− β)(α− i)
,

and ∫ 1

t

∂i

∂ti
g2(β; t, s) ds =

∫ 1

t

∂i

∂ti

(
tα−1(1− s)α−1−β

Γ(α)

)
ds

=

∫ 1

t

tα−1−i(1− s)α−1−β

Γ(α− i)
ds

=
1

Γ(α− i)

[
−tα−1−i(1− s)α−β

α− β

]1
t

=
1

Γ(α− i)

[
tα−1−i(1− t)α−β

α− β

]
=
tα−1−i(1− t)α−β

Γ(α− i)(α− β)
.

Hence∫ 1

0

∂i

∂ti
G(β; t, s) ds

=
tα−1−i(α− i)− tα−1−i(1− t)α−β(α− i)− tα−i(α− β)

Γ(α− i)(α− β)(α− i)
+
tα−1−i(1− t)α−β

Γ(α− i)(α− β)

=
tα−i−1(α− i)− tα−i(α− β)

Γ(α− i)(α− β)(α− i)
.

10



Now, by properties of the first derivative of any function,

max
t∈[0,1]

∫ 1

0

∂i

∂ti
G(β; t, s) ds occurs when

∂

∂t

[∫ 1

0

∂i

∂ti
G(β; t, s) ds

]
=

∂

∂t

(α− i)tα−i−1 − (α− β)tα−i

Γ(α− i)(α− β)(α− i)

=
(α− 1− i)(α− i)tα−2−i − (α− i)(α− β)tα−1−i

Γ(α− i)(α− β)(α− i)
= (α− 1− i)(α− i)tα−2−i − (α− i)(α− β)tα−1−i

= 0,

which occurs when t =
α− 1− i
α− β

. Note that if,
α− 1− i
α− β

> 1, then by (2.7), the

maximum occurs when t = 1. It follows that

max
0≤t≤1

∫ 1

0

∂i

∂ti
G(β; t, s) ds =

(α− i)tα−i−1i − (α− β)tα−ii

Γ(α− i)(α− β)(α− i)
, (2.11)

where ti = min

{
α− i− 1

α− β
, 1

}
, which proves (2.8).

2.3

Contraction Mapping Principle

The theory behind the use of the Contraction Mapping Principle in proving

the existence of fixed points for differential equations has been studied in papers

such as [16]. These authors make use of the Contraction Mapping Principle, stated

below, to show the existence of solutions to differential equations of integer order

in partially ordered and ordered metric spaces. The existence and uniqueness

of solutions to a nonlinear fractional Cauchy problem in a special Banach space

is developed in [4]. We will develop a theorem and proof for the existence and

uniqueness of solutions of problem (2.1), (2.2) in the Banach space C(j)[0, 1].

Definition 2.4. Let 〈X, d〉 be a metric space. Then a map T : X → X is called

a contraction mapping on X if there exists α ∈ [0, 1) such that d(T (u), T (v)) ≤
αd(u, v) for all u, v ∈ X.

Theorem 2.1 (Contraction Mapping Principle). [16] Let B be a Banach space

with norm ‖ · ‖ and let T : B → B be such that there exists k ∈ [0, 1) such that

‖Tu − Tv‖ ≤ k‖u − v‖ for all u, v ∈ B. Then T has a unique fixed point in B.

Moreover, if u ∈ B, the sequence {Tun}∞n=0 converges to the unique fixed point.
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Theorem 2.2. Let f(t, y0, y1, . . . , yj) : [0, 1]×Rj+1 → R be continuous and satisfy

a Lipschitz condition |f(t, y0, y1, . . . , yj)− f(t, z0, z1, . . . , zj)| ≤ k
∑j

i=0 |yi − zi| on

[0, 1]× Rj+1. Then, if k
∑j

i=0Gi < 1, (1.1), (1.2) has a unique solution.

Proof. Consider the Banach space C(j)[0, 1] with norm ‖u‖ =
∑j

i=0 |u(i)|0, where

|u|0 = max
t∈[0,1]

|u(t)|. Define the mapping T : C(j)[0, 1]→ C(j)[0, 1] by

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s), . . . , u(j)(s)) ds (2.12)

for all t ∈ [0, 1] and u ∈ C(j)[0, 1]. Thus, if û is a fixed point of T , û solves (2.1),

(2.2).

Now, the metric d(u, v) = ‖u−v‖ =
∑j

i=0 |u(i)−v(i)|0 on C(j)[0, 1] is induced

by the norm on C(j)[0, 1]. Let u, v ∈ C(j)[0, 1]. Then, by (2.8)

|Tu− Tv|(t)

=

∣∣∣∣∫ 1

0

G(β; t, s)f(s, u(s), . . . , u(j)(s)) ds−
∫ 1

0

G(β; t, s)f(s, v(s), . . . , v(j)(s)) ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

G(β; t, s)
[
f(s, u(s), . . . , u(j)(s))− f(s, v(s), . . . , v(j)(s))

]
ds

∣∣∣∣
≤
∫ 1

0

|G(β; t, s)| k
j∑
i=0

|u(i) − v(i)| ds

≤
∫ 1

0

|G(β; t, s)|k
j∑
i=0

|u(i) − v(i)|0 ds

=

∫ 1

0

|G(β; t, s)|k‖u− v‖ ds

≤ kG0‖u− v‖.

Similarly, |(Tu)(i)(t)−(Tv)(i)(t)| ≤ k‖u−v‖
∫ 1

0

∂iG(β; t, s)

∂ti
ds ≤ kGi‖u−v‖,

and, consequently,

‖Tu− Tv‖ =

j∑
i=0

|Tu(i) − Tv(i)|0

≤ k

j∑
i=0

Gi‖u− v‖.

Hence, since k
∑j

i=0Gi < 1, T is a contraction mapping on C(j)[0, 1], and thus

T has a unique fixed point û(t) satisfying (2.12), which is the unique solution of

(2.1), (2.2).
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2.4

Schauder Fixed Point Theorem

Let n ≥ 2 denote an integer, and let α and β be positive reals such that

n − 1 < α ≤ n and 0 ≤ j ≤ β ≤ n − 1, for some j ∈ {0, 1, . . . , n − 2}. We will

consider the boundary value problem for the fractional differential equation given

by

Dα
0+u+ a(t)f(u, u′, . . . , u(j)) = 0, where 0 < t < 1, (2.13)

satisfying the boundary conditions

u(i)(0) = 0, for i = 0, 1, . . . , n− 2, and Dβ
0+u(1) = 0, (2.14)

where Dα
0+ and Dβ

0+ are the standard Riemann-Liouville fractional derivatives.

