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ABSTRACT

We present combined direct-laser-writing and UV Lithography in SU-8F and S1813
as a fast and flexible lithographic technique for the prototyping of functional polymer devices
and pattern transfer applications. Direct laser writing (DLW), which is performed by
focusing a laser through a microscope objective, is a useful alternative method for patterning
photoresists with sub-micron resolution. DLW however, can be time consuming if the
pattern density is high since it is a serial technique. Typically, dense patterns are made using
conventional mask-based UV lithography, but these masks can be quite expensive if the
resolution is high and the mask cannot be modified once created. Here, we combine UV
lithography using inexpensive transparency masks, which have modest resolution of about
20 pm linewidths, with DLW to create smaller features. By using the laser to augment an
inexpensive mask, high resolution prototypes can be created, tested, and modified quickly to
optimize a design. Here we show that this Laser Augmented Microlithographic Patterning
(LAMP) method works with both positive- and negative-tone photoresists, S1813 and SU-8,
respectively. The laser written features can be registered to within 2.2 pm of the mask
created features and we demonstrate the applicability of LAMP by fabricating an
interdigitated electrode and a microfluidic device that can capture an array of dozens of silica

beads or living cells.



1. INTRODUCTION

Conventional mask-based lithography and direct laser writing (DLW) can be
combined into a hybrid technique, which compensates for the drawbacks of each.
Photolithography using a mask to expose a photoresist to UV light is commonly used for the
production of microelectronics but has applications including microelectromechanical
systems (Waggoner et. al. 2007), lab-on-a-chip devices (Xia et. al. 1998), and DNA
microarrays (LaFratta et. al. 2008). The power of photolithography lies in its ability to
pattern large areas at sub-micron resolution in a matter of minutes. Two issues with
photolithography are: i) the initial cost of the mask, which can be substantial if the resolution
is high; and ii) the rigidity of the mask since it cannot be altered. These issues can make
prototyping a new device via photolithography fairly expensive. An alternative patterning
method that does not suffer from these issues is direct laser writing (DLW), in which a laser
is focused to a point in a photoresist and moved with respect to the sample to generate the
pattern. One issue with DLW is the potentially long time required to cover large areas. The
method we describe here is a combined lithographic technique that utilizes the large area
patterning abilities of mask lithography and the serial patterning of direct laser writing,
which together provide high resolution patterns, in a short amount of time, and at a
reasonable cost. This combined lithography system can effectively pattern from sub-micron
to millimeter resolution with much higher throughput than DLW on its own, while offering
more pattern flexibility than plain mask lithography. This can be used as an alternative
means for creation of microfluidic masters and for prototyping microelectronics.

Others have also investigated hybrid lithography schemes such as the pairing of UV

lithography with of electron beam lithography (EBL) (Rahman et. al. 2010; Nakano et. al.



2016; Potosky et. al. 1981; Carbaugh et. al. 2017; Steen et. al. 2006; Mollard 200; Benistant
et. al. 1996; Jonckheere et. al 1995) or nanoimprint lithography (NIL) (Dhima et. al. 2012;
Scheer et. al. 2010; Montelius et. al. 2010; Reuther et. al. 2011; Scheer et. al. 2010). For
example, Kristensen et. al. report the patterning of SU-8 with EBL followed by UV lithography
resulting in features as small as about 100 nm linewidths (Gersborg-Hansen et. al.
2007). While EBL is most frequently used with positive tone photoresists to open areas for
depositing metal contacts, this work shows that by combining with UV lithography EBL can
also be used to fabricate relief structure for molds. Nanoimprint lithography (NIL) has also
been used as the first step in a sequential technique to pattern 500 nm features in SU-8
followed by a UV exposure to make contacts at the 200 um scale (Skjolding et. al. 2009).
These are attractive prototyping technologies that offer rapid pattern generation with fine
resolution. The use of direct laser writing as part of a hybrid scheme is less common, but
Eschenbaum et. al. 2013 and Muluneh et. al. 2015 devised a hybrid DLW and UV lithography
schemes for multi-scale patterning. They created high resolution patterns in three
dimensions using an ultrafast laser for two-photon polymerization. The results are
impressive showing the fabrication of a miniature 45° mirror to view particles from the side
while traveling in a microfluidic channel. Shear and coworkers have also demonstrated a
DLW system that uses the mirror array from a projector to quickly transfer a high-resolution
pattern, thereby increasing the speed of DLW. Such two-photon systems can be very
expensive and somewhat difficult to operate compared to a simple continuous wave diode
laser, which is what we report here.

