
Bard College Bard College 

Bard Digital Commons Bard Digital Commons 

Senior Projects Spring 2019 Bard Undergraduate Senior Projects 

Spring 2019 

Geometric Correction for a Spherical mirror projection on a Geometric Correction for a Spherical mirror projection on a 

Nonplanar Surface Nonplanar Surface 

Methuen J. Bell-Isaac 
Bard College, mb0748@bard.edu 

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2019 

 Part of the Other Computer Engineering Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Bell-Isaac, Methuen J., "Geometric Correction for a Spherical mirror projection on a Nonplanar Surface" 
(2019). Senior Projects Spring 2019. 106. 
https://digitalcommons.bard.edu/senproj_s2019/106 

This Open Access work is protected by copyright and/or 
related rights. It has been provided to you by Bard 
College's Stevenson Library with permission from the 
rights-holder(s). You are free to use this work in any way 
that is permitted by the copyright and related rights. For 
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by 
a Creative Commons license in the record and/or on the 
work itself. For more information, please contact 
digitalcommons@bard.edu. 

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2019
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2019?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2019/106?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/


Geometric Correction for a Spherical Mirror
Projection on a Nonplanar Surface

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Methuen Jelani Bell-Isaac

Annandale-on-Hudson, New York
May, 2019



ii



Abstract

This paper discusses an approach for removing distortion from an image projected on a non-
planar surface. With a single projector setup in a spherical mirror projection system, it becomes
possible to preserve image features. The approach takes advantage of the configuration of the
surface, specifically, the geodesic dome in this project. The configuration acts as a mold so that
a warp mesh can be designed to match the surface configuration. Points in an image are then
mapped to their corresponding point on the destination multi-planar surface represented by the
mesh. The removal of distortion brings us a step closer to automating processes like this and
paves a way for experimenting with applications in an immersive environment.



iv



Contents

Abstract iii

Dedication vii

Acknowledgments ix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Computing Image Transformations 7

2.1 Geometric Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Homography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Mesh Construction and Data Handling 13

3.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 OpenCV for Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Numpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Processing (Java) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.4 JavaScript Object Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Construction Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Node Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Placing Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Storing Node and Triangle Information . . . . . . . . . . . . . . . . . . . 16

3.2.4 Manual Distortion Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 17



vi

4 Mesh Warping 21
4.1 Selecting a Test Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 The Masked Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Region of Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Warp and Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Piecewise Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 Combining the Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Results 29
5.1 Output Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Analysis of Geometric Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusion and Future Work 37

Appendices 39

A Python and Processing 39
A.1 Execute warp.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2 dome mesh.pde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 49



Dedication

Dedicated to my mother.



viii



Acknowledgments

I want to thank my friends and family who have supported me through the years.

I want to thank my best friend Rachael Fritz for her unwavering support and encouragement.

I finally want to thank my advisor Keith O’Hara. He has been an inspiration to me during my
time at Bard College. His consistent devotion to helping his students amazes me. He has done
more than advise me in my academic journey, whether that be giving encouragement when I
was struggling, or challenging me to optimize my potential.



x



1
Introduction

1.1 Background

The human brain’s ability to analyze our environment through our eye, is an unbelievable feat.

Our brain is able to receive input from what our eyes see and makes conclusions in nanoseconds.

Computer Vision is the field of study that attempts to mimic the human brain’s natural ability

of vision. Our brains are excellent tools for feature detection and research in computer vision

has successfully allowed computers to replicate many of the same actions. 3D modeling, face

detection and motion capture are just a few applications of computer vision and emphasize the

possibilities that are present because of computer vision applications.[2]

Augmented reality has become an emerging technology that has several practical uses. For

example, the medical industry has seen a rise in AR interest due to the ability for this technology

to enhance medical training. AR has provided the ability to interact with virtual objects through

the use of cameras and screens. One method that has seen a lot of application at planetariums is a

projector-camera system. These systems in planetariums operate using multiple projections and

a costly setup. When planetariums perform demos, the use of multiple projectors allows them

to correctly calibrate their cameras with the nonplanar surface in view, by using a collection of



2 INTRODUCTION

planar projections to cover the nonplanar surface. This is quite trivial on a smaller scale and

expensive when attempting to use multiple projectors.

However, to reduce cost and increase feasibility of setting up projector-camera systems in

casual spaces, it is effective to design this setup using a single projector. This type of system

can allow for one to interact with a projected screen based on the input from what the camera

is observing. The projection of a screen on a planar surface is required to begin this process,

and there are multiple examples of this system functioning correctly when the projection is on

a planar object in real space. This is due to the lack of distortion that needs to be accounted

for since the projection is planar and the surface it is projected on is also planar.

1.2 Motivation

The one who provided the geodesic dome is electronic arts professor Ben Coonley. This was

initially built for an exhibit in the exhibition Dreamlands: Cinema and Art 1905-2016 at the

Whitney Museum of American Art. He hopes the dome can be used as a tool to explore different

things that could be done in the visual arts using a nonplanar surface, such as this dome. The

Bard College computer science department took it upon themselves to find a way to configure

a projector-camera system that could utilize the dome to create an immersive environment.

An immersive environment setup with a projector-camera system could potentially be useful

in running applications that can be interacted with without the use of any headset or other

peripheral. However, this requires that the camera be calibrated appropriately and a method

must be found that can automatically find point correspondences between what the camera

sees and the actual projection. With much work done on projector-camera systems on planar

surfaces, executing the same setup for a nonplanar surface is still a subject that requires more

exploration.



1.3. PAST WORK 3

1.3 Past Work

This project is the third edition in a line of two previous senior projects written by Kai Malowany

and Darren Tirto.

