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Characterization of Pregnancy Induced Cardiac Remodeling in Rats 

During pregnancy, an increase in blood volume occurs to compensate for fetal 

development, resulting in cardiac hypertrophy.  For the majority of women, this 

physiological cardiac hypertrophy resolves following pregnancy.  Prolonged cardiac 

hypertrophy can lead to heart failure.  We propose that by studying the biochemical 

mechanisms that mediate healthy cardiac remodeling associated with pregnancy, we will 

gain a better understanding of mechanisms involved in pathological cardiac hypertrophy.  

To determine the biochemical changes that occur during pregnancy induced cardiac 

remodeling, we subjected rats to timed matings and collected morphological and 

biochemical data from not pregnant, 19 days pregnant, and 24 hours postpartum.  The 

heart weights increased approximately 6% on the 19th day of pregnancy as compared to 

their non-pregnant littermates.  Histological analysis confirmed an increase in 

cardiomyocyte size associated with the increase in heart size.  Real-time PCR analysis 

revealed alterations in expression of some gene markers of hypertrophy during pregnancy 

and postpartum.  Our data demonstrates pregnancy induced cardiac remodeling in the rat 

involves both morphological and biochemical changes. 
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Chapter 1 

Introduction 

Objective 

While pathologic cardiac hypertrophy has been well characterized, little analysis 

has been conducted on pregnancy induced cardiac hypertrophy (van Rooij et al., 2008; 

Eghbali et al., 2005).  This study was undertaken to provide  a) morphological and 

biochemical data in an attempt to correlate pregnancy induced cardiac hypertrophy with 

pathological cardiac hypertrophy; and b) to provide a detailed miRNA and gene 

expression characterization during pregnancy induced cardiac remodeling was also 

completed.  Together these data could potentially distinguish whether pregnancy induced 

cardiac hypertrophy could be used as a model to study and treat pathological cardiac 

hypertrophy. 

Cardiac Hypertrophy and Heart Failure 

 Cardiac hypertrophy is defined as “an increase in cardiomyocyte size that can be 

beneficial and adaptive (physiological) or maladaptive (pathological) phenomenon to 

compensate for the hemodynamic stress resulting from pressure or volume overloads 

(Eghbali et al., 2005).”  In response to a chronic increase in cardiac load such as either 

chronic exercise or pregnancy, there is an initial increase in heart mass to normalize the 

wall stress (Bernardo et al., 2010).  If the chronic increase in wall stress is not relieved, 

the hypertrophied heart can dilate, all contractive function fails, and in response, the heart 

fails (Bernardo et al., 2010; Yue et al., 2000). Hypertrophy often leads to heart failure in 

humans and is a major determinant of mortality and morbidity in cardiovascular diseases 

(Zhang, 2008).  Heart failure is considered to be one of the most frequent causes of death 

in industrialized countries (Ahmad et al., 2005; Buitrago et al., 2005).  Currently there is 

no cure for heart failure.  Long term survival remains poor as one third of patients 

typically die in the first year of their diagnosis (Bernardo et al., 2010).  This emerging 

epidemic costs more than $17 billion annually in health care costs (Ahmad et al., 2005). 
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 The cardiac muscle is composed of many myocytes, which are in turn composed 

of myofibrils .  The myocytes are arranged around the left ventricle and   contract with 

the heart to maintain a steady beating pace.  The myofibrils are made of sarcomeres, the 

basic contractile unit of the heart and most muscles.  Hypertrophy is considered a cellular 

response that shows an increase in protein synthesis and disarray in sarcomere assembly 

(Buitrago et al., 2005).  A schematic of cardiac hypertrophy can be found in Figure 1.  

Intercalated discs, located at the ends of the myocytes, are responsible for maintaining 

cell to cell adhesion while allowing contractile forces to be transmitted through the cells 

(Bernardo et al., 2010).  Myocytes have an intrinsic mechano-sensing mechanism, as 

stretch sensitive ion channels present in the plasma membrane play a link in coordinating 

the extracellular matrix, cytoskeleton, sarcomere, calcium handling proteins and nucleus 

(Bernardo et al., 2010).   

 

Molecular techniques have enabled researchers to determine the degree of 

hypertrophy.  Genes that have been studied in mouse include: α-MHC, β-MHC, ANP and 

BNP (Eghbali et al., 2005).  Other methods in the laboratory include echocardiograms to 

determine the thickness of the ventricular wall, and weighing the mass of the heart and 

body of the animal (Eghbali et al., 2005, Virgen-Ortiz et al., 2009).  It has been reported 

Figure 1.  Pathological and Physiological hypertrophy in 

the mouse model.  In the pathological model, the mouse 

had aortic banding for one week, shown on the right, as 

compared to their Sham littermates.  In the physiological 

model, mice were subject to chronic swim training for 4 

weeks.  Although pathological and physiological cardiac 

hypertrophy result from different stimuli, both pathological 

and physiological result in an enlargement of the heart.   

Source: McMullen, J.R. and Jennings, G.L.  (2007).  

Differences between pathological and physiological cardiac 

hypertrophy:  novel therapeutic strategies to treat heart 

failure.  Clin. Exp.  Pharmacol. Physiol., 34, 255-262. 
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that during cardiac hypertrophy there is around a 15% increase in heart-to-body weight 

ratio (Virgen-Ortiz et al., 2009).  In early hypertrophic studies in animals with aortic 

banding, the left ventricle weight (LVW) relative to body weight increased 65% 

compared to the sham (control) group after 14 days (Busk & Cirera, 2010).  A recent 

technique to determine hypertrophy in mice is utilizing the heart weight when comparing 

to the tibia length (Seixas Bello Moreira et al., 2009).   

 Scientists aim to utilize many of these techniques in a clinical diagnostic setting.  

Currently, the standard in a clinical setting is use of an echocardiogram for left 

ventricular thickness.  Through rapid identification of hypertrophy, therapeutic options 

could become available to assist in a healthy remodeling process, including 

administration of peptides that inhibit hypertrophy. 

Pathological and Physiological Cardiac Hypertrophy  

 Cardiac hypertrophy can be classified as a pathological and physiological 

response.  Physiological cardiac hypertrophy is a result of pregnancy and excessive 

exercise especially during training, pathological hypertrophy is a result of hypertension, 

valvular insufficiency, endocrine disorders and genetic mutations (Catalucci et al., 2008, 

McMullen & Jennings, 2007).  Despite the comparable increases in heart size, as shown 

in Figure 1, pathological and physiological hypertrophy are associated with distinct 

structural, functionsl, metabolic, biochemical and molecular features, as mentioned in 

Table 1 (Bernardo et al., 2010).  
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 Physiological and pathological hypertrophy can be further distinguished into two 

specific areas of hypertrophy, concentric and eccentric.  As the heart experiences 

pathological hypertrophy and pressure overload, the systolic wall stress then results in 

concentric hypertrophy; distinguishable by thick walls and small cavities (McMullen & 

Jennings, 2007).  On a cellular level the cardiac myocytes enlarge and form new 

sarcomeric structures, intended to normalize wall stress and prevent normal 

cardiovascular function during resting periods (McMullen & Jennings, 2007).  As a result 

of the cardiovascular function decompensating, the chambers remain a normal size and 

the left ventricle dilates, thus resulting in heart failure (McMullen & Jennings, 2007).  

Pathological hypertrophy is associated with cell death and the loss of myocytes that are 

replaced with excess collagen (Bernardo et al., 2010).  Excessive collagen stiffens the 

ventricles, thus impairing contraction and relaxation (Bernardo et al., 2010).  The 

electrical coupling of cardiac myocytes is extracellular matrix proteins that also reduce 

capillary density (Bernardo et al., 2010).  During periods of volume overload in 

pathological hypertrophy, aortic regurgitation causes an increase in diastolic wall stress 

and results in eccentric hypertrophy (McMullen & Jennings, 2007).  Eccentric 
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hypertrophy, often seen in physiological hypertrophy results in chamber enlargement, 

considered to be a proportional change to the left ventricular wall thickness (McMullen & 

Jennings, 2007).   Eccentric hypertrophy often enhances cardiac function in resting 

conditions to help satisfy the increased cardiac demands placed on the body (Iemitsu et 

al., 2005).  The main difference between eccentric and concentric hypertrophy is that 

during eccentric hypertrophy, the heart does not decompensate into dilated 

cardiomyopathy or result in heart failure (McMullen & Jennings, 2007). 

 Although a strong determinant of hypertrophy is blood pressure, interactions 

between many genes and the environment are likely to contribute to the development of 

hypertrophy (Barrick et al., 2009). The cellular mechanisms behind both concentric and 

eccentric cardiac hypertrophy are now understood.  Generally, the Gαq pathway regulates 

pathological hypertrophy while the Insulin Growth Factor 1 Phosphoinositide-3 kinase 

(IGF1-PI3K) pathway regulates physiological hypertrophy (McMullen & Jennings, 

2007).   

 Pathological cardiac hypertrophy generally results in concentric hypertrophy, 

which is tightly regulated by the Gαq pathway (McMullen & Jennings, 2007).   The Gαq 

pathway is initially activated by angiotensin II (Ang II), endothelin 1 (ET-1) and 

noradrenaline (McMullen & Jennings, 2007).  Once activated, a G-Protein Coupled 

Receptor (GPCR) is also activated and leads to the disassociation of Gαq and activation of 

downstream molecules.  Using a transgenic mouse model and over-expression of the Ang 

II receptor along with a peptide that inhibits Gαq, the coupled receptor signaling did not 

develop hypertrophy, supporting the hypothesis that Gαq is responsible for pathological 

hypertrophy (McMullen & Jennings, 2007).  

  Physiological cardiac hypertrophy results in eccentric hypertrophy and is 

regulated by the IGF1-PI3K pathway (McMullen & Jennings, 2007).  In the IGF1-PI3K 

pathway, IGF1 acts via the IGF-Receptor (IGFR) to initiate a tyrosine kinase, which then 

activates PI3K (McMullen & Jennings, 2007).  PI3K then releases inositol lipid products 

from the plasma membrane that mediate intracellular signaling (McMullen & Jennings, 

2007).   When transgenic mice with enhanced IGF1-PI3K signaling developed 
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hypertrophy, their life span was normal and cardiac function was normal or even 

enhanced (McMullen & Jennings, 2007).  Mice expressing lower cardiac IGF1-PI3K 

signaling had smaller hearts, suggesting that P13K pathway is crucial in the physiological 

growth of the heart (McMullen & Jennings, 2007).   

 Other proteins that regulate cardiac hypertrophy include Rho, GSK-3β and 

NGFIA.  Rho contributes to various cellular functions such as actin cytoskeleton 

organization, cell adhesion and cytokinesis (Balakumar & Singh, 2006).  Rho is also 

suggested to be involved in mechanical stress induced cardiac hypertrophy in cardiac 

myocytes as well as left ventricular remodeling (Balakumar & Singh, 2006).  Rho 

mediates the up-regulation of pro-inflammatory cytokines, reactive oxygen species and 

transforming growth factor β (Balakumar & Singh, 2006).  GSK-3β is constitutively 

expressed on active serine and/or threonine kinase residues that phosphorylate cellular 

substrates (Iemitsu et al., 2005).  GSK-3β also regulates a variety of cellular functions, 

including: metabolism, gene transcription, cell cycle regulation and apoptosis; it is also a 

negative regulator of cardiomyocyte hypertrophy (Iemitsu et al., 2005).  NGFIA binding 

protein (Nab1) is a member of a co-receptor family (Buitrago et al., 2005).  Nab1 is an 

active repressor that interferes directly with the general transcription process (Buitrago et 

al., 2005).  Nab1 does not affect physiological hypertrophy; however, the connection to 

pathological hypertrophy has not yet been established. 

Estrogen 

Estrogen is considered the most important hormone in the woman‟s body because 

it plays a role in the reproductive, immune, vascular and nervous systems (Prossnitz & 

Barton, 2009).  Estrogen can be found in not only natural sources such as phytoestrogens 

and soybased products and, in synthetic forms including xenoestrogens, pesticides, 

herbicides, polychlorinated biphenyl and plasticizers (Prossnitz & Barton., 2009). 

 Prior studies have determined the development of exercise mediated cardiac 

hypertrophy in a sex specific manner.  Female mice typically exhibit an increased cardiac 

hypertrophic response in treadmill protocols as compared to the male mice.  Females also 

show an increased exercise capacity when compared to male mice (Foryst-Ludwig et al., 
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Figure 2.  Cellular signaling mechanisms of both estrogen receptors.  The Gqα 

turns on the ERK pathway, which in turn activates the hypertrophic gene 

program.  The PI3K pathway is activated through the estrogen receptors, which 

upregulates MCIPI, that inhibits calcineurin activity. 