In this work, we present a combined DLW and UV lithography scheme that uses both

positive and negative photoresists as a fast and flexible lithographic technique, suitable for



wafer scale definition of both millimeter and sub-micrometer scale features. Our method,
which we call Laser Augmented Microlithographic Patterning (LAMP), first exposes a
photoresist through an inexpensive transparency mask and then adds to that exposure using
a DLW system before finally developing the pattern (Figure 1). If one already has a
microscope, then it can be readily adapted into a DLW system (LaFratta et. al. 2015). LAMP
is fairly low cost, straightforward to perform, and requires only a single photoresist layer
and development step. We show that we can register the DLW features to within about 2 pm
of the mask alignment marks and can achieve sub-micron linewidths. We envision LAMP to
be an attractive alternative to expensive masks for prototyping devices for researchers. We
demonstrate two simple proof-of-principle devices, a microfluidic cell trap and an
interdigitated electrode (IDE), to show the utility of LAMP.
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Figure 1: Experimental steps involved in the laser augmented microlithographic patterning
(LAMP) procedure for both positive and negative photoresist. The photoresist is first
exposed to UV through a transparency mask, then the exposed region changes color, allowing
registration for new features to be patterned by direct laser writing (DLW). Development
yields positive (S1813) or negative (SU-8F) microstructures that can then be used for

additional steps like metal evaporation or molding.



2. EXPERIMENTAL METHOD

2.1 LAMP Procedural Overview

Experimental conditions and the optical components of our system are described in
depth in previous publications by our lab (Lafratta et. al. 2015). For positive photoresist,
Shipley S1813 (Microchem) was spun on 2” glass wafers to a thickness of approximately 1.5
um. For negative photoresist, we doped SU-8 2005 (Microchem) with fluorescein in a ratio
of 1 mg of fluorescein to 1 mL of SU-8 to yield “SU-8F”. The SU-8F was thoroughly mixed
before being spun onto 2” silicon wafers to a thickness of 5 pm. The wafers were soft baked
according to their data sheets provided by Michrochem and exposed through a transparency
mask to a 100 W mercury lamp (Blak-Ray) for 60 s. The wafers were then mounted onto an
inverted fluorescence microscope (IX-71, Olympus), which had a motorized X-Y stage
(Proscan IlI, Prior) coupled to a manual rotation stage (Thorlabs). A 405 nm continuous
wave diode laser (OBIS, Newport Corporation) was directed through a custom laser port in
the filter turret and focused through a 20X numeric aperture (NA) 0.75 objective onto the
sample. The X-Y axis of the exposed mask pattern and the microscope stage were made
parallel using the rotation stage, the laser spot was then aligned to a registration point on
the exposed mask pattern. The desired power, speed, and focal position along the optical axis
(Z-axis) could be adjusted to create lines of varying linewidth. The DLW of the photoresist
for S1813 was performed using about 300 nW, while the SU-8F required about 500 uW.
These powers were measured before the microscope, but at the sample they were 13% of
these values due to reflective loss at the mirror and because the laser overfilled the back
aperture of the objective. Following the exposure of the resist in the desired pattern, the

sample was submerged in the appropriate developer; S1813 was developed in Microposit



351 for one minute and SU-8F was post baked and developed in propylene glycol
monomethyl ether acetate for one minute. Linewidths and registration of patterned features
were characterized by scanning electron microscopy, SEM, (MIRA 3, Tescan) for several

objective lenses, power, and sample position along the Z-axis.

