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Abstract  

 

The Space Weather Modeling Framework (SWMF) at the Center for Space Environment 

Modeling (CSEM) at the University of Michigan is a powerful tool for modeling space weather 

and space physics phenomena in the Earth-Sun system. The Block-Adaptive Tree Solarwind 

Roe-type Upwind Scheme (BATS-R-US), Ionospheric Electrodynamic, and Inner 

Magnetospheric models within SWMF can be coupled to assess a number of quantities related to 

the dynamics of the earth's magnetosphere. The basic MHD model—referred in the work as the 

“Ideal MHD model”—in use is the coupling of BATS-R-US with IE, however IM models are 

being added to form a global MHD model. Currently, there are two different IM models for this 

purpose: the Rice Convection Model and the Comprehensive Ring Current Model. This paper 

assesses the differences between the three couplings and lays a foundation for future 

comparisons. Cross correlation values between coupling efficiency and cross polar cap potential 

and polar cap area are carefully considered in the comparison as are time variation plots of each 

of these values. Contour plots each hemisphere are made for each model and run time and are 

also considered in the analysis. These plots contain field-aligned currents and Hall and Pedersen 

conductivities overplotted on the open-closed field line boundary and electric potential values.  
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1. Introduction 

   

  Just outside the Earth's atmosphere, streams of ionized plasma originating from the sun, 

called the solar wind (SW), collide with the earth’s magnetic field. So important is the solar wind 

that it can be said to be the main factor dominating the properties of the near-earth plasma 

medium in the magnetosphere and ionosphere. The solar wind has its own associated magnetic 

field—referred to as the interplanetary magnetic field (IMF)—which ineracts with the magnetic 

field of the Earth at a boundary called the magnetopause. At this boundary, the SW dynamic 

pressure and magnetic pressure of the Earth’s magnetic field are in equilibrium. The part of the 

near-earth space environment that is governed by the Earth’s magnetic field is called the 

magnetosphere. On the Earth's dayside, ions in the SW hit the Earth at a direct angle, resulting in 

a compression of the Earth’s magnetic field and a supersonic wave (bow shock) is formed at 

distance that ranges 2-3 RE (Earth radii) in front of the magnetopause. At the bow shock, the ions 

become heated and slow down and are then deflected around the Earth.  This results in a 

magnetosphere with a parabolic shape with the nightside of the magnetosphere having a much 

larger elongated area which is referred to as the magnetotail. The dayside radius of the Earth’s 

magnetosphere is only about 6-10 RE while the nightside extends outwards to upwards of 1000 

RE.  

 The magnetosphere is critical because it deflects the majority of heavily charged particles 

coming from the sun and other cosmic sources that are constantly bombarding the Earth. 

Magnetospheric modeling can tell researchers much about the basic properties of the 

magnetosphere and can lead to a better understanding of the physical processes governing its 

interactions with other parts of the near-Earth space environment and the magnetosphere’s own  

fundamental processes. Moreover, magnetospheric modeling can describe many aspects of space 
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weather which affects a multitude of technology as well as the launching of space shuttles and 

instruments. Instruments for communications, navigation (GPS), meterology, and defense 

systems operate within this region and are subject to any disturbances that might occur. Certain 

domains in the near-Earth system can use simplifying assumptions about the interactions of that 

domain with the entire system and thus can be simulated with stand-alone models. Other times, 

satellite and ground-based measurements can give insight into the effects of such domains. 

However, in order to predict space weather events with accuracy, the use of coupled physics 

based models are usually necessary. 

  The modeling of the global magnetosphere requires this coupled approach. The 

magnetosphere is a highly complex multi-scale system with its characteristic components 

ranging in size scales from hundreds of kilometers, like the electron gyro radius at about 100 km, 

to hundreds of earth radii. Plasma processes within the magnetosphere also range from electron 

processes to the global plasma behavior. Modeling the magnetosphere usually requires the use of 

multiple models to describe the dynamic and multi-scale nature of the magnetosphere itself.  

 In the realm of large scale theoretical modeling, the Earth's magnetosphere is often 

divided into two parts, the inner magnetosphere and the outer magnetosphere. The inner 

magnetosphere (IM) typically includes all field lines that extend to about 8 RE while the outer 

magnetosphere can extend todistances of  hundreds of thousands RE . Conditions in the outer 

magnetosphere can be described with single-fluid magnetohydrodynamics (MHD)  equations. 

The main pressure bearing particles in the inner magnetosphere are highly energetic (1-200 keV) 

ions from the inner plasma sheet and ring current. For these particles,      (drift velocity) is 

typically slower than gradient and curvature drift, which is proportional to particle energy (De 
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Zeeuw, 2004).Thus small-scale, non-MHD plasma proccesses are key in describing the dynamics 

in this region of the magnetosphere (De Zeeuw, 2004).  

 Traditionally, two different types of models have been used to model these main pressure 

bearing particles: "ring current models" and "convection models". Magnetic and electric fields 

are taken as input in ring current models. In contrast convection models use magentic fields as 

input and calculate IM electric fields self-consistently. Ring current models typically follow 

particles with different values of the first and second adiabatic invariants and calculate energy 

and pitch angle; loss is considered carefully by exchange and preciptation. In contrast, isotropic 

pitch angle distrubutions which treat H
+
 and O

+
 together are typically used in convection models. 

In these models, loss is either neglected or is calculated separately in less detail than ring current 

models.  

 A coupling of two models--one to model the outer magnetosphere and one to model the 

inner magnetosphere--can be used to get a more complete and acurate global magnetospheric 

model. The boundary between these two regions is located near the open-closed magnetic field 

line boundary (OCB) and thus the properties of this region are important in assessing the quality 

of these couplings. The outer region uses only an MHD model while the IM region is modeled 

with a coupling of an MHD model and either a ring current or convection model. Results of the 

global MHD model depend upon the interaction of "driving" solar wind with a magnetized 

spherical representation of the Earth.  