Source: Pedram, A., Razandi, M., Lubahn, D., Liu, J., Vannan, M. and Levin, 

E.R.  (2008).  Estrogen inhibits cardiac hypertrophy: role of estrogen receptor-β 

to inhibit calcineurin.  Endocrinology, 149, 3361-3369. 

 

2011, Pedram et al., 2008).  The underlying mechanisms of sex specific differences 

during cardiac hypertrophy are yet to be understood  (Foryst-Ludwig et al., 2011). 

 Estrogen Receptors:  ER-α, ER-β and GPER  

 Estrogen is predominantly synthesized in the ovaries.  After synthesis, it passes 

through cell membranes by simple diffusion (Prossnitz & Barton., 2009).  The 

physiological response to estrogen is initiated by cellular receptors, as shown in Figure 2 

(Dennis et al., 2009).  This binding results in altered protein on protein interactions and 

activation of several cellular signaling pathways, as shown in Figure 2 (Dennis et al., 

2009).   
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The rapid response of estrogen is highly associated with the cell surface receptors 

including growth factor receptors and G-Protein Coupled Receptors.  The two highly 

studied estrogen receptors, also referred to as the classic estrogen receptors, include 

Estrogen Receptor α (ER-α) and Estrogen Receptor β (ER-β) (Prossnitz & Barton, 2009).  

These estrogen receptors function traditionally as ligand-activated nuclear transcription 

factors that bind to the regulatory response elements in the promoters of genes (Prossnitz 

& Barton, 2009). 

  For several years, ER-α and ER-β were the only two classic estrogen receptors.  

Subsequently, a 7 trans-membrane G protein coupled receptor, also known as GPR30 or 

GPER, was identified to activate similar cellular signaling pathways as ER-α and ER-β 

(Dennis et al., 2009).  GPER can mediate estrogen induced non-genomic signaling 

events, including stimulation of adenyl cyclase, transactivation of epidermal growth 

factor receptors, activation of the mitogen activated protein kinase (MAPK) and the 

phosphotidyl inositol 3 kinase (PI3K) pathways (Ariazi et al., 2010).    The gene for 

human GPER is located on chromosome 7p22.3 and is composed of three exons 

(Mizukami, 2010).  Based on linkage analysis, the chromosomal region containing GPER 

is thought to be related to familial hypertensive disease in humans (Mizukami, 2010). 

 Studies have further emphasized that estrogen is capable of binding to and 

activating the classic estrogen receptors as well as GPER; thus indicating that there is a 

lack of specificity between the three receptors (Prossnitz & Barton, 2009).  In fact, ER-α 

and ER-β appear to overlap with GPER not only in cellular and physiological responses, 

but also in ligand specificity (Dennis et al., 2009).   

 Scientists have begun to utilize GPER agonists and antagonists such as G-1 and 

G-15, in order to study the cellular and physiological effects of GPER.  An agonist is a 

chemical substance capable of activating a receptor to induce a full or partial 

pharmacological response; while an antagonist is a substance utilized that counteracts the 

effects of other substances (Dennis et al., 2009).  The G-1 agonist shows no detectable 

activity towards the classic estrogen receptors (Dennis et al., 2009).  G-1 has been able to 

probe the role of GPER in vivo with reported effects including experimental autoimmune 
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encephalomyelitis (Dennis et al., 2009).  Other findings indicate that G-1 activated GPER 

blocks cell cycle progression at the G1 phase, indicating a potential cancer target (Ariazi 

et al., 2010).  G-1 also mediates protection by activating acute signaling pathways, 

including the P13K pathway (Deschamps & Murphy, 2009).  The G-15 antagonist was 

initially chemically synthesized by Dennis et al. in 2009, was able to inhibit cellular 

signaling as well as GPER mediated functions in vivo.  Through utilizing similar 

techniques, Ariazi et al. was able to identify that GPER, not ERα, mediates the estrogen 

receptor induced calcium mobilization response (Ariazi et al., 2010).  Utilizing agonists 

such as G-1 and antagonists such as G-15 are the very beginnings of finding specific 

therapeutic targets for diseases in the GPER receptor pathways, such as cancer and other 

endocrine disorders. 

 The Role of Estrogen in Cardiac Hypertrophy 

 For many years estrogen was considered a cardioprotective agent, as pre-

menopausal women have a decreased risk of cardiovascular disease relative to males 

(Deschamps & Murphy, 2009).  These numbers shift; however, in post-menopausal 

women, as the risk of developing a cardiovascular disease reaches or even exceeds that of 

men (Deschamps & Murphy, 2009).    In fact, heart failure from cardiovascular disease 

remains the number one killer in women today (Pedram et al., 2008).   

 Animal studies have supported the anti-hypertrophic effects of estrogen in the 

heart (Pedram et al., 2008).  Estrogen supplementation of overiectomized female mice 

causes a 30% reduction in pressure overload-induced hypertrophy (Pedram et al., 2008).   

Pedram et.al conducted a study in 2008 to determine the role that estrogen plays during 

TAC induced cardiac hypertrophy.   This study concluded many significant findings:  

First, estrogen inhibits cardiac hypertrophy through ERβ receptor in order to counteract 

the effects of the peptide AngII (Pedram et al., 2008).  Ang II then activates several 

pathways to initiate hypertrophy (Pedram et al., 2008).   

 Recently, two clinical trials designed to test the effects of estrogen replacement in 

postmenopausal women, the Women‟s Health Initiative (WHI) and the Heart and 

Estrogen/Progestin Replacement Study (HERS) found that estrogen did not reverse 
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cardioprotective effects and actually increased the number of cardiovascular events 

(Deschamps & Murphy, 2009).  Previous to these studies, estrogen has been identified as 

a cardioprotective agent, especially for females.  It is now even more important to 

understand the mechanisms by which estrogen exerts its protective effects on the heart 

(Deschamps & Murphy, 2009). 

Genetic Markers of Hypertrophy 

Genetic markers of pathological hypertrophy have been well known for many 

years.  For example, the heart reacts to cardiac injury by activating a range of signaling 

pathways by switching the pattern of expressed genes to an embryonic profile (Zorio et 

al., 2009).  These embryonic expression patterns are seen in Figure 3.  Pathological 

cardiac hypertrophy is associated with direct alterations in cardiac contractile proteins, 

such as: α and β myosin heavy chains, increased levels of natriuretic peptides atrial 

natriuretic peptide (ANP) and brain natriuretic peptide (BNP), and lastly, down-

regulation of calcium handling proteins, such as SERCA2a (Bernardo et al., 2010).  In a 

recent study done in a mouse model, physiological studies did not show any significant 

change in any of these genes (Iemitsu et al., 2005).  Little genetic marker analysis has 

been done in a rat model during pregnancy induced cardiac hypertrophy.  

 

Figure 3.  Schematic of the gene expression markers of hypertrophy.  These markers are used as a standard 

to determine the degree of cardiac hypertrophy.  An example of a differentiated cardiomyocyte would be 

one that is present in a healthy heart.  Following a hypertrophy stimulus, such as high blood pressure, the 

cardiomyocytes in the heart enlarge to compensate for added stress.  During this process, the genetic marker 

expression levels change through a series of complex molecular pathways.  Information was compiled 

following a literature review. 
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 α-MHC 

 Alpha myosin heavy chain (α-MHC) is a cardiac specific sarcomeric gene highly 

expressed in the atrial septum (Posch et al., 2010).  Myosin is the main component of the 

thick sarcomeric filament and uses ATP hydrolysis to produce force for contraction.  

Myosin motors act upon thin filaments composed of actin and troponin-tropomyosin 

regulatory complex.  In resting muscle, when the calcium concentration is low, the 

regulatory proteins prevent myosin from contact with actin.  During each heartbeat, 

calcium is released from the sarcoplasmic reticulum into the cytoplasm, where it binds to 

troponin and allows myosin to interact with actin filaments to produce a contraction.  The 

muscle then relaxes as calcium is removed from the cytoplasm (Malik et al., 2011).  

Alpha MHC is regulated by TBX5, which encodes a member of the family of T box 

transcription factors and expressed in the embryonic heart (Posch et al., 2010).  An 

increase in β-MHC expression and a decrease in α-MHC expression have been accepted 

cardiac hypertrophy markers for the past 40 years (Barry et al., 2008).  Each isoform has 

distinct enzymatic activity, which means that the relative ratios of activity greatly impact 

cardiac function (Barry et al., 2008).  For example, an increase in β-MHC decreases the 

myosin ATPase enzyme velocity, which then slows down the myosin contractile work 

(Barry et al., 2008).  This same mechanism occurs during an altered workload in the heart 

(Barry et al., 2008).  The cardiac remodeling process following hypertrophy is generally 

associated with the return of the MHC isoform levels back to normal (Barry et al., 2008).   

 In pathological cases, such as those patients with dilated cardiomyopathy utilizing 

β-blocker therapy, the hypertrophy recovery is associated with an increase in α-MHC and 

a decrease in β-MHC (Barry et al., 2008).  Ching et al. did a protein-protein in silica 

study using a glutathione s-transferase (GST) tag pull-down assay and surface receptors 

to discover that a mutation in α-MHC causes an atrial septum defect (Ching et al., 2005).  

A mutational scan of the coding regions for the α-MHC gene was completed recently in 

470 congenital heart disease patients (Granados-Riveron et al., 2010).  This study 

identified that in congenital heart patients, the α-MHC gene contains a stop codon 

mutation, splice acceptor site mutation and 7 missense mutations (Granados-Riveron et 

al., 2010).   
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 Existing cardiac contractile drugs that affect myosin increase cardiac contractility 

indirectly.  The use of these drugs is limited by adverse effects.  Malik and colleagues 

created a small-molecule direct activator of cardiac myosin in order to avoid these effects 

(2011).  They recently identified that the activator, omecamtiv mecarbil, binds to the 

myosin catalytic domain and operates by an allosteric mechanism to increase the 

transition rate of myosin into myosin bound with actin.  In animal models, they identified 

that omecamtiv mecarbil increases cardiac function by increasing the duration of ejection 

without changing the rate of contraction (Malik et al., 2011).  This finding is applicable 

to systolic heart failure patients as a possible therapeutic option (Malik et al., 2011). 

 It is still difficult to study the MHC isoforms using the rat, human and mouse 

models.  A main complication in studying the MHC gene is in humans, 90% of the total 

MHC is of the beta isoform (Barry et al., 2008).  On the other hand, in rodents, the 

primary MHC isoform is alpha, most likely due to their high heart rate (Barry et al., 

2008).   It is important to study the MHC in all three species.  Caution should be taken 

when utilizing α-MHC results and relating to human disease for these specific reasons. 

 Natriuretic peptides:  ANP and BNP 

 Natriuretic peptides are internally derived antagonists that are important in 

modulation of molecular mechanisms involved in metabolic regulation and 

cardiovascular remodeling (Savoia et al., 2010).  The four main types of natriuretic 

peptides include: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), c-type 

natriuretic peptide (CNP) and dendroaspis natriuretic peptide (DNP) (Akashi et al., 

2007).  All of these peptides share a common 17 amino acid cyclic structure, although the 

tails of ANP and BNP both have a 5‟ carboxy termini and an 3‟ amino termini, while 

CNP lacks the carboxy tail (Akashi et al ., 2007).   ANP and BNP are found at high levels 

during embryonic development and in early neonates but are absent in healthy adults 

(Barry et al., 2008).   Currently, not much information is known regarding DNP and the 

connection to cardiovascular disease. 
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Figure 4.  Processing of the natriuretic peptides.  ANP, BNP and CNP all have short half-lives, making 

identification and analysis difficult.  Their precursor proteins, pro-ANP, pro-BNP, and pro-CNP have much 

longer half-lives, making them ideal therapeutic targets.   

Source: Potter, L.R., Yoder, A.R., Flora, D.R., Antos, L.K. and Dickey, D.M.  (2009).  Natriuretic  peptides: 

their structures, receptors, physiologic functions and therapeutic applications.  cGMP: Generators, Effectors 

and Therapeutic Implications, 341 Handbook of Experimental Pharmacology, Springer-Verlag Heidelberg. 