Malowany’s project Beyond Homographies: Exploration and Analysis of Image Warping for

Projection in a Dome is focused on discussing multiple approaches for image warping, specifically

for a geodesic dome. The concepts in this work are useful in this project for expanding upon the

methods that have been explored and directly relate to the image warping method discussed in

Section 4.4.1.

Tirto’s project Projector-Camera Calibration for a Multi-Planar Dome discusses methods of

removing distortions from a projection on a dome through projector-camera calibration. Tirto

used ray-plane intersection to find the correspondences between the points in the physical space

and camera view. Though Tirto was able to estimate a projector matrix, he was not satisfied

with the accuracy and noted that he was constrained by the fact that he was not able to use more

planes than the camera could image to accurately calibrate the entire space. Tirto’s discussion

of how this could be improved using the physical configuration of the dome inspires the methods

in Section 3.2.

Paul Bourke, a researcher that has dedicated a significant amount of time to the study of

using a spherical mirror for projection, has suggested that a mesh be used to overlay an image

to create a homography utilizing the points of the mesh.[3] Paul Bourkes research has found

to be extremely helpful in understanding the multiple approaches to projection in a dome.

Bourkes papers have given insight into single projector systems and have set a foundation for

the continuation of this project.



4 INTRODUCTION

1.4 Setup

The environmental setup to house the spherical mirror projection is a geodesic dome made of

wood and cardboard. The dome is constructed from 40 triangles, fifteen equilateral triangles

with the dimensions 35” x 35” x 35” and 25 isosceles triangles with the dimensions, 31” x 31” x

35”. The projector being used is an Infocus IN3136a 720p projector. The projector is oriented

to project off a planar mirror and then onto a spherical mirror to cover the surface area of the

dome.

Figure 1.4.1. Geodesic dome exterior



1.4. SETUP 5

Figure 1.4.2. Geodesic dome interior.



6 INTRODUCTION

(a) The reflection off the spherical mirror distributes
the projection so that it covers a larger surface area
of the dome. Consequently this adds distortion to the
image.

(b) Note how the projection reflects off the planar
mirror and onto the spherical mirror.

Figure 1.4.3. The interior setup of the spherical mirror and the Infocus IN3136a 720p projector.



2
Computing Image Transformations

2.1 Geometric Transformations

Image processing consist of many elements, and geometric transformations are one of the most

essential. The positions of pixels in an image can be modified using image transformations,

outputting new images that reveal a visual representation of a specific transformation. This

section will discuss the details of some different geometric transformations and how they are

applied to the individual points in an image.

Before we continue with this section, it is important to note that the vectors that are shown

in the following section will be a homogeneous representation of coordinates. Homogeneous

coordinates introduces a third dimension that is not normally present so that lines and planes

can be represented at infinity.

For example, if a coordinate is normally denoted by (x, y) its homogeneous coordinate would

be (x, y, w) where w 6= 0. Homogeneous representation helps perform projective transformations

using matrices.

2.1.1 Translations

Translation is a geometric transformation that uses addition to change the position of the spec-

ified point.



8 2. COMPUTING IMAGE TRANSFORMATIONS

Figure 2.1.1. A simple representation of two image transformations on a right triangle. The translation
example has shifted the triangle by some factor after applying a translation vector to the triangles vertices.
The rotation example shows a 90 degree rotation.

Let vector u be defined by

u =

 x
y
1


Let the translation vector t be defined by

t =

 1 0 tx
0 1 ty
0 0 1


If the translation is applied to the vector u, the output vector v will be

v =

 x+ tx
y + ty

1


representing a new position in 2D space. The identity matrix coupled with the translation

vector produces a 3x3 matrix that can now use matrix multiplication to apply the translation

transformation. With the help of translation all the pixels in an image can be shifted the same

amount when the same translation vector is applied to each pixel in the image.



2.2. HOMOGRAPHY 9

2.1.2 Rotations

Rotation is another transformation defined by an angle θ which is then applied to a vector.

Let vector u be defined by

u =

 x1
y1
1


and output vector v be defined by

v =

 x2
y2
1


where

x2 = x1 cos(θ)y1 sin(θ)

and

y2 = x1 sin(θ) + y1 cos(θ)

.

In matrix format, this rotation can be represented by a 2 x 2 unitary matrix.

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
When the rotation is applied to u, we get the following matrix representation of this trans-

formation.

v =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

u

2.2 Homography

For the purpose of truly understanding how image transformation functions, it is important to

grasp the idea of homography. Homography is a 2D projective transformation that maps points

in one plane to another. [1]



10 2. COMPUTING IMAGE TRANSFORMATIONS

Homography is useful for executing several different processes including rectifying, registering,

and warping images. These processes are examples of taking points from one plane and mapping

them to a set of points on another plane. Assume there is some image M of a piece of paper

on a table and another image N that has that same piece of paper in it but the image is from

a different perspective than image M. A homography transform will be required to display an

image where the paper in each image are aligned with each other and seem as though they were

captured from the same perspective.

Let x1, y1 represent a point on the plane (piece of paper) in image M and let x2, y2 represent

the same corresponding point on the paper, but in image N. To find the homography matrix

that every point can be applied to, this equation is utilized shown using the euclidean system.

[
x2
y2

]
= H

[
x1
y1

]

By finding H every point on the plane in image N can map to its appropriate point in im-

age M and correctly align the images. This method of calculating H is called Direct Linear

Transformation[1] and requires four or more points to find H due to the 8 degrees of freedom.