Notice that the Green’s Function for (2.13), (2.14) is given by (2.6) and Lemma

2.1 holds.

The Schauder Fixed Point Theorem has been utilized in the study and proof

of existence of solutions to fractional order differential equations and systems of

fractional order differential equations as well, see [10, 17]. We will use the Schauder

fixed point theorem to show the existence of positive solutions of (2.13), (2.14).

To this end, define |a|∞ = ess sup
t∈[0,1]

|a(t)| to be the essential supremum of |a|.

We make the following assumptions on the functions f and a:

(A1) f : [0,∞)→ [0,∞) is continuous, and

(A2) a : [0, 1]→ [0,∞) with a ∈ L∞[0, 1].

Theorem 2.3 (Schauder Fixed Point Theorem [10]). If M is a closed, bounded,

convex subset of a Banach space B and T : M → M is completely continuous,

then T has a fixed point in M.

Define the Banach space B = {u ∈ C(j)[0, 1] : u(0) = u′(0) = · · · =

u(j−1)(0) = 0} to be the space of all j times differentiable functions whose jth

derivative is continuous on the interval [0, 1] which satisfy u(0) = u′(0) = · · · =

u(j−1)(0) = 0, endowed with the norm ‖u‖ = max
0≤t≤1

|u(j)(t)| = |u(j)|0. Notice that,

for i = 1, 2, . . . , j,

|u(j−i)(t)| = |u(j−i)(t)− u(j−i)(0)|
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=

∣∣∣∣∫ t

0

u(j+1−i)(s) ds

∣∣∣∣
≤
∫ t

0

∣∣u(j+1−i)(s)
∣∣ ds

≤ |u(j+1−i)(t)|

≤ |u(j+1−i)|0.

Therefore, |u|0 ≤ |u′|0 ≤ · · · ≤ |u(j−1)|0 ≤ |u(j)|0 = ‖u‖.

Define an operator T : B → B by

(Tu)(t) =

∫ 1

0

G(t, s)a(s)f(u(s), u′(s), . . . , u(j)(s)) ds.

Again, if û is a fixed point of T , û solves (2.13), (2.14).

Lemma 2.2. The operator T is completely continuous on M, where for fixed

N > 0, the set M is defined to be M = {u ∈ B : ‖u‖ < N}.

Proof. Fix N > 0, and let M = {u ∈ B : ‖u‖ < N}. Let

L = max
(x0,x1,...,xj)∈[0,N ]j+1

|f(x0, x1, . . . , xj)|.

Then, for u ∈M,

‖Tu(t)‖ =

∣∣∣∣∫ 1

0

∂j

∂tj
G(t, s)a(s)f(u(s), u′(s), . . . , u(j)(s)) ds

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ ∂j∂tjG(t, s)

∣∣∣∣ |a(s)|
∣∣f(u(s), u′(s), . . . , u(j)(s))

∣∣ ds

≤ |a|∞L
∫ 1

0

∂j

∂tj
G(t, s) ds

≤ |a|∞LGj.

Hence, ‖Tu‖ ≤ L|a|∞Gj for all u ∈M. So, T (M) is uniformly bounded.

Now, let ε > 0, and define δ =

(
εΓ(α− j)(α− β)

|a|∞L(α− β + 1)

) 1

α− j − 1
. Let t1, t2

∈ [0, 1], with t1 < t2 and t2 − t1 < δ. Then, for u ∈M,

|Tu(j)(t2)− Tu(j)(t1)|

=

∣∣∣∣∫ 1

0

∂j

∂tj
G(t2, s)a(s)f(u(s), u′(s), . . . , u(j)(s)) ds
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−
∫ 1

0

∂j

∂tj
G(t1, s)a(s)f(u(s), u′(s), . . . , u(j)(s)) ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

[
∂j

∂tj
G(t2, s)−

∂j

∂tj
G(t1, s)

]
a(s)f(u(s), u′(s), . . . , u(j)(s)) ds

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ ∂j∂tjG(t2, s)−
∂j

∂tj
G(t1, s)

∣∣∣∣ |a(s)||f(u(s), u′(s), . . . , u(j)(s))| ds

≤ |a|∞L
∫ 1

0

∣∣∣∣ ∂j∂tjG(t2, s)−
∂j

∂tj
G(t1, s)

∣∣∣∣ ds.

There are three cases we must consider. First, let 0 ≤ s ≤ t1 < t2 < 1. Then

|a|∞L
∫ 1

0

∣∣∣∣ ∂j∂tjG(t2, s)−
∂j

∂tj
G(t1, s)

∣∣∣∣ ds

= |a|∞L
∫ 1

0

∣∣∣∣ ∂j∂tj g1(t2, s)− ∂j

∂tj
g1(t1, s)

∣∣∣∣ ds

= |a|∞L
∫ 1

0

1

Γ(α− j)
∣∣(1− s)α−β−1tα−j−12

−(t2 − s)α−j−1 − (1− s)α−β−1tα−j−11 + (t1 − s)α−j−1
∣∣ ds

=
|a|∞L

Γ(α− j)

∫ 1

0

∣∣(1− s)α−1−β(tα−j−12 − tα−j−11 )

−((t2 − s)α−j−1 − (t1 − s)α−j−1)
∣∣ ds

≤ |a|∞L
Γ(α− j)

∫ 1

0

∣∣(1− s)α−1−β(tα−j−12 − tα−j−11 )
∣∣

+
∣∣(t2 − s)α−j−1 − (t1 − s)α−j−1

∣∣ ds

≤ |a|∞L
Γ(α− j)

∫ 1

0

∣∣(1− s)α−1−β(t2 − t1)α−j−1
∣∣

+
∣∣(t2 − s− t1 + s)α−j−1

∣∣ ds

=
|a|∞L

Γ(α− j)

∫ 1

0

(1− s)α−1−β(t2 − t1)α−j−1

+ (t2 − t1)α−j−1 ds

since (1− s)α−1−β and (t2 − t1)α−j−1 > 0. Now,

|a|∞L
Γ(α− j)