  

 ANP and BNP are synthesized in the myocardium as their precursor pro-ANP and 

pro-BNP (Engle et al., 2010; Moertl et al., 2009).  These segments are then cleaved into 

their corresponding biologically inactive amino-terminal segments of the precursor 

molecules by a cardiac protease either amino-terminal pro-atrial natriuretic peptide (NT-

proANP) or amino-terminal pro-B type natriuretic peptide (NT-proBNP), both products 

are around 108 amino acids long, as seen in Figure 4 (Akashi et al., 2007; Moertl et al., 

2009).  This molecular split event also results in the active peptides to be released, ANP 

and BNP, both around 32 amino acids long (Hildebrandt, 2009; Akashi et al., 2007).  
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The active natriuretic peptides then bind to one of three high affinity receptors, 

NPR-A, NPR-B, or NPR-C (Savoia et al., 2010).  NPR-A and NPR-B share similar 

structures, and are linked to the production of cyclic guanosine monophosphate (cGMP) 

(Savoia et al., 2010).  NPR-C has sequence similarities with the other two receptors, but 

lacks an intracellular catalytic domain of guanylate cyclase (Savoia et al., 2010).  Even 

with similar structures, all three receptors bind to different natriuretic peptides.  NPR-A, 

primarily found in the kidneys and adrenal glands, binds to both ANP and BNP but has 

the highest affinity for ANP (Kasama et al., 2008).  NPR-B, found in brain and 

fibroblasts, binds to solely CNP (Savoia et al., 2010).  NPR-C, found in various tissues, 

kidneys and adipose tissue, binds to all three natriuretic peptides with the same affinity 

(Akashi et al., 2007).  NPR-C regulates the final ANP and BNP binding to NPR-A and as 

a final clearance receptor for all the peptides (Kasama et al., 2008;Savoia et al., 2010).  

ANP and BNP are also rapidly removed by this receptor (Savoia et al., 2010).   

 The natriuretic peptides inhibit renin, vasopressin and aldosterone release (Savoia 

et al., 2010).   Renin mediates extracellular volume of plasma, blood, lymph, and 

interstitial fluid (Savoia et al., 2010).  Vasopressin is a peptide hormone that is an 

important contributor of blood pressure by regulating the vascular resistance including 

vasoconstriction (Savoia et al., 2010).  Lastly, aldosterone increases reabsorption of 

sodium ions and water, thus helping in increasing the blood volume and blood pressure 

(Savoia et al., 2010).  ANP and BNP production and secretion is regulated by complex 

interactions with both the neuro-hormonal and immune systems, especially in the 

ventricular myocardium (Akashi et al., 2007).  Stimulators that produce/secrete ANP or 

BNP include:  glucocorticoids, sex steroid hormones, thyroid hormones, endothelin-1, 

angiotensin II, and cytokines, such as tumor necrosis factor-α, interleukin-1 and 

interleukin-6 (Akashi et al., 2007).  The natriuretic peptides can be inactivated through 

several different inactivation pathways: enzymatic degradation by neutral endopeptidase, 

or NEP, or through lysosomal degradation after uptake by a clearance receptor, such as 

NPR-C (Akashi et al., 2007).   

 During heart failure, natriuretic peptide levels in plasma not only are used as a 

diagnostic, but can also be used to determine the severity of the disease and its prognosis 
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in both clinical and laboratory studies (Moertl et al., 2009).  Elevation of BNP, for 

example, is a key feature of cardiovascular damage in obese patients (Savoia et al., 

2010).  Obesity decreases the bioactive levels of natriuretic peptides via the increased 

expression of the clearance receptor NPR-C in adipose tissue (Savoia et al., 2010).  This 

may potentiate adipogenesis and lipid accumulation (Savoia et al., 2010).  Animal and 

human adipose tissues express both NPR-A and NPR-C, but in obese patients, the ratio 

between the two is reduced (Savoia et al., 2010).  Deletion of ANP in mice causes 

hypertension and hypertrophy under resting conditions (Barry et al., 2008).  Deregulation 

of natriuretic peptides is involved in pathogenesis of left ventricular hypertrophy in 

patients, as studies have shown that as levels of ANP are inversely related to left 

ventricular mass (Savoia et al., 2010).   Recently, Magnusson et al. conducted a direct 

comparison of NT-BNP, BNP and NT-ANP levels and showed evidence that all three 

could be potential prognostic indicators of hypertrophy (2009). 

 Although the natriuretic peptides, especially ANP and BNP, have been 

established as potential prognostic tools, issues arise that might suggest utilizing their 

precursors, pro-ANP and pro-BNP instead.  For example, the BNP peptide has a half-life 

of 12 to 22 minutes, while its precursor, NT-proBNP, has a half-life of 60 to 90 minutes 

(Moertl et al., 2009).  NT-proBNP is often subject to degradation and polymerization, so 

the amino end is usually not useful for assays (Moertl et al., 2009).  The ANP peptide‟s 

half-life is a mere 2 to 5 minutes, too short for any clinical application (Moertl et al., 

2009).  NT-proANPs half-life is longer than the hormone itself, but still too short for 

diagnostic purposes (Moertl et al., 2009).  BNP and pro-BNP are useful in diagnostic 

settings, especially with those patients with congestive heart failure (Tsai et al., 2010).  

Out of the two peptides, BNP is more commonly used, but with caution; often common 

prescription medications alter peptide levels, especially those that are the angiotensin-

converting enzyme inhibitors and angiotensin II blockers (Hildebrandt, 2009 & Wang et 

al., 2010).  The Food and Drug Administration (FDA) approved a cutoff value for BNP 

in congestive heart failure patients to be 100 pg/mL (Tsai et al., 2010). 

miRNAs 
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MicroRNA‟s (miRNA or miR) are short, endogenous, non-coding, single stranded 

segments of RNA that regulate gene expression through hybridization to messenger RNA 

(mRNA).  The terminal consequence of miRs binding to mRNA is mRNA degradation or 

translational inhibition of targeted transcripts (Zhang et al., 2011).  MiRNAs can be 

excised from within introns of non-protein or protein coding transcriptional units or even 

within genomic repeats (Zhao & Srivastava, 2007).  Not only can an individual miRNA 

target dozen mRNAs, but also a single mRNA can be complementary to multiple miRNA 

(van Rooij et al., 2008).  A recent estimate approximates the total possible miRNAs in 

the human genome to consist of 3% of the human genome; of which then regulates 

approximately 30% of the entire human genome (Boštjančič, 2010, Shen et al., 2010).  

Since the first discovery of miRNA let-7 in Caenorhabditis elegans 10 years ago, over 

900 microRNAs have been identified, cloned, and sequenced (van Rooij et al., 2007).  

MiRNA have become of such interest since the discovery of let-7 because miRNA have 

been identified to be important regulators in processes such as cell differentiation, 

growth, proliferation and apoptosis (Lagos-Qunitana et al., 2003, Zhang, 2008).  Many 

miRNAs, especially those expressed in tissue, regulate developmental and physiological 

functions, such as the following:  stem cell differentiation, neurogenesis, hematopoiesis, 

immune functions, and metabolism (Boštjančič, 2010).  The miRNA identified could also 

be responsible for diseases such as cancer, autoimmune, inflammatory, and 

cardiovascular disorders (Boštjančič, 2010).    

MiRNA Processing  

MiRNAs are initially transcribed by RNA polymerase II or III in the nucleus to 

form large pri-miRNA transcripts, as shown in Figure 5 (Zhang, 2008).  These miRNA 

precursors are usually several kilobases long and then capped and adenylated (Callis, 

Chen & Wang, 2007).  The pri-miRNAs are processed and cut in the nucleus by RNase 

III enzyme Drosha (also identified as RNASEN) and the double stranded RNA (dsRNA) 

binding protein Pasha (also identified as DGCR8, or DiGeorge Critical Region 8); 

resulting in approximately 70-90 nucleotide pre-miRNAs which fold into a stem-loop 

hairpin structure (Zorio et al., 2009; Cai et al., 2010).  From here, the pre-miRNAs can be 

transported out of the nucleus and into the cytoplasm by RanGTP and exportin 5  (Yang 
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et al., 2009;Wang, Zhou, Liao & Zhang, 2009).  Subsequently, another enzyme, RNAse 

III Dicer, processes the pre-miRNA to generate a 18-24 nucleotide duplex.   

The final step occurs when the duplex is loaded into the miRNA associated 

miRISC (RNA-induced silencing complex) (Zhang, 2008).  One strand of the miRNA is 

retained in the complex and becomes a mature miRNA, the opposite strand is eliminated 

(Zhang, 2008).   

 

 

 

 

 

The mature miRNA then anneals to a 3‟ un-translated region of the target mRNA, 

where it promotes translational repression or mRNA degradation (van Rooij et al., 2008).  

The pre-miRNA can also be further modified by adenosine deamination, which can 

Figure 5.  Schematic of miRNA activation. This process initially takes place in the nucleus prior 

to the pre-miRNA product being exported.  After binding to RISC, or the RNA Induced Silencing 

Complex, the mature miRNA can then repress translation, bind to the complementary mRNA to 

target for degradation, or be further modified through deadenylation.   

Source:  Zhao, Y. and Srivastava, D.  (2007).  A developmental view of microRNA function.  

TIBS, 32, 189-197. 
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further control targeting specificity as well as modulate the stability and processing of the 

miRNA precursor transcript (Catalucci et al., 2008).  Recent studies have highlighted that 

tumor suppressor p53 modulates miRNA processing through interactions with Drosha 

(Suzuki & Miyazono, 2010). 

MicroRNAs that base pair perfectly with target mRNA sequences result in mRNA 

degradation, whereas those with imperfect sequence complementarities with mRNA 

sequences result in either direct or indirect degradation (Yang et al., 2009, Zorio et al., 

2009).  Single miRNA targets may function according to a „combinational circuitry 

model‟, whereby a single mRNA targets multiple mRNAs and several co-expressed 

miRNAs may target a single mRNA (Carè et al., 2007). 

The importance of the RNase enzyme dicer has been extensively studied utilizing 

transgenic mouse models.  Callis & Wang in 2008 studied the outcome after deletion of 

Dicer in both mouse and zebrafish.  When the dicer function was disrupted in the mouse, 

the mouse stopped development during gastrulation before the body plan was completed 

(Callis & Wang, 2008).  In zebrafish the fish experienced abnormal morphogenesis and 

heart development abnormalities (Callis & Wang, 2008).  These results demonstrated that 

miRNA are important in the developmental stages.  A similar result was seen in dicer 

knockout pups, as they died at post-natal day 4 (Prasad et al., 2009).  Dicer is the only 

enzyme involved in the maturation of miRNAs from their precursor, so when down-

regulated, the miRNA expression level is also decreased (Chen et al., 2007; Prasad et al., 

2009).  When dicer was deleted using cre-recombinase, which is controlled 

predominantly by the α-MHC promoter, the hearts exhibited different cardiac contractile 

protein expression and sarcomeric disarray (Callis & Wang, 2008).  This disarray led to a 

decrease in cardiac function, which progressed quickly into heart failure (Callis & Wang, 

2008).   A study conducted by Saxena & Tabin in 2010 demonstrated that dicer is 

necessary for cardiac outflow and chamber septation. 

 The miRNA nomenclature system not only designates information regarding the 

order of discovery, but gives clues regarded the precursors involved during the 

modification steps.  For example, miRNAs that are encoded by more than one loci are 
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differentiated by numerical suffixes, such as miR-1-1 and miR-1-2.  MiRNAs that only 

differ in the number of bases and are also derived from the same loci are denoted by 

alphabetical suffixes, such as miR133a and miR133b.  Lastly, miRNA that are derived 

from the same precursor, but with different tissue-specific post-transcriptional maturation 

are denoted by adding which arm of the hairpin loop they were derived from, such as 

miR-126-5p and miR-126-3p, which are derived from the 3‟ and 5‟ arms, respectively 

(Zorio et al., 2009). 

Identification of miRNA Targets 

 In order to completely understand the molecular functions of miRNAs, it is 

important to identify their mRNA targets (Callis & Wang, 2008).  The identification of 

miRNA targets is a complicated process because they act as a concerted effort in a 

complex molecular network (Shen et al., 2010).  The current understanding of these 

targets is based on computational target predictions and empirical information regarding 

the developmental expression patterns and evolutionary conservation (Shen et al., 2010).  

These computational programs work to match the animal miRNAs to the complementary 

target sites through complementary sequence searches (Callis & Wang, 2008).   

 The portion of the miRNA that must complement to the mRNA sequence are 

nucleotides 2 through 8 on the 5‟ end, also called the seed sequence (van Rooij et al., 

2008).  Generally, matching the seed sequence to the complementary mRNA sequence is 

accurate; however, other nucleotides and mRNA secondary structures in regions 

surrounding the target can also influence the association of the miRNA and mRNA (van 

Rooij et al., 2008).  After a systematic analysis by Friedman et al. in 2010, they 

determined that the seed region is the key determinant of miRNA specificity.  

