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ABSTRACT 

 

 Amphibians are in a worldwide decline.  Among the many causes for amphibian 

declines, habitat loss and alteration remains one of the most significant.  A lack of 

federal protection for isolated wetlands that provide habitat for unique species has 

resulted in the loss of breeding habitat and unregulated mitigation practices.  Ponds 

built for mitigation purposes often do not replicate the lost ponds in structure or 

ecological processes.  A lack of general monitoring has produced a void in knowledge of 

what long-term role constructed ponds play in shaping amphibian communities. My 

objective was to compare amphibian communities of natural ponds and multiple types 

of constructed ponds in the Daniel Boone National Forest, Kentucky. A suite of habitat 

variables including canopy cover, hydroperiod, upland coarse woody debris, aquatic 

vegetation, maximum depth, Ohio Wetland Rapid Assessment Score (ORAM), and pond 

type were recorded to examine relationships between amphibian species and habitat 

variables. Community comparisons were made using canonical correspondence analysis 

(CCA) and one-way analysis of similarity (ANOSIM). Stepwise regression models were 

developed to predict individual species abundance based on the habitat variables. 

Amphibian communities differed significantly between ponds types (natural, new 

construction method, old construction method). Additionally, wood frogs (Rana 

sylvatica) and marbled salamanders (Ambystoma opacum) were almost exclusively 

found in natural, ephemeral ponds, whereas large ranid frogs (R. clamitans, R. 

catesbeiana, R. palustris) were only found breeding in permanent, constructed ponds. 
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Habitat predictors for some species showed differing preferences for hydroperiod, 

canopy cover, maximum depth, ORAM score, and amount of upland coarse woody 

debris. New construction methods were intermediate between old construction method 

and natural ponds in terms of habitat variables and amphibian community composition. 

As amphibian conservation and management become increasingly important in light of 

rapid declines, the ability to construct habitat and monitor it efficiently will be crucial in 

preservation of species. The results of this research underscore the need for monitoring 

of constructed wetlands in order to verify if goals are met and to assess ecological 

condition.  
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CHAPTER 1 

 

I. INTRODUCTION 

 

 Over the past decade, scientists have been evaluating, quantifying, and 

interpreting the climbing rate of amphibian decline and extinction (Alford and Richards 

1999, Houlahan et al. 2000, Kiesecker et al. 2001, Mendelson et al. 2006, McCallum 

2007).  One in three of the world’s amphibian species are listed as threatened on the 

IUCN Red List of Threatened Species (Baillie et al. 2004).  Although extinctions are a 

natural component of amphibian evolution, current extinction rates may be over 200 

times the natural background average rate based on paleontological evidence 

(McCallum 2007); and recent extinctions may be the product of long-term declines over 

the past 50 years (Houlahan et al. 2000). 

 Evidence supports amphibian declines stemming from a range of factors.  These 

include non-native species, overexploitation, land alteration, global climate change, 

infectious disease, chemical contamination, and synergistic effects of multiple factors 

(Collins and Storfer 2003).  Habitat loss is one of the main contributors to a global 

decline in biodiversity and an increase in extinction rates of many taxa (Brooks et al. 

2002, Cushman 2005).   Amphibians’ relatively limited mobility, breeding site fidelity, 

and physiological limitations suggest an inability to recover from habitat loss (Blaustein 

et al. 1994).  Consequences of land use change, including isolation, fragmentation, and 

lessened habitat connectivity, have negatively affected amphibian dispersal and survival 
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(Cushman 2005).  Habitat loss and alteration is especially important for species that 

prefer forested habitats.  Globally, 82% of rapidly declining amphibian species are 

associated with forested habitat (Stuart et al. 2005).   

 Due to their biphasic life history, most amphibians depend on the health of both 

the terrestrial and aquatic environments around them.  Even amphibians without 

aquatic eggs require water to some extent in order to reproduce.  In forested habitats, 

this source of water is most often from streams or vernal pools (Wells 2007).  Vernal 

pools are of high value in light of habitat alteration due to their variability from year to 

year and sensitivity to disturbance (Semlitsch and Bodie 1998).  These bodies of water 

function as connections between amphibian populations as well as habitat for unique, 

endemic species (Egan and Paton 2004, Zedler 2003).  Many amphibians utilize isolated 

vernal pools and other temporary bodies of water due to their lack of fish predators 

(Wellborn et al. 1996). The biomass contributed by amphibian populations in these 

habitats can be relatively large (Calhoun et al. 2003, Gibbons et al. 2006).  

 Kentucky has lost ca. 81% of its historical wetlands (Dahl 2000). The current 

121,400 hectares of wetlands are mostly palustrine forested wetlands characterized by 

hydrophytic trees, shrubs, and herbaceous plant species (Environmental Law Institute 

2007). Among these, ridge-top vernal pools have long been described as unique habitats 

in Kentucky for plant species (Braun 1937). These small, isolated pools are common to 

the Cumberland Plateau, and are documented as having relatively high amphibian 

species richness (Corser 2008). Despite vernal pools and temporary bodies of water 
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being part of the forested landscape and significant in the conservation of biodiversity, 

laws protecting their status are lacking.  Geographically isolated waters were removed 

from the Clean Water Act in 2001 via a Supreme Court decision, "Solid Waste Agency of 

Northern Cook County vs. U.S. Army Corps of Engineers" (Zedler 2003).  The majority of 

U.S. states have enacted legislation aimed at supplementing the Clean Water Act, but 

only six states (Indiana, Ohio, Tennessee, Virginia, Washington, and Wisconsin) regulate 

activities in hydrologically isolated wetlands.  Kentucky is one of 17 states that regulates 

and grants permits based only on Clean Water Act legislation guidelines.  This policy 

allows for no legal protection of small, isolated wetlands.   

 Thirty-six states, including Kentucky, provide guidelines for the mitigation of 

bodies of water that do not meet Clean Water Act criteria (Environmental Law Institute 

2008).  Nationwide, in 2003, 17,624 hectares of mitigation wetlands were required to 

balance the approximate 10,522 hectares of permitted lost wetlands (Environmental 

Law Institute 2007, Martin et al. 2006). Although mitigation is aimed at replacing the 

functions of lost wetlands, constructed wetlands often fail to duplicate natural functions 

of lost wetlands and mitigation projects suffer from a lack of monitoring, poor record 

keeping, and lack of consistency (Turner et al. 2001, Lichko and Calhoun 2003, Minkin 

and Ladd 2003, Mack and Micacchion 2006, reviewed in Kihslinger 2008). In 2008, the 

U.S. Army Corps of Engineers issued revised regulations to unify the regulations for all 

three types of mitigation (permittee-responsible compensatory mitigation, mitigation 

banks, and in-lieu fee mitigation) and provide more organization for monitoring and 
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record keeping (Environmental Protection Agency 2008), but these regulations do not 

address the need for improvement of construction methods.  

 Mitigation wetlands and ponds that are constructed for habitat enhancement 

provide habitat for amphibians (Monello and Wright 1999, Pechmann et al. 2001, 

Knutson et al 2004, Balcombe et al. 2005, Porej and Hetherington 2005, Vasconcelos 

and Calhoun 2006). Although constructed ponds provide amphibian breeding habitat, 

the amphibian communities present in constructed ponds may not be similar to nearby 

removed ponds (Pechmann et al. 2001); and may be acting as ecological sinks where 

larval survival is greatly reduced (DiMauro and Hunter 2002) or as areas of low 

amphibian diversity (Porej and Hetherington 2005).  One of the difficulties in comparing 

constructed and natural ponds is that both the habitat qualities of ponds and amphibian 

populations are not static (Skelly et al. 1999; Pechmann et al. 2001).  Studies involving 

the succession of wetland plant communities in mitigation areas have been conducted 

in the short term (Niering 1990, Kusler and Kentula 1990) and the long term (Atkinson et 

al. 2005); demonstrating that plant communities change in composition over time. Shifts 

in habitat characteristics coincide with changes in amphibian communities (Hermann et 

al. 2005, Petranka et al. 2003, Purrenhage and Boone 2009, Snodgrass et al. 2000).  