∫ 1

0

(1− s)α−1−β(t2 − t1)α−j−1 + (t2 − t1)α−j−1 ds

=
|a|∞L

Γ(α− j)

∫ 1

0

(t2 − t1)α−j−1((1− s)α−1−β + 1) ds
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=
|a|∞(t2 − t1)α−j−1

Γ(α− j)

∫ 1

0

(1− s)α−1−β + 1 ds

=
|a|∞(t2 − t1)α−j−1

Γ(α− j)

[
−(1− s)α−β

α− β
+ s

]1
0

=
|a|∞(t2 − t1)α−j−1

Γ(α− j)

(
1 +

1

α− β

)
=
|a|∞(α− β + 1)(t2 − t1)α−j−1

Γ(α− j)(α− β)

≤ |a|∞(α− β + 1)δα−j−1

Γ(α− j)(α− β)

= ε.

Second, we must consider 0 ≤ t1 ≤ s ≤ t2 < 1 where t1 6= t2. Here,

|a|∞L
∫ 1

0

∣∣∣∣ ∂j∂tjG(t2, s)−
∂j

∂tj
G(t1, s)

∣∣∣∣ ds

= |a|∞L
∫ 1

0

∣∣∣∣ ∂j∂tj g1(t2, s)− ∂j

∂tj
g2(t1, s)

∣∣∣∣ ds

= |a|∞L
∫ 1

0

1

Γ(α− j)
∣∣(1− s)α−β−1tα−j−12

−(t2 − s)α−j−1 − (1− s)α−β−1tα−j−11

∣∣ ds

=
|a|∞L

Γ(α− j)

∫ 1

0

∣∣(1− s)α−β−1(tα−j−12 − tα−j−11 )− (t2 − s)α−j−1
∣∣ ds

<
|a|∞L

Γ(α− j)

∫ 1

0

(1− s)α−β−1(tα−j−12 − tα−j−11 ) ds

since (1− s)α−β−1, (tα−j−12 − tα−j−11 ), and (t2 − s)α−j−1 > 0. Now,

|a|∞L
Γ(α− j)

∫ 1

0

(1− s)α−β−1(tα−j−12 − tα−j−11 ) ds

≤ |a|∞L
Γ(α− j)

∫ 1

0

(1− s)α−β−1(t2 − t1)α−j−1 ds

=
|a|∞L(t2 − t1)α−j−1

Γ(α− j)

∫ 1

0

(1− s)α−β−1 ds

=
|a|∞L(t2 − t1)α−j−1

Γ(α− j)

[
−(1− s)α−β

α− β

]1
0

=
|a|∞L(t2 − t1)α−j−1

Γ(α− j)(α− β)

≤ |a|∞L(α− β + 1)(t2 − t1)α−j−1

Γ(α− j)(α− β)
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≤ |a|∞L(α− β + 1)δα−j−1

Γ(α− j − 1)(α− β)

= ε.

Last, we consider 0 ≤ t1 < t2 ≤ s < 1. Here,

|a|∞L
∫ 1

0

∣∣∣∣ ∂j∂tjG(t2, s)−
∂j

∂tj
G(t1, s)

∣∣∣∣ ds

= |a|∞L
∫ 1

0

∣∣∣∣ ∂j∂tj g2(t2, s)− ∂j

∂tj
g2(t1, s)

∣∣∣∣ ds

= |a|∞L
∫ 1

0

1

Γ(α− j)
∣∣(1− s)α−1−βtα−j−12 − (1− s)α−1−βtα−j−11

∣∣ ds

=
|a|∞L

Γ(α− j)

∫ 1

0

(1− s)α−1−β(tα−j−12 − tα−j−11 ) ds

since (1− s)α−1−β(tα−j−12 − tα−j−11 ) > 0. Now,

|a|∞L
Γ(α− j)

∫ 1

0

(1− s)α−1−β(tα−j−12 − tα−j−11 ) ds

≤ |a|∞L
Γ(α− j)

∫ 1

0

(1− s)α−1−β(t2 − t1)α−j−1 ds

=
|a|∞L(t2 − t1)α−j−1

Γ(α− j)

∫ 1

0

(1− s)α−1−β ds

=
|a|∞L(t2 − t1)α−j−1

Γ(α− j)

[
−(1− s)α−β

α− β

∣∣∣∣1
0

=
|a|∞L(t2 − t1)α−j−1

Γ(α− j)(α− β)

≤ |a|∞L(α− β + 1)(t2 − t1)α−j−1

Γ(α− j)(α− β)

≤ |a|∞L(α− β + 1)δα−j−1

Γ(α− j)(α− β)

= ε.

Hence |Tu(j)(t2) − Tu(j)(t1)| ≤ ε for all u ∈ M, and thus T is equicontinuous on

M. Therefore, by the Arzelà-Ascoli Theorem, T is completely continuous.

Theorem 2.4. Let N be fixed, and let

B = {u ∈ C(j)[0, 1] : u(0) = u′(0) = · · · = u(j−1)(0) = 0}
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and T :M→M be defined by

(Tu)(t) =

∫ 1

0

G(t, s)a(s)f(u(s), u′(s), . . . , u(j−1)(s)) ds,

where M = {u ∈ B : ‖u‖ < N} and ‖u‖ = |u(j)|0. Then T has a fixed point in M.

Proof. By definition, M is bounded.

To see that M is closed, let {hi}∞i=1 ⊆ M, and let h0 ∈ B be such that

‖hi − h0‖ → 0 as i → ∞. Then h
(j)
i → h

(j)
0 on [0, 1]. Thus, since hi ∈ M for all

i, |h(j)i | ≤ N for all i, and |h(j)0 (x)| ≤ N on [0, 1]. So, ‖h0‖ ≤ N , and h0 ∈ M.

Hence, M is closed.

Let h, g ∈M, and, for real λ with 0 ≤ λ ≤ 1, consider λh+ (1 + λ)g. Well,

since h, g ∈M, we have

|λh(j)(x) + (1− λ)g(j)(x)| ≤ |λh(j)(x)|+ |(1− λ)g(j)(x)|

= λ|h(j)(x)|+ (1− λ)|g(j)(x)|

≤ λN + (1− λ)N

= N.