 Bioinformatics has been of great use to identify miRNA targets through sequence 

alignments.  MiR-base (http://www.miRbase.org) has a variety of different resources, 

such as the microcosm, which provides  target prediction  services.  MirBase also links 

miRNAs to targets predicted by microcosm, Target Scan, and Pictar.  Target Scan 

(http://www.targetscan.org) is of use to determine microRNA targets in mammals, 

http://www.mirbase.org/
http://www.targetscan.org/
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Table 2.  miRNA expression profiles for miR-1, miR-133a, miR-195 and miR-21 assembled through a literature 

review.  Although these miRNA have been identified to play a role during pathological hypertrophy, little is still 

known regarding their targets and downstream effects. 

 

miRNA Pathological 
Hypertrophy  

Response 

Function Targets 

1 Downregulated 
 Cardiomyocyte 

apoptosis 

 Late stage 
differentiation of 
growth cartilage cells 

 Cardiac development 
and differentiation 

 Cell growth 

 Calcium dependent 
signaling 

 

 Hand-2  

 Ras-GAP 

 Cdk9 

 Rheb 

 Fibronectin 

 TWF1 

 HCN2 

 HCN4 
 

133a Downregulated 
 Apoptosis 
 

 HCN2 

 SRF 

 RhoA 

 Cdc42 

 Nelf-
A/WHSC2 

 

195 Upregulated 
 Angiogenesis under 

hypoxia 

None 
Identified 

21 Upregulated 
 Unclear 

 Stimulate cell growth? 

 Activate apoptosis? 

 Inhibit cell cycle 
proliferation? 

 Modify signaling 
pathways? 

 

 SPRY1 

 TPMI 

including the mouse, worm and fly.  This program predicts biological targets of miRNAs 

by searching the seed region of each miRNA.     

 Through utilizing http://www.targetscan.org, we identified miRNA that bind to 

the myosin heavy chain (human MYH6, gene ID: 4624 in PubMed).  These miRNA 

include:  miR1827, miR1294, miR31, miR-182, miR-552, miR-556-3p and miR-1279. 

miRNAs and Cardiovascular Disease  

 MiRNA are important in cardiovascular development, vascular angiogenesis, 

hypertrophy and cardiovascular disease (Shen et al., 2010).  MiRNAs such as miR-21, 

miR-195, miR-133 and miR-208 play a role in the process of cardiac remodeling by 

regulating changes in gene expression that accompany pathological disorders (Sucharov 

et al., 2008).  More information regarding these miRNA can be found in Table 2.   

 

http://www.targetscan.org/
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MiRNAs have also been identified that play a role in physiological cardiac 

hypertrophy in mice (Shen et al., 2010).  MiRNAs 1, 133 and 150 have been shown to be 

anti-hypertrophic, while miRNAs-195, 21, 18b, 23a, 23b, 24, 181b and 214 are pro-

hypertrophic (Shen et al., 2010).  A miRNA array showed that more than 80% of the 350 

miRNAs examined in a mouse model were either up-regulated or down-regulated in the 

failing heart when compared to the control mice (Latronico et al., 2008).  Failing human 

hearts have showed increased expression of miR-24, miR-125b, miR-195, miR-199a and 

miR-214 (van Rooij et al., 2006, van Rooij et al., 2008).   

 miRNA Expression During Cardiac Remodeling 

 MiRNA in the mouse model identified to be responsible for post-hypertrophy 

cardiac remodeling include:  347, 483, 326, 212, 130b, 29a, and 23a (Wang et al., 2009).  

Two particular miRNA that are of interest are miR-23a and miR-29.  MiR-23a was 

identified to be down-regulated during hypertrophy and up-regulated during the 

remodeling process (Wang et al., 2009).  MiR-29 was identified to be down-regulated by 

greater than two fold during hypertrophy but gradually up-regulated up to 1.5 fold during 

cardiac remodeling (Wang et al., 2009).  To date, there have not been any experiments 

looking into the miRNA expression during pregnancy induced cardiac hypertrophy as 

well as the remodeling process. 

miR-21  

MiRNA-21 is involved in tumor-related cell growth and apoptosis, mediation of 

signaling pathways in neonatal cardiomyocytes, and much more (Shen et al., 2010).  The 

exact function of this miRNA still remains unclear (Shen et al., 2010).  MiR-21 has a 

pro-proliferative and anti-apoptotic effect on muscle cells (Zhang, 2008).  It is still 

unknown exactly what role miR-21 has on apopotosis, as it is still very contradictory 

(Zhang, 2008).  Studies have shown that miRNA 21 stimulates cell growth, while others 

find that miRNA 21 activates apoptosis and inhibits cellular proliferation (Callis & 

Wang, 2008).  It has been accepted, however, that miR-21 is up-regulated during 

pathological cardiac hypertrophy (Zhang, 2008). 
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In order to determine the mRNA target and molecular function of miR-21, 

transgenic mice, and cell culture lines have been used.  After inhibition of miR-21 and 

miR-18b in neonatal rat cardiomyocytes, lab results identified an induction of 

hypertrophy and an increase in cardiomyocyte size (Tatsuguchi et al., 2007).  Utilizing in 

situ hybridization, miR-21 was detected in very small amounts in normal myocardium, 

but higher levels in failing myocardium (Thum et al., 2008).  In another transgenic 

model, knockdown of miR-21 repressed cardiomyocyte growth and fetal gene expression 

in response to hypertrophic agonists (Shen et al., 2010).  Another study utilized knock- 

out mice to determine that in the absence of miR-21, stress dependent cardiac remodeling 

occurs (Patrick et al., 2010).  Although the mRNA target for miR-21 has yet to be 

identified, recent knockout models suggest that miR-21 targets SPRY1, a potential 

inhibitor of the RAS/MEK/ERK pathway (Thum et al., 2008).  Other direct targets of 

miR-21 in fibroblasts are phosphatase and tension homologue (PTEN), a lipid and protein 

phosphatase that negatively regulates the P13K signaling pathway (Haghikia & Hilfiker-

Kleiner, 2009).  PTEN also affects other cellular features such as survival, growth, 

metabolism, protein synthesis, and secretory activity (Haghikia & Hilfiker-Kleiner, 

2009). 

miR-195  

During pathological hypertrophy, miR-195 is up-regulated in both human and 

mouse.  Expression is sufficient to induce hypertrophic growth in cultured rat 

cardiomyocytes (Callis & Wang, 2008).  MiR-195 can also rescue cell division in stem 

cells by suppression of WEE1 and p21 (Shen et al., 2010).  A reason this occurred could 

be because miR-195 attenuates the cell cycle by down-regulating cyclin D1, cdk6, and 

E2F3 (Shen et al., 2010). 

MiR-195 is one of the few miRNA in which the functional target has yet to be 

identified.  Over-expression of miR-195 increases the left ventricular wall size, which 

then up-regulates the expression of ANP, BNP and β-MHC, which then consequently 

reduces cardiac output (Shen et al., 2010).  Over-expression of miR-195, results in 

dilated cardiomyopathy and heart failure in mice as early as 2 weeks old (van Rooij et al., 
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2008).    In another study, over-expression of miR-195 was enough to induce cardiac 

dysfunction and heart failure in transgenic mice (Shen et al., 2010). 

miR-1  

 MiRNA-1 is considered pro-apoptosis through repressing heat shock proteins 

HSP60 and HSP70 without altering transcript levels (Shen et al., 2010).  Excess of miR-1 

in developing cardiac tissue leads to a decreased pool of proliferating cardiomyocytes; 

thus supporting the hypothesis that miR-1 genes control the balance between 

differentiation and proliferation during cardiogenesis (Mishra et al., 2009).   Other 

literature has stated that miR-1 inhibits cardiomyocyte proliferation (van Rooijet al., 

2008). 

 MiRNA-1 is a muscle specific miRNA and expression is often seen as early as 

embryonic day 8.5 (Sayed et al., 2007).  Overexpression of miR-1 in developing mice 

heart caused defective ventricular myocyte proliferation (Callis et al., 2009).  Typically 

when fetal gene marker β-MHC is over-expressed, miR-1 inhibits myocyte proliferation 

and cardiac development, suggesting a relationship between the fetal gene markers and 

miRNA (Sayed et al., 2007).  Mice deficient in miR-1 display abnormalities in the 

cellular hyperplasia (Bauersachs & Thum, 2007).  MiRNA-1 has also been noted to 

regulate twinfilin-1, or TWF-1, a cytoskeleton regulatory protein (Li et al., 2010). 

 In mice, miR-1 expression decreases in the early stages of hypertrophy (Sayed et 

al., 2007).  In fact, just one day after TAC surgery, miR-1 was down-regulated and 

continued to be down-regulated through day 7 (Shen et al., 2010).  The reason for this is 

that miR-1 directly targets Ras GTPase activating protein (Ras GTP), cyclic-dependant 

kinase (cdk9), Ras homolog enriched in brain (Rheb) and fibronectin, all of which 

contribute to the onset of cardiac hypertrophy (Shen et al., 2010).  Another verified target 

for miR-1 is the cardiac transcription factor Hand-2, which is connected to cardiac 

growth during embryogenesis (Callis & Wang, 2008).  In studies confirming this, miR-1 

overexpression reduced the levels of Hand-2, and Hand-2 levels were increased in miR-

1-2 null animals (Callis & Wang, 2008).   
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 MiR-1 activity is transcriptionally regulated by myogenic differentiating factors, 

such as myogenic differentiation 1 (MyoD), myocyte enhancing factor 2 (Mef2), and 

serum response factor (SRF) (Zorio et al., 2009).  This regulation is tissue specific; as 

miR-1 is controlled by SRF in the heart but Mef2 and MyoD in skeletal muscles (Zorio et 

al., 2009).  SRF is a transcription factor that recruits co-activators and myocardin to 

muscle specific genes that control differentiation (Callis et al., 2009; Zhang et al., 2011).  

MiR-1 also represses the expression of histone deacetylase (HDA4), which acts as a 

signal dependent repressor of Mef2 (van Rooij et al., 2008).   

miR-133a  

 MiR-133a is down-regulated in human heart disease and deregulated during both 

physiological and pathological hypertrophy (van Rooij et al., 2006; van Rooij & Olson, 

2007; van Rooij et al., 2008).  Results are contradictory on miR-133a‟s response to 

apoptosis.  For example, one report states that it promotes myoblast proliferation and 

apoptosis, while others report that it is anti-apoptotic (Boštjančič, 2010; Shen et al., 

2010).   

 Mir-133a suppresses SRF, an important regulator of muscle differentiation (van 

Rooij et al., 2008).  SRF also interacts to control the stress-induced fetal gene 

reactivation during hypertrophy (Ahmad et al., 2005).  Mir-133a also represses 

translation of polypyrimidine tract binding protein PTB, which promotes the differential 

splicing of a variety of transcripts (van Rooij et al., 2008).  The target genes for miR-

133a are Rhoa, a GDP-GTP exchange protein regulating cardiac hypertrophy, Cdc42, a 

signal transduction kinase, and WhSc2, a nuclear factor involved in cardiogenesis 

(Bauersachs & Thum, 2007).  In hypertrophied mice hearts, the expression of mir-133a 

was inversely related to the expression of all of those proteins (Bauersachs & Thum, 

2007).  This information was confirmed again through the use of a luciferase assay, in 

which the luciferase reporter gene was linked to the wild type 3‟ UTR of Rhoa, Cdc42, 

and Whsc2 (Bauersachs & Thum, 2007).  This resulted in a significant decrease in 

luciferase activity, thus confirming their role as targets (Bauersachs & Thum, 2007).   
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miR-1 and miR-133a  

 MiR-1 and miR-133a are produced from the same polycistronic transcripts and 

are encoded by two separate genes in the genomes of the mouse and human (Callis & 

Wang, 2008).  These miRNA‟s are highly conserved and are also expressed in the muscle 

of flies, mice, and humans (Callis & Wang, 2008).  Both miRNAs have muscle specific 

expression patterns that promote myoblast differentiation (Boštjančič, 2010).  MiRNA 1 

and 133a have been shown to be closely involved in regulating cardiomyocte apoptosis 

(Shen et al., 2010).  Both miR-1 and miR-133a promote differentiation and proliferation 

of cardiac and skeletal muscle cells (Shen et al., 2010).  These miRNA have also been 

assessed in hypertrophy models and human heart disease (Shen et al., 2010).  This model 

suggests that miR-1 and miR-133a expression levels are significantly reduced in cardiac 

hypertrophy, indicating a reverse correlation between miR-133a and miR-1 expression 

and myocardial hypertrophy (Shen et al., 2010). 