Constructed and natural ponds can also vary widely in terms of hydroperiod, the length 

of time water is present (Gamble and Mitsch 2008).  Hydroperiod affects amphibian 

community composition, with many species only found in ephemeral pools that typically 

dry at least once a year (Snodgrass et al. 2000).   



 

5 

 

 

 Due to the natural succession of pond characteristics over time and the complex 

breeding cycles of amphibians, it is difficult to determine when to evaluate the success 

of constructed ponds in terms of amphibian population status. Amphibians utilize both 

the aquatic and surrounding terrestrial habitat and have predictable breeding cycles, 

making them potential indicators of wetland function. Researchers have suggested 

many different minimum ages at which constructed ponds have reached equilibrium; 

ranging from 2 years to > 25 (Confer and Niering 1992, Petranka et al. 2003, D’Avanzo 

1990).  This lack of precision is most likely a result of an insufficient number of 

constructed wetlands of sufficient age to study. Studies of amphibian communities in 

constructed ponds that have been established for ten years or more are lacking.  This 

includes surveying artificial ponds that are older than ten years as well as studies in 

which artificial ponds have been surveyed for periods of time greater than ten years.  

Published studies to date have monitored amphibian communities in constructed ponds 

for 1-8.5 years, with an average survey period of 3.2 years (Monello and Wright 1999, 

Babbitt and Tanner 2000, Hazell et al. 2004, Lehtinen and Galatowitsch 2001, Pechmann 

et al. 2001, DiMauro and Hunter 2002, Petranka et al. 2003, Vasconcelos and Calhoun 

2006, Shulse et al. 2010).  Although these studies are important, they have been limited 

by a lack of constructed ponds older than nine years.  

   More than 400 ponds have been constructed over the past 22 years within the 

Daniel Boone National Forest (DBNF) for habitat enhancement, game use, and Indiana 

bat (Myotis sodalis) conservation (T. Biebighauser, pers. comm.), but very few have 
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been monitored after their construction. Since 2004, construction protocols were 

adjusted in an effort to create more natural ponds using shallower depths, increased 

upland coarse woody debris, and smaller total sizes. Understanding differences in 

amphibian communities between pond types could aid managers in establishing a 

chronology to best indicate when constructed ponds best duplicate natural ponds in 

terms of amphibian community structure and provide an evaluation of the success of 

the new construction method. The objective of my research was to determine if 

amphibian communities differ between natural and constructed ponds of different ages 

and construction methods in the Daniel Boone National Forest (DBNF), Kentucky. 

Specifically, the following questions were addressed: (1) Do natural ponds differ from 

constructed ponds of multiple construction types and ages in amphibian community 

composition?, and (2) What habitat variables associated with constructed and natural 

ponds predict the presence and abundance of each amphibian species?  
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CHAPTER 2 

II. MATERIALS AND METHODS 

 

Study Sites 

 All study sites were located within the DBNF, eastern Kentucky. This study 

focused on the Cumberland District, the northernmost district of the DBNF; 

encompassing areas of Bath, Estill, Lee, Menifee, Morgan, Powell, Rowan, and Wolfe 

counties. The Cumberland District was chosen due to its high densities of constructed 

ponds and consistency with which they have been built since 1988. The majority of the 

ponds constructed in the DBNF are surrounded by deciduous forest, on ridge tops, 

fishless, and isolated. All constructed ponds were built in areas following a selective 

timber harvest. From 1988 to 2003, ponds were constructed with dams to hold water 

permanently. Since 2004, ponds constructed in the DBNF have been shallower and 

contain more coarse woody debris than the ponds constructed 1988-2003. The density 

of the constructed ponds in the DBNF and the consistency with which they have been 

built provides an opportunity for monitoring many ponds across multiple age classes 

within the same physiographic region, the Western Allegheny Plateau (Woods et al. 

2002).   

 The ponds used in this study were chosen by ground truthing as many ponds as 

possible from a GIS database of constructed ponds in the DBNF. Ponds were categorized 

by age based on year of construction and each assigned a number. Constructed ponds 
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were separated into two study groups: ponds built 2004-2008 and those built 1988-

2003. These groups were used to separate the two different styles of pond construction. 

The pond "Kidney88" was the exception. This pond was built in 1988, but was more 

indicative of the newer construction method; therefore it was shifted to the newer 

construction method group. Natural ponds were placed in a third category (n = 5). 

Natural ponds were limited within Bath and Menifee Counties; therefore all natural 

ponds located were selected. Study sites were then randomly selected from each 

constructed pond study group. The total sample size was based on an estimate of how 

many ponds could be potentially surveyed within a 24-hour period in order to keep 

temporal consistency between ponds when sampling. Nineteen ponds were surveyed 

for amphibians and habitat characteristics (Table 1).  

Amphibian Surveys 

 Two methods were used to survey for amphibians and were chosen on the basis 

of comparative studies of common techniques (e.g., Smith et al. 2006, Gunzburger 

2007).  Collapsible mesh minnow traps (4-mm mesh size, 46 x 26 x 26 cm dimensions, 6-

cm openings at each end) [Promar, Gardena, CA] were installed at each pond in order to 

capture both larvae and aquatic adults (Adams et al. 1997, Heyer et al. 1994). Traps 

were attached to a silt fence that extended perpendicularly from the shore of the pond 

two meters into the pond within the littoral zone. The traps were tied to the end post of 

the silt fence and rested against the substrate, with at least three cm of space above the 

water in order to provide access to air. The use of silt fences as supplements to the  
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Table 1. A summary of ponds surveyed for amphibians May-August 2010 in Daniel 

Boone National Forest, Kentucky. 

Pond Name 
Year 

Constructed Location Type 

60/70s approx. 1970 N38 03.742 W83 32.618 Old Construction Method 

Kidney88 1988 N38 03.304 W83 31.679 New Construction Method 

040-90 1990 N38 04.521 W83 31.924 Old Construction Method 

2009rework 1992 N38 04.573 W83 31.509 Old Construction Method 

42-93 1993 N38 02.130 W83 34.096 Old Construction Method 

95NEW 1995 N38 00.310 W83 35.059 Old Construction Method 

060-96 1996 N38 01.847 W83 36.232 Old Construction Method 

35-97 1997 N38 02.441 W83 30.927 Old Construction Method 

04A 2004 N38 03.916 W83 34.503 New Construction Method 

05A 2005 N38 03.972 W83 33.417 New Construction Method 

06A 2006 N38 04.702 W83 32.719 New Construction Method 

06C 2006 N38 04.709 W83 32.887 New Construction Method 

06D 2006 N38 04.687 W83 32.917 New Construction Method 

06E 2006 N38 04.551 W83 33.114 New Construction Method 

DC2 - N38 00.737 W83 33.541 Natural 

DC5 - N38 00.531 W83 33.424 Natural 

DC6 - N38 00.513 W83 33.138 Natural 

DC0 - N38 00.625 W83 33.773 Natural 

Booth - N37 54.089 W83 34.855 Natural 

 

minnow traps increases the amount of captures compared to using minnow traps alone 

(Willson and Dorcas 2004).  All but two study ponds had one trap array (one silt fence 

with two attached traps); the two largest ponds (DC2 and Booth) were both more than 

twice as large as the overall third largest pond, and two trap arrays were installed at 

these sites. The remaining constructed and natural ponds were similar in size. 