H =

 h1 h2 h3
h4 h5 h6
h7 h8 h9


Executing the equation above using homogeneous coordinates is shown below.

 x2
y2
w2

 = H

 x1
y1
w1



This results in the following values for x2, y2 and w2.

x2 = x1h1 + y1h2 + w1h3

y2 = x1h4 + y1h5 + w1h6



2.3. AFFINE TRANSFORMATIONS 11

w2 = x1h7 + y1h8 + w1h9

2.3 Affine Transformations

An affine transformation is the process of executing a matrix multiplication and then a vector

addition. In other words, it is a linear transformation followed by a translation. This allows for

the expression of rotations, translations and scale operations, all using the affine transformation.

Essentially these affine transformations represent relations between images and the transform is

represented by a 2×3 matrix. An example transformation is shown below.

 x2
y2
1

 =

 a00 a01 ∆x
a10 a11 ∆y
0 0 1

 x1
y1
1


The output vector on the left-hand side of the equation represents an affine transformation

from

 x1
y1
1

 to

 x2
y2
1

.



12 2. COMPUTING IMAGE TRANSFORMATIONS



3
Mesh Construction and Data Handling

This chapter will focus on the process of developing the mesh and preparing it for warping. A

mesh is an object made up of a network. Understanding how the mesh is rendered and used

is crucial to comprehending image reconstruction and the affine transformations that will be

discussed in later sections.

3.1 Software

To allow for experimentation and the opportunity for the field of computer vision to continue to

grow, open source software becomes a great asset for the public. This section briefly discusses

the software utilized in this project and how significant the functions involved are to the success

of this project.

3.1.1 OpenCV for Python

OpenCV is a library that provides open source tools for computer vision applications. In 1999,

Gary Bradsky started OpenCV at Intel and was later joined by Vadim Pisarevsky. The two

managed the OpenCV team at Intel and successfully developed a library that supports multiple

computer vision algorithms for a numerous number of problems. [6]



14 3. MESH CONSTRUCTION AND DATA HANDLING

OpenCV-Python is the library specifically built to support the Python programming language.

The Python implementation is ideal for the purpose of this project because of its readability

and lack of complexity.

3.1.2 Numpy

The Numpy Python library is a package that is extremely useful when working with matrices,

images and and any subject related to scientific computing. The Numpy array is the most useful

object in the library and is the primary tool utilized in this project. The Numpy array object will

help simplify performing several operations such as matrix multiplication and solving equation

systems. These operations will be crucial for warping images by applying affine transformations.

3.1.3 Processing (Java)

Processing is a programming language that provides functions and types which have several

practical uses relating to visual arts. The documentation is broad and when utilized correctly,

it is quite simple to design and develop projects with different kinds of geometrical shapes, with

various potential functionality. Processing is based in Java and so variables and data structures

are declared the same way. With the goal of designing a mesh with movable nodes that should

also have their x and y values stored for later use, processing was clearly the best choice for

being able to efficiently build the mesh. Processing can also use physics to simulate real world

environments or even develop complex games.

3.1.4 JavaScript Object Notation

JavaScript object Notation or JSON has been around since 1996 but did not become very popular

till around 2001. Douglas Crockford is credited with the discovery of JSON format and JSON

has since trumped XML as the Gold Standard for transporting data. The ability for JSON to

completely surpass other formats is because of how easy it is to learn to use as well as visually

pleasing and simple to write. It is for these reasons that we decide to use JSON objects to record

and utilize the data needed to successfully perform multiple affine transformations.An example

is shown in Figure 3.1.1.



3.2. CONSTRUCTION PROCESS 15

Figure 3.1.1. A JSON object with two nested JSON objects representing triangles in the mesh. The name
value pairs in the nested objects refer to the nodes that form that specific triangle.

3.2 Construction Process

The triangle mesh is developed in Processing where object-oriented programming principles

become ideal for conceptualizing the warp mesh function. We want the mesh to represent the

non-planar surface that is being projected on, however the mesh must be altered according to

the desired configuration.

3.2.1 Node Class

The construction of the mesh begins by rendering nodes into a processing sketch. It is beneficial

to understand the contribution that a Node object makes to this project. The role of this Node

class may seem small, but it is the foundation for executing the entire process successfully.

These nodes hold information that is necessary for making correspondences between the real

world space and the projection.

A Node object is defined by three attributes, an x-coordinate, a y-coordinate and a radius that

relates to the actual radius of the ellipse being drawn. With that said, we bring our attention

to the methods of this Node class. The first method is a draw function that does not return any

value, but executes the rendering of a Node object. The draw function calls ellipse() from the



16 3. MESH CONSTRUCTION AND DATA HANDLING

processing documentation which renders an ellipse at some specified point. The other method

within the Node class is contains() which takes two parameters x and y and returns a boolean

value. The purpose of this function is to determine the difference in location between the mouse

and the Node. Details on how exactly this is accomplished is explained in section 3.2.4.

3.2.2 Placing Nodes

To begin rendering the Nodes that make up the mesh into the processing sketch, a window with

a black background is created. Note that this window is a result of calling fullScreen() within the

processing setup() function, and the device displaying the screen is the projector. To complete

the primary goal of populating the window with all the appropriate vertices, we observe the

screen that is being projected onto the ceiling of the dome. When the mouse pointer within the

display is hovering over the real world vertex on the ceiling, a node is manually placed at that

location in the window.

Repeating this process for every real world dome vertex, results in a window that is populated

with nodes at different locations corresponding to real world vertices. This process highlights

the actual desired mapping from the real world dome coordinate, to a point in the projection.