 MiR-1 and MiR-133a work in a system is also referred to as MADS (MCMI 

agamous deficiens serum response factor box) (van Rooij et al., 2008).  The transcription 

factors for the MADS box are SRF and Mef2, both of which regulate muscle cell 

proliferation and differentiation through interactions with other transcription regulators 

(van Rooij et al., 2008).  SRF and Mef2 control the expression levels of miR-1-1/133a-2 

and miR-1-2/133a-1 (van Rooij et al., 2008).  SRF and Mef2 cooperate with MyoD to 

activate transcription of factors (van Rooij et al., 2008).   

 MiR-1 and miR-133a regulate the cardiac conduction system components and 

induce arrhythmia (Shen et al., 2010).  In fact, miR-1 overexpression slowed the 

conductance and depolarized the cytoplasmic membrane by post-transcriptionally 

repressing KCNJ2, which encodes the potassium channel subunit, and GJA1, which 

encodes connexin 43, thus leading to severe cardiac arrhythmias (Bauersachs & Thum, 

2007).  Using this information, scientists have been able to identify potential target sites 

for both miR-1 and miR-133a.  HCN2, or hyperpolarization activated cyclic nucleotide 

gated potassium channel 2, and HCN4 are both pacemaker channel control genes and 
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have been identified as potential repression targets for miR-1 (Luo et al., 2008).  HCN2 is 

a potential repression target for miR-133a (Luo et al., 2008).   

 Potential Therapeutic Applications 

 MiRNAs have sparked interest because of their potential in studying gene 

function, validating diagnostic biomarkers, confirming candidate drug targets, and 

perhaps even treating certain diseases (Zorio et al., 2009).  MiRNA targets are pursued 

for treatment options for Altzheimer‟s Disease, Parkinson‟s Disease, cancer, diabetes, 

heart failure, and many more.  In fact, miRNA are now being called “onco-miRs.”   

Another possibility for the use of miRNA is designing new protocols for manipulating 

miRNAs.  For example, prevention of lower miR-195 expression during hypertrophy 

could prevent the heart from going into heart failure (van Rooij et al., 2008).  Knockout 

of specific miRNA, such as miR-1 and miR-133 could help facilitate the remodeling 

process (van Rooij et al., 2008).   

Species Specific Differences between the Rat, Mouse, and Human 

 Rattus norvegicus was the first mammalian species to be used for laboratory work 

(Jacob & Kwitek, 2002).  The mouse was more commonly used in the laboratory for 

mammalian geneticists because scientists preferred the small size and range of coat colors 

(Jacob & Kwitek, 2002).  Most rat models have phenotypic characteristics relevant to a 

human condition, such as those for hypertension; however, it is nearly impossible to 

recapitulate clinical outcomes of human disease due to sex-specific differences (Jacob & 

Kwitek, 2002).   

 Other issues arise with rat or mouse models in that these species often do not all 

the clinical symptoms of human disease (Jacob & Kwitek, 2002).  Studies done in these 

species, especially in a single inbred rodent strain, often fail to sample a sufficient 

amount of genetic diversity to account for the complex phenotype (Jacob & Kwitek, 

2002).  For example, several years ago, a rat gene that was mapped near the angiotensin-

converting enzyme (ACE) gene was thought to be responsible for hypertension (Jacob & 
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Kwitek, 2002).  Further studies demonstrated that ACE was not linked to hypertension in 

humans (Jacob & Kwitek, 2002).     

 

The Rat Genome Sequencing Project Consortium (RGSPC) in 2004 examined the 

rat, mouse, and human genomes to compare and evaluate evolutionary trends.  The 

phylogenetic tree they agreed is in Figure 6.  The RGSPC found that some genes in the 

rat, but not mouse, arose from the expansion of common gene families.  These include 

those that produce pheromones, immunity, chemosensation, detoxification and 

proteolysis.  They also identified that almost all human genes have known to be 

associated with disease have orthologous in the rat genome.   

 The RGSPC looked at the X chromosome for divergence events between the three 

animals.  The X chromosome consists of 16 human/mouse/rat orthologous genes that are 

at least 300 kb in size.  The committee counted a total of 15 inversions in the genome in 

the descent from primate to rodent to ancestor.  They also identified 278 orthologous 

genes between the human and rat and 280 between the human and mouse, thus 

supporting the hypothesis that the species are closely related. The RGSPC identified 454 

non-coding RNA (ncRNA), of which 113 were miRNA.   

Figure 6.  Phyologenic relationship between three species.  Even after the development of new technology and 

bioinformatics techniques using sequence alignments, a phylogenetic relationship has not yet been clearly defined 

between the mouse and rat.  Learning more about the differences between the species could open doors regarding 

finding the ideal model organism to study pathological diseases.   

Source Rat Genome Sequencing Project Consortium.  (2004).  Genome sequence of the brown Norway rat yields 

Insights into mammalian evolution.  Nature, 428, 493-520. 
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 Looking through evolutionary time, the RGSPC found that 90% of rat genes 

possess strict orthologous genes in both the mouse and human genomes.  In-paralogs 

have arisen from recent duplication events occur only in the rat, and not mouse and 

human.  While using a rat model is sufficient for studying molecular signaling pathways, 

it is important to recognize that even if the species are evolutionary related, species-

specific differences will still occur (Jacob & Kwitek, 2002).   
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Chapter 2 

Materials and Methods 

 This study was conducted between February 2010 to April 2011 at Eastern 

Kentucky University located in Richmond, Kentucky.  Eastern Kentucky University‟s 

Institutional Animal Care and Use Committee (IACUC) approved this project (Holden 

04-2010).  The approval letter can be found in Appendix 1. 

Specific Aim 1:  Morphological Characterization of Pregnancy Induced Cardiac 

Hypertrophy and Post-Partum Remodeling. 

 Rodent Use 

Sprague Dawley rats were ordered at 8 weeks old through Charles River 

(Wilmington, MA). Rats were allowed to acclimate to our animal facility for the standard 

1 week.  Rats were subjected to timed matings at approximately 9 weeks old.  Male rats 

were placed into female rat cages at approximately 5pm and removed at 10am the 

following day.  Approximately two-weeks after mating, females were split into three 

groups:  not pregnant (NP, n=18), 19 days pregnant (P, n=8), and 24 hours post-pregnant 

(PP, n=9).  Pregnancy can be determined visually at approximately 14 days gestation.  At 

the appropriate time points, animals were euthanized in a euthanasia chamber utilizing 

approximately 5 mL isoflurane (Allivet, St. Hialeah, FL).  Immediately following 

euthanasia, heart weight, body weight, and tibia length (mm) were all noted. The apex of 

the heart, primarily left ventricle, was stored in a 15 mL conical tube with 5 mL RNA 

later (Invitrogen, Carlsbad, CA) for RNA extraction.  The base (top most part) of the 

heart was fixed in 4% paraformaldehyde (Fischer Scientific, Pittsburg, PA) for 48 hours.  

Following fixation of tissue in paraformaldyhe, samples were stored indefinitely in 75% 

ethanol at 4°C.  

Histology  

Processing, sectioning, and Hematoxylin and Eosin staining (H&E) of the 

formalin- fixed base top of the heart were completed by the University of Kentucky 

Histology and Imaging Facility.   
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The processing of the histological samples were done by the following protocol, 

all steps were completed in vacuo:  the samples were first processed in 75% ethyl alcohol 

for 30 minutes; then 85% ethyl alcohol for 30 minutes; 95% ethyl alcohol for 30 minutes, 

repeated twice; 100% ethyl alcohol for 30 minutes, repeated twice; lastly, xylene for 30 

minutes, repeated three times.    The processed samples were then embedded in Paraplast 

Plus for sectioning at 60°C three times for 30 minutes.  Samples were cut into sections of 

5 μm thickness. 

H&E staining was completed on 1 slide with 3 to 5 sections. The following 

protocol was utilized, courtesy of Cynthia Long at the University of Kentucky Histology 

and Imaging Center:  xylene for 5 minutes, xylene for 2 minutes, absolute ethyl alcohol 

for 2 minutes, absolute alcohol for 2 minutes, 95% alcohol for 2 minutes, 85% alcohol for 

2 minutes, 70% alcohol for 2 minutes, stationary tap water for 2 minute, Hematoxylin for 

2 minutes, running tap water for 2 minutes, scott‟s tap water (alternate blueing solution) 

for 30 seconds, running tap water for 2 minutes, 85% alcohol for 1 minute, 85% alcohol 

again for 1 minute, Eosin for 30 seconds, 95% alcohol for 30 seconds, 95% alcohol for 1 

minute, 95% alcohol for 1 minute, absolute alcohol for 1 minute, absolute alcohol for 1 

minute, xylene for 2 minutes, xylene again for 2 minutes, and xylene for 10 to 15 

minutes. 

Cardiomyocyte cell areas for all NP, P, and PP H&E stained samples were 

examined at 40x magnification utilizing Nikon NIS Elements 3.2 software (Nikon, 

Melville, NY). 

Statistical Analysis 

Statistical significance was analyzed using one way Analysis of Variance 

(ANOVA) for all data, including:  heart weight to body weight, heart weight to tibia 

length, and cardiomyocyte area.  A P-value of < 0.05 was considered to be significant. 

Specific Aim 2:  Expression of Known Hypertrophy Genes in Pregnancy and Post-

Partum. 
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RNA Extraction 

RNA was extracted from the apex of the rat hearts utilizing Trizol LS (Invitrogen, 

Carlsbad, CA), the Fast Prep 24 instrument (MP Biomedicals, Solon, OH), and the Fast 

Prep 24 Green Lysing Kit (MP Biomedicals, Solon, OH).  The protocol was adapted from 

Dr. Rebekah Waikel‟s at Eastern Kentucky University and can be found in Appendix 2. 

The apex of each heart was placed into a Fast Prep 24 Green Kit 2 mL tubes (MP 

Biomedicals, Solon, OH) containing 1.4 mm ceramic spheres; 1 mL of Trizol LS was 

then added to each tube.  The tubes were then placed into the Fast Prep 24 machine and 

the machine was set at the following:  speed 6, time 30 seconds, repeat 4 times.  The 

samples were then centrifuged at low speed, 5000 rpm for 1 minute and the supernatant 

was transferred to a fresh tube.  The tubes were then incubated, with rocking, for 5 

minutes at room temperature at 100rpm.  The samples were then centrifuged at 12,000xg 

for 10 minutes at 4°C, and the supernatant was transferred to a fresh tube.  To the 

supernatant, 0.2 mL of Molecular Biology grade chloroform (MP Biomedicals, Solon, 

OH) was added; samples were vigorously shaken by hand for 15 seconds, and incubated 

at room temperature for 3 minutes with rocking at 100rpm.  Centrifugation was repeated, 

at 12,000xg for 15 minutes at 4°C.  The colorless upper aqueous phase was mixed with 

0.5 mL Molecular Biology grade isopropanol (Fischer Scientific, Pittsburg, PA) in a new 

1.5 mL tube.  The samples were then incubated for at least 30 minutes on ice.   

After the incubation period, the samples were centrifuged at 12,000xg for 10 

minutes at 4°C.  The supernatant was removed and the RNA pellet was washed with 1 

mL Molecular Biology grade 75% ethanol (Fischer Scientific, Pittsburg, PA).  The tubes 

were centrifuged at 7,500xg for 10 minutes at 4°C.  The supernatant was then removed.  

The RNA pellets air-dried for 5 minutes.  The pellet was then re-suspended with 100 μl 

Nuclease free water (Fisher Scientific, Pittsburg, PA) if a RNA pellet was visible, or 50 

μl Nuclease free water if a RNA pellet was not present.  

RNA quality was then determined through a UV Spectroscopy utilizing a 1:100 

dilution in the Eppendorf Biophotometer Plus (Eppendorf, Hamburg, Germany) as well 

as gel electrophoresis.  The RNA concentration, 260/280 and 230 A values were all 
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recorded to assess purity.  A 260/280 value of approximately 2.0 was used to denote pure 

RNA.  A 260/230 value of 2.0 to 2.2 designated pure RNA.  The RNA was run on a 1% 

agarose gel at a concentration of 1μg/μl.  After assessing quality, RNA was stored at -

70°C. 

 RNA conversion to cDNA (RT reaction) 

Total RNA was converted to cDNA through reverse transcription utilizing the 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA).  A 

master mix was made of the following components per reaction, as provided in the kit:  

2.0μl RT Buffer, 0.8μl 25x dNTP Mix (100 mM), 2.0μl 10x RT Random Primers, 1.0μl 

Multiscribe Reverse Transcriptase and 1.0μl RNase Inhibitor (if available).  To each PCR 

tube, 5.8μl of Master Mix was added.  RNA concentration of 1 μg/μl was used to 

complete the reverse transcription (RT) reaction.  The volume of the reaction was then 

brought to a total of 20μl with nuclease free water.   