Dipnetting protocols were implemented at each site (Shaffer et al. 1994).  Dipnet 

sweeps were taken every five meters while walking the edge of the pond. A sweep 
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consisted of guiding the d-frame net in a 180° arc from the shoreline while jabbing the 

net into the substrate. All amphibians captured were released immediately after being 

identified to species and life stage (Conant and Collins 1998, Dodd 2004). The individuals 

used for statistical analyses were all larvae with the exception of eastern red-spotted 

newts (Notopthalmus viridescens), which were all adults. This species has a complex life 

cycle that includes an adult, aquatic breeding phase. I interpreted the abundance of 

these adults as a measure of breeding within the pond.  

Each study pond was surveyed during one sampling period per month, May-August 2010 

(Table A - 1). Survey dates were chosen in order to maximize detectability for the 

amphibian species of the region (Dodd 2004). In each sampling period, a pond was 

surveyed for amphibians on three consecutive trap nights. Due to the travel distance 

between ponds, ponds were split into two groups, each group to be surveyed during 

separate three days spans. Four of the ponds did not hold water during one or more of 

the sampling periods, and amphibian data from these ponds were only based on one to 

three sampling events.  

Habitat Characteristics 

 Habitat characteristics including canopy cover, upland coarse woody debris 

availability, plant cover, and maximum depth were measured for all ponds in order to 

compare pond parameters that may change over time or differ between construction 

methods. My objective was to compare these habitat features along with the amphibian 

communities present to provide data that determines the effectiveness of constructed 
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ponds in replicating the functional amphibian communities of natural ponds in the 

DBNF. Aquatic vegetation was surveyed using a 1 m2 quadrat placed on the edge of the 

pond at each of the cardinal directions (Shulse et al. 2010) and at the center of the 

pond.  The percentage of vegetation cover was estimated and placed into four 

categories: emergent, submergent, floating, and open water/none present.  Angular 

canopy closure was estimated directly above each aquatic vegetation quadrat and from 

the center of the pond with a spherical densiometer. The percentage of angular canopy 

closure was averaged across the five sample points. Pond depth was taken at the 

deepest point of each pond during each sampling period. Each site was scored for 

wetland quality according to the Ohio Rapid Wetland Assessment Method (ORAM; Mack 

2001). Upland coarse woody debris (CWD) was measured according to an adapted line-

intersect sampling protocol  from Waddell (2002), in which 50-m transects were taken 

from each cardinal direction perpendicular to the pond border into the surrounding 

uplands (Warren and Olsen 1964). Upland coarse woody debris with a diameter ≥ 10 cm 

at its narrowest end that intercepted each transect was recorded (DiMauro and Hunter 

2002). Each piece of CWD was measured for total length, and diameter at the narrowest 

and widest end (Waddell 2002). These measurements were used to calculate an 

estimate of the cubic volume of CWD per hectare (Husch et al. 1972, Waddell 2002 after 

DeVries 1973). Each habitat variable was chosen based on its associations with 

amphibians (Table 2). 
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Table 2. Description of habitat variables determined for each pond and literature 
sources justifiying selection for use in regression models. 

Predictor 
Variable Description Source 

Hydroperiod Wetland hydrology (ephemeral = 
0, permanent = 1) 

Semlitsch et al. 1996,  
Snodgrass et al. 2000 

Canopy Cover Average of angular canopy cover 
percentage. 

Werner and Glennemeier 
1999 

Upland coarse 
woody Debris 

Estimated volume of coarse 
woody debris within 50 m of pond 
greater than 10 cm in diameter on 
ground 

DiMauro and Hunter 2002 

Size Approximate area of pond (m2) Semlitsch and Bodie 1998, 
Snodgrass et al. 2000 

Maximum 
Depth 

Maximum depth of pond at the 
deepest point (cm) 

Snodgrass et al. 2000, 
Skidds and Golet 2005 

ORAM Ohio Rapid Assessment Method 
for wetlands 

Mack 2001 

Vegetation Average percentage of aquatic 
vegetation within five quadrats 
sampled 

Knutson et al. 2004, 
Mazerolle et al. 2006, 
Shulse et al. 2010 

 

Data Analyses 

 In order to prevent counting individual larva multiple times, one sample event 

per species from both the aquatic minnow trap and dipnet technique was selected per 

month to represent that month's sampling. This decision was made based on the 

highest abundance of each species on the given trap night. The selected values for each 

species were then totaled across the four sampling periods to provide a total abundance 

of each species for the breeding season. For the dipnet data, capture-per-unit-effort 

(CPUE) was calculated and used for analyses (Shulse et al. 2010).  The abundance of 

each species at each pond during the separate months was divided by the number of 
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dipnet sweeps per pond. Because the number of aquatic trap arrays was adjusted for 

the size of the ponds and variation in size was low (1-2 arrays), the amphibian data from 

aquatic trapping was analyzed using abundance values. Each habitat variable was 

compared between groups using a one-way analysis of variance (ANOVA) with a Tukey's 

post-hoc comparison test. If the assumption of equal variance was not met, a Welch's 

ANOVA was used with a Tukey's post-hoc comparison test.  

(1) Do natural ponds differ from constructed ponds of multiple construction types and 

ages in amphibian community composition? 

 Amphibian community data and all habitat variables for constructed and natural 

ponds were examined using canonical correspondence analysis (CCA; Ter Braak 1986) in 

Program R with package VEGAN (R Development Core Team 2005, Oksanen et al. 2011). 

CCA is a constrained ordination technique that utilizes a linear regression to relate 

species community structure to a matrix of environmental variables. The linear 

regression step constrains the ordination axes to describe variation within the 

amphibian assemblage related to habitat variables. This method is used to visually 

assess the associations between amphibian species, habitat variables, and pond type. 

Permutation tests using the "anova.cca" command in Program R were used to examine 

significance of both the terms and axes used in CCA plots (Oksanen 2011).  

 To test for statistical differences in amphibian community composition between 

the construction types and natural ponds, a one-way analysis of similarity (ANOSIM; 

Clarke and Warwick 1994) was conducted using the program PAST (Hammer et al. 
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2001). This test examines a pairwise distance matrix to compare distances between and 

within groups.  The Bray-Curtis Similarity Index was chosen as the distance measure 

(Bray and Curtis 1957), using 10,000 permutations. Sequential Bonferroni corrected p-

values were used to compare the three groups (Rice 1989). 

 (2) What habitat variables associated with constructed and natural ponds predict the 

presence and abundance of each amphibian species? 

 Different amphibian species vary in response to the same suite of habitat 

variables (Gardner et al. 2007). To address this, I used stepwise regression models with 

amphibian abundance as the response variable. Statistical models were employed for 

the aquatic minnow trap and dipnet data separately because of the possibility of bias 

between the active and passive sampling methods. Because I expected some 

redundancy in the predictor variables (Table 2) and because the number of observations 

(n = 19) was low relative to the number of predictor variables, I conducted a principle 

component analysis (PCA) using SPSS in order to reduce the six variables to a smaller 

number of principal components that would account for the variance in amphibian 

abundances. The component scores for each site produced by the PCA procedure were 

then used as predictor variables along with pond type (Natural, New Construction 

Method, Old Construction Method) in all regression models. To interpret the most 

meaningful variables within the principal components, I counted communalities that 

had a value greater than 0.60, as recommended by Stevens (1986). 
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Dipnet statistical models - Using the generalized linear modeling in SPPS version 17.0 

(SPSS Inc. 2008), I selected a regression model with a compound Poisson (Tweedie) 

distribution and log link function for the dipnet data (Shono 2008, Shulse et al. 2010). 