Figure 3.2.1. An example of how the triangles in the mesh are constructed. Nodes are rendered in the
scene at various positions in the window. The desired edges are added between nodes to complete the
mesh.

3.2.3 Storing Node and Triangle Information

As the nodes for the mesh are rendered, they are also added to an ArrayList of nodes. This

allows for an integer to be connected to each node through indexing. Once every node in the

window is added to the ArrayList, the nodes corresponding index is rendered above it. With



3.2. CONSTRUCTION PROCESS 17

the nodes and indexes being displayed in the projection, each triangle can be identified by the

nodes that make it up. To make a record of each triangle, once a triangle is observed a number

is assigned to it and the nodes that make it up are logged. This is completed by creating a JSON

object for each triangle, where each object contains three name-value pairs, pertaining to the

index of the nodes in the ArrayList. The JSON objects are then saved to a .json file for future

use. Each Node is recorded in a similar method, however the name value pairs are the x and y

coordinates of that node.

After all the triangle and node data has been collected, edges can be added to the sketch to

create a more vivid representation of the mesh. To draw the edges in the sketch, the function

line()is used and takes the coordinates of the two points it connects as parameters. The .json

file containing the triangle objects is parsed and for each triangle, each node making up the

triangle is pulled (index). Using the index, the appropriate node is found within the ArrayList

and the x and y values of the specified node object are used to render the lines. With the edges

displaying in the projection it is clear to see that the projection of the mesh matches the real

world configuration of the dome. However, when the projection is shifted away from the mirror,

the distortion in the triangles is evident. The triangles are not close in size, in fact they are

several different sizes as a result of the distortion from the curved mirror.

3.2.4 Manual Distortion Removal

Now that the mesh matching the configuration of the dome has been found, it is necessary to

remove the distortion from this mesh to produce a ”uniform mesh”. To construct this mesh

which is displayed in Figure 3.2.3, the nodes in the mesh were given a dragging functional-

ity. This is accomplished using Processing’s functions mousePressed(), mouseDragged(), and

mouseReleased(). A global variable dragNode is initialized to null and then becomes the tar-

geted node to be dragged. As the mouse is pressed, a check is made on every node to verify that

the mouse is within the radius of the node. If this is true, then dragNode is set to that node and

it can be dragged while the mouse is being dragged. When the mouse is released, the node’s x

and y values are set to the mouse x and y values and dragNode is set back to null.



18 3. MESH CONSTRUCTION AND DATA HANDLING

Figure 3.2.2. The mesh that represents the configuration of the dome in the spherical mirror projection.
The mesh clearly shows how distorted the projection becomes when reflected off the spherical mirror.

In the real world dome configuration, the triangles are similar in size and not the many

different sizes shown in Figure 3.2.2. The ”uniform mesh” is constructed by dragging the nodes

from the warped mesh so that the triangles are oriented as if the dome configuration was a single

plane. Unfortunately this is an estimate and raises cause for error in the actual warping. Now

that the triangles are closer in size and arranged as if every triangle was on the same plane,

this mesh can be used to divide the original image into the appropriate number of triangles for

warping.



3.2. CONSTRUCTION PROCESS 19

Figure 3.2.3. The mesh that is a representation of the nonplanar surface. The mesh serves as a tool for
dividing the original image into the appropriate number of triangles. This mesh is an estimation of how
the configuration would appear if it were laid out flat.



20 3. MESH CONSTRUCTION AND DATA HANDLING



4
Mesh Warping

The warp mesh, from the previous chapter, will ultimately produce a warped image and there

are several steps that are required to do this, as explained in this chapter. OpenCV will be the

primary tool for executing the warp and the use of affine transformations will be prominent in

understanding the algorithm.

4.1 Selecting a Test Image

After the warped image is retrieved, how well the algorithm performed must be visible in the

projection of the output. To clarify, there must be a clear observation that verifies that the

algorithm is functioning as intended. Not every image will contain characteristics that make it

clear to identify that distortion was removed. It is important for the image to contain several

vertical and horizontal lines so that the distortion will be easy to notice. The checkerboard image

that is normally used for camera calibration, is an ideal choice for a test image. The squares in

the image are all congruent and so this image is an excellent selection given that the variation

in the lengths of the sides and the performance of the algorithm share an indirect relationship.



22 4. MESH WARPING

Figure 4.1.1. The checkerboard image used for analyzing the output of the image warping

4.2 Data Preparation

To warp the image, there is a number of things that are needed before that actual warping is

executed. Within the Python script that warps the image, the .json files discussed in the previous

sections are imported using the Python json library. Once imported, the node and triangle data

can be accessed using the name of the variable holding the desired .json file.



4.3. THE MASKED IMAGE 23

Figure 4.3.1. An example of an ROI missing from the original image because it has been removed for
warping. Note that this image is strictly to help visualize what happens when an ROI is selected.

4.3 The Masked Image

Isolating specific sections of an image is much simpler using Numpy and OpenCV. These libraries

are crucial for masking an image, which is our method of choice for returning a triangular region

in the image.

4.3.1 Region of Image

The region of an image or ROI for short, is what allows for the image reconstruction to occur.

As discussed in the previous section, when attempting to isolate an image, an ROI is the portion

that needs to be extracted. The ”uniform mesh” from Section ??? is used to get each individual

ROI. The points that make up each triangle are passed to a Numpy array object and this array

is used to extract the ROI from the image.



24 4. MESH WARPING

Figure 4.3.2. The points that correspond to the section of the image that is being isolated are used to
mask the image. That triangular ROI is then filled with its corresponding location in the image being
warped.