Hence λh+ (1− λ)g ∈M for all h, g ∈M, and M is convex.

From Lemma 3.2, T is completely continuous onM. Hence, the assumptions

of the Schauder Fixed Point Theorem are met, and thus T has a fixed point inM
which is a solution of (2.13), (2.14).
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Chapter 3

Existence of Multiple Positive Solutions to a Family of Fractional Two-

Point Boundary Value Problems

Let n ≥ 2 denote an integer, and let α and β be positive reals, satisfying

n− 1 < α ≤ n and n− 2 < β ≤ n− 1, for some j = n− 2. We will consider the

boundary value problem for the fractional differential equation given by

Dα
0+u+ a(t)f(u, u′, . . . , u(n−2)) = 0, where 0 < t < 1, (3.1)

satisfying the boundary conditions

u(i)(0) = 0, for i = 0, 1, . . . , n− 2, and Dβ
0+u(1) = 0, (3.2)

where Dα
0+ and Dβ

0+ are the standard Riemann-Liouville fractional derivatives.

Notice that the Green’s function for (3.1), (3.2) is given by (2.6) and that

Lemma 2.1 holds.

Lemma 3.1. Let γ and s be fixed nonnegative reals, with 0 ≤ γ ≤ s < 1, and let

β be a positive real such that n − 2 < β ≤ n − 1. The kernel, G(β; t, s), satisfies

the following properties:

Gn−2 = max
t∈[0,1]

∫ 1

0

∂n−2

∂tn−2
G(β; t, s) ds

=
(α− n+ 1)α−n+1(α− n+ 2)− (α− n+ 1)α−n+2

(α− β)α−n+2Γ(α− n+ 2)(α− n+ 2)
,

(3.3)

where Gn−2 is the specific case of Gi as defined in Lemma 2.1 where i = n − 2,

and

min
γ≤t≤1

∂n−2

∂tn−2
G(t, s) ≥ [1− (1− γ)β−1]γα−n+1s

∂n−2

∂tn−2
G(s, s). (3.4)

Proof. Let i = n − 2. Notice that tn−2 =
α− n+ 1

α− β
since α − β ≥ α − n + 1,

implying that
α− n+ 1

α− β
≤ 1. Hence,

max
0≤t≤1

∫ 1

0

∂n−2

∂tn−2
G(β; t, s) ds =

(α− n+ 1)α+1−n

(α− β)α+1−n (α− n+ 2)− (α− n+ 1)α−n+2

(α− β)α−n+2

(α− β)α−n+2Γ(α− n+ 2)(α− n+ 2)
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=
(α− n+ 1)α−n+1(α− n+ 2)− (α− n+ 1)α−n+2

(α− β)α−n+2Γ(α− n+ 2)(α− n+ 2)
,

which proves (3.3).

To prove (3.4), note that

∂n−1

∂tn−1
g1(t, s) =

(1− s)α−1−βtα−n − (t− s)α−n

Γ(α− n+ 1)
.

Now,

(1− s)α−1−βtα−n − (t− s)α−n = (1− s)α−β−1tα−n −
(
t
(

1− s

t

))α−n
= tα−n

(
(1− s)α−β−1 −

(
1− s

t

)α−n)
.

Note that, if t = 0, then s = 0, and thus,
∂n−1

∂tn−1
g1(t, s) = 0. If 0 < s ≤ t < 1,

then
1

t
> 1, and since, s is positive,

s

t
> s. This implies that 1− s

t
< 1− s, and,

since −1 < α − n ≤ 0 and n − 1 < β + 1 ≤ n,
(

1− s

t

)α−n
> (1 − s)α−n ≥

(1 − s)α−β−1. Therefore (1 − s)α−β−1 −
(

1− s

t

)α−n
< 0, and, consequently,

∂n−1

∂tn−1
g1(t, s) < 0. Also note that

∂n−1

∂tn−1
g2(t, s) =

(1− s)α−1−βtα−n

Γ(α− n+ 1)
> 0,

since (1− s)α−1−βtα−n > 0.

Since
∂n−1

∂tn−1
g1(t, s) < 0,

∂n−2

∂tn−2
g1(t, s) is a decreasing function of t. Hence,

for 0 ≤ γ ≤ s < 1,

min
γ≤t≤1

∂n−2

∂tn−2
g1(t, s) =

∂n−2

∂tn−2
g1(1, s)

=
(1− s)α−1−β − (1− s)α−n+1

Γ(α− n+ 2)

=
(1− s)α−1−β[1− (1− s)β−n+2]

Γ(α− n+ 2)

≥ (1− s)α−1−β[1− (1− γ)β−n+2]

Γ(α− n+ 2)

≥ (1− s)α−1−β[1− (1− γ)β−n+2]γα−n+1sα−n+2

Γ(α− n+ 2)
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= [1− (1− γ)α−n+2]γα−n+1s
(1− s)α−1−βsα−n+1

Γ(α− n+ 2)

= [1− (1− γ)β−n+2]γα−n+1s
∂n−2

∂tn−2
G(s, s).

Note that
∂n−2

∂tn−2
g2(t, s) is an increasing function of t.

Hence, for 0 ≤ γ ≤ s < 1,

min
γ≤t≤1

∂n−2

∂tn−2
g2(t, s) =

∂n−2

∂tn−2
g2(γ, s)

=
(1− s)α−1−βγα−n+1

Γ(α− n+ 2)

≥ (1− s)α−1−βγα−n+1[1− (1− γ)β−n+2]sα−n+2

Γ(α− n+ 2)

= [1− (1− γ)β−n+2]γα−n+1s
∂n−2

∂tn−2
G(s, s).

Thus, min
γ≤t≤1

∂n−2

∂tn−2
G(β; t, s) ≥ [1 − (1 − γ)β−n+2]γα−n+1s

∂n−2

∂tn−2
G(s, s) for all

γ ≤ s < 1, which proves (3.4).