The Tweedie distribution was chosen based on its ability to utilize discrete to continuous 

data and large numbers of zeroes within the data set and because count data become 

more continuous when converted to CPUE. The index parameter value (p), which is the 

parameter in the model that varies depending on how continuous the data are, can be 

any value >1 and <2 for CPUE data and determines the distribution shape (Shono 2008, 

Shulse et al. 2010). Models were initially run with parameter values within this range, 

and a parameter value of 1.1 was supported based on the lowest Akaike's Information 

Criterion values (AICc) for each species. For the regression analyses that followed, each 

predictor variable with the largest p value that was  >0.10 was removed in a stepwise 

fashion and the model was repeated until all factors remaining had p <0.10. 

Aquatic trapping models - Abundance data from aquatic minnow trapping was first used 

to select species-specific distributions followed by a stepwise regression in SAS version 

9.2 (SAS Institute Inc. 2008). Using the COUNTREG procedure for count data in SAS, I 

conducted stepwise regressions for each species with >25 individuals captured within 

each pond type. The type of distribution employed was determined using likelihood 

ratio tests. Distributions considered were Poisson, negative binomial, zero-inflated 

Poisson (ZIP), and zero-inflated negative binomial (ZINB). Each predictor variable that 

had the largest Type III effect significance >0.10 was removed in a stepwise fashion and 

the model repeated until all factors remaining had a p <0.10. 
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CHAPTER 3 

 

III. RESULTS 

 

Habitat Variation Between Pond Types 

 All natural ponds dried during the summer (DC5/DC0: June; DC6: August; 

DC2/Booth: September; Figure 1). Two of the new construction method ponds dried in 

June and July; Kidney88 and 06C, respectively. All old construction method ponds had 

permanent hydrology. One-way ANOVA tests showed that old construction method 

ponds had significantly higher maximum pond depth than new construction method (p = 

0.003) and natural ponds (p = 0.002) ponds (Table 3, Figure 2). Natural ponds had 

significantly higher average ORAM scores than both old construction method (p < 0.001) 

and new construction method (p < 0.001) ponds (Table 3, Figure 3). Using a Welch's 

ANOVA test, canopy closure was significantly higher at natural ponds compared to the 

new construction method ponds (p < 0.001; Table 3, Figure 3). The amount of upland 

coarse woody debris surrounding the ponds and the percent of total vegetation did not 

differ significantly between pond types (Figures 2 and 4). 
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          Figure 1. Average depth of each pond type in the Daniel Boone National Forest (KY) 
over May-August sampling period and September 2010. Depth was measured at 
deepest point. 
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Table 3. Results of one-way analysis of variance of Ohio Rapid Wetland Assessment 

Method (ORAM) score and maximum depth between pond types. Post-hoc Tukey 

pairwise comparisons are presented for the three pond types. For the variable 

canopy cover, Welch's robust test of equality of means was used. 

 Pond Type Comparison Mean Difference F df p 

ORAM score - 34.77 2 < 0.001 

Natural - New Construction Method 27.43 - - < 0.001 

Natural - Old Construction Method 26.43 - - < 0.001 

New - Old Construction Method 1.00 - - 0.951 

     Maximum Depth - 11.54 2 0.001 

Natural - New Construction Method -7.09 - - 0.886 

Natural - Old Construction Method -62.51 - - 0.002 

New - Old Construction Method -55.43 - - 0.003 

     Habitat Variable and Pond Type 
Comparison Mean Difference Welch df p 

Canopy Cover - 20.03 2 < 0.001 

Natural - New Construction Method 25.82 - - 0.048 

Natural - Old Construction Method 25.43 - - 0.052 

New - Old Construction Method 0.29 - - 0.999 
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Figure 2. A comparison of mean maximum depth (top) and percent 
aquatic vegetation (bottom) between the three pond types in Daniel 
Boone National Forest (KY). Boxplots represent 25th and 75th 
percentiles and boxplot stems represent 95% confidence interval. 
Different letters in the maximum depth boxplot indicate results of 
post-hoc Tukey multiple comparisons. 
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Figure 3. Mean (± 2 SE) metric scores (hydrology, habitat alteration and 
development, plant communities/interspersion/microtopography) and total 
Ohio Rapid Wetland Assessment Method (ORAM) score compared between 
three pond types in the Daniel Boone National Forest (KY).  
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Figure 4.  A comparison of mean percent canopy cover (top) and 
mean volume of upland coarse woody debris (bottom) between 
three pond types in the Daniel Boone National Forest (KY). Different 
letters in the canopy cover boxplot indicate post-hoc Tukey 
comparisons. 
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Amphibian Community Composition  

 I captured 9,716 individuals (5,435 from aquatic trapping; 4,281 from dipnetting) 

representing 13 species (Table 4). The only pond-breeding species known to occur in the 

area that were not detected were the eastern spadefoot toad (Scaphiopus holbrookii) 

and mountain chorus frog (Pseudacris brachyphona). After choosing representative trap 

events from each month, 3,425 and 2,372 individuals were used for statistical analyses 

from aquatic trapping and dipnetting procedures, respectively (Tables A - 2, A - 3). 

Natural ponds had the largest number of captured individuals (5,222) and the highest 

total species richness (12), but the lowest overall Shannon-Wiener diversity index score 

(Table 5). All ponds were used for breeding by multiple species; except for a single pond 

(06C) where only red-spotted newts were detected. 

Table 4. Amphibian species found during surveys of constructed and natural ponds 
in the Daniel Boone National Forest (KY), May-August 2010. 

Scientific Name Common Name 
Total # 

Individuals 

# of Ponds 
Where 
Present 

Bufo americanus American toad 192 2 

B. fowleri Fowler's toad 31 3 

Hyla chrysoscelis Cope's gray tree frog 1283 9 

Pseudacris crucifer spring peeper 104 6 

Rana sylvatica wood frog 2367 4 

R. clamitans green frog 238 11 

R. catesbeiana bull frog 130 10 

R. palustris pickerel frog 7 2 

Hemidactylium scutatum four toed salamander 11 6 

Ambystoma opacum marbled salamander 44 5 

A.maculatum spotted salamander 486 16 

A.jeffersonianum Jefferson salamander 133 15 

Notopthalmus viridescens eastern red-spotted newt 771 17 
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Table 5. Comparison of total abundance, species richness, and mean (± 2 SE) 

Shannon-Wiener Diversity Index scores for three types of ponds in the Daniel 

Boone National Forest (KY), May-August 2010. 

  
Constructed Ponds 

 
Natural 

Old 
Method 

New 
Method 

Total Number of Captured Amphibians 5,222 1,857 1,130 
Total Species Richness 12 10 10 
Shannon-Wiener Index Score (Traps) 0.70 ± 0.30 1.03 ± 0.17 0.90 ± 0.22 
Shannon-Wiener Index Score (Dipnet) 0.91 ± 0.33 1.39 ± 0.14 1.06 ± 0.19 

    
    
     I produced CCA plots for both dipnetting and aquatic trapping survey methods 

(Figures 5 and 6). Prior to the CCA analysis, the variable "Coarse Woody Debris" was log 

transformed because of extreme outliers in the raw data. In addition, site "06C" was 

removed from the CCA analysis for dipnetting due to zero individuals being captured at 

this site using dipnetting. The first two axes of the CCA procedure using dipnetting data 

accounted for 51.2% of the explained variation and both axes were found to 

significantly explain the variation in the dataset (CCA1: χ2= 0.80, df=1, p = 0.005; CCA2: 

χ2= 0.50, df=1, p = 0.037).  Hydroperiod (dipnetting) was a significant vector term (χ2= 

0.37, df=1, F=3.90, p = 0.02). The first two axes of the CCA procedure using aquatic trap 

data accounted for 41.0% of the explained variation and the both axes significantly 

explained variation in the data set (CCA1: χ2= 0.83, df=1, p = 0.005; CCA2: χ2= 0.30, df=1, 

p = 0.028). All combined constrained axes of the CCA procedures explained 59.2% and 

47.8% of the total variation possible, from dipnetting data and aquatic trapping, 

respectively. 
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      Figure 5. Canonical Correspondence Analysis (CCA) biplots for ponds (top) and 

species (below) collected by dipnetting three pond types in Daniel Boone 

National Forest (KY). Pond types are designated by shape (squares = natural, 

triangles = old construction method, circles = new construction method). 