2.2 Baking, UV Exposure, and Development Testing

The experimental conditions were originally carried out according to their data
sheets (Microchem), but because of differences in equipment we optimized the times and
temperatures ourselves. Baking temperatures remained at 65°C and 95°C for SU-8F, but
were reduced from 115°C to 95°C for S1813. Exposure times between 45 s to 90 s, for both
resists, were tested. Additionally, development times between 5 s and 120 s were tested. All
baking, exposure, and development tests were performed using the US Airforce Test Mask

standard (USAF1951) with features resolution down to 2.19 pm.

2.3 DLW Resolution Testing

DLW of S1813 and SU-8F was tested at various speeds and powers to determine
optimal conditions for augmenting mask features. For both resists, six power studies on six
individual wafers were prepared and averaged to collected the linewidth data. For negative
tone SU-8F, the lines were defined in parallel with two perpendicular lines to help them
stand up. Following development, these lines were measured by SEM to determine the

linewidth.



2.4 Registration Testing

Registration between the mask exposed pattern and the DLW pattern was tested
using a mask having a series of rectangles regularly spaced over 25 mm, that were connected
by both horizontal and vertical lines by DLW. Following development, the patterns were
imaged by SEM and the position of the laser augmented lines was measured with respect to
the center of the target rectangles. When measuring registration data, Ax and Ay were

measured at the center (L1,R1) and at the edges (L10,R10).

o

=
[

T4 s g n g eanee ey et
00000000000 00080000000O
Figure 2: The image above shows the mask pattern (in purple) that was used to test the laser
registration (in blue). L10, L1, R1, and R10 indicate where on the wafer the measurement

were taken.

2.5 Interdigitated Electrode Fabrication

The fabrication of the interdigitated electrode (IDE) began with a transparency mask
drawn in LayoutEditor and was printed on a Mylar transparency by Advanced
Reproductions (N. Andover, MA) and was available in 24 hours for $50. The mask had
contact leads on the order of 250 pm wide and about a centimeter in length which came
together but left a gap of 1.3 mm. In the gap between leads, LAMP was used as previously
described with S1813 to add interdigitated lines about 2 pm wide with a spacing of 12.5 pym

and with a length of 200 um. Following development, the samples were placed in a thermal



evaporator (Edwards) and 2 nm of Cr was evaporated followed by approximately 50 nm of
Au. Liftoff was performed by soaking the sample in acetone for 1 hour followed by gentle

stirring, and the final sample was imaged by both optical and scanning electron microscopy.

| Direct Laser Writing

. Mask Lithography

Figure 3: The graphic above show the mask pattern that was used to make the contact wire

for the interdigitated electrode test structure.

2.6 Microfluidic Cell Trapping Array Fabrication

The microfluidic designed to trap an array of cells was also made using a Mylar mask
with a similar pattern to an IDE except it had lines that were 15 pm wide with 15 pm gaps
between them and they were 500 um long. The Si wafer was spin coated with SU-8F,
prebaked, and exposed through this mask. Next, a series of lines were drawn perpendicular
to the “IDE” pattern. After post-baking and developing, this master structure was silanized

with a fluorocarbon to make it non-stick and polydimethylsiloxane (PDMS) (Sylgard 184,



Dow Corning) was mixed, degassed, and cast onto the master. After 1.5 hours at 60°C the
PDMS was cut off the master, holes were punched, and the PDMS was placed in a plasma
cleaner (Harrick) along with a clean glass slide for 1 minute (LaFratta et. al. 2004). The air
plasma oxidized both the PDMS and the glass slide. After they were removed from the
plasma cleaner the PDMS was gently placed on the glass slide and placed in a 110°C oven for
10 minutes to irreversibly bond (Duffy et. al. 1998). Tubes were then inserted into the
previously punched holes and a dilute solution yeast cells or 5 pm silica beads were flowed
into the device. The functional device was positioned on an inverted microscope and images

of the array of cells were captured using a CMOS camera (Thorlabs).
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Figure 4: The graphic above shows the mask pattern that was used for the cell trapping
microfluidic, and the additional laser patterns added to make the microfluidic master. The
scheme also shows the flow in and out of fluid to demonstrate the flow of cells or beads and

where they would trap.
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3. RESULTS AND DISCUSSION