3.1

Kraznosel’skii’s Fixed Point Theorem

In this section, we will use a well-known fixed point theorem for operators

acting on a cone in a Banach space. Some authors have used Kraznosel’skii’s fixed

point theorem to show the existence of solutions of ordinary differential equations,

difference equations, and dynamic equations on time scales; however, few papers

have been published that were devoted to the study of boundary value problems of

fractional order as in [2, 3, 9], where the authors develop proofs for the existence

of positive solutions to the nonlinear fractional boundary value problems

Dαu+ a(t)f(u) = 0, 0 < t < 1, 1 < α ≤ 2,

and

Dαu+ a(t)f(u) = 0, 0 < t < 1, 3 < α ≤ 4,

satisfying boundary conditions

u(0) = 0, u′(1) = 0,
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and

u(0) = 0 = u′(0) = u′′(0) = u′(1) = 0,

respectively, which are two specific cases of problem (3.1), (3.2). We seek to show

the existence of positive solutions of (3.1), (3.2) where for arbitrary positive integer

n and positive real α, n− 1 < α ≤ n.

Theorem 3.1 (Krasnosel’skii’s Fixed Point Theorem [11]). Let B be a Banach

space, and let K ⊂ B be a cone in B. Assume that Ω1, Ω2 are open sets with

0 ∈ Ω1, and Ω1 ⊂ Ω2. Let T : K ∩ (Ω2\Ω1) → K be a completely continuous

operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2\Ω1).

Definition 3.1. Let B be a Banach space over R. A closed nonempty subset K
of B is said to be a cone provided

(i) αu+ βv ∈ K, for all u, v ∈ K and all α, β ≥ 0, and

(ii) if u ∈ K and −u ∈ K, then u = 0.

Define the Banach Space B = {u ∈ C(n−2)[0, 1] : u(0) = u′(0) = · · · =

u(n−3)(0) = 0} to be the space of all n − 2 times differentiable functions whose

(n−2)nd derivative is continuous on the interval [0, 1] which satisfy u(0) = u′(0) =

· · · = u(n−3)(0) = 0 endowed with the norm ‖u‖ = max
0≤t≤1

|u(n−2)(t)| = |u(n−2)|0.
Notice that for i = 1, 2, . . . n− 2,

∣∣u(n−2−i)(t)∣∣ =
∣∣u(n−2−i)(t)− u(n−2−i)(0)

∣∣
=

∣∣∣∣∫ t

0

u(n−1−i)(s) ds

∣∣∣∣
≤
∫ t

0

∣∣u(n−1−i)(s)∣∣ ds

≤
∣∣u(n−1−i)(t)∣∣

≤
∣∣u(n−1−i)∣∣

0
.

Therefore, |u|0 ≤ |u′|0 ≤ · · · ≤ |u(n−3)|0 ≤ |u(n−2)|0 = ‖u‖.
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Define an operator T : B → B by

(Tu)(t) =

∫ 1

0

G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds.

Now, if u is a fixed point of T , then u solves (3.1), (3.2).

Lemma 3.2. The operator T is completely continuous on M where for fixed

N > 0, the set M is defined to be M = {u ∈ B : ‖u‖ < N}.

Proof. Similar to the proof of Lemma 2.2.

We make assumptions (A1), (A2) and the following on the functions f and

a:

(A3) There exists a γ ∈ (0, 1) and an m > 0 such that a(t) > m a. e. on [γ, 1].

Lemma 3.3. The set K = {u ∈ B : u(n−2)(t) ≥ 0 for all t ∈ [0, 1]} is a cone.

Proof. By definition, K ∈ B. Also note that any polynomial funtion with positive

coefficients is in K, and hence K is nonempty.

Let u, v ∈ K, and α, β ∈ R, with α, β ≥ 0. Then u(n−2)(t), v(n−2)(t) ≥ 0

for all t ∈ [0, 1]. Hence, αu(n−2)(t) + βv(n−2)(t) ≥ 0, and thus αu+ βv ∈ K.
Now, let u, −u ∈ K. Then u(n−2)(t), −u(n−2)(t) ≥ 0 for all t ∈ [0, 1], implying

u(n−2)(t) ≡ 0. But u(n−3)(0) = 0 since u ∈ B and, thus u(n−3)(t) = 0 for all

t ∈ [0, 1].

Similarly, since u(i)(0) = 0, i = 0, 1, . . . , n − 4, the function u satisfies

u(i)(t) ≡ 0. Hence u ≡ 0. By Definition 3.1, K is a cone.

Theorem 3.2. Suppose that (A1) and (A2) are satisfied and that there exists a

γ ∈ (0, 1) such that (A3) is satisfied. Let M = |a|∞, and let A,B ∈ R with

0 ≤ A ≤ 1

Gn−2M
and B ≥

[
m[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

]−1
.

If there exist positive constants r and R with r < R and Br < AR, such that f

satisfies

(H1) f(x0, x1, . . . , xn−2) ≤ AR for all (x0, x1, . . . , xn−2) ∈ [0, R]n−1, and

(H2) f(x0, x1, . . . , xn−2) ≥ Br for all (x0, x1, . . . , xn−2) ∈ [0, r]n−1,

then (3.1), (3.2) has at least one positive solution u with r < ‖u‖ < R.
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Proof. It has been shown that T is completely continuous and that the set

K = {u ∈ B : u(n−2)(t) ≥ 0 for all t ∈ [0, 1]} (3.5)

is a cone.

Define the open set Ω2 = {u ∈ B : ‖u‖ < R}. Let u ∈ K ∩ ∂Ω2. Then

assumption (H1) and (2.8) give

|Tu(n−2)|(t) =

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ ∂n−2∂tn−2
G(t, s)

∣∣∣∣ |a(s)||f(s, u(s), . . . , u(n−2)(s))| ds

≤MAR

∫ 1

0

∣∣∣∣ ∂n−2∂tn−2
G(t, s)

∣∣∣∣ ds

≤MARGn−2

≤ R

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω2.

Next, define the open set Ω1 = {u ∈ B : ‖u‖ < r}. Let u ∈ K ∩ ∂Ω1.

Then, using (A1)-(A3), assumption (H2) and (3.4), we have that

Tu(n−2)(t) ≥
∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥
∫ 1

γ

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥ mBr

∫ 1

γ

∂n−2

∂tn−2
G(t, s) ds

≥ mBr

∫ 1

γ

[1− (1− γ)β−n+2]γα−n+1s
∂n−2

∂tn−2
G(s, s) ds

= mBr[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

≥ r

= ‖u‖.