Species are abbreviated using the first two letters of their genera and species 

names. Vectors represent habitat variable scores and the direction of gradients. 

ORAM = Ohio Rapid Wetland Assessment Method Score. 
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Figure 6. Canonical Correspondence Analysis (CCA) biplots for ponds (top) and 

species (below) collected by trapping three pond types in Daniel Boone 

National Forest (KY). Pond types are designated by different shapes (squares = 

natural, triangles = old construction method, circles = new construction 

method). Species are abbreviated using the first two letters of their genera 

and species names. Vectors represent habitat variable scores and the 

direction of habitat gradients. ORAM = Ohio Rapid Wetland Assessment Score. 
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 Using the ANOSIM procedure, I found significant differences between pond 

types in terms of amphibian community composition (aquatic minnow traps: Global R = 

0.3786, p < 0.001; dipnetting: Global R = 0.2245, p = 0.009). Pairwise comparisons of 

groups show that natural ponds were significantly different from old construction 

method ponds in terms of amphibian community (Table 6). Abundance data from 

aquatic trapping showed significantly different amphibian communities between natural 

ponds and new construction method ponds. 

 
Table 6. Results of one-way analysis of similarity (ANOSIM) with 10,000 permutations 
using abundance or presence/absence data for each capture method. Global R values 
and sequential Bonferroni corrected pairwise p-values are displayed for the two 
amphibian survey methods. Bold text indicates significant p  values at the α = 0.05 
level. 

 
Aquatic Minnow Traps Dipnetting CPUE 

  Global R p-value Global R p-value 

Abundance data  
(Bray-Curtis distance values) 0.379 <0.001 0.225 0.007 

Natural - New Construction Method - 0.007 - 0.280 
Natural - Old Construction Method - 0.004 - 0.002 
New - Old Construction Method - 0.199 - 1.000 

     Presence/absence data  
(Jaccard's distance values) 0.246 0.003 0.188 0.012 

Natural - New Construction Method - 0.053 - 0.358 
Natural - Old Construction Method - 0.008 - 0.020 
New - Old Construction Method - 0.720 - 0.338 

      

 



 

27 

 

 

Individual Species Habitat Associations 

 A linear regression showed no trend for any species in regards to pond age 

alone. The PCA procedure extracted two components (Table 7). Bartlett's test of 

sphericity supported the validity of the component loadings (χ2 = 26.88, df = 15, p = 

0.30). For dipnetting data, only species with >25 individuals captured within each pond 

type were used for regression models, resulting in regression models for three species 

(CPUE: Table 8; Trap Count: Table 9). For some species, patterns of abundance and 

presence were clearly distinct (i.e. a species only present in natural ponds). Even though 

these species were drivers of community differences, they were precluded from 

individual species analyses because they were only found in one pond type. For 

example, wood frogs (Rana sylvatica) were only captured in natural, ephemeral ponds. 

Due to their large abundance in these ponds, wood frogs were drivers in the community 

differences between the natural and constructed ponds. However, because they were 

only found in one pond type, they could not be compared for habitat associations across 

all pond types.  

 Two species (Ambystoma maculatum and A. jeffersonianum) were combined 

based on similar life histories and the precedence set by Shulse et al. (2010). Eleven and 

eight species were detected in multiple pond types by dipnetting  and aquatic minnow 

trapping (Figures B - 1, B - 2, B - 3, B - 4). 
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Table 7. Principle Components Analysis (PCA) loadings of habitat variables measured 
at the 19 ponds surveyed for amphibians. The first two axes of the PCA explained 
66.5% of the total habitat variation. The major axis loadings for each component is in 
bold print. 

Habitat Variable PC1 PC2 

Canopy Cover 0.773 -0.062 
Upland coarse woody Debris 0.402 0.731 
Pond Size 0.769 -0.330 
Maximum Depth -0.172 -0.758 
ORAM score v0.968 -0.001 
% Vegetation -0.190 0.645 

   ORAM = Ohio Rapid Wetland Assessment Score 
 

Table 8. Results of selected stepwise linear regression models using dipnet capture-per-
unit-effort (CPUE) data. Only species with >25 individuals captured per wetland type were 
used for modeling. Pond type is indicated by number (1 = natural, 2= Old construction 
method, 3 = new construction method). 

Species Factor* Βeta Coefficient ± SE Wald's χ2 p 

Rana clamitans Pond Type 1 vs. 3: -8.73 ± 2.71 
2 vs. 3: -1.18 ± 0.72 

11.46 0.003 

 Coarse Woody Debris (-) -1.29 ± 0.41 9.67 0.002 

 Maximum Depth (+) - - - 

 % vegetation (-) - - - 

     

Combined Coarse Woody Debris (-) -0.92 ± 0.26 12.96 <0.001 

Ambystoma Maximum Depth (+) - - - 

 % vegetation (-) - - - 

     

Notopthalmus 
viridescens 

Pond Type 1 vs. 3: -5.25 ± 0.44 
2 vs. 3: -0.11 ± 0.50 

14.18 0.001 

 Canopy Cover (-) 1.52 ± 0.53 8.19 0.004 

 Pond Size (+) - - - 
 ORAM (-) - - - 

AICc = Akaike's Information Criterion value, ORAM = Ohio Rapid Wetland Assessment score.  
*Factors other than Pond Type represent the loadings within each principal component 
communality >0.60 that was found to be significant in the model. Each variable within these 
components was described as positively (+) or negatively (-) associated with the abundance 
of each species based on scatterplots. 
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Table 9. Results of selected stepwise linear regression models using aquatic trapping 

abundance data. The type of distribution chosen was based on likelihood ratio tests. 

Only species with >25 individuals captured per wetland type were used for modeling. 

Pond type is indicated by number (1 = natural, 2= Old construction method, 3 = new 

construction method). 

Species Factor* 
Βeta Coefficient ± 

SE 
Wald's 

χ2 p 

Rana clamitans  
(Poisson) 

Pond Type 1 vs. 3: -4.84 ± 1.24 
2 vs. 3: -0.75 ± 0.33 

25.67 <0.001 

 Coarse Woody Debris (-) -0.69 ± 0.17 16.04 <0.001 
 Maximum Depth (+) - - - 
 % vegetation (-) - - - 
     
Combined  Coarse Woody Debris (-) -1.30 ± 0.35 13.86 <0.001 
Ambystoma Maximum Depth (+) - - - 
(Poisson) % vegetation (-) - - - 
     
Notopthalmus 
Viridescens 

Pond Type 1 vs. 3: -2.36 ± 0.99 
2 vs. 3: -0.97 ± 0.46 

9.75 0.007 

(Negative Binomial)     

AICc = Akaike's Information Criterion value, ORAM = Ohio Rapid Wetland Assessment 
score. 
*Factors other than Pond Type represent the loadings within each principal component 
communality >0.60 that was found to be significant in the model. Each variable within 
these components was described as positively (+) or negatively (-) associated with the 
abundance of each species based on scatterplots. 
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American Toad 

 American toads were detected in 10.5% of total ponds surveyed (0-17 

individuals/site trapped, 0-24.83 CPUE). This species was only located in one natural 

pond and one pond of the new construction type, both of which dried during the June 

sampling period. The two ponds where larval American toads were located were tied for 

the second lowest maximum depth (15 cm). Because of the low number of ponds in 

which this species was located, it was not included in the modeling procedures.   