 At the Center for Space Environment Modeling, (CSEM), the Space Weather Modeling 

Framework (SWMF) carries out the modeling and coupling of numerous domains in the near-

Earth space environment. The most basic coupling for global magnetosphere (GM) modeling at 

CSEM is the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) with the 



 

 

12 

 

ionospheric electrodynamics (IE) model, the Ridley Ionosphere Model (RIM). Currently, this 

coupling can be combined with two different inner magnetosphere (IM) models, the Rice 

Convection Model (RCM) and Comprehensive Ring Current Model (CRCM), to form a more 

comprehensive magnetospheric model. SWMF carries out the modeling and coupling of 

numerous domains in the near-Earth space environment. In this work, I assess the differences 

between these three different GM models and provide an overview of each of the couplings 

being consideration. 

 

2. The Space Weather Modeling Framework (SWMF) 

 

 Space weather and space physics modeling at the University of Michigan is performed 

through the Space Weather Modeling Framework (SWMF). The SWMF is a software framework 

that consists of a collection of various physics-based space weather simulations and space 

physics applications. SWMF has been designed in order to be versatile, achieve good parallel 

performance, and integrate physics modules with small changes.  In general, this framework 

incorporates numerical models in 12 domains of the Sun-Earth system. These components are: 

Solar Corona (SC), Lower Corona (LC), Solar Energetic Particles (SP), Inner Heliosphere (IH), 

Outer Heliosphere (OH), Polar Wind (PW), Radiation Belts (RB), Ionospheric Electrodynamics 

(IE), Eruptive Event Generator (EE), Inner Magnetosphere (IM), Global Magnetosphere (GM), 

and Upper Atmosphere (UA). There are currently two more components of SWMF currently 

under development--the Plasma Sphere (PS) and Lower Atmosphere (LA) numerical models. 

Each model differs from the other in their grid structure, equations of evolution, and variables for 

input and output; however, some models do overlap in the physical domain and can interact 

through a boundary surface. 
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 The beauty of the SWMF is the ability to couple models together to create multiple 

domain simulations. The SWMF can combine multiple domains into one component as long only 

one of the combined domains is coupled to the rest of the components (Tòth, et al., 2005). Each 

of the physics domains correspond to a modeling component within the framework. The different 

components in the SWMF interact through the use of standardized interfaces between them. 

Each component within the SWMF, such as those in the IM domain, can have different 

variations with their own physical model, wrappers and couplers. These wrappers and couplers 

are Fortran 90 codes written to be component interfaces. In this case, the wrapper is an interface 

with the Control Module (CON) and provides the standard interface for interaction; the coupler 

is an interface between components which performs data exchange.  

 Each component is stored in a library and linked back to the core of the framework so 

that the libraries are shared to form a single executable. The components are then distributed 

over a parallel machine for execution and coupling (Tòth, et al., 2012). Input parameters in the 

SWMF are controlled by a single input parameter file that allows the SWMF to maintain a 

certain ease of use that other modeling frameworks might not have. New domains can be added 

by either incorporating them into already existing components or by creating a completely new 

domain and adding it to the framework library.  
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 The SWMF user creates a layout file which contains information about which 

components the framework should couple for each run. At initialization, the SWMF stores this 

information and the CON assigns a Message Passing Interface communication group based on 

the processor layout. If the layouts for two components over lap, then they progress in a 

sequential time-shared manner. If they do not overlap, then they run concurrently. Input 

parameters are read from a single XML file with special tags to mark component specific 

parameters. The SWMF has two different sessions (time accurate and steady-state) that control 

execution that both initialize the components and couple them for the first time. After the initial 

coupling, components only communicate when necessary. At the end of the sessions, final plot 

files are written out, log files are closed, and performance and error reports are printed.  

 

 

 

 

 

 

Figure 1. SWMF component structure (Tòth, et al., 2005) 
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3. Global MHD Models and Couplings 

 

3.1 Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) and 

Ionospheric Electrodynamics (IE) Coupling 

 

 The original BATS-R-US code began as a MHD simulation code for space physics 

applications, but was later coupled with other models. BATS-R-US models the GM, EE, LC, SC, 

IH, IE and OH components of the SWMF, but the SWMF user can select for BATS-R-US to run 

any of these components separately as well. There are currently 37 equation modules and 42 user 

modules to choose from in BATS-R-US leading to a wide range of customization and variability 

for the user (Tòth, et al., 2012).  BATS-R-US can be used to study a variety of physical 

phenomena--from cometary heliospheres to coronal mass ejections. Current runs of BATS-R-US 

are executed using the GM component along with IE component modeled with the Ridley 

Ionosphere Model (RIM), a 2D spherical ionospheric potential solver which uses fully parallel 

latitude slices. This coupling is commonly referred to as the "Ideal MHD" model.  

   As it stands today, BATS-R-US is a multi-domain, global MHD model which is capable 

of  solving various forms of ideal single-fluid MHD equations
 
including Hall, semi-relativistic, 

multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction 

(Tòth, et al., 2012). Due to the difficulty in solving these equations, BATS-R-US represents the 

most computationally expensive model within the framework. The governing equations of ideal 

MHD BATS-R-US seeks to solve the continuity, momentum, and heat balance equations 

together with Faraday's Law, Ampere's law, and Ohm's law. The equations, as stated in 

Buzulukova et al published in 2010 (see references page) are: 
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 These ideal MHD equations are solved across a range of plasma (β) values with a finite 

volume discretization using the conservative variables magnetic field (B), momentum density 

(ρu), density (ρ), and total energy density (e) as noted in a paper by De Zeeuw and others in 

2004. These equations are rewritten in conservative form for the eight dimensional vector, 

              consisting of total energy density, momentum density, magnetic field, and 

density using 

  

  
           

 

where         is the source term and   is the flux tensor. 