Therefore, ‖Tu‖ ≥ ‖u‖ for all u ∈ K ∩ ∂Ω1. Since 0 ∈ Ω1 ⊂ Ω2, the

contractive part of Kraznosel’skii’s Theorem gives the existence of at least one

fixed point of T in K∩ (Ω2\Ω1). So, there exists at least one solution of u of (3.1),

(3.2) with r < ‖u‖ ≤ R.
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Theorem 3.3. Suppose that (A1) and (A2) are satisfied and that there exists

γ ∈ (0, 1) such that (A3) is satisfied. Let M = |a|∞, and let A,B ∈ R with

0 ≤ A ≤ 1

Gn−2M
and B ≥

[
m[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

]−1
.

If there exist positive constants r and R such that r < R and Ar < BR, such that

f satisfies

(H3) f(x0, x1, . . . , xn−2) ≥ BR for all (x0, x1, . . . , xn−2) ∈ [0, R]n−1 and

(H4) f(x0, x1, . . . , xn−2) ≤ Ar for all (x0, x1, . . . , xn−2) ∈ [0, r]n−1.

then (3.1), (3.2) has at least one positive solution u with r < ‖u‖ < R.

Proof. We will employ the completely continuous operator T and the cone K as

in the previous proof.

Define the open set Ω1 = {u ∈ B : ‖u‖ < r}. Let u ∈ K ∩ ∂Ω1. Then

assumption (H4) and (2.8) we have that

|Tu(n−2)|(t) =

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

∣∣∣∣
≤MAr

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s) ds

∣∣∣∣
≤MArGn−2

≤ r

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω1.

Next, define the open set Ω2 = {u ∈ B : ‖u‖ < R}. Let u ∈ K ∩ ∂Ω2. Then,

by (A1)-(A3), assumption (H3) and (3.4),

Tu(n−2)(t) ≥
∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥
∫ 1

γ

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥ mBR

∫ 1

γ

∂n−2

∂tn−2
G(t, s) ds

≥ mBR

∫ 1

γ

[1− (1− γ)β−n+2]γα−n+1s
∂n−2

∂tn−2
G(s, s) ds

= mBR[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

≥ R

= ‖u‖.
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Therefore, ‖Tu‖ ≥ ‖u‖ for all u ∈ K∩∂Ω2. Since 0 ∈ Ω1 ⊂ Ω2, the expansive

part of Kraznosel’skii’s Theorem gives the existence of at least one fixed point of

T in K ∩ (Ω2\Ω1). So, there exists at least one solution of u of (3.1), (3.2) with

r < ‖u‖ ≤ R.

Theorem 3.4. Suppose that (A1) and (A2) are satisfied and that there exists

γ ∈ (0, 1) such that (A3) is satisfied. Let M = |a|∞, and let A,B ∈ R with

0 ≤ A ≤ 1

Gn−2M
and

B ≥
[
m[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

]−1
.

If there exist positive constants ri and Ri for i = 1, 2, · · · , k such that r1 < R1 <

r2 < R2 < · · · < rk < Rk for some k and Bri < ARi for all i such that f satisfies

(H5) f(x0, x1, . . . , xn−2) ≤ ARi for all (x0, x1, . . . , xn−2) ∈ [0, Ri]
n−1, and

(H6) f(x0, x1, . . . , xn−2) ≥ Bri for all (x0, x1, . . . , xn−2) ∈ [0, ri]
n−1,

then (3.1), (3.2) has at least k positive solutions ui, where ui satisfies ri < ‖u‖ <
Ri.

Proof. We will again employ the use of the completely continuous operator T and

the cone K.

Define open sets Ω2i = {u ∈ B : ‖u‖ < Ri} for i = 1, . . . , k. Fix i and let

u ∈ K ∩ ∂Ω2i . Then for any i, (H5) and (2.8) give

|Tu(n−2)|(t) =

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

∣∣∣∣
≤MARi

∫ 1

0

∂n−2

∂tn−2
G(t, s) ds

≤MARiGn−2

≤ Ri

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω2i .

Next, define the open sets Ω1i = {u ∈ B : ‖u‖ < ri} for i = 1, . . . , k. Fix i

and let u ∈ K ∩ ∂Ω1i .

Then, using (A1)-(A3), assumption (H6) and (3.4), we have that

Tu(n−2)(t) ≥
∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥
∫ 1

γ

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds
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≥ mBri

∫ 1

γ

∂n−2

∂tn−2
G(t, s) ds

≥ mBri

∫ 1

γ

[1− (1− γ)β−n+2]γα−n+1s
∂n−2

∂tn−2
G(s, s) ds

= mBri[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

≥ ri

= ‖u‖.

Therefore, ‖Tu‖ ≥ ‖u‖ for all u ∈ K ∩ ∂Ω1i . Since 0 ∈ Ω1i ⊂ Ω2i , the

contractive part of Kraznosel’skii’s Theorem gives the existence of at least one

fixed point of T in K ∩ (Ω2i\Ω1i) for each i. So, there exists at least one solution

of ui of (3.1), (3.2) with ri < ‖u‖ ≤ Ri for each i = 1, · · · , k.

Theorem 3.5. Suppose that (A1) and (A2) are satisfied and that there exists

γ ∈ (0, 1) such that (A3) is satisfied. Let M = |a|∞, and let A,B ∈ R with

0 ≤ A ≤ 1

Gn−2M
and B ≥

[
m[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

]−1
.

If there exist positive constants ri and Ri for i = 1, 2, · · · , k such that r1 < R1 <

r2 < R2 < · · · < rk < Rk for some k and BRi < Ari for all i such that f satisfies

(H7) f(x0, x1, . . . , xn−2) ≥ BRi for all (x0, x1, . . . , xn−2) ∈ [0, Ri]
(n−1), and

(H8) f(x0, x1, . . . , xn−2) ≤ Ari for all (x0, x1, . . . , xn−2) ∈ [0, ri]
(n−1),

then (3.1), (3.2) has at least k positive solutions ui, where ui satisfies ri < ‖u‖ <
Ri.

Proof. We will again employ the use of the completely continuous operator T and

the cone K.

Define open sets Ω1i = {u ∈ B : ‖u‖ < ri} for i = 1, . . . , k. Let u ∈ K∩∂Ω1i .