 

Fowler's Toad 

 Fowler's toads were detected in 15.8% of the total ponds surveyed (2-4 

individuals/site, 0.34-1.31 CPUE). Two of the ponds where Fowler's toads were detected 

were new construction method ponds and the third was a natural pond. All ponds 

where this species occurred as larvae dried during the sampling season. Due to a small 

sample size for this species, it was not included in any regression modeling procedures.  

 

Cope's Gray Tree Frog 

 Gray tree frogs were detected in 47.4% of the ponds surveyed (0-1093 

individuals/site, 0.13-3.50 CPUE) and was detected in all three pond types. Larval Cope's 

gray tree frogs were most abundant in natural ponds, where one pond (DC2) had 

especially high abundance (1092 individuals, 2.80 CPUE). Due to the high amount of 

variation and low sample number between ponds types, gray tree frogs were not 

included in any regression analyses. 
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Spring Peeper 

 Spring peeper larvae were found in 31.6% of ponds (0-5 individuals, 0.17-2.59 

CPUE). This species was detected in all three pond types in relatively low abundances 

and was not included in any regression analyses.  

 

Wood Frog 

 Wood frogs were found in 21.1% of ponds surveyed (12-606 individuals/site, 

1.01-42.26 CPUE). Wood frogs were only found in natural, ephemeral ponds and were 

therefore not considered for regression models. However, this species was captured in 

high numbers where it was detected (Trap Mean = 344 ± 124 SE; CPUE Mean = 19.07 ± 

8.56 SE). 

 

Green Frog 

 Green frogs were found in 57.9% of ponds surveyed (2-13 individuals/site, 0.05-

6.60 CPUE). Except for <5 larvae found in a single natural pond (Booth), all green frog 

larvae were detected in both types of constructed ponds. The natural pond in which 

green frogs were detected dried in September. A Tweedie regression model for green 

frog CPUE  found that pond type (χ2 = 9.67, df = 2, p = 0.008) and principal component 

two (upland coarse woody debris, maximum depth, % vegetation) significantly (χ2 = 

15.50, df = 1, p < 0.001) predicted the abundance of larvae (Table 8). Pairwise 

comparisons between pond types show that green frogs were in significantly higher 
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abundances in permanent ponds, regardless of construction type (Table 10). Aquatic 

trap abundance models for green frogs produced by the COUNTREG procedure using a 

Poisson distribution also found pond type (χ2 = 25.67, df = 2, p < 0.001) and principal 

component two (χ2 = 16.04, df = 1, p < 0.001; Table 8) to significantly explain larval 

abundance. Pairwise comparisons between pond types for trap count data indicated 

that green frog larvae were in significantly higher abundances in old construction 

method permanent ponds (χ2 = 15.69, df = 1, Pr >  χ2 < 0.001) and new construction 

method ponds (χ2 = 23.60, df = 1, Pr >  χ2 <0.001) compared to natural ponds. Old 

construction method ponds had significantly higher green frog abundance than new 

construction method ponds (χ2 = 5.24, df = 1, Pr >  χ2 = 0.022; Table 11). 

 

Bullfrog 

 Bullfrog larvae were detected in 52.6% of ponds surveyed (0-17 individuals/site, 

0.14-1.90 CPUE). Except for <5 larvae found in a single natural pond (Booth), all bullfrog 

larvae were detected in constructed ponds and were not included in regression 

analyses. The natural pond in which bullfrogs were detected dried in September.  

 

Pickerel Frog 

 Pickerel frog larvae were found in 10.5% of the ponds surveyed (0.14-0.53 

CPUE). These larvae were exclusively detected in old method construction ponds. 

Because of the small sample size for this species, it was not included in any regression 

analyses.  
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Table 10. Pairwise comparisons of red spotted newt (Notopthalmus viridescens) and 

green frog (Rana clamitans) abundance between pond types from stepwise Tweedie 

regression procedure. Only comparisons with significant (p < 0.05) differences are 

shown. 

Species Pond Type 1 Pond Type 2 
Mean 

Difference 
Standard 

Error df p 

Red spotted 
newt 

Natural 
New 

Construction 
Method 

-3.13 1.21 1 0.009 

 

Natural 
Old 

Construction 
Method 

-3.51 1.55 1 0.024 

Green frog  Natural 
New 

Construction 
Method 

-0.35 0.19 1 0.035 

  

Natural 
Old 

Construction 
Method 

-1.01 0.44 1 0.011 
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Table 11. Pairwise comparisons of red spotted newt (Notopthalmus viridescens) and 

green frog (Rana clamitans) aquatic trap abundance between pond types from 

stepwise regression procedure. Only comparisons with significant (p < 0.05) 

differences are shown. 

Species Pond Type 1 Pond Type 2 χ2 df Pr >  χ2 

Red spotted 
newt 

Natural 
New 

Construction 
Method 

4.64 1 0.031 

 

Natural 
Old 

Construction 
Method 

8.08 1 0.045 

 

New 
Construction 

Method 

Old 
Construction 

Method 
3.90 1 0.048 

Green frog  Natural 
New 

Construction 
Method 

23.60 1 <0.001 

 

Natural 
Old 

Construction 
Method 

15.69 1 <0.001 

  

New 
Construction 

Method 

Old 
Construction 

Method 
5.24 1 0.022 

 

Four-Toed Salamander 

 Four-toed salamander larvae were detected in 31.6% of the total ponds 

surveyed, but were captured in small numbers where they were present (0.09-0.24 

CPUE). Four-toed salamanders were only detected by dipnetting surveys, and were 

found in all three types of ponds. However, due to the rarity of this species, it was not 

including in regression analyses. 
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Marbled Salamander 

 Marbled salamander larvae were detected in 26.3% of the ponds surveyed (0-8 

individuals/site, 0-1.90 CPUE). All but three individuals (93.2%) were captured in natural 

ephemeral ponds. Marbled salamanders were not used in regression analyses due to 

small sample size. 

 

Spotted and Jefferson Salamander 

 Spotted and Jefferson salamander larvae were combined in analyses due to their 

similar life histories (Shulse et al. 2010). Spotted salamanders were detected in 84.2% of 

all surveyed ponds (1-24 individuals/site, 0.11-5.69 CPUE). Jefferson salamanders were 

found in 78.9% of surveyed ponds (0-7 individuals/site, 0-2.28 CPUE). Both species were 

found in all pond types. Using Tweedie regressions from CPUE data (Table 11), I found  

that the combined ambystomatid abundance was significantly (χ2 = 12.96, df = 1, p < 

0.001) predicted by principal component two (upland coarse woody debris, maximum 

depth, % vegetation). Trap count models produced in COUNTREG using a Poisson 

distribution also indicated that principal component two was significant (χ2 = 13.86, df = 

1, p < 0.001) in predicting ambystomatid larvae abundance (Table 12). 