 The computational domain of the Ideal MHD model extends from 32 RE upstream 

(dayside) to 224 RE downstream (nightside) of the planet. The sides of the magnetosphere 

domain are equivalent at 64 RE. The inner MHD boundary is located at 2.5 RE with plasma 

density n=28 cm
-3

 and T=25000 K (Buzulukova et al., 2010). SW conditions are treated as 

boundary conditions at the upwind boundary of the simulation domain (De Zeeuw, et al., 2004) 

and, along with IMF parameters, are used to calculate outer boundary conditions at XGSM =32 
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RE. In order to enforce the MHD constraint      , different divergence control schemes are 

implemented which include: the eight-wave scheme; the diffusive/parabolic approach; the 

projection scheme; and a conservative form of the constrained transport scheme (De Zeeuw et al., 

2004). At the inner boundary, field-aligned currents       in the ionosphere at 3.5 RE are calculated using 

 

            

 

where   is the local magnetic field. The values calculated for the field-aligned currents in BATS-

R-US are then fed into the RIM in order to calculate the electric potential and map it onto the IE 

component grid. Field-aligned currents are mapped to the ionosphere for use in the RIM using 

the dipolar (background) magnetic field and scaled according to  

 

  
    
  

 

with    being the ionospheric magnetic field and      being the magnetic field at 3.5 RE.   

 Once a height-integrated conductance pattern is generated, the electric potential is solved 

by a preconditioned gradient reduction resolution (GMRES) solver using 

 

                      

 

which describes the relationship between the height-integrated conductance tensor,  , the 

ionospheric potential,  , and the radial component of the current,   . The RIM solves the 

potential in each hemisphere independently with zero potential at a latitude 5º lower than the 

lowest latitude field-aligned current. This electric potential (   is then mapped back to the inner 

boundary of the GM grid (usually at about 2.5 RE) using the background magnetic field. Electric 

fields and corresponding plasma velocities at the inner boundary are then calculated using the 

relationships 
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 The corrotation velocity field is then added to the ionosphere generated velocity field. 

  BATS-R-US uses a 3D block-adaptive grid with blocks of the same number of cells, but 

different sizes in physical space. The grid resolution varies from     RE in the IM to 4 RE near the 

outer boundary of the simulation domain. Higher resolution in the IM is used necessary for 

accurate field-line tracing used in the IM couplings (discussed below). In most cases, blocks 

sizes and volumes are anywhere between 64 (4x4x4) cells and 1728 (12x12x12) cells. This block 

scheme allows the grid resolution to be automatically refined. Blocks began at equal resolution. 

However, in regions where a resolution increase is necessary a "parent" block is refined by 

dividing itself into eight "child" blocks which contain the same number of cells as the parent. If a 

region is over-resolved this process is reversed and the "child" blocks are combined into a single 

"parent" block in order to half the cell resolution. Time stepping information is contained in 

"ghost cells" associated with each block. Generalized coordinates are used in conjunction with 

Cartesian vector components so that equations are kept in Cartesian form and only the geometry 

of the grid is altered (Tòth, et al., 2012). With these features, a number of grid schemes are 

available to use including spherical, cylindrical, toroidal, and even arbitrarily stretched grids.  

 

3.2 Rice Convection Model (RCM), BATS-R-US and IE Coupling 

 

 While the BATS-R-US and IE coupling discussed previously models the outer region and 

inner boundary conditions of the GM. In order to have a complete global MHD model,  the Rice 

Convection Model (RCM)  is one of two IM models that can be coupled along with the basic 

BATS-R-US/IE coupling. These two models are coupled to produce more realistic region-2 
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field-aligned currents through a better representation of gradient and curvature drift physics in 

the IM.  The  RCM, developed for over 30 years at Rice University in Houston, is a large 

numerical code created to describe the electrodynamics of the coupled inner magnetosphere-

ionosphere system. RCM modeling usually extends from just outside the magnetopause on 

Earth's dayside to the middle of the plasma sheet at about 25 RE-- a region characterized by 

closed magnetic field lines and slow flowing plasma. 

 As discussed previously, single-fluid MHD equations can not be used to describe the 

dynamics of the inner magnetosphere. The RCM can not specify the particle source and sink 

boundary conditions, but does compute the electric field self-consistently. For the coupling 

processes the RCM is treated as a module of the global MHD code with BATS-R-US providing 

the driving inputs for RCM. By assuming isotropic particle distribution plasma motion can be 

represented as the motion of a whole flux tube and local plasma populations are represented by a 

collection of about 100 different fluids. Each fluid is characterized by an index, s, which 

specifies a given energy invariant and chemical species and by energy invariant   , charge    

and flux tube content    (the number of particles per unit magnetic flux). These quantites are 

related to the kinetic energy,   , and the number density    through the flux tube volume  

 

   
  

 
 

 

through the relation 

 

      
 
   

Each fluid is advected using 
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where   is the electric potential in the ionospheric electric potential which rotates with the earth, 

   is the corotation potential which converts   to a non rotational frame, and L represents 

explicit loss. Boundary conditions to compute this value are usually taken from statistical plasma 

sheet models. Field-aligned current in the RCM is calculated via  

 

     
 

 
          

 

with      as the current densityinto the northern ionosphere,    is a unit magnetic field vector, and 

the right side is evaluated at the ionosphere. Initial and boundary conditions for the plasma flux 

tube contents (η) are required for the computation of     .  BATS-R-US MHD model provides 

mass density (ρ) and pressure, P, which are treated as moments of the distribution function of an 

assumed shape in the RCM in order to calculate these conditions. This computes the set of 

  values for both electrons and protons everywhere in the RCM region or only along the outer 

RCM boundary. 

The total particle pressure, P, is given by  

 

  
 

 
 
  

         

  

Potential distribution is determined from the condition of conservation at the ionosphere via  

 

                         

 

where   is acting upon the 2D ionospheric spherical shell, I is the dip angle of the magnetic field 

below the horizontal plane and    is the ionospheric current driven by neutral winds. Ionospheric 

potential is given by the IE model and mapped to the RCM grid. This mapping is achieved by 

calculating equatorial crossing of magnetic field lines that originate from the RCM ionosphere 

grid points. The elements of   , a 2 x 2 conductance tensor, are expressed through field line 
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integrals or Pederson and Hall conductivities extending through all the ionosphere. In order to 

compute the above equation, the potential on the high-latitude boundary is taken from BATS-R-

US. The conductance used in RCM are the same as those used in BATS-R-US. When the RCM 

is coupled to BATS-R-US and the IE model, zero Hall conductance and uniform Pederson 

conductance of 4 S in each hemisphere is assumed.  