The samples were placed in a MyCycler™ Personal Thermal Cycler (Biorad, 

Hercules, CA).  As specified in the High Capacity cDNA Reverse Transcription Kit 

protocol, the thermal cycler was set for the following program:  25°C for 10 minutes, 

37°C for 120 minutes, 85°C for 5 seconds, and 4°C to hold. All cDNA samples were 

placed in a -20°C freezer for storage. 

 Real Time PCR 

A Real Time PCR reaction was completed following the cDNA reaction for the 

following genes:  Glyceraldehyde 3-phosphade dehydrogenase (GAPDH), Natriuretic 

peptide precursor A (NPPA or ANP), Natriuretic peptide precursor B (NPPB or BNP), G-

Table 3.  Primer sets utilized for Gene Expression Real Time PCR.  All primer sets were purchased through Applied 

Biosystems (Carlsbad, CA).  All primer sets were produced by Taqman®.  
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protein coupled receptor 1 (GPER) and Myosin heavy chain 6, cardiac muscle, alpha (α-

MHC).  All primer sets were purchased from Applied Biosystems (Carlsbad, CA), primer 

set information can be found in Table 3.   

All samples were done in triplicate.  In a 1.5 mL tube, a Master Mix was made by 

combining the following, also accounting for the number of samples and triplicates:  1.0 

μl 20x Taqman® Gene Expression Assays (primer details shown above), 10.0μl 2x 

Taqman® Gene Expression Master Mix, and 8μl nuclease free water.   

A MicroAmp® Fast Optical 48 well plate (Applied Biosystems, Carlsbad, CA) 

was used.  To each well, 19 μl Master Mix was added.  Precisely 1 μl cDNA product as 

added into the 19 μl Master Mix and mixed well by pipetting up and down.  The plate 

was covered with MicroAmp® 48 Well Optical Adhesive Film and centrifuged at 1000xg 

for 5 minutes.  The plates were then placed into the StepOne™ Real-Time PCR System 

(Applied Biosystems, Carlsbad, CA).  The default program was used; Step One: 50°C for 

2 minutes, 95°C for 10 minutes; Step Two:  95°C for 15 seconds, 60°C for 1 minute, 

repeat 40 times. 

 Statistical Analysis 

 Statistical significance was analyzed using a one way ANOVA for the expression 

levels between Not Pregnant, 19 days Pregnant and 24 hours Post-Partum.  A P-value of 

< 0.05 was considered to be significant.   

Specific Aim 3: miRNA Signature of Pregnancy Induced Hypertrophy and Post-

Partum Resolution 

 RNA Extraction 

 RNA extracted from Specific Aim 2 was also utilized in the completion of 

Specific Aim 3.  RNA was diluted to 2 ng/μL for the cDNA reaction. 

 RNA conversion to cDNA (RT reaction) 

For each miRNA sample, a unique cDNA reaction was completed from 

previously isolated total RNA.  MiRNA‟s examined were U6 as a control, miR-1, miR-
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21, miR-195 and miR-133a.  Total RNA was converted to cDNA through reverse 

transcription for each specific miRNA sample utilizing the Taqman® MicroRNA 

Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA).  A master mix was made 

of the following components per reaction, as provided in the kit:  1.50 μl Reverse 

Transcription Buffer, 0.15 μl 100 mM dNTP Mix (with dTTP), 1.0 μl Multiscribe™ 

Reverse Transcriptase (50 U/μl), 4.16 μl nuclease free water and 0.19 μl RNase Inhibitor 

(200 U/μl).  To each PCR tube, 7.0 μl of Master Mix, 3 μl primer, as specified in Table 2, 

and 5 μl RNA (5μg/mL) were added.  The total volume of the reaction was 15 μl. 

The samples were placed in a MyCycler™ Personal Thermal Cycler (Biorad, 

Hercules, CA).  As specified in the Taqman® MicroRNA Reverse Transcription Kit 

protocol, the thermal cycler was set for the following program:  16°C for 30 minutes, 

42°C for 30 minutes, 85°C for 5 minutes, and 4°C to hold. All RT products were placed 

in a -20°C freezer for storage. 

 Real Time PCR 

A Real Time PCR reaction was completed following the cDNA reaction.  All 

samples were done in triplicate.  Master Mix was made in a 1.5 mL tube by combining 

the following, also accounting for the number of samples and triplicates:  1.0 μl 20x 

Table 4.  Primer sets utilized for miRNA Real Time PCR.  All primer sets were purchased through Applied 

Biosystems (Carlsbad, CA).  All primer sets were produced by Taqman®.  
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Taqman® miRNA Assays (Applied Biosystems, Carlsbad, CA), 10.0μl 2x Taqman® 

Gene Expression Master Mix (Applied Biosystems, Carlsbad, CA), and 7.67 μl nuclease 

free water.  Specific primer details, including amplicon length, can be found in Table 4. 

 A MicroAmp® Fast Optical 48 well plate (Applied Biosystems, Carlsbad, CA) 

was used to run the samples.   To each well, 18.67 μl Master Mix was added.  For each 

sample, precisely 1.33 μl  RT product as added into the 18.67 μl Master Mix and mixed 

well by pipetting up and down.  The plate was covered with MicroAmp® 48 Well 

Optical Adhesive Film (Applied Biosystems, Carlsbad, CA) and centrifuged at 1000xg 

for 5 minutes.  The plates were then placed into the StepOne™ Real-Time PCR System 

(Applied Biosystems, Carlsbad, CA).  The default program was used; Step One: 50°C for 

2 minutes, 95°C for 10 minutes; Step Two:  95°C for 15 seconds, 60°C for 1 minute, 

repeat 40 times. 

 Statistical Analysis 

 Statistical significance was analyzed using a one way ANOVA for the expression 

levels between Not Pregnant, 19 days Pregnant and 24 hours Post-Partum.  A P-value of 

< 0.05 was considered to be significant.   
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Chapter 3 

Specific Aim 1:  Morphological Characterization of Pregnancy Induced Cardiac 

Hypertrophy and Post-Partum Cardiac Remodeling 

The hypothesis for this aim is that morphology of the heart during late pregnancy will 

resemble the morphology of pathologic cardiac hypertrophy. 

Results 

 A total of 25 rats were included in the study for Specific Aim 1 with a total of 18 

Not Pregnant (NP), 8 Pregnant (P) and 9 Post-Pregnant (PP).  For each rat the heart and 

body weights were recorded.  Tibia lengths were recorded for n=11, n=5, and n=4 for the 

NP, P, and PP groups, respectively.   All values are reported mean±standard deviation.   

 In order to determine the degree of hypertrophy, heart to body weights were 

analyzed.  The results for the heart to body weight ratios can be found in Figure 7.  The 

heart to body weight ratio average for the not-pregnant group was 3.92±0.38, the 

pregnant group 3.23±0.39, and the post-pregnant group 3.39±0.88.  The heart to body 

weight showed a decreasing trend during pregnancy, indicative of hypertrophy, followed 

by a resolution post-pregnancy.    
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Figure 7.  Heart to body weight ratios for each group.  Lines denote the averages for each group, 3.92, 3.20, and 

3.38 for Not Pregnant, Pregnant, and Post Pregnant, respectively.  The decrease in heart to body weight ratio 

during pregnancy is indicative of cardiac hypertrophy, followed by a resolution post-partum.  At 24 hours post-

partum, the heart to body ratio increased, showing cardiac remodeling following hypertrophy.  * indicates 

significant difference, p<0.05. 

 

 

 The heart to tibia length ratios were:  34.02±5.21, 37.12±5.61, and 27.69±1.60, 

for the NP, P, and PP groups, respectively.  The heart to tibia length ratios can be found 

in Figure 8.  Results indicate hypertrophy during pregnancy with a higher heart weight to 

tibia length ratio. 
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 Hematoxylin & Eosin (H&E) stained slides were also prepared for analysis in 

Aim 1.  Utilizing Nikon NIS Elements 3.2, we were able to successfully determine 

cardiomyocyte sizes in the NP, P and PP groups.  The average cardiomyocyte sizes for 

the not-pregnant group were 202.03±72.33, the pregnant group 283.56±139.61, and the 

post-pregnant group 240.27±69.88.  A schematic of the average cardiomyocyte areas can 

be found in Figure 9.  Individual cell counts can be found in Appendix 3. 

Figure 8.  Heart weight (mg) to tibia length (mm) ratios for each group.  The averages for each group were 

34.02±5.21, 37.12±5.61, and 27.69±1.60 for NP, P, and PP, respectively.   As anticipated there was an increase 

in heart to tibia length during pregnancy followed by a decreased trend post pregnancy.  * indicates significant 

difference, p<0.05.  Error bars denote standard error. 

* 

 Not Pregnant       Pregnant                Post Pregnant 

  n=11                                  n=5                                   n=4 
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 Hematoxylin and Eosin 5 μm cross sections provided a qualitative approach to 

analyzing cardiac hypertrophy.   Sample sizes for the hematoxylin and eosin analysis 

were n=9, n=3, and n=4 for NP, P, and PP, respectively.  These cross sections showed a 

visual increase in thickness for the left ventricular wall as well as an increase in ventricle 

area.  Representative images can be found in Figure 10.   
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Figure 9.  Cardiomyocyte areas for each group.  The areas were calculated using Nikon NIS Elements 3.2.  All cell 

sizes are in μm2.   The averages for each group were 202.03±72.33, 283.56±139.61, and 240.27±69.88 for NP, P, and 

PP, respectively.  Cardiomyocyte size increased 40.36% during pregnancy and decreased 15.27% 24 hours post-

partum.  This data indicates that the cardiomyocyte areas did show hypertrophy and resolution during pregnancy and 

post pregnancy..  * indicates significant difference, p<0.05.  Error bars denote standard error. 

 Not Pregnant       Pregnant                Post Pregnant 

  n=9                                  n=3                                   n=4 
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Figure 10.  H&E stained 5 μm cross section samples from each group.  The Pregnant rats show relatively larger 

ventricles as compared to their Not Pregnant and Pregnant littermates.  The Post Pregnant cross sections show a 

thickening of the left ventricle and a decrease in relative ventricle size. 
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Discussion 

 Cardiac hypertrophy is defined as an increase in cardiomyocyte size that can be a 

beneficial adaptive or a maladaptive phenomenon to compensate from stress resulting 

from pressure or volume overloads (Eghbali et al., 2005).  Prolonged hypertrophy often 

leads to heart failure in humans and is a major determinant of mortality and morbidity in 

cardiovascular diseases (Zhang, 2008).  Heart failure is the leading cause of death in 

industrialized countries (Ahmad et al., 2005; Bernardo et al., 2010).  Patients often do not 

survive one year past their diagnosis (Bultragp et al., 2005).  Currently, there is a 

significant demand for diagnostic and/or therapeutic options for treatment and reversal of 

cardiac hypertrophy.  If doctors are able to determine the degree of hypertrophy through 

simple blood tests or echocardiograms, we could potentially diagnose heart disease 

before it is completely irreversible.   

 In order to characterize pregnancy induced cardiac remodeling in rats, we first 

needed to establish that the rats hearts were in cardiac hypertrophy.  A common method 

is to utilize the heart to body weight ratios.  The not pregnant rats weighed an average of 

272.47±25.74 grams, as compared to the pregnant rats, which weighed an average of 

351.23±23.74 grams or an increase of 30% in body weight.  Post-pregnancy the rats 

weighed an average of 322.6±133.61 grams, or an 8% decrease from their pregnant 

littermates.  We found a significant difference between the not-pregnant and pregnant rats 

when comparing body weight (p= 0.038).    

 The heart to body weight ratios provided proof that the rat‟s heart was indeed in 

cardiac hypertrophy, as the heart weights themselves increased during pregnancy.  The 

heart weight during pregnancy increased 6% as compared to their not pregnant 

littermates.  A lower ratio of heart to body weight was also seen during pregnancy.  We 

found a significant difference between the not-pregnant and pregnant rats when analyzing 

the heart to body weight ratio (p=0.018).  This lower ratio signifies that both the heart 

increased during pregnancy, un-proportionally to the body.  This finding is inconsistent 

with Virgen-Ortiz‟s report of a 15% increase in heart-to-body ratio during cardiac 

hypertrophy (2009).  Virgen-Ortiz‟s research was on mice during pathological 

hypertrophy, demonstrating a possible difference in physiological studies.  This finding is 
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consistent with Eghbali and colleagues, in which they found the heart to body weight 

ratio to be lower during pregnancy (2005). 