 

Red-Spotted Newt 

 Red-spotted newts were detected in 89.5% of all ponds surveyed (2-103 

individuals/site, 0-4.93 CPUE). Newts were found breeding in all pond types, and were 

excluded only from the two natural ephemeral ponds that dried the earliest (DC5, DC0). 
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Using the Tweedie regression model for red-spotted newt larvae, I found that pond type 

(χ2 = 14.18, df = 3, p = 0.001) and principal component one (canopy closure, pond size, 

ORAM; χ2 = 8.19, df = 1, p = 0.004) significantly predicted abundance (Table 8). Pairwise 

comparisons between pond types showed significantly higher abundance of red-spotted 

newts in both types of constructed permanent ponds compared to natural ponds (Table 

10).  Trap count models produced in COUNTREG using a negative binomial distribution 

also indicated that pond type significantly (χ2 = 9.75, df = 3, p = 0.007)  predicted red-

spotted newt abundance (Table 9). Pairwise comparisons between pond types for trap 

count data indicated that red-spotted newts were in significantly higher abundances in 

old construction method permanent ponds (χ2 = 8.08, df = 1, Pr >  χ2 = 0.045) and new 

construction method ponds (χ2 = 4.64, df = 1, Pr >  χ2 <0.031) compared to natural 

ponds. Old construction method ponds had significantly higher green frog abundance 

than new construction method ponds (χ2 = 3.90, df = 1, Pr >  χ2 = 0.048; Table 11). 
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CHAPTER 4 

 

IV. DISCUSSION 

 

Habitat Variation Between Pond Types 

 A greater maximum depth resulted in permanent hydroperiods for ridge-top 

ponds constructed in the DBNF using the old construction method. Even though the new 

construction method ponds were significantly shallower than the old construction 

method ponds (Table 4), their general lack of drying contributed to lower ORAM scores 

in the hydrology metric (Figure 3). Natural ponds scored higher in plant communities, 

interspersion, and microtopography (see metric descriptions in Mack 2001). These 

categories scored higher in the natural ponds, which had higher amounts of vegetated 

mounds and standing snags. While new construction method ponds had more aquatic 

structure in the form of large coarse woody debris that had been added to the ponds, it 

was not in sufficient amount to garner higher metric scores from the ORAM. The 

differences between pond types in percent canopy closure could be related to the year 

of pond construction. The new construction method ponds had the lowest amount of 

canopy cover and were the most recently disturbed by construction equipment. Natural 

ponds had a lower influence of anthropogenic disturbance. Most constructed ponds 

were built near forest roads, while the majority of natural ponds were relatively 

secluded. 
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Amphibian Community Composition 

 The analyses reported here reinforce the complex gradients of habitat variables 

that predict amphibian presence and abundance (Skelly et al. 1999, Shulse et al. 2010). 

The CCA procedures used here showed two different groups of species that associate 

most closely with old construction method ponds or natural ponds, and a gradient of 

species that used all three types of wetlands but showed preferences towards one end 

of the hydroperiod gradient. Wood frogs and marbled salamanders were especially 

associated with ephemeral natural ponds, while green frogs and bullfrogs associated 

strongly with permanent constructed ponds. It is unknown whether wood frogs are 

excluded from constructed ponds due to egg predation from green frog larvae 

(Vasconcelos and Calhoun 2006), red-spotted newt adults (Andrea Drayer, unpublished 

data), or some other factor. Other species that were found in all three pond types 

exhibited higher abundances either in ephemeral or in permanent ponds. Species that 

were found in higher abundances in ephemeral ponds (constructed and natural) 

included spring peepers, gray tree frogs, American toads, Fowler's toads, and four-toed 

salamanders. Although typically associated with ephemeral wetlands (Petranka 1998), 

spotted and Jefferson salamanders were in higher abundances in permanent 

constructed ponds along with red-spotted newts. Because all of the study ponds were 

fishless, the abundance of these ambystomatid salamanders might be more affected by 

fish presence than wetland hydroperiod (Porej and Hetherington 2005, Shulse et al. 

2010).  These species preferences were the drivers behind the significant difference 
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between the old construction method ponds (all permanent) and the natural ponds (all 

ephemeral). New construction method ponds included permanent (n=5) and ephemeral 

(n=2) hydroperiods, but the ephemeral constructed ponds were not used by wood frogs 

or marbled salamanders. However, these ephemeral constructed ponds excluded the 

large ranid species from breeding, making them more similar in amphibian community 

composition to the natural ponds than the old construction method ponds. In other 

words, the amphibian community similarity between the new construction method and 

natural ponds is primary the result of the mutual exclusion of the large ranid frogs and 

not the mutual occurrence of species that are primarily ephemeral breeders such as 

wood frogs and marbled salamanders (Ambystoma opacum).  

 

Individual Species Habitat Associations 

 The three most commonly captured amphibians (green frogs, spotted and 

Jefferson salamanders combined, red-spotted newts) showed similar habitat 

preferences. Both green frogs and red-spotted newts preferred old construction method 

ponds. Green frogs and bullfrogs require permanent bodies of water due to their 

overwintering larvae and late breeding periods (Conant and Collins 1998, Lannoo 2005); 

while red-spotted newt's affinity for deep ponds has been previously documented 

(Gates and Thompson 1982). Green frog and ambystomatid salamander abundance was 

negatively correlated with the amount of coarse woody debris around the pond and 

amount of aquatic vegetation. Because green frogs are predominately aquatic, it is 
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unlikely this species utilizes coarse woody debris in the surrounding uplands. Low 

amounts of coarse woody debris and aquatic vegetation were common traits of old 

construction method ponds. Adult spotted salamanders showed no significant 

preference for amount of coarse woody debris, which corroborates the results of Patrick 

et al. (2008). However, spotted salamander's negative association with increased 

aquatic vegetation is counter to what was found by Calhoun et al. (2003), Egan and 

Paton (2004), and Shulse et al. (2010). The selection for permanent ponds by 

ambystomatid salamanders  in this study could be due to their preference for longer 

hydroperiods (Egan and Paton 2004) and ability to tolerate the presence of green frogs 

(Vasconcelos and Calhoun 2006). Red-spotted newts were negatively associated with 

percentage of canopy cover and ORAM score, but positively associated with pond size. 

Constructed ponds with more open canopies were generally given lower ORAM scores, 

and newts were in high abundance in these pond types. Because of the skin toxicity 

exhibited by red-spotted newts, this species has shown the ability to occupy habitat 

shared with predatory fish (Gates and Thompson 1982). Therefore, newts were likely 

found in higher abundances in the deeper constructed ponds because of a tolerance for 

larger ranid predators and the avoidance of the energy requirements needed for 

migration after a pond dries (Hunsinger and Lannoo 2005). Although red-spotted newts 

were observed actively feeding on spotted and Jefferson salamander eggs in the spring, 

there was no clear relationship between the presence and abundance of the three 

species.   
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Implications for Wetland Construction and Planning 

 Old construction method ponds in the DBNF fail to duplicate the functions of 

natural, ephemeral ponds. Because natural ridge-top ponds are scarce in the DBNF, 

creating ponds that are more natural in function has become a priority. A new method 

of pond construction implemented 2004-2007 has failed in consistently constructing 

ephemeral ponds, which is necessary to exclude green frogs and bullfrogs from breeding 

as well as reduce the abundance of red spotted newts. Even though these permanent-

water breeding amphibians are endemic to the DBNF, they were historically most likely 

confined to lowland basins where permanent marshes, oxbows, and natural lakes 

provided breeding habitat. The large ranid frogs, especially bullfrogs, are known to be 

invasive in altered aquatic habitats with permanent water (Fuller et al. 2010). My results 

indicate that, in the DBNF,  ephemeral-breeding specialists such as wood frogs and 

marbled salamanders are predominately confined to the few natural, ephemeral ponds. 