Then for any i, (H8) and (2.8) give

|Tu(n−2)|(t) =

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

∣∣∣∣
≤MAri

∫ 1

0

∂n−2

∂tn−2
G(t, s) ds

≤MAriGn−2

≤ ri

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω1i .
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Next, define the open sets Ω2i = {u ∈ B : ‖u‖ < Ri} for i = 1, . . . , k. Let

u ∈ K ∩ ∂Ω2i .

Then, using (A1)-(A3), assumption (H7) and (3.4), we have that

Tu(n−2)(t) ≥
∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥
∫ 1

γ

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥ mBRi

∫ 1

γ

∂n−2

∂tn−2
G(t, s) ds

≥ mBRi

∫ 1

γ

[1− (1− γ)β−n+2]γα−n+1s
∂n−2

∂tn−2
G(s, s) ds

= mBRi[1− (1− γ)β−n+2]γα−n+1s

∫ 1

γ

∂n−2

∂tn−2
G(s, s) ds

≥ Ri

= ‖u‖.

Therefore, ‖Tu‖ ≥ ‖u‖ for all u ∈ K ∩ ∂Ω2i . Since 0 ∈ Ω1i ⊂ Ω2i , the

expansive part of Kraznosel’skii’s Theorem gives the existence of at least one

fixed point of T in K ∩ (Ω2i\Ω1i) for each i. So, there exists at least one solution

of ui of (3.1), (3.2) with ri < ‖u‖ ≤ Ri for each i = 1, · · · , k.

Theorem 3.6. Suppose that (A1) and (A2) are satisfied and that there exists

γ ∈ (0, 1) such that (A3) is satisfied. Let M = |a|∞, and let A,B ∈ R with

0 ≤ A ≤ 1

Gn−2M
and B ≥

[
m[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

]−1
.

If there exist positive constants ri and Ri for i = 1, 2, · · · , such that r1 < R1 <

r2 < R2 < · · · and Bri < ARi for all i such that f satisfies

(H9) f(x0, x1, . . . , xn−2) ≤ ARi for all (x0, x1, . . . , xn−2) ∈ [0, Ri]
n−1, and

(H10) f(x0, x1, . . . , xn−2) ≥ Bri for all (x0, x1, . . . , xn−2) ∈ [0, ri]
n−1,

then (3.1), (3.2) has infinitely many positive solutions ui, where ui satisfies ri <

‖u‖ < Ri.

Proof. We will again employ the use of the completely continuous operator T and

the cone K.

Define open sets Ω2i = {u ∈ B : ‖u‖ < Ri} for all i. Fix i and let u ∈
K ∩ ∂Ω2i . Then for any i, (H5) and (2.8) give

|Tu(n−2)|(t) =

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

∣∣∣∣
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≤MARi

∫ 1

0

∂n−2

∂tn−2
G(t, s) ds

≤MARiGn−2

≤ Ri

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω2i .

Next, define the open sets Ω1i = {u ∈ B : ‖u‖ < ri} for i = 1, 2, . . . . Fix i

and let u ∈ K ∩ ∂Ω1i .

Then, using (A1)-(A3), assumption (H6) and (3.4), we have that

Tu(n−2)(t) ≥
∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥
∫ 1

γ

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥ mBri

∫ 1

γ

∂n−2

∂tn−2
G(t, s) ds

≥ mBri

∫ 1

γ

[1− (1− γ)β−n+2]γα−n+1s
∂n−2

∂tn−2
G(s, s) ds

= mBri[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

≥ ri

= ‖u‖.

Therefore, ‖Tu‖ ≥ ‖u‖ for all u ∈ K ∩ ∂Ω1i . Since 0 ∈ Ω1i ⊂ Ω2i , the

contractive part of Kraznosel’skii’s Theorem gives the existence of at least one

fixed point of T in K ∩ (Ω2i\Ω1i) for each i. So, there exists at least one solution

of ui of (3.1), (3.2) with ri < ‖u‖ ≤ Ri for each i.

Theorem 3.7. Suppose that (A1) and (A2) are satisfied and that there exists

γ ∈ (0, 1) such that (A3) is satisfied. Let M = |a|∞, and let A,B ∈ R with

0 ≤ A ≤ 1

Gn−2M
and B ≥

[
m[1− (1− γ)β−n+2]γα−n+1

∫ 1

γ

s
∂n−2

∂tn−2
G(s, s) ds

]−1
.

If there exist positive constants ri and Ri for i = 1, 2, . . . , such that r1 < R1 <

r2 < R2 < · · · for some k and BRi < Ari for all i such that f satisfies

(H11) f(x0, x1, . . . , xn−2) ≥ BRi for all (x0, x1, . . . , xn−2) ∈ [0, Ri]
(n−1), and

(H12) f(x0, x1, . . . , xn−2) ≤ Ari for all (x0, x1, . . . , xn−2) ∈ [0, ri]
(n−1),

then (3.1), (3.2) has at least k positive solutions ui, where ui satisfies ri < ‖u‖ <
Ri.
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Proof. We will again employ the use of the completely continuous operator T and

the cone K.

Define open sets Ω1i = {u ∈ B : ‖u‖ < ri} for i = 1, 2, . . . . Let u ∈ K∩∂Ω1i .

Then for any i, (H8) and (2.8) give

|Tu(n−2)|(t) =

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

∣∣∣∣
≤MAri

∫ 1

0

∂n−2

∂tn−2
G(t, s) ds

≤MAriGn−2

≤ ri

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω1i .

Next, define the open sets Ω2i = {u ∈ B : ‖u‖ < Ri} for i = 1, 2, . . . . Let

u ∈ K ∩ ∂Ω2i .

Then, using (A1)-(A3), assumption (H7) and (3.4), we have that

Tu(n−2)(t) ≥
∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥
∫ 1

γ

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

≥ mBRi

∫ 1

γ

∂n−2

∂tn−2
G(t, s) ds

≥ mBRi

∫ 1

γ

[1− (1− γ)β−n+2]γα−n+1s
∂n−2

∂tn−2
G(s, s) ds

= mBRi[1− (1− γ)β−n+2]γα−n+1s

∫ 1

γ

∂n−2

∂tn−2
G(s, s) ds

≥ Ri

= ‖u‖.