 The heart to tibia ratio was another method utilized to determine if the hearts were 

in hypertrophy.  This technique was used in a left ventricular cardiac hypertrophy in 

obesity study in a mouse model by Selxas Bello Moreira et al.in 2009.  Selxas Bello 

Moriera et al. found that in overfed mice the ratio was significantly increased as 

compared to their control group.  This trend also correlated to the left ventricular weight, 

identifying another hallmark for cardiac hypertrophy.  Our study found similar results, as 

during hypertrophy the heart to tibia ratio increased from 34.02±5.21 in the not-pregnant 

group to 37.12±5.60 in the pregnant group.  We concluded a significant difference 

between the pregnant and post-pregnant rats‟ heart weight to tibia length ratio (p=0.032).  

This finding shows a similarity to previously published pathological models (Selxas 

Bello Moriera et al., 2009).   

 We also examined the H&E stained cross sections to notice any visual hallmarks 

of cardiac hypertrophy.  This technique is done frequently in mice models to show the 

relative sizes of each ventricle and wall thickness.  Our hematoxylin and eosin cross 

sections identified a larger left ventricle and thicker ventricular walls.  This finding is 

consistent with previous physiological findings, as eccentric hypertrophy results in 

chamber enlargement, considered to be a proportional change to the left ventricular wall 

thickness (McMullen & Jennings, 2007).   This data is comparable to pathological 

hypertrophy, where the chamber walls thicken un-proportionally to the left ventricle 

chamber (McMullen & Jennings, 2007).  While this method might be of use for 

pathological hypertrophy studies, the changes are not distinct enough for distinguishing 

physiological hypertrophy.   It is rather difficult to notice the chamber sizes relative to 

one another.  Future studies should utilize an echocardiogram to determine wall 

thickness.   

 The H&E stained cross sections were then examined under a microscope for 

changes in cardiac myocyte sizes.  During both pathological and physiological cardiac 

hypertrophy, the myocytes enlarge to alleviate pressure and volume overloads (Bultrago 

et al., 2005).  While the heart remodels itself back to normal post-pregnancy, we 
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anticipated that the cardiomyocyte cell sizes decrease back to their original not-pregnant 

littermates myocyte sizes.  The average cardiomyocyte area for the not-pregnant group 

was 202.03±72.33 μm
2
, pregnant 283.56±139.61 μm

2
, and post pregnant

 
240.27±69.05 

μm
2
.  This data supports the hypothesis that the myocyte size does alter following 

pressure and volume overloads.  The post-pregnant data indicates that even at 24 hours 

post-partum the heart is already remodeling itself back towards pre-pregnancy.  We did 

not conclude a significant difference between the three groups‟ cardiomyocyte areas. 

 In specific aim 1 our goal was to identify morphological characteristics of 

pregnancy induced cardiac hypertrophy and post-partum remodeling.  We hypothesized 

that the morphological characterization during late pregnancy was to resemble the 

morphological changes during pathological hypertrophy.  Through analyzing different 

components of data, such as the heart to body ratio and heart to tibia ratio, we determined 

that during pregnancy, the rat‟s hearts were indeed in cardiac hypertrophy.  Several 

components of our data showed dissimilarities to pathological hypertrophy.  The heart to 

body ratio was lower when compared to previous pathological studies.  As anticipated, 

the H&E stained cross sections showed dissimilarities in wall and chamber thickness.  

The cardiomyocyte area sizes were similar to pathological studies and should continue to 

be used in future studies. 
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Chapter 4 

Specific Aim 2:  Biochemical Characterization of Pregnancy Induced Cardiac 

Hypertrophy and Post-Partum Cardiac Remodeling 

The hypothesis for this aim was that known pathological cardiac hypertrophy genes 

will also be expressed in rat pregnancy induced cardiac hypertrophy and expression 

will be lost during post-partum remodeling. 

Results 

 A total of 14 rats were used in the Real Time analysis portion of Specific Aim 2; 

n=5 not-pregnant (NP), n=4 pregnant (P) and n=5 post-pregnant (PP).  The control for 

genetic expression Real Time PCR used was GAPDH.  Information regarding primers for 

Real Time PCR can be found in Table 3.  A schematic of all the results in Aim 2 can be 

found in Figure 11. 

 The myosin heavy chain protein, α-MHC, is a cardiac specific sarcomeric gene 

highly expressed in the atrial septum (Posch et al., 2010).  A recent study done by Malik 

and colleagues emphasized the potential for α-MHC to be utilized as a therapeutic target 

during cardiac hypertrophy (Malik et al., 2011).  The gene expression analysis for α-

MHC showed an increasing trend, from 1.49±0.91 fold expression in not pregnant rats to 

2.74±3.18 fold expression in pregnant rats, and 2.36±1.78 in post-pregnant rats.  This is 

in contrast to what is usually seen in pathological cardiac hypertrophy.   

 G-protein estrogen receptor, GPER, can mediate estrogen induced non-genomic 

signaling events, such as activation of the MAPK and PI3K pathways (Ariazi et al., 

2010).  GPER has not been previously studied in pathological or physiological cardiac 

hypertrophy.  GPER expression increased during pregnancy but then returned back to 

their NP littermates during post-pregnancy; with 0.87±0.55 for not-pregnant, 2.33±3.09 

for pregnant, and 1.05±0.84 for post-pregnant rats.   

 The natriuretic peptides, such as ANP and BNP, are internally derived antagonists 

that are important in metabolic regulation and cardiovascular remodeling (Savoia et al., 

2010).  Previous studies have demonstrated that ANP and BNP typically increase during 
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Figure 11.  Expression levels for each α-MHC, GPER, ANP, and BNP.  Samples were not pregnant (NP), 19 

days pregnant (P), and 24 hours post-partum (PP).  α-MHC showed increasing levels of expression during 

pregnancy, unlike what has been seen in pathological cardiac hypertrophy.  GPER has yet to be studied in 

physiological hypertrophy, and showed increased levels during pregnancy followed by a full resolution post-

pregnancy.  ANP, up-regulated during pathological hypertrophy, was down-regulated during pregnancy and 

post pregnancy.  BNP is up-regulated during pathological hypertrophy and showed no change during 

physiological hypertrophy.  Error bars denote standard error. 

the onset of pathologic hypertrophy (Savoia et al., 2010).  During pregnancy induced 

cardiac hypertrophy, atrial natriuretic peptide (ANP) instead decreased in expression.  

Expression levels for ANP were 1.46 ± 0.93 for not-pregnant, 0.41 ± 0.31 for pregnant, 

and 0.48±0.44 for post pregnant.  B-type natriuretic peptide remained the same even 

throughout pregnancy and post-pregnancy.  The values for BNP are 1.16 ± 1.16 for not 

pregnant, 1.27 ± 1.14 for pregnant, and 1.74 ± 1.54 for post pregnant rats. 
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Discussion 

 Gene expression markers, such as atrial natriuretic peptide (ANP), B-type 

natriuretic peptide (BNP) and alpha myosin heavy chain (α-MHC) have all been studied 

during pathological and physiological cardiac hypertrophy.  While studies have been 

conducted in mice to determine the expression of hypertrophy markers during pregnancy 

induced cardiac hypertrophy, changes in expression during post-partum cardiac 

remodeling (resolution of hypertrophy) have not been characterized.  Since we used a rat 

model, we were the first to document hypertrophy maker expression in pregnancy 

induced hypertrophy. 

 Alpha myosin heavy chain is a cardiac specific sarcomeric gene highly expressed 

in the atrial septum (Posch et al., 2010).  An increase in β-MHC expression and a 

decrease in α-MHC expression have been accepted as cardiac hypertrophy markers for 

the past 40 years (Barry et al., 2008).    The cardiac remodeling process following 

hypertrophy is generally associated with the return of the MHC isoforms back to normal 

(Barry et al., 2008).  Our study demonstrated similar non-significant findings of this 

current standard; as α-MHC levels increased during pregnancy and decreased slightly 

during post-pregnancy.  There are a few reasons why this result occurred.  First, α-MHC 

is the primary MHC isoform in rodents (Barry et al., 2008).  In order to get a clearer 

picture of the genetic expression during pregnancy, studying β-MHC would be beneficial 

to determine the ratio between the two isoforms.  Perhaps, in rats, α-MHC plays a 

protective role during pregnancy, contrary to previous studies.  Future studies should also 

connect the role of estrogen and α-MHC to see if both exert a protective effect during 

hypertrophy. 

 GPER, or G Protein Coupled Estrogen Receptor, has never been analyzed during 

pregnancy induced cardiac hypertrophy in rats.  GPER can mediate estrogen induced 

non-genomic signaling events, such as activation of the MAPK and PI3K pathways 

(Ariazi et al., 2010).  Our results show that during cardiac hypertrophy, GPER is highly 

expressed, followed by a decrease in expression post-pregnancy.  This result correlates 
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with the higher levels of expression in estrogen during pregnancy.  Higher levels of 

estrogen mean that higher amounts are binding to GPER to initiate signaling pathways.   

 The natriuretic peptides, ANP and BNP, showed both elevated and decrease 

levels of expression during pregnancy and 24 hours post-partum.  These peptides are 

internally derived antagonists of vasoconstriction that are important during cardiac 

remodeling (Savoia et al., 2010).  During pathological hypertrophy, both ANP and BNP 

are considered to be up-regulated (Bernardo et al., 2010).  In our study, the expression of 

ANP is contradictory to previously published pathological studies (Savoia et al., 2010).  

ANP is an inhibitor of renin, which mediates extracellular volume of blood, lymph, and 

interstitial fluid (Savoia et al., 2010).  During pregnancy, perhaps ANP is down-regulated 

due to the connection with renin, as it is possible that renin is necessary during pregnancy 

due to the increased volume of blood throughout the body and placenta.  The sample size 

for this study was rather small, and a clear difference in expression levels might become 

clearer following a larger study. 

 The working hypothesis for this aim was that known pathological cardiac 

hypertrophic genes will also be expressed in rat pregnancy induced cardiac hypertrophy 

and expression will be lost during post-partum remodeling.  Analysis of genetic markers, 

such as α-MHC, GPER, ANP and BNP indicate that physiological hypertrophy shares 

similarities and differences with pathological hypertrophy.  For example, α-MHC showed 

higher expression levels during pregnancy and post-pregnancy during physiological 

hypertrophy but lower expression during pathological hypertrophy.  GPER, never studied 

previously in physiological hypertrophy, showed higher levels of expression during 

pregnancy.  ANP, up-regulated during pathological hypertrophy was down-regulated 

during pregnancy and post-pregnancy.  BNP, also up-regulated during pathological 

hypertrophy, showed no changes in expression during pregnancy induced cardiac 

hypertrophy and 24 hours post-pregnancy, contrary to what has been seen before.   
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Chapter 5 

Specific Aim 3:  MiRNA signature of Pregnancy Induced Hypertrophy and Post- 

Partum Resolution 

The hypotheses for this aim were; (1) miRNA expression patterns during cardiac 

hypertrophy will be similar to that of pathological hypertrophy and (2) miRNA 

expression patterns in the post-partum heart will be similar to the normal heart.  

Results 

 Four separate miRNA‟s were analyzed in this study; miR-1, miR-133a, miR-21 

and miR-195.   All miRNA reagents and control information can be found in Table 4.  

Sample sizes were:  n=3 for not pregnant (NP), n=5 for pregnant (P), and n=5 for post 

pregnant (PP).  A schematic with the results for this aim can be found in Figure 12. 

 MiR-1 is down-regulated during pathological hypertrophy.   During pregnancy 

induced cardiac hypertrophy, we found the expression levels to be as follows:  1.09±0.43 

for not pregnant, 2.41±2.54 for pregnant, and 2.36±1.78 for post pregnant.  Expression 

levels increased slightly during pregnancy and further increased during post-pregnancy.  

Mir-133a is also down-regulated during pathological hypertrophy.  We found expression 

levels for miR-133a to be the following; 1.45±1.68 for not pregnant, 4.26±1.45 for 

pregnant, and 2.87±1.81 for post-pregnant.  Expression levels, similar to miR-1, 

increased during pregnancy and further increased during post-pregnancy. 