3.1 The LAMP Method is Dependent on the Photochromism of the Resist

When exposed to UV radiation, both S1813 and SU-8F have photochromic properties
resulting in contrast between the exposed and unexposed regions. This contrast enables the
DLW system to be aligned with the mask exposed patterns and is critical for LAMP. The
photos in Figure. 5 shows both S1813 and SU-8F before and after UV exposure. SU-8
generates a photoacid upon exposure, but shows no color or refractive index change. In
order to visualize where the pattern that had been exposed, we doped SU-8 with various
concentrations of fluorescein, which is a fluorophore and also a pH indicator. We found that
at low concentrations of fluorescein the SU-8F was slightly more yellow in the exposed
regions but there was not enough contrast to see the difference between exposed and
unexposed regions. If the fluorescein concentration were too high, for example 2 mg/mL,
then the contrast was excellent but the developed sample would frequently fall off of the
substrate, presumably because the fluorescein interrupted the epoxide polymeric
network. We found 1 mg/mL to be ideal for providing enough contrast while maintaining
the material properties of SU-8. The SU-8F, which is a clear and colorless, turns bright yellow
upon exposure due to the generation of acid and the change in the protonation of the
fluorescein molecule in acidic environments, which is yellow (Sjoback et. al. 1995). The
S1813 can be seen to photobleach upon exposure turning from clear red to clear
colorless. To enhance this color change we used a blue LED as an illumination source on our
DLW microscope. The yellow SU-8F lines absorb the blue light and appeared dark indicating

where the mask exposure took place.
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Figure. 5: Both S1813 and SU-8F show a photobleaching/photochromic effect following
exposure to UV, which enables registration between features made with a mask and those
made with the laser. Images (A) and (B) show 25 mm coverslips coated in SU-8F before and
after exposure, respectively. (C) Shows the contrast of SU-8F on the DLW microscope for the
area corresponding to the small square in (B). (D-F) are the analogous images for S1813.

The scalebars in (C) and (F) are 250 pm.

3.2 The Procedure was Optimized for Reproducible High Resolution Lines

Factors like prebaking time and temperature, UV exposure time, and development
time have an impact on the reproducibility of the resolution when working with submicron
features. For S1813, the sample was soft baked for 2 minutes at 95°C, exposed for 45 s, and
developed for 45 s. This was optimal for the USAF test mask, but for exposing the Mylar mask
for the LAMP process an exposure time of 60 s ensured the pattern was defined properly.
For SU-8F, the sample was soft baked for 1 min at 65°C and 3 min at 95°C, exposed for 60 s,

hard baked for 1 min at 65°C and 3 min at 95°C, and developed for 60 sec.

3.3 The LAMP Procedure Requires Modification of an Inverted Fluorescence Microscope

In order to write accurate laser lines with respect to the mask exposed pattern, the laser and
the mask systems need to be squared together. This was achieved with a manual rotation

stage (Thorlabs) that was affixed to a custom mount machined to fit inside of the
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microscope’s 96-well plate holder. This held the sample at the proper focal height, while
adding adjustability in theta. Using the contrast between exposed/unexposed photoresist

and the rotational stage, the pre-exposed pattern could be adjusted so that it was squared

with the X-Y axis of the microscope stage.

Figure 6: Shows images of the manual rotation stage mounted to a 96 well pate holder for
an Olympus IX-71. The left image shows the clips for mounting the sample and the image on

the right shows the rotational nob.

3.4 Mask Design

The mask was designed with an array of features to demonstrate the viability of the LAMP
technique. The transparency masks was drawn in LayoutEditor and were printed on a Mylar
transparency by Advanced Reproductions (N. Andover, MA). The primary designed had two

major features: a bar through the middle of the mask, and a centering dot. The 26,000 um
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bar was used to square the mask pattern as described above. The centering dot was used to
tell the program where the center of the mask was. Once the program knew where the center
was and the pattern was squared, we could write laser lines in (x,y) coordinates with respect
to the existing mask pattern. The mask also included a series of rectangles which were used
for registration (Figures 2 & 7) and a series of test structure features. Additional masks
included contact wires for IDEs and the base pattern for the cell trapping microfluidic

(Figures 3 & 4).
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Figure 7: The registration test mask design in LayoutEditor. The “L-shaped” brackets at the
edges are 2 inches apart. The inner brackets are 1 inch apart. The smallest feature size is

down to 25 pm.