 Coupling of BATS-R-US and RIM (the Ideal MHD model) to the RCM is complicated. 

Solutions obtained with the BATS-R-US and IE coupling are obtained on a 3D computational 

grid (described previously) while RCM quantities are calculated on a 2D ionospheric grid. The 

basic MHD model calculates fieldline volume, field line mass, field line pressure, and equatorial 

plane temperature which must be translated to the 2D RCM map. Both the most important and 

the most computationally difficult parts of the coupling is the 3D to 2D mapping and inverse 

transformations that rely on globally performed tracing magnetic field lines. 

  An accurate and effiecient method for tracing the magnetic field lines is  necessary for 

computing the basic model quantites to send to the RCM and to send the RCM computed 

pressures back to the basic BATS-R-US/IE model.The magnetic field lines are traced within 

each block of BATS-R-US adaptive grid (described above). Once end and beginning field line 

points are known for each block, an exchange of information takes place between neighboring 

blocks and their shared faces through the use of ghost cells so that the blocks now contain tracing 

information about the field lines in a larger volume of physical space. This process continues 

until the tracing information does not change. Traces with both ends on the ionosphere are 

deemed close field lines and are considered for coupling to the RCM. At this point, each cell 

need only trace its outer edge to determine the exact latitude and longitude mapping of its 

magnetic field line through interpolation. Thus, the open-closed field line boundary is mapped to 
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the RCM grid. Once the RCM has run, the total particle pressure can easily be mapped back to 

the MHD grid since each cell already knows its mapping location. 

 

3.3 Comprehensive Ring Current Model (CRCM), BATS-R-US, and IE Coupling 

 .  

 The third model coupling assessed in this work is the CRCM/BATS-R-US/IE coupling. 

The CRCM is the second IM model and is itself a kinetic model coupling of the RCM model 

(discussed above) and the Fok Ring Current (FokRC) using the RCM Birkeland current 

algorithm with an arbitrary pitch angle distribution. In general, the FokRC seeks to solve the 

bounce-averaged Boltzmann equation for a number of particle species, s, described by the two 

adiabatic invariants in the FokRC which are M, the relativistic magnetic moment, and K defined 

as 

  
 

     
 

where   is a longitudinal invariant and the right side of the equation represents the loss terms due 

to scattering into the loss cone and charge exchange (Glocer et al., 2013).  

  While the RCM has been discussed above, the FokRC model calculates the plasma 

distribution by solving the Boltzmann equation for specified E and B fields; the bounce-averaged 

Boltzmann transport equation  is used to solve for the temporal variation of the 4D phase space 

density ,                 , for each particle species. In the above equation,   and   specify 

ionospheric coordinates and are the invariant latitude and magnetic local time (MLT), 

respectively.  The bounce-averaged Boltzmann transport equation utilized in the FokRC  is:  
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where the operator     means bounce averaged, v is the velocity of a particle,    is a geocorona 

H density,    is a cross change for charge-exchange losses with the geocorona, and    is a 

bounce period (Buzulukova, et al., 2010).  Particle motion in the FokRC is described by the 

bounce-averaged particle drift velocities--which are the sum of the       and gradient curvature 

drifts- -across field lines assumedly fixed and essentially dipolar labeled by their ionospheric 

foot prints (Fok et. al, 2001).  

 Coupling the FokRC and RCM allows the CRCM to simulate the evolution of  the inner 

magnetic plasma distribution. Both the RCM and FokRC models utilize an ionospheric grid 

system with the outer ionospheric boundary in the auroral zone. In order to couple the Fok 

kinetic model with the RCM, the phase space density from the FokRC output is converted to the 

RCM's flux tube content (    and the generalized RCM algorithm is used to calculate the 

ionospheric potential. 

  Like the RCM, the CRCM uses a self-consistently calculated electric field. However, the 

CRCM simulation domain is restricted to the region of closed field lines and extends no further 

than 15 RE from the Earth's center. Its overall purpose is to provide a description and simulation 

of the inner magnetosphere's ring current electrons and ions. The first step in the CRCM is 

calculating the evolution of the distribution function at each point. This is due to the drift 

velocities and losses from the FokRC. Next, field-aligned currents in the ionosphere are 

calculated from a current continuity equation between the magnetosphere and ionosphere: 

 

     
 

     
    

  
   
  

 
   

  
 
   
  

 
   

  
 

 

 

 

with the summation being done at a fixed (  ,  ) over all M, K points. In this context,      is the 

sum of ionosphere field-aligned current densities for both the northern and southern 
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hemispheres, and     is the kinetic energy of a particle given by with a given  ,  , M, and K 

(Buzulukova et al., 2010). Here,    is still the flux tube content, but is now associated with    

and    such that  

          
                  

         

 

Once field-aligned currents have been calculated, their distribution is used obtain the ionospheric 

potential. 

 The first coupling of the CRCM and ideal MHD model was done by Buzulukova et al ( 

2010). This paper, however, uses the new two-way coupling of the two models that. The two-

way coupling was done using methods from the RCM /Ideal MHD coupling given above and  in 

De Zeeuz et al (2004).  The CRCM takes the ionospheric potential calculated by the BATS-R-US 

and RIM (the two coupled components of the Ideal MHD). Magnetic field line traces from the 

Ideal MHD model with foot prints corresponding to the CRCM grid are then extracted and 

passed  to the CRCM along with equatorial mass density and pressure at the CRCM outer 

boundary. The CRCM then calculates ring current fluxes along with density and pressure 

(Glocer et al, 2013) and feeds the density and pressure at the minimum magnetic location along 

the field line to BATS-R-US to use in its IM calculations. In order to pass along information to 

the CRCM, BATS-R-US determines the ionospheric location of each point in the larger global 

magnetosphere domain and interpolated the density and pressure to the corresponding CRCM 

locations. 