4.3.2 Masking

To distinguish the desired ROI from the rest of the image, a mask is applied. The Numpy array

object containing the information for the ROI is passed to the OpenCV funciton fillPoly(). This

function takes the source image as the first output, the region that is being targeted as the second

parameter (In this case a numpy array) and a color for the pixels for the third parameter. The

result from running fillPoly() is then passed to another OpenCV function called bitwise and().

4.4 Warp and Reconstruction

Warping is executed by applying multiple affine transformations to regions specified by the warp

mesh. As the individual ROI’s are warped, those individual sections must be stitched together

to output a completely warped image.



4.4. WARP AND RECONSTRUCTION 25

Figure 4.4.1. After the ROI is retrieved, an affine transform is applied to it and the triangles new position
is outputted. An affine transformation example is shown in this figure.

4.4.1 Piecewise Affine Transformations

The Affine Transform should now be found for each warped image. We choose to write a function

here that will return the warped ROI when successfully executed. We begin by obtaining the

affine transform between the ROI and its destination. The points that make up the ROI and the

destination points, are determined by the triangle that is being warped. The points are taken

as parameters in the OpenCV function getAffineTransform(). This function calculates the affine

transform that maps the source points to the destination points,

The affine transform obtained from getAffineTransform() must now be applied to the masked

image. The openCV function warpAffine() performs this task for us by taking the image, affine

transform, and size of the output as parameters. The destination image shows the transformation

from one triangle to another and the distortion can be seen in the output. (Figure 4.4.1)



26 4. MESH WARPING

Figure 4.4.2. A visualization of the process that is executed from start to finish of the image warp. This
work flow accurately represents the flow of data from one function to the next.

4.4.2 Combining the Images

The final step is to combine all the ROI’s so that the full image is reconstructed. This is done

by first declaring a variable that will cbe initialized with the first warped image. This will act

as the base for the final warped output. Then using a for loop that variable is set to the output

of running bitwise or on itself and the ROI currently being accessed. The final warp is complete

when the loop ends and the reconstructed image is saved as a PNG file.



4.4. WARP AND RECONSTRUCTION 27

Figure 4.4.3. A snapshot of the image reconstruction process. After each ROI is warped, it is added to
its appropriate location in the final warped image.



28 4. MESH WARPING



5
Results

In this section we will analyze the success of attempting to remove distortion from the checker-

board image, as well as a few other images. Observing the output image will reveal how well

features from the original image were preserved.

5.1 Output Image

The image that is outputted from the warp and reconstruction of each ROI is expected to have

a lot of distortion before it is projected off the spherical mirror. This is expected since the

distortion in the image is meant to be corrected after being reflected by the mirror. Before the

output image is analyzed, it is crucial to understand what is being searched for to verify the

distortion removal. This is done by identifying features in the original image, more specifically,

the checkerboard image in this case. The checkerboard is made up of white and black squares, and

these squares all share the same length sides. This information is suffice to analyze the output

image and decide how effective the warping was. Since the squares all have the same length

sides, the squares in the output image are expected to have the same length sides. Preservation

of the dimensions of the squares is what will be searched for in the warped image. The lower

the variation in aspect ratio of the squares, the less distortion that is present.



30 5. RESULTS

Figure 5.0.1. The output image after the geometric correction is applied to the checkerboard image.

5.2 Analysis of Geometric Correction

To successfully analyze the output image presented in section 5.1, we must compare it to the

projection of the original image before the correction was applied. The details of the comparison

will be based on the measured widths and heights of 18 black squares from each image. To

get the square dimension measurements, first the original image is projected and using a meter

stick, the width and height are measured and recorded. This is done 18 times for the Original

image as well as the output image. The values obtained from measuring the squares is shown in

Figure 5.2.1. These values can help us determine how similar the squares are by calculating the

variance among the side lengths. The variance is calculated for the sides of the squares in both

images and the results are compared. To calculate the variance we use the equation

S2 =

∑
(xi − x̄)2

n− 1



5.2. ANALYSIS OF GEOMETRIC CORRECTION 31

The variance for the set of width measurements from the original unwarped image of the

checkerboard is 108.56. The variance for the set of height measurements for the same image is

81.79. The calculated variance of the width measurements from the warped image is 48.26 and the

variance of the height measurements is 33.67. Fortunately there is a clear significant difference in

the variance calculations for the lengths of the squares in the two images. The original unwarped

image has a much higher variance among both the width and height measurements. This means

that distortion was removed from the original projection during the attempt to preserve the

original dimensions. A comparison between two images is shown in figure 5.2.1.

The aspect ratio for each square in both images is also determined using the width and height

measurements. Calculating the aspect ratio’s of the squares is done my setting up the ratio

width:height, for every black square. Once these are found the variance among those values

was found as well. The variance for the aspect ratio’s of the squares in the original image is

determined to be 0.38 while the variance for the ratio’s in the corrected image is 0.018. With

such a low variance in aspect ratio, it is valid to conclude that distortion was in fact removed

after the geometric correction is executed.

(a) Snapshot of the original checkerboard image be-
ing projected off the spherical mirror. The distortion
in the squares is evident.

(b) The original checkerboard image after the distor-
tion is corrected. The dimensions of the squares are
clearly closer in size. Notice the bend in some of the
lines that should be parallel.

Figure 5.2.1. A comparison between two snapshots of the same image. (a) Showing the image before it is
warped, while (b) shows the same image after the warping is executed



32 5. RESULTS

Though distortion was removed from the projection, the horizontal and vertical lines were not

all straight in the output image. This is most likely caused by the estimation of the ”uniform

mesh” and is a direct result of human error when attempting to replicate the domes configuration

on a planar surface. The dome configuration has specific dimensions that if represented in the

mesh with perfect proportion’s, may improve the success of the geometric correction.