Even though the ephemeral specialist species are in high abundances in natural, 

ephemeral ponds, being isolated to only natural wetlands could lead to long-term 

negative consequences from genetic isolation. The propagation of permanent ponds 

over the last twenty years in the DBNF has likely provided avenues of dispersal and 

migration for green frogs and bullfrogs; which may expose naturally occurring ridge-top 

amphibian species to direct predation and disease, e.g.  amphibian Chytrid fungus 

(Batrachochytrium dendrobatidis) and ranavirus (Daszak et al. 2004, Gahl 2007, Gahl et 
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al. 2009). Additionally, the speeds at which these species may disperse are predicted to 

be higher in the low-resistance matrix of the continuous forest (Rothermel and 

Semlitsch 2002), hence the high density of constructed ponds within the DBNF could 

provide "stepping stones" for dispersal. Removing or altering old construction method 

ponds may lessen the isolation of ephemeral breeding amphibian species. As a 

consequence of studies from our research group, the U.S. Forest Service began altering 

these ponds in the Fall of 2010 (T. Biebighauser, per. comm.).   

 Results of this study underscore the importance of using constructed wetland 

habitat as a conservation strategy for amphibians. Due to growing concerns surrounding 

amphibian declines and the current inability of mitigated wetlands to replace removed 

wetlands, producing quality constructed wetlands is requisite in conservation of 

amphibians and in reviving declining populations. However, replacing wetland function 

requires extensive knowledge of the natural types of regional wetlands. For ridge-top 

ponds in the DBNF, constructed wetlands should be ephemeral and placed in areas 

where canopy cover is maximized. Any future developments by the U.S. Forest Service 

in construction techniques for ephemeral wetlands could be used to improve 

construction protocols in the eastern United States, where legal protection of 

ephemeral ponds is lacking (see Environmental Law Institute 2008). As suggested by 

Semlitsch (2008), wetlands constructed for mitigation or otherwise should be built with 

consideration to function and quality, not quantity exclusively. Building wetlands that 

replace the function of previously removed natural wetlands is difficult, as shown in this 
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study, but efforts to do so could ultimately aid in developing more efficient conservation 

strategies.   
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Table A -  1. Amphibian sampling dates for study ponds in the Daniel Boone National Forest, KY, May-August 2010. 

 
Sampling Dates 

Pond Name 
11-

May 
12-

May 
13-

May 
15-

May 
16-

May 
17-

May 
15-
Jun 

16-
Jun 

17-
Jun 

18-
Jun 

19-
Jun 

20-
Jun 

16-
Jul 

17-
Jul 

18-
Jul 

13-
Aug 

14-
Aug 

15-
Aug 

60/70s       x x x       x x x x x x x x x 

Kidney88       x x x                         

040-90       x x x       x x x x x x x x x 

2009rework       x x x       x x x x x x x x x 

42-93 x x x       x x x       x x x x x x 

95NEW x x x       x x x       x x x x x x 

060-96 x x x       x x x       x x x x x x 

35-97 x x x       x x x       x x x x x x 

04A       x x x       x x x x x x x x x 

05A       x x x       x x x x x x x x x 

06A       x x x       x x x x x x x x x 

06C       x x x       x x x             

06D       x x x       x x x x x x x x x 

06E       x x x       x x x x x x x x x 

DC2 x x x       x x x       x x x x x   

DC5 x x x                               

DC6 x x x       x x x       x x x       

DC0 x x x                               

Booth x x x       x x x       x x x x x x 
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Table A -  2. Abundance of each species captured from all study ponds using aquatic minnow traps in Daniel Boone National Forest, KY, May-August 2010. 

 
Pond Name and Type 

 
Natural Old Construction Method New Construction Method 

Species 
DC2 DC5 DC6 DC0 Booth 95new 696 42-

93 
35-
97 

2009 490 60/70 04A 05A 06A 06C 06D 06E 88 

Bufo americanus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 

Bufo fowleri 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 

Hyla chrysoscelis 1093 0 0 0 11 0 10 1 0 0 1 0 5 0 0 0 3 36 0 

Pseudacris crucifer 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

Rana sylvatica 345 0 606 411 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rana clamitans 0 0 0 0 2 13 6 5 0 3 12 0 9 6 3 0 7 3 0 

Rana catesbeiana 0 0 0 0 0 3 5 7 0 16 0 0 17 10 0 0 5 2 0 

Rana palustris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hemidactylium scutatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ambystoma opacum 5 8 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Ambystoma maculatum 6 10 2 0 18 22 24 12 15 3 23 1 15 6 1 0 1 0 0 

Ambystoma jeffersonianum 5 5 1 0 2 2 1 2 7 2 4 2 2 3 0 0 1 1 0 

Notopthalmus viridescens 6 0 7 0 24 27 38 21 103 30 58 62 12 29 41 2 37 9 2 
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Table A -  3. Abundance (capture-per-unit-effort) of each species captured from all study ponds using standardized dipnetting protocol in Daniel Boone National 
Forest, KY, May-August 2010. 

 
Pond Name and Type 

 
Natural Old Construction Method New Construction Method 

Species 
DC2 DC5 DC6 DC0 Booth 95new 696 42-

93 
35-
97 

2009 490 60/70s 04A 05A 06A 06C 06D 06E 88 

Bufo americanus 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.8 

Bufo fowleri 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

Hyla Chrysoscelis 2.8 0.0 0.0 0.0 1.2 0.0 0.4 0.7 0.0 0.1 0.0 0.0 1.4 0.0 0.0 0.0 0.8 3.5 0.0 

Pseudacris crucifer 2.6 0.0 0.0 0.0 0.5 0.0 0.8 0.9 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 2.6 

Rana sylvatica 15.7 0.0 17.3 42.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Rana clamitans 0.0 0.0 0.0 0.0 0.0 6.6 2.7 0.6 0.0 0.9 1.0 0.0 3.8 0.6 0.1 0.0 2.3 0.2 0.0 

Rana catesbeiana 0.0 0.0 0.0 0.0 0.1 1.7 0.2 0.8 0.0 0.9 0.3 0.0 1.9 0.8 0.0 0.0 1.1 0.0 0.0 

Rana palustris 0.0 0.0 0.0 0.0 0.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Hemidactylium scutatum 0.1 0.0 0.1 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Ambystoma opacum 0.1 0.4 1.9 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ambystoma maculatum 1.3 1.2 0.3 0.0 1.1 4.8 1.2 1.4 4.6 1.3 5.6 0.1 5.7 2.2 0.4 0.0 0.8 1.5 0.0 

Ambystoma jeffersonianum 0.5 0.2 0.0 0.0 0.2 0.6 0.6 0.5 2.3 0.5 1.1 0.4 0.5 0.0 0.0 0.0 0.0 1.2 0.0 

Notopthalmus viridescens 0.2 0.0 0.1 0.0 1.1 1.8 4.9 1.1 2.7 1.0 1.3 0.9 2.4 3.8 1.4 0.0 4.2 0.0 0.0 
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Figure B -  1. Bar charts comparing amphibian species' abundance [mean (± 2 SE) dipnet 

catch-per-unit-effort] across pond types (Natural, New Construction Method, Old 

Construction Method) in the Daniel Boone National Forest, KY, May-August 2010.  
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Figure B -  2. Bar charts comparing amphibian species' abundance [mean (± 2 SE) dipnet 

catch-per-unit-effort] across pond types (Natural, New Construction Method, Old 

Construction Method) in the Daniel Boone National Forest, KY, May-August 2010. 
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Figure B -  3. Bar charts comparing amphibian species' abundance [mean (± 2 SE) 

aquatic  trapping] across pond types (Natural, New Construction Method, Old 

Construction Method). All axes are different in scale.  
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Figure B -  4. Bar charts comparing amphibian species' abundance [mean (± 2 SE) 

aquatic  trapping] across pond types (Natural, New Construction Method, Old 

Construction Method). All axes are different in scale. 
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