4. Model Output & Analysis 

 

 The models in this paper were simulated for January 1, 2001. The number density was 

held at a constant value of 5.0 (              ).  Temperature was held at a constant 150,000 
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K. Both the magnetic field and solar wind were varied from north and south directions. Dayside 

coupling efficiency was calculated by using the formula: 

 

      
 

 
           

  
 

 
  

 

where    is the x-component of the solar wind,     is the magnetic field magnitude in the yz 

plane, and   is the clock angle measured form the +z axis.   

 The results of the model runs were analyzed for different lengths of time depending upon 

the models coupled. All couplings had the same start time of 01:05:00 UT and output was 

generated for every five minutes after the start date.  The end time for the BATS-R-US and IE 

coupling was 10:00:00 UT; 09:20:00 UT for BATS-R-US, IE, and RCM; and 11:00:00  UT for 

BATS-R-US, IE and CRCM. The direction of the solar wind and magnetic field is given by the 

orientation of their z axis component; a positive z component indicates northerly direction while 

a negative z component indicates southerly direction. The driving solar wind is also controlled 

for the most part by its x component which is two orders of magnitude larger than the y and z 

SW components. For this model run, the driving solar winds maintain a northward direction. In 

contrast, the magnetic field is oriented in the southward direction for most of the run before 

changing quickly to a northern direction around 09:00 UT and dipping quickly back to the 

southern direction before run completion. This is important because, when the magnetic field is 

oriented southward, reconnection occurs. That is, “open” flux tubes are formed allowing for the 

Earth’s polar regions to connect with and be affected by interplanetary space. When this occurs, 

the SW carries open tubes from the day side to the night side and reconnection occurs in the 

magnetotail’s center which releases closed flux tubes towards the earth and back to the day side. 

This leads to a cyclic flow, called the Dungey cycle, of reconnection both in the magnetosphere 
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and the ionosphere where it maps.  Solar winds were injected ten minutes later than the start time 

for the model runs. The following plots (Figure 3) show in detail the driving wind, IMF 

conditions (Figure 3), and coupling efficiency for the model run.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 For each time interval and coupling, a file containing information for that run was 

generated. Fifteen variables were assessed: (1) co-latitude; (2) longitude; (3) Hall conductivity 

(  ); (4) Pedersen conductivity (  ); (5) radial component of the current (JR);(6) electric 

potential (Φ);(7) energy flux; (8) average particle energy; (9) flux to volume ration (    ; (10) 

flux to content (ρ); (11) entropy (p); (12) joule heating; (13) ion number flux; (14) conjugate 

latitude; and (15) conjugate longitude.  

Figure 2.Solar wind, IMF, and coupling efficiency over the time interval 

01:05:00 UT to 09:20:00 UT. 
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 From this data output file, polar contour plots were generated that displayed Hall 

conductivity, Pedersen conductivity, and field-aligned currents (FAC) for each model and 

hemisphere separately.  Also included in these plots were electric potential contour lines, the 

location of the open-closed field line boundary (OCB), and the polar cap potential drop (CPCP). 

These figures were used as a qualitative basis for comparison between the three model couplings. 

 

4.1 Representative Time Variation Plots 

 

 The following 21 pages show the field-aligned currents, Hall conductivities, and 

Pedersen conductivities for each of the three couplings from 01:05 UT to 09:20 UT. Contour 

lines detailing electric potential values are over-plotted. The negative potential values are 

represented by dashed lines while positive electric potential values are overlaid in solid lines. 

The bold central line represents the location of the open-closed field line boundary for each of 

the model runs. The dayside of the each hemisphere is located at the top half of the grid. 

Beginning at the top and going clock-wise, the axis times are noon, dusk, midnight, and dawn. 

From top to bottom, each page has six FAC plots, followed by six Hall conductance plots, and 

six Pedersen conductance plots. FAC values range from -0.99 to 0.99, Pedersen conductance 

values range from 0 to 35.64, and Hall conductance values range from 0 to 39.60. Note that the 

differences between the northern and southern hemisphere's conductance values are partially due 

to the seasonal effect as this model was run in the northern winter. In the southern summer, the 

southern hemisphere is more illuminated and thus background conductance is much higher as is 

evidenced in the following plot pages.  
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Figure 3. FAC values for UT 01:05. Values displayed for each pole and model coupling. 
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Figure 4. Hall conductivity for UT 01:05. Values displayed for each pole and model coupling. 
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Figure 5. Pedersen conductivity for UT 01:05. Values displayed for each pole and model coupling. 
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Figure 6. FAC values for UT 03:30. Values displayed for each pole and model coupling. 
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Figure 7. Hall conductivity for UT 03:30. Values displayed for each pole and model coupling. 
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Figure 8. Pedersen conductivity for UT 03:30. Values displayed for each pole and model coupling. 
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Figure 9. FAC values for UT 05:00. Values displayed for each pole and model coupling. 
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Figure 10. Hall conductivity for UT 05:00. Values displayed for each pole and model coupling. 
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Figure 11. Pedersen conductivity for UT 05:00. Values displayed for each pole and model coupling. 
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Figure 12. FAC values for UT 06:20. Values displayed for each pole and model coupling. 
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Figure 13. Hall conductivity for UT 06:20. Values displayed for each pole and model coupling. 
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Figure 14. Pedersen conductivity for UT 06:20. Values displayed for each pole and model coupling. 
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Figure 15. FAC values for UT 07:35. Values displayed for each pole and model coupling. 
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Figure 16. Hall conductivity for UT 07:35. Values displayed for each pole and model coupling. 
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Figure 17. Pedersen conductivity for UT 07:35. Values displayed for each pole and model coupling. 
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Figure 18. FAC values for UT 08:45. Values displayed for each pole and model coupling. 
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Figure 19. Hall conductivity for UT 08:45. Values displayed for each pole and model coupling. 
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Figure 20. Pedersen conductivity for UT 08:45. Values displayed for each pole and model coupling. 
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Figure 21. FAC for UT 09:20. Values displayed for each pole and model coupling. 
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Figure 22. Hall conductivity for UT 09:20. Values displayed for each pole and model coupling. 
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Figure 23. Pedersen conductivity for UT 09:20. Values displayed for each pole and model coupling. 
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 The representative contour plots can give some qualitative idea of the differences 

between the Ideal MHD model, RCM coupling, and CRCM coupling. In general, the RCM and 

CRCM coupled models show greater variance in their field-aligned currents and conductances, 

which is expected as the RCM and CRCM couplings fine tune the magnetospheric variable 

computations in the Ideal MHD model. All models show the same general trend in FAC and 

conductivity intensity, that is these values increase dramatically about halfway through the 

model run. Around 08:45 UT, all the models reach their highest values before beginning to 

decrease in intensity.  The OCB (open-closed field line boundary) stays vaguely circular in shape 

for the Ideal MHD model, however, with the RCM and CRCM models we see an increase in 

irregularity of shape. This irregular shape is more on par with the expected behavior of the OCB. 