To produce another example of removing distortion, the algorithm is applied to a more generic

image. This is shown in Figure 5.2.3 and 5.2.4. These test cases aided in confirming the success

of geometric correction. The output image clearly shows how the warping of the image caused

by the spherical mirror is corrected.



5.2. ANALYSIS OF GEOMETRIC CORRECTION 33

Original
Unwarped

Image

Width Height

60 cm 20 cm
45 cm 35 cm
37 cm 40 cm
52 cm 28 cm
50 cm 35 cm
36 cm 43 cm
29 cm 46 cm
52 cm 40 cm
36 cm 54 cm
46 cm 51 cm
53 cm 40 cm
29 cm 45 cm
42 cm 39 cm
62 cm 36 cm
63 cm 27 cm
46 cm 33 cm
47 cm 52 cm
56 cm 46 cm

(a) Widths and heights for
the squares in the original
image

Output Image

Width Height

36 cm 33 cm
37 cm 40 cm
37 cm 42 cm
46 cm 52 cm
53 cm 45 cm
50 cm 52 cm
58 cm 53 cm
50 cm 52 cm
47 cm 46 cm
55 cm 54 cm
46 cm 47 cm
48 cm 46 cm
50 cm 37 cm
52 cm 53 cm
36 cm 46 cm
56 cm 46 cm
46 cm 46 cm
52 cm 48 cm

(b) Widths and heights for
the squares in the output
image

Figure 5.2.2. Black square widths and heights



34 5. RESULTS

(a) Full screen view of unwarped image displayed in
projection.

(b) Unwarped image displayed in projection

Figure 5.2.3. The projection of a png file before the distortion is removed from the image. Notice the
warp that can be seen in the projection of the image.



5.2. ANALYSIS OF GEOMETRIC CORRECTION 35

Figure 5.2.4. The projection of the output image after that image is corrected



36 5. RESULTS



6
Conclusion and Future Work

This project focused on removing distortion from a spherical mirror projection using affine

transformations. The method of using the configuration of the dome was explored and resulted

in positive findings. A mesh warp tool was developed in Processing and served its purpose as

a way of retrieving points from the projection to make the appropriate correspondences. This

mesh was also manipulated to mimic the configuration of the nonplanar view as if it were planar.

This crucial step in the geometric correction process can definitely be improved and would

greatly benefit the results of this project. A method of properly and accurately mimicking the

configuration as if it were a planar surface may remove a significant amount of the distortion

left in the output image.

The ultimate goal is to be able to interact with applications in an immersive environment

and this project and taken a step forward in this subject. It is my hope that this project can be

built upon and that the methods utilized in this work will aid in the automation of geometric

correction. It is unfortunate that this project was not able to perfect the process, however,

configuration replication has been proven to be a viable option for working with projector-

camera systems in multi-planar surfaces. In future work involving projections on nonplanar

surfaces using spherical mirror projections, this project should be referenced to help improve

calibration in a projector-camera system.



38 6. CONCLUSION AND FUTURE WORK



Appendix A
Python and Processing

A.1 Execute warp.py

#
# Geometric Correct ion Execut ion f i l e
#
# Methuen Je l an i Be l l−I saac
# Bard Co l l e g e Class o f 2019

’ ’ ’
This Python s c r i p t e xecu t e s image warping us ing
a f f i n e t rans format ions to remove d i s t o r t i o n
from a p ro j e c t i on .
’ ’ ’

import cv2
import numpy as np
import j s on

image = cv2 . imread ( ’ mario . png ’ ,−1)

# re s o l u t i o n o f d i s p l a y t ha t i s be ing p ro j e c t e d
d s i z e = (4800 , 2700)

t r i a n g l e s = open( ’ t r i a n g l e s . j s on ’ )
j s o n f i l e = open( ’ f u l l me sh2 . j son ’ ) # de s t i n a t i o n nodes
o r i g i n a l j s o n = open( ’ t e s t 3 . j son ’ ) # source nodes

data = json . load ( j s o n f i l e )
org = j son . load ( o r i g i n a l j s o n )



40 APPENDIX A. PYTHON AND PROCESSING

t r i = j son . load ( t r i a n g l e s )

’ ’ ’
Get the source nodes
re turn a t u p l e o f x and y va lue pa i r s
’ ’ ’
def g e t O r i g i n a l ( pid ) :

t r i a n g l e = t r i [ str ( pid ) ]
po in t 1 = ( org [ str ( t r i a n g l e [ ”v1” ] ) ] [ ”x” ] , org [ str ( t r i a n g l e [ ”v1” ] ) ] [ ”y” ] )
po in t 2 = ( org [ str ( t r i a n g l e [ ”v2” ] ) ] [ ”x” ] , org [ str ( t r i a n g l e [ ”v2” ] ) ] [ ”y” ] )
po in t 3 = ( org [ str ( t r i a n g l e [ ”v3” ] ) ] [ ”x” ] , org [ str ( t r i a n g l e [ ”v3” ] ) ] [ ”y” ] )

return point 1 , po int 2 , po in t 3

’ ’ ’
Get the d e s t i n a t i on nodes
re turn a t u p l e o f x and y va lue pa i r s
’ ’ ’

def ge tTr i ang l e ( pid ) :