 Both miR-195 and miR-21 are up-regulated during pathological cardiac 

hypertrophy (van Rooij et al., 2008).   We found similar results for our study.  MiR-21 

expression was as follows; 1.70±2.42 for not pregnant, 10.25±10.16 pregnant and 

7.11±4.69 for post pregnant.  MiR-195 followed a similar pattern; 1.96 ±2.67 for not 

pregnant, 8.53±6.44 for pregnant, and 3.45 ± 3.58 for post pregnant.  These expression 

levels mimic those seen in pathological cardiac hypertrophy. 
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Figure 12.  Expression levels for miR-1, miR-133a, miR-21 and miR-195.  Samples were not pregnant (NP), 19 days 

pregnant (P), and 24 hours post-partum (PP).  MiRNAs 1 and 133a are usually seen to be down-regulated during 

pathological hypertrophy, but are slightly up-regulated in our study.  MiR-21 and 195 are both up-regulated during 

pregnancy, and our study showed similar results.  Error bars denote standard error. 
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Discussion 

 MicroRNA‟s are short, endogenous, non-coding single stranded segments of 

RNA that regulate gene expression through hybridization to messenger RNA (Zhang, 

2011).  The terminal consequence of miRNA binding to  mRNA could be either mRNA 

degradation or inhibition of translated targets (Zhang, 2011).  MiRNAs have become of 

great attention lately because of their importance in cardiovascular development, vascular 

angiogenesis, hypertrophy, and cardiovascular diseases (Shen et al., 2010).  MiRNAs 

such as miR-21, miR-195, miR-133 and miR-208 all play a role in the process of cardiac 

remodeling by regulating changes in gene expression that accompany pathological 

disorders (Sucharov et al., 2008).  In this study, we focused on miR-1, miR-133a, miR-

21, and miR-195 and their connection to pregnancy induced physiological cardiac 

hypertrophy. 

 MiRNA-1 and miRNA-133a are derived from the same precursor and are both 

said to be down-regulated during pathological cardiac hypertrophy (van Rooij et al., 

2008).  MiRNA-1 is considered pro-apoptotic and excess of miR-1 leads to a decreased 

pool of proliferating cardiomyocytes (Mishra et al., 2009).  MiR-1 is transcriptionally 

regulated by myogenic differentiation factors, such as MyoD, Mef2, and SRF (Zorio et 

al., 2009).  SRF is a transcription factor that recruits co-activators and myocardin to 

muscle specific genes that control differentiation (Callis et al., 2009; Zhang, Ashar, 

Helms & Wei, 2011).  In our study, we found miR-1 to be up-regulated during pregnancy 

induced cardiac hypertrophy, although no significant difference was identified.   Perhaps 

expression of miR-1 is necessary for proper fetal development due to SRF levels.  We 

found miRNA-133a to also be up-regulated.  Several of miRNA-133a‟s targets include 

HCN2, Cdc42, and RhoA (Luo et al., 2008; Bauersachs & Thum, 2007).  MiRNA-133a 

also suppresses SRF.  SRF appears to play a role during cardiac hypertrophy and 

resolution.  More studies need to be conducted to determine both miR-1 and miR-133a 

expression during pregnancy induced cardiac hypertrophy as well as their connection to 

SRF. 

 In our experiments, miR-195 was highly up-regulated as compared to their not-

pregnant littermates.  MiR-195‟s targets have yet to be identified; however, up-regulation 
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of miR-195 in transgenic models resulted in dilated cardiomyopathy and heart failure in 

mice as early as 2 weeks old (van Rooij et al., 2008).  Another study by Shen et al. in 

2010 provided similar results; as miR-195 over-expression lead to heart failure in mice.  

MiR-195‟s expression pattern during physiological cardiac hypertrophy is similar to 

pathological cardiac hypertrophy.   

 MiR-21 is involved in tumor-related cell growth and apoptosis, mediation of 

signaling pathways in neonatal cardiomyocytes, along with much more (Shen et al., 

2010).  The exact molecular target of miR-21 have yet to be identified; however, 

knockout models suggest that SPRY1 is targeted, a potential inhibitor of the 

RAS/MEK/ERK pathway (Thum et al., 2008).  Similar to what is seen in pathological 

hypertrophy studies, we saw an increase in miR-21‟s expression during hypertrophy 

followed by a drop in expression 24 hours post-partum.  The drastic drop 24 hours post-

partum could be an indicator of the healthy remodeling process.  The high levels of miR-

21 most likely correlate to the inhibition of the RAS/MEK/ERK pathway (Thum et al., 

2008).  This pathway is often found in cancer cells, as it controls transcription and 

translation of these cells.  Once miR-21 inhibits the RAS pathway, transcription and 

translation of cells is halted, thus probably altering cell proliferation and apoptosis.   

 By looking at the relationships of miR-1, miR-133a, miR-195, and miR-21 during 

physiological hypertrophy, we are able to relate them to pathological cardiac 

hypertrophy.  We found higher levels of expression of miR-1 and miR-133a during 

physiological hypertrophy, contrary to pathological studies.  We found increased levels 

of expression for miR-21 and miR-195 during physiological cardiac hypertrophy which 

mimics that of pathological cardiac hypertrophy.   
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Chapter 6 

Summary and Future Directions 

 The overarching purpose of this study was to characterize physiological 

hypertrophy and relate it to pathological hypertrophy.  Through a series of experiments, 

we were successfully able to analyze different components of cardiac hypertrophy during 

pregnancy.  From there, we were then able to compare and contrast our results with that 

of pathological hypertrophy. 

 In specific aim 1, we looked at heart weights, body weights, and tibia lengths to 

determine if the rat‟s hearts were hypertrophied.  We saw an increase in heart and body 

weights, and thus assumed the hearts were in hypertrophy.   H&E cross sections showed 

the ventricle walls and chambers; however, this method was not reliable for determining 

the degree of hypertrophy.  Looking at the H&E slides, we saw that in physiological 

hypertrophy, the wall thickens proportionally the chambers; while in pathological 

hypertrophy the walls become thin and chambers enlarge.  More studies should include 

an echocardiogram to quantitatively determine left ventricular sizes.  The 

echocardiogram would provide another approach to quantitatively distinguish cardiac 

hypertrophy.  From the H&E slides we looked at the individual cardiomyocytes in each 

of the not pregnant, pregnant and post pregnant.  We saw an increase in cardiomyocyte 

cell sizes during pregnancy followed by a decrease in cell sizes post pregnancy.  Utilizing 

paraffin embedded slides, it might be of use to use immunofluorescence as another 

method to qualitatively visualize cellular expression during hypertrophy.  Atrial 

natriuretic factor and α-actinin would be two cellular markers of use to analyze in future 

studies. 

 In specific aim 2, we used Real Time PCR to analyze gene expression during 

pregnancy.  Our results were varied and dissimilar with what has been seen in 

pathological hypertrophy.  Alpha myosin heavy chain was increased during pregnancy, 

while in pathological hypertrophy expression is decreased.   Future studies should 

consider analyzing β-MHC expression as well as α-MHC, as the two isoforms are usually 

present in any tissue sample.  GPER was also analyzed for the first time in our 
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physiological cardiac hypertrophy study.  GPER expression increased during pregnancy 

and decreased 24 hours post-partum.  Estrogen levels also increase during pregnancy, 

explaining the importance of estrogen during pregnancy.  Future studies could look at the 

other two estrogen receptors, ER-α and ER-β, to determine the relationship between the 

three receptors during pregnancy induced cardiac hypertrophy.  The natriuretic peptides 

were also studied in specific aim 2.  An increased level of expression for both ANP and 

BNP has been a hallmark of pathological cardiac hypertrophy for many years.  In our 

study ANP decreased during physiological hypertrophy.  BNP, on the other hand, showed 

no change in expression during pregnancy or post pregnancy.  Perhaps to get a better 

picture of these natriuretic peptides, one should look into the precursors, pro-ANP and 

pro-BNP.  These precursors are much more stable than their active counterparts, and 

might produce more accurate data. 

 In specific aim 3, we looked at miRNA expression using Real Time PCR.  We 

saw that miR-1 and miR-133a both increased slightly during pregnancy, contradictory to 

what is seen in pathological cardiac hypertrophy.  MiR-21 and miR-195 both increased 

during pregnancy, which mimics what is seen during pathological cardiac hypertrophy.  

In order to produce statistically significant results, it would be beneficial to repeat the 

expression analysis on a larger sample size.  This might provide a clearer idea regarding 

the significance of miR-1 and miR-133a during physiological cardiac hypertrophy.   

Another possibility would be to examine the known miRNA targets.  For miR-1 and 

miR-133a, analysis of SRF during hypertrophy and for miR-21, analysis of SPRY1. 

 Therapeutic applications to our miRNA and gene expression experiments are 

possible within the near future.  Gene therapy, especially with those genes discussed in 

our research, could be used as a method to remediate cardiac hypertrophy.  Targeting the 

myosin heavy chain through omecamtiv mecarbil treatment could increase cardiac 

function without changing the rate of contractions.  Gene expression testing for 

hypertrophy markers such as ANP or BNP or their precursors could identify a 

hypertrophy problem that has yet to show symptoms.   As demonstrated in our GPER 

results, estrogen does play a role during cardiac hypertrophy.  A simple estrogen 

hormone treatment could remediate a woman with prolonged cardiac hypertrophy.  Using 
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a GPER agonist such as G-1, which halts cell cycle progression, could be utilized as a 

cancer treatment to stop uncontrollable proliferation. 

 Through targeting specific miRNA, such as miR-1 and miR-133a, we could be 

able to increase expression and thus halt cardiac hypertrophy.  Offering patients a 

medication with a miRNA antagonist, similar to what has already been tested in the 

laboratory, could provoke cardiac remodeling during hypertrophy.   

 During pregnancy, a woman‟s heart enlarges to compensate for added stress and 

volume overloads.  Following delivery, most women‟s hearts return back to their pre-

pregnancy size.  For a small percentage of women, however, their hearts are unable to 

remodel themselves back to normal, thus increasing their chances of heart failure.  Our 

research and others have demonstrated changes in miRNA and gene expression during 

pregnancy.  MicroRNAs have recently been detected in the blood.  Pregnant women 

could be given a simple blood test to determine their risk for developing pathological 

hypertrophy.  If these women test positive, an early diagnosis as well as treatment could 

save many women from becoming a statistic. 
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Appendix B 

Dr. Rebekah Waikel‟s FastPrep RNA Extraction Protocol 
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Dr. Rebekah Waikel’s FastPrep RNA Extraction Protocol 

(Used for approximately 100mg of tissue or tissues w/ low RNA yield) 

1) Add 1ml Trizol to the FastPrep tube. 

2) Add 100-150mg tissue. 

3) Homogenize sample using FastPrep instrument for 20 seconds @ speed setting of 6.0. 

(May need to homogenize again if there are still pieces of tissue visible, cool on ice before doing 

so.) 

4) Remove and centrifuge tube @12,000 x g for 5 minutes at 40C. 

5) Transfer upper phase to new tube avoid matrix and cell debris. 

6) Add 300μl of chloroform and vortex 10 seconds. 

7) Incubate 5 minutes @ room temperature. 

8) Centrifuge @ 12,000 x g for 5 minutes at 40C. 

9) Transfer upper phase, avoiding white interface, to new tube. 

10) Add 250μl High Salt solution, then 250μl isopropanol. 

11) Invert tube and incubate for 20-30 minutes at room temperature. 

12) Centrifuge @ 12,000 x g for 15 minutes at 40C. 

13) Pour off supernatant making sure the pellet stays in the tube. 

14) Wash pellet using 700μl 75% ethanol, pipette up and down a few times. 

15) Remove as much ethanol as possible, wash again using 75% ethanol. Transfer pellet into 

fresh tube. 

16) If pellet breaks into pieces centrifuge, remove ethanol. 

17) Quick spin and remove as much ethanol as possible. (Use p10 to remove trace amounts of 

ethanol.) 

18) Air dry pellet for 2-3 minutes. 

19) Add appropriate amount of Rnase-free water to re-suspend the pellet. 

20) Incubate samples @60°C for 10 minutes, if pellet is not re-suspended keep incubating for 10 

minutes 
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until re-suspended. 

21) Make a 1:10 dilution for each sample. Check the concentration as well as the 260/280 ratio 

on the 

nanodrop. 

22) Make the correct dilutions and check the quality of each sample on the Agilent Bioanalyzer. 

23) For long-term storage, precipitate RNA. Add 1/10 of total volume 3M NaAcetate, and then 

add 2.5x total volume.  Store in –80°C.   
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Appendix C 

Individual Cardiomyocyte Areas 
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Table 5.  Individual cardiomyocyte areas measured in μm2.  Below is the raw data for individual cardiomyocyte sizes 

measured for each rat sample for each group, Not Pregnant (NP), Pregnant (P), and Post Pregnant (PP). 
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