Since the OCB tells us the location of the boundary of open magnetic flux forming the polar cap 

in the Earth’s ionosphere, perfect (or near perfect) symmetry rarely occurs. 

 However, in the CRCM model in particular there often appears to be discontinuity of the 

OCB which is not necessarily expected and could be an indication of a fault with coupling—

most likely related to the mapping between model grids.  While this is most prominent in the 

CRCM model, it also occurs in the RCM model which is why the mapping between grids is 

suspected as a possible source for the discontinuity (the same mapping is used for both 

couplings). FAC and electric potential values also appear to share a closer correspondence in the 

CRCM and RCM models than in the Ideal MHD model as is hoped for since this should be the 

case.  
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4.2 Lag Time and Interpolated Data 

  

 One of the purposes of this study was to describe the relationship between the three 

couplings and the solar wind conditions and coupling efficiency. SW and IMF conditions are 

injected at the outer magnetospheric boundary located at 32 RE, however it takes travelling about 

20 RE for the SW conditions to reach the inner boundary where the values in the IM and Ideal 

MHD models are calculated. Thus, it takes extra time for the solar wind and IMF conditions to 

propagate and there must be an associated lag time between the solar wind and IMF conditions 

and the model simulation runs. In order to find the correlation between the solar wind, IMF 

conditions, and coupling efficiency with the polar cap area and CPCP, it's important to calculate 

this lag time.  

 It's expected that a strong correlation will exist between the dayside coupling efficiency 

and the CPCP and polar cap area values. To find the correlation value, the Ideal MHD model 

was used as it represents the most basic coupling. In order to find a correlation, however, the data 

from the injected solar wind and IMF conditions needed to be interpolated to match the values 

for the couplings. The SW and IMF conditions start ten minutes (at 01:15 UT) later than the 

actual model run and occur at random intervals separated by a number of seconds. In total, there 

were 2258 data points for the time interval matching the model runs. The models, however, only 

occur every five minutes (with 100 data points for the Ideal MHD model) and thus are an entire 

order of magnitude less in resolution than the SW and IMF values. An interpolation code was 

created in IDL in order to perform the interpolation between coupling efficiency and the Ideal 

MHD polar cap areas and CPCPs for both hemispheres.  
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 Once the coupling efficiency data had been interpolated and resolution lowered in order 

to match the Ideal MHD model data, three different methods were used to find the best lag time. 

The first method was to find the cross correlation between coupling efficiency and CPCP values 

for times of 20, 25, 30, 35, and 40 minutes. It's expected that the cross polar cap potential and 

coupling efficiency will be highly correlated, so the time value with the highest correlation value 

should correspond to the best lag time value. From this analysis, it was determined that time lag 

values in the 30-40 minute range gave the best correlations for the Ideal MHD and coupling 

efficiency in the both the northern and southern hemispheres. Once that had been determined, 

plots were created to compare the shifted coupling efficiencies with the polar cap area and CPCP 

graphs in order to do a visual check for correlation and alignment.  
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Figure 24. Coupling efficiency for lag times of 0, 30, 35, and 40 minutes as well as an over plot of all the 

lag times. 
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From the above figures, a visual check seems to indicate that a lag time of 35 or 40 

minutes aligns best with the CPCP and polar cap area. In order to find the best lag time, 

however, a more refined method was necessary. In order to achieve this, cross correlation values 

were calculated for each model coupling and hemisphere between coupling efficiency and CPCP 

and polar cap area values. Scatter plots were also generated for each of the runs and will be 

discussed in the following section 4.5.  

 

 

Northern Hemisphere, CPCP Correlations 

Lag Times Ideal MHD CRCM Coupling RCM Coupling 

30 Minutes p(x,y)=0.2345 p(x,y)=0.7043 p(x,y)=0.6143 

35 Minutes p(x,y)=0.2497 p(x,y)=0.7063 p(x,y)=0.6292 

40 Minutes p(x,y)=0.2638 p(x,y)=0.7170 p(x,y)=0.6500 

Southern Hemisphere, CPCP Correlations 

Lag Times Ideal MHD CRCM Coupling RCM Coupling 

30 Minutes p(x,y)=0.6680 p(x,y)=0.8250 p(x,y)=0.7786 

35 Minutes p(x,y)=0.6853 p(x,y)=0.8231 p(x,y)=0.7854 

40 Minutes p(x,y)=0.6940 p(x,y)=0.8215 p(x,y)=0.7778 

Northern Hemisphere, Polar Cap Area Correlations 

Lag Times Ideal MHD CRCM Coupling RCM Coupling 

30 Minutes p(x,y)=0.1070 p(x,y)=0.0477 p(x,y)=0.1276 

35 Minutes p(x,y)=0.0373 p(x,y)=0.-0.050 p(x,y)=0.1340 

40 Minutes p(x,y)=0.-0.0048 p(x,y)=0.-0.050 p(x,y)=0.2020 

Southern Hemisphere, Polar Cap Area Correlations 

Lag Times Ideal MHD CRCM Coupling RCM Coupling 

30 Minutes p(x,y)=-0.0346 p(x,y)=-0.4460 p(x,y)=0.0729 

35 Minutes p(x,y)=0.0373 p(x,y)=-0.4005 p(x,y)=0.0628 

40 Minutes p(x,y)=-0.0470 p(x,y)=-0.3732 p(x,y)=0.0482 

 