t r i a n g l e = t r i [ str ( pid ) ]
po in t 1 = ( data [ str ( t r i a n g l e [ ”v1” ] ) ] [ ”x” ] , data [ str ( t r i a n g l e [ ”v1” ] ) ] [ ”y” ] )
po in t 2 = ( data [ str ( t r i a n g l e [ ”v2” ] ) ] [ ”x” ] , data [ str ( t r i a n g l e [ ”v2” ] ) ] [ ”y” ] )
po in t 3 = ( data [ str ( t r i a n g l e [ ”v3” ] ) ] [ ”x” ] , data [ str ( t r i a n g l e [ ”v3” ] ) ] [ ”y” ] )

return point 1 , po int 2 , po in t 3

’ ’ ’
Apply masking
re turn an ROI tha t has i s o l a t e d the de s i r ed t r i a n g l e
’ ’ ’
def getMaskedImage ( pid ) :

mask = np . z e ro s ( image . shape , dtype=np . u int8 )
p1 , p2 , p3 = g e t O r i g i n a l ( pid )
r o i = np . array ( [ [ p1 , p2 , p3 ] ] , dtype=np . in t32 )
# f i l l the ROI so i t doesn ’ t g e t wiped out when the mask i s app l i e d
channe l count = 4 # i . e . 3 or 4 depending on your image
i gno r e mask co l o r = (255 , )∗ channe l count
cv2 . f i l l P o l y (mask , ro i , i gno r e mask co l o r )

# app ly the mask
masked image = cv2 . b i tw i s e and ( image , mask )

return masked image

’ ’ ’
Get and app ly the a f f i n e t rans format ion



A.1. EXECUTE WARP.PY 41

Return the warped ROI

’ ’ ’
def getWarpedImage ( pid ) :

s1 , s2 , s3 = g e t O r i g i n a l ( pid )
d1 , d2 , d3 = getTr i ang l e ( pid )
masked image = getMaskedImage ( pid )
s r c = np . f l o a t 3 2 ( [ [ s1 [ 0 ] , s1 [ 1 ] ] , [ s2 [ 0 ] , s2 [ 1 ] ] , [ s3 [ 0 ] , s3 [ 1 ] ] ] )
des t = np . f l o a t 3 2 ( [ [ d1 [ 0 ] , d1 [ 1 ] ] , [ d2 [ 0 ] , d2 [ 1 ] ] , [ d3 [ 0 ] , d3 [ 1 ] ] ] )
a f f i n e t r a n s f o r m = cv2 . getAf f ineTrans form ( src , des t )
warped image = cv2 . warpAff ine ( masked image , a f f i n e t r a n s f o r m , d s i z e )

return warped image

f i n a l w a r p = getWarpedImage (0 ) # I n i t i a l i z e the f i n a l image wi th the t r i a n g l e at ”0”.

counter = 0

’ ’ ’
Get the warped ROI f o r each t r i a n g l e in the mesh and
Combine the warped images to cons t ruc t the complete warped image
’ ’ ’
for i in t r i :

img = getWarpedImage ( i )

f i n a l w a r p = cv2 . b i t w i s e o r ( f ina l warp , img )
print ( ” Tr i ang l e s l e f t : ” + str ( ( len ( t r i ) − counter ) ) )
counter += 1

print ( ”Image Warp S u c c e s s f u l ! ” )
cv2 . imwrite ( ’ image4 . png ’ , f i n a l w a r p )



42 APPENDIX A. PYTHON AND PROCESSING

A.2 dome mesh.pde

ArrayList nodes ;
Node dragNode = null ;
int mesh co lor = 0 ;

/∗
∗ This s k e t ch i s used to deve lop the warp mesh
∗ This s k e t ch a l l ows the mesh to be manipulated
∗ Al l node in format ion i s coming from a . j son f i l e
∗ Unless new nodes are added to the scene
∗/

void setup ( ) {
nodes = new ArrayList ( ) ;
f u l l S c r e e n ( 2 ) ;
strokeWeight ( 6 ) ;

}

void draw ( ) {

//JSON ob j e c t o f nodes
JSONObject data = loadJSONObject ( ” f u l l m e s h . j son ” ) ;

//JSON ob j e c t o f t r i a n g l e s
JSONObject t r i s = loadJSONObject ( ” t r i a n g l e s . j son ” ) ;

background ( 2 5 5 ) ;

//draw nodes from the ”nodes” a r r a y l i s t as long as i t i s not empty
i f ( nodes . s i z e ( ) > 0) {

for ( int i = 0 ; i < nodes . s i z e ( ) ; i++) {
Node p = (Node ) nodes . get ( i ) ;
s t r oke ( mesh co lor ) ;
p . draw ( ) ;

}
}

//Render nodes in t o the Process ing s k e t ch d i r e c t l y from the . j son f i l e
for ( int i = 0 ; i < data . s i z e ( ) ; i++) {

JSONObject j son = data . getJSONObject ( s t r ( i ) ) ;

int x = json . g e t In t ( ”x” ) ;



A.2. DOME MESH.PDE 43

int y = json . g e t In t ( ”y” ) ;

Node n = new Node (x , y , 1 0 ) ;

i f ( nodes . s i z e ( ) < data . s i z e ( ) ) {
nodes . add (n ) ;

}

// t e x t S i z e ( 96 ) ;
// t e x t ( s t r ( i ) , x−30, y−75);
// f i l l (0 , 255 , 255) ;

}

// Draw the edges f o r each t r i a n g l e
for ( int i = 0 ; i < t r i s . s i z e ( ) ; i++) {

JSONObject shape = t r i s . getJSONObject ( s t r ( i ) ) ;

int l = shape . g e t In t ( ”v1” ) ;
int m = shape . g e t In t ( ”v2” ) ;
int n = shape . g e t In t ( ”v3” ) ;