Therefore, ‖Tu‖ ≥ ‖u‖ for all u ∈ K ∩ ∂Ω2i . Since 0 ∈ Ω1i ⊂ Ω2i , the

expansive part of Kraznosel’skii’s Theorem gives the existence of at least one

fixed point of T in K ∩ (Ω2i\Ω1i) for each i. So, there exists at least one solution

of ui of (3.1), (3.2) with ri < ‖u‖ ≤ Ri for each i = 1, 2, . . . .
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3.2

The Leggett-Williams Fixed Point Theorem

In this section, we will consider (3.1) and (3.2) along with the Banach space

B, the cone K, and the operator T defined in the previous section. To again show

the existence of multiple solutions, we will use the Leggett-Williams fixed point

theorem, as in [9]. In order to do this, for α a positive concave functional, we

define the following subsets of K:

Kc = {u ∈ K : ‖u‖ < c},

Ka = {u ∈ K : ‖u‖ < a},

K(α, b, d) = {u ∈ K : b ≤ α(u), ‖u‖ ≤ d}, and

K(α, b, c) = {u ∈ K : b ≤ α(u), ‖u‖ ≤ c}.

Theorem 3.8 (Leggett-Williams [13]). Suppose that T : Kc → Kc is completely

continuous, and suppose there exists a concave positive funtioncal α on K such

that α(u) ≤ ‖u‖ for u ∈ Kc. Suppose there exist constants 0 < a < b < d ≤ c such

that

(B1) {u ∈ K(α, b, d) : α(u) > b} 6= ∅ and α(Tu) > b if u ∈ K(α, b, d);

(B2) ‖Tu‖ < u if u ∈ Ka; and

(B3) α(Tu) > b for u ∈ K(α, b, c) with ‖Tu‖ > d.

Then T has at least three fixed points u1, u2, and u3 such that ‖u1‖ < a,

b < α(u2), and ‖u3‖ > a with α(u3) < b.

Theorem 3.9. Define the continuous positive concave functional α : B → B by

α(u) = min
γ≤t≤1

|u(n−2)(t)|, and let γ ∈ (0, 1), M = ‖a‖∞, 0 < A ≤ 1

MGn−2
and

B ≥
[
m[1− (1− γ)β−1]γα−n+1

∫ γ

0

s
∂n−2

∂tn−2
G(s, s) ds

]−1
.

Let a, b, and c be such that 0 < a < b < c. Assume that the following hold:

(L1) f(u(t), u′(t), . . . , u(n−2)(t)) < Aa for all (t, u(n−2)(t)) ∈ [0, 1]× [0, a],

(L2) f(u(t), u′(t), . . . , u(n−2)(t)) > Bb for all (t, u(n−2)(t)) ∈ [γ, 1]× [b, c],
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(L3) f(u(t), u′(t), . . . , u(n−2)(t)) ≤ Ac for all (t, u(n−2)(t)) ∈ [0, 1]× [0, c].

Then (3.1), (3.2) has at least three positive solutions u1, u2, u3 ∈ K satisfying

‖u1‖ < a,

b < α(u2), and

a < ‖u3‖ with α(u3) < b.

Proof. Let u ∈ Kc. Then ‖u‖ < c and by (L3) and (2.8),

|Tu(n−2)|(t) =

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

∣∣∣∣
≤
∫ 1

0

∂n−2

∂tn−2
G(t, s)|a(s)||f(u(s), u′(s), . . . , u(n−2)(s))| ds

≤M

∫ 1

0

∂n−2

∂tn−2
G(t, s)|f(u(s), u′(s), . . . , u(n−2)(s))| ds

< AcM

∫ 1

0

∂n−2

∂tn−2
G(t, s) ds

≤ AcMGn−2

= c.

Hence, ‖Tu‖ < c and T : Kc → Kc.
Similarly, let u ∈ Ka. Then ‖u‖ < a, and by (L1) and (2.8),

|Tu(n−2)|(t) =

∣∣∣∣∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ ∂n−2∂tn−2
G(t, s)

∣∣∣∣ |a(s)||f(u(s), u′(s), . . . , u(n−2)(s))| ds

≤M

∫ 1

0

∂n−2

∂tn−2
G(t, s)|f(u(s), u′(s), . . . , u(n−2)(s))| ds

< MAa

∫ 1

0

∂n−2

∂tn−2
G(t, s) ds

= MGn−2Aa

= a.

So, T : Ka → Ka.
Let d be a constant such that b < d ≤ c. Then, for u(t) =

d

(n− 2)!
tn−2, α(u) =

d > b and u ∈ K(α, b, d). Thus K(α, b, d) 6= ∅. Hence, ‖Tu‖ < u if u ∈ Ka, and

condition (B2) of (3.8) holds.
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Let u ∈ K(α, b, d). Then ‖u‖ ≤ d ≤ c and α(u) = min
γ≤t≤1

|u(n−2)(t)| =

min
γ≤t≤1

u(n−2)(t) ≥ b. Now, by (L2) and (3.4),

α(Tu) = min
γ≤t≤1

∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

> min
γ≤t≤1

∫ 1

γ

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

> Bbm[1− (1− γ)β−1]γα−n+1

∫ 1

0

s
∂n−2

∂tn−2
G(s, s) ds

= b.

Thus, for all u ∈ K(α, b, d), we have that α(Tu) > b. So, condition (B1) of (3.8)

holds.

Finally, let u ∈ K(α, b, c) with ‖Tu‖ > d. Then ‖u‖ ≤ c and α(u) =

min
0≤t≤1

|u(n−2)(t)| = min
γ≤t≤1

u(n−2)(t) ≥ b. From assumption (L2) and (3.4),

α(Tu) = min
γ≤t≤1

∫ 1

0

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

> min
γ≤t≤1

∫ 1

γ

∂n−2

∂tn−2
G(t, s)a(s)f(u(s), u′(s), . . . , u(n−2)(s)) ds

> Bbm[1− (1− γ)β−1]γα−n+1

∫ 1

0

s
∂n−2

∂tn−2
G(s, s) ds

= b.

This shows that condition (B3) of (3.8) holds.

Thus, from (3.8), T has at least three fixed points u1, u2, u3 such that

‖u1‖ < a, b < α(u2), and a < ‖u3‖ with α(u3) < b. These fixed points are

solutions of (3.1), (3.2).
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