 

 

 

Table 1.  Table of correlation coefficients for both hemispheres between dayside coupling efficiency and CPCP 

and polar cap area values for each of the models. The best correlation in each category is italicized.  
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 Based on the linear Pearson correlation coefficients for each model as well as the 

previous graphs, the best lag time for the model couplings appears to be forty minutes. However, 

not all of the correlations are maximized by this lag time. This is due to the assumption made 

that the lag time for the model runs is constant, however this is not the case. The coupling 

efficiency is based on the x-direction velocity and y and z components of the magnetic field. As 

discussed previously, however, these values vary over the time period of the model runs. The x-

component velocity varies from a minimum of about -293 to -275     . The y and z component 

magnetic fields don't have as much variation as the solar wind; the z component does vary from 

approximately 1.0 to -3.5 nT and the y component varies from around 2.0 to -1.5 nT. Ideally, the 

time lag would also be varied by sampling the solar wind and IMF conditions at the 

magnetopause using a simulation instead of the injected values used in this constant lag time 

analysis. For now, however, the constant lag time of forty minutes was used in the following 

analyses.  

4.3 Polar Cap Area 

 

 The open-closed field line boundary is the boundary that separates open from closed 

magnetic field lines. The open magnetospheric field lines are still connected to the solar wind 

and its associated charged particles, density, temperature, and velocity as it is still entangled with 

the IMF. Thus, with open field lines the motion of the magnetospheric plasma is affected by the 

motion of the solar wind. Closed field lines, however, are closed to the IMF and are not affected 

by SW conditions. The OCB is one of the most important topological features in the 

magnetosphere and its location is critical to understanding plasma convection processes and it is 

important that magnetospheric models accurately reflect the boundary location. The polar cap 

area is defined as the region of the magnetosphere where field lines open to the interplanetary 



 

 

55 

 

magnetic field and its boundaries are given by the OCB. Field lines inside these polar caps are 

the only ones with direct access to the SW and thus the polar cap area directly measures the 

amount of electric and magnetic flux in the magnetosphere. The OCB was determined in the 

models by finding the latitude and longitude values when the flux-to-volume ratio       is zero.  

 When magnetic reconnection occurs on the dayside of the magnetopause, new fluxes are 

opened and the polar cap area increases. In contrast, reconnection on the nightside destroys open 

flux and decreases polar cap area. Thus, it is important to study the rate of change per time of the 

polar cap area for each of three models as this is a measure of the balance between nightside and 

dayside magnetospheric processes. When field lines are closed, nightside processes are governed 

by inner magnetospheric motion and can be altered by pressure, temperature, etc which changes 

the motion of the plasma.  Coupling efficiency is a good quantitative measure of how much the 

models are controlled by the nightside and dayside processes described above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 25. Polar cap area over time for each model coupling and hemisphere along with 

coupling efficiency that has been shifted by 40 minutes to account for lag time 
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 From Figure 25, it's obvious that the polar cap area in the southern and northern 

hemispheres differ as well as the polar cap areas for each of the three couplings. The southern 

hemisphere has a greater range in polar cap area values, varying from around           to 

         . Moreover, the southern hemisphere's polar cap areas are, for the most part, larger 

than the polar cap areas of the corresponding northern hemisphere polar cap areas. The larger 

variation taking place for the southern polar cap area is suggestive that the southern hemisphere 

is more susceptible to the affects of the dayside processes--especially in comparison to the 

northern hemisphere. Since the IMF is oriented southward through most of the model run, 

increases in the polar cap area are consistent with open flux being created and ongoing low-

latitude magnetopause reconnection. The polar cap area can give an indication of how strong the 

coupling is between the two models. A strong coupling closes open magnetic field lines in the 

nightside of the magnetosphere and leads to a larger polar cap area. After about 04:30 UT, 

coupling efficiency steadily increases; however, since the polar cap area in the models does not 

seem to follow this trend, dayside processes are probably not the most important driving force in 

the OCB. In order to study this in more detail, scatter plots were created for the polar cap area 

and interpolated coupling efficiency and correlation coefficients were calculated. Figure 6 on the 

next page shows the scatter plot and correlation values for each model coupling run.  
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 The above figure shows that there is a weak if not insignificant correlation between all 

the model couplings' polar cap areas and coupling efficiency. The highest correlations 

correspond to the RCM coupling in both hemispheres as well as the CRCM coupling in the 

southern hemisphere. The weak correlation between polar cap area and coupling efficiency in the 

models suggests that the dayside processes, particularly dayside magnetic reconnection, may not 

control the magnetospheric models. 

  It is expected that the CRCM and Ideal MHD models will behave more similarly than 

the RCM and will follow a similar trend. Looking at the polar cap area plots (Figure 5), however,  

there are definitely times when the CRCM and Ideal MHD model are at odds. At around 03:30, 

the polar cap area for the Ideal MHD model in the northern hemisphere is about one order of 

magnitude  less than the CRCM model, while at about 08:45 the opposite can be said. Referring 

Figure 26. Scatter plots of polar cap area and interpolated coupling efficiency.  
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back to the contour time variation plots in section 5.1, the larger CRCM polar cap areas 

correspond to times of much larger field-aligned currents, Hall and Pedersen conductivities, and 

electric potentials. This suggests that the CRCM model could rely more on a least one of these 

values to drive changes to increase polar cap area along with the dayside opening of fluxes. 

However, further statistical analysis would be required to make any substantial claims. 

 

4.4 Cross Polar Cap Potential (CPCP) 

 

 The ionospheric cross polar cap potential (CPCP) is a measure of the change of 

ionospheric electric potential and measured by       Φ  Φ    Φ    for each time in the 

model coupling runs. The CPCP is considered to be an instantaneous monitor of the rate at which 

magnetic flux couples the solar wind to the Earth's magnetosphere-ionosphere system. CPCP 

should respond linearly to the solar wind's associated electric field and saturate when the IMF's 

z-component or solar wind becomes very large. The following plots show the solar wind, IMF, 

and coupling efficiency (shifted by 40 minutes to account for lag time) and the cross polar cap 

potential for each of the model couplings and hemispheres.  
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If the solar wind is not coupled with the magnetosphere, then the cross polar cap potential 

will be very low. From the above plots (Figure 7), there are a number of features that stand out. 