Node a = (Node ) nodes . get ( l ) ;
Node b = (Node ) nodes . get (m) ;
Node c = (Node ) nodes . get (n ) ;

JSONObject v1 = data . getJSONObject ( s t r ( l ) ) ;
f loat v1x = a . x ;
f loat v1y = a . y ;
JSONObject v2 = data . getJSONObject ( s t r (m) ) ;
f loat v2x = b . x ;
f loat v2y = b . y ;
JSONObject v3 = data . getJSONObject ( s t r (n ) ) ;
f loat v3x = c . x ;
f loat v3y = c . y ;

s t r oke ( mesh co lor ) ;

l i n e ( v1x , v1y , v2x , v2y ) ;
l i n e ( v1x , v1y , v3x , v3y ) ;
l i n e ( v2x , v2y , v3x , v3y ) ;

}



44 APPENDIX A. PYTHON AND PROCESSING

}



List of Figures

1.4.1 Geodesic dome exterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Geodesic dome interior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.3 The interior setup of the spherical mirror and the Infocus IN3136a 720p projector. 6

2.1.1 A simple representation of two image transformations on a right triangle. The

translation example has shifted the triangle by some factor after applying a trans-

lation vector to the triangles vertices. The rotation example shows a 90 degree

rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 A JSON object with two nested JSON objects representing triangles in the mesh.

The name value pairs in the nested objects refer to the nodes that form that

specific triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 An example of how the triangles in the mesh are constructed. Nodes are rendered

in the scene at various positions in the window. The desired edges are added

between nodes to complete the mesh. . . . . . . . . . . . . . . . . . . . . . . . . . 16



46 LIST OF FIGURES

3.2.2 The mesh that represents the configuration of the dome in the spherical mirror

projection. The mesh clearly shows how distorted the projection becomes when

reflected off the spherical mirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 The mesh that is a representation of the nonplanar surface. The mesh serves as

a tool for dividing the original image into the appropriate number of triangles.

This mesh is an estimation of how the configuration would appear if it were laid

out flat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 The checkerboard image used for analyzing the output of the image warping . . . 22

4.3.1 An example of an ROI missing from the original image because it has been re-

moved for warping. Note that this image is strictly to help visualize what happens

when an ROI is selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 The points that correspond to the section of the image that is being isolated are

used to mask the image. That triangular ROI is then filled with its corresponding

location in the image being warped. . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4.1 After the ROI is retrieved, an affine transform is applied to it and the triangles

new position is outputted. An affine transformation example is shown in this figure. 25

4.4.2 A visualization of the process that is executed from start to finish of the image

warp. This work flow accurately represents the flow of data from one function to

the next. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.3 A snapshot of the image reconstruction process. After each ROI is warped, it is

added to its appropriate location in the final warped image. . . . . . . . . . . . . 27

5.0.1 The output image after the geometric correction is applied to the checkerboard

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 A comparison between two snapshots of the same image. (a) Showing the image

before it is warped, while (b) shows the same image after the warping is executed 31

5.2.2 Black square widths and heights . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



LIST OF FIGURES 47

5.2.3 The projection of a png file before the distortion is removed from the image.

Notice the warp that can be seen in the projection of the image. . . . . . . . . . 34

5.2.4 The projection of the output image after that image is corrected . . . . . . . . . 35



48 LIST OF FIGURES



Bibliography

[1] Jan Erik Solem, Programming Computer Vision with Python, O’Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol, CA 95472, 2012.

[2] Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, Salmon Tower
Building, New York City, 2010.

[3] Paul Bourke, Using a spherical mirror for projection into immersive environments, http:
//paulbourke.net/papers/graphite2005/.

[4] Darren Tirto, Projector-Camera Calibration for a Multi-Planar Dome. Senior Thesis, 2018.

[5] Kai Malowany, Beyond homographies: Exploration and analysis of image warping for projec-
tion in a dome. Senior Thesis, 2017.

[6] OpenCV, Introduction to OpenCV-Python TutorialsUsing a spherical mirror for projec-
tion into immersive environments, https://docs.opencv.org/3.4.2/d0/de3/tutorial_

py_intro.html.

[7] Opencv, Geometric Transformations of Images, https://opencv-python-tutroals.

readthedocs.io/en/latest/py_tutorials/py_imgproc/py_geometric_

transformations/py_geometric_transformations.html#geometric-transformations.

http://paulbourke.net/papers/graphite2005/
http://paulbourke.net/papers/graphite2005/
https://docs.opencv.org/3.4.2/d0/de3/tutorial_py_intro.html
https://docs.opencv.org/3.4.2/d0/de3/tutorial_py_intro.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html##geometric-transformations
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html##geometric-transformations
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html##geometric-transformations

	Geometric Correction for a Spherical mirror projection on a Nonplanar Surface
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Background
	Motivation
	Past Work
	Setup

	Computing Image Transformations
	Geometric Transformations
	Translations
	Rotations

	Homography
	Affine Transformations

	Mesh Construction and Data Handling
	Software
	OpenCV for Python
	Numpy
	Processing (Java)
	JavaScript Object Notation

	Construction Process
	Node Class
	Placing Nodes
	Storing Node and Triangle Information
	Manual Distortion Removal


	Mesh Warping
	Selecting a Test Image
	Data Preparation
	The Masked Image
	Region of Image
	Masking

	Warp and Reconstruction
	Piecewise Affine Transformations
	Combining the Images


	Results
	Output Image
	Analysis of Geometric Correction

	Conclusion and Future Work
	Appendices
	Python and Processing
	Execute_warp.py
	dome_mesh.pde

	Bibliography