The southern hemisphere CPCP is lower than that of the northern hemisphere due to the season 

effect--that is since conductance is higher in the southern hemisphere due to the summer season, 

the associated voltage      is lower.  

 For the CPCP, we see the expected close relationship between the CRCM coupling and 

Ideal MHD model especially in comparison to the RCM coupling. The RCM coupling is 

Figure 27. Plots of shifted solar wind, IMF, and coupling efficiencies along with 

the CPCP over the model run times for each model and hemisphere.   



 

 

60 

 

consistently lower than the CRCM coupling and Ideal MHD model in both hemispheres which 

suggests that the solar wind is not as well coupled in the RCM model. CPCP increases from 

about 04:30 to 06:00 UT and decreases from around 08:30 UT until the run is complete. 

Comparing the representative time plots in section 5.1, shows that the increasing interval 

corresponds to an increase in FACs and Hall and Pederson conductivities while, conversely, 

decreasing CPCP corresponds to a decrease in these values. This suggests a proportional 

relationship between the CPCP and conductance and FACs as expected. Polar cap area can also 

be compared to the CPCP relationship. From 04:30 to 06:00 UT, when CPCP is increasing in 

both Ideal MHD and CRCM coupling, the Ideal MHD model decreases then sharply increases 

while the CRCM decreases steadily. Likewise, for the interval 08:30 to 09:20 UT when CPCP is 

decreasing, the Ideal MHD model increases sharply and the CRCM model decreases sharply. 

Based on these qualitative measurements there might be an inverse relationship between the 

Ideal MHD polar cap area and CPCP values, however it appears that the CRCM coupling's 

CPCP and polar cap areas are not related. However, quantitative measurements need to be made 

in order to assess the validity of this claim. 
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 Since the model couplings are run during quiet geomagnetic times, the CPCP should give 

a good reflection of the coupling efficiency with solar wind. Also, inner magnetospheric 

processes are not as important during quiet times and thus will not contributes significantly to the 

model outputs. Figure 8 (above) shows decently strong correlations between coupling efficiency 

and CPCP values over the model run times with the exception of the Ideal MHD northern 

hemisphere model. The stronger the coupling efficiency's correlation with CPCP values, the 

lesser the effect of the inner magnetospheric processes on the model coupling output. In general, 

the correlations are strongest in the southern hemisphere and in the CRCM. This leads to the 

conclusion that the inner magnetosphere plays more part in the southern magnetospheric 

processes. It could also mean that the CRCM is a better indicator of IM values than the RCM 

model and could make a better IM coupling model. 

 

Figure 28. Scatter plots of CPCP and interpolated coupling efficiency. 
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5. Conclusions 

 There are a number of factors which must be considered before deciding which model 

performs best during quiet geomagnetic times. It is obvious in any case that the basic model in 

use—the Ideal MHD—falls short in each of the comparison categories. In the case of the time 

representative plot, variable values did not have as high a range as for the CRCM and RCM 

couplings. This is to be expected since the coupling of an IM model necessarily fine-tunes the 

global model by incorporating ring current and IM convection processes. Through this 

incorporation, more features are made apparent that are otherwise left out of the basic model. 

Moreover, the symmetrical nature of the OCB in the Ideal MHD model is a problem. While the 

OCB may very well have a symmetrical shape, the shape should show more variation with time. 

In the case of the CRCM and RCM couplings, this occurs showing that the models are 

responding better to SW and IMF driving conditions. Correlation values between the coupling 

efficiency and CPCP and polar cap area were also weakest for the ideal MHD model in each 

hemisphere which is suggestive of a weaker coupling.  

 While the RCM and CRCM couplings provide a better global model than the Ideal MHD 

alone, differences between the CRCM and RCM models are also apparent. The time variation 

plots show some similarities between the two and using them here for a basis of comparison is 

difficult. One thing that stands out, however, is the discontinuities in the OCB in both the CRCM 

and RCM. These discontinuities should not occur and it is possible that they are an error from the 

mapping from the 2D grids used in both the CRCM and RCM models and the 3D BATS-R-US 

grid. This problem is much more apparent in the CRCM model which could indicate a deeper 

problem than the one in the RCM. While the RCM shows a stronger correlation between 

coupling efficiency and polar cap area in the northern hemisphere, the CRCM model shows a 
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stronger correlation between coupling efficiency and CPCP and polar cap area than the RCM 

model in all other cases which could indicate that it is the stronger IM model between the two.  

 

6. Future Work 

 

 Once of the first things to be done in the future is to determine a time lag that varies with 

the solar wind and IMF conditions to get a better idea of the real correlation between the driving 

solar wind, IMF, and coupling efficiency with the polar cap area and CPCP values. Further 

analysis is also needed to understand whether the Hall and Pedersen conductivities, field-aligned 

currents, or electric potential have a larger effect on the CRCM model than the Ideal MHD 

model's OCB. Also useful would be to quantify the correlation between these values and all of 

the model couplings.  

 This model comparison was done for quiet geomagnetic times to lay a basis for such 

comparison.  However, disturbances can be caused by coronal mass ejections (CMEs) or co-

rotating interaction region (CIR) of the SW that can drive geomagnetic storms. When these 

disturbances occur, the inner magnetospheric processes become more important in the 

magnetosphere and the IM components will have a greater effect on the overall coupled output. 

Thus, these times are more interesting and important to the comparison between the three 

couplings. Future work needs to be completed to repeat the analysis at such times of 

geomagnetic disturbances. Furthermore, this analysis stressed the ionospheric responses for a 

global idea of the magnetosphere. More future work could be done to better examine the 

magnetospheric processes. Studying these would give a better idea of ionosphere-magnetosphere 

interactions and exchange which would enhance the model comparisons. 
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