3.5 Sub-micron wide lines can be made by DLW

Using a 20x 0.75 numerical aperture (NA) objective, sub-micron features can be

created by our DLW system. Figure 8 shows electron micrographs of some typical lines
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fabricated at 40 pm/s for S1813 and 10 um/s for SU-8F. The narrowest lines we could
reproducibly write were 780 * 140 nm wide for S1813 and 950 * 90 nm for SU-8F. The line
height was equal to the film thickness, which was close to 1 pm for S1813 and 5 pm for SU-
8F. Other speeds were tested for both photoresists ranging from 5 - 50 um/s. Faster speeds
gave smaller lines that were irreproducible and that sometimes did not develop completely

down to the substrate (s1813) or resulted in wavy lines that partially delaminated (SU-8F)

2500 2500

S1813 SU-8F
2000 2000

1500 1500

1000

Line Width (nm)
Linewidth (nm)

1000

500 500

200 300 500 700 300 400 500 600
Power (nW) Power (UW)

Figure 8: Linewidth data for varying powers using a 20x NA = 0.75 objective. S1813 lines
were written at 40 pm/s and SU-8F lines were written at 10 pm/s. The inset show typical

SEM micrographs for these samples (scalebars are 10 pm).

3.6 Patterns can be Registered by DLW to Within About 2 um on Existing Patterns

When performing DLW, the first step is to register the position of existing features that were
made during the mask exposure. This is possible because of the contrast between the
exposed and unexposed regions and because the DLW system is itself a microscope where
we can directly image the sample while simultaneously exposing it. We tested how
accurately and precisely we could position the laser beam on the DLW system using a test

pattern that contained dozens of rectangles spanning the length of the mask. By drawing
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lines from the center of one rectangle to the next and measuring the distance of the line from
the center point, we obtained measurements for Ax (horizontal) or Ay (vertical). Figure 9
shows a schematic of a portion of the mask and how we define Ax and Ay. Ax (or Ay) is
calculated by measuring the distance of the line to both edges of the rectangle then the
difference between these numbers is divided by two (Figure. 9c). If the line is perfectly
centered then both distances to the edge will be the same and Ax will be 0. We define the
radius, Ar, within which we can position the laser focal point as Ar = (Ax? + Ay?)*. Hundreds
of lines were measured on more than a dozen different wafers to give and an average Ar of
1.6 + 1.4 pym for S1813 and 2.2 + 1.5 um for SU-8F. These numbers are reasonable given the
accuracy and precision of the transparency mask. We believe the Ar is slightly smaller for
S1813 because its contrast is more pronounced than that of SU-8F, making it easier to
pinpoint the edge of an exposed area. Since the use of a mask in LAMP is intended to pattern
large features quickly, it is likely the case that registering smaller features to within about 2
um is sufficiently accurate; if it is not, then more intermediate sized features can be made by

DLW to better marry the large-scale pattern to the smaller scale.



18

Figure 9: (A) Schematic of the rectangles on the mask that were used for registration
marks. The thin red lines were drawn with the laser and their distance from the center of
the rectangle, either Ax or Ay, was measured by imaging with the SEM. (B) Typical set of
laser augmented registration lines. (C) Close-up of a registration rectangle showing how Ax

was measured and calculated

3.7 Proof of Principle Structures

In addition to the characterization samples for linewidth and registration we also
used LAMP to make two proof-of-principle devices, one each for the positive- and negative-
tone photoresists. S1813 was used to pattern a simple interdigitated electrode have large
contact wires that lead into electrodes that are 3 um wide. The SU-8F was used to create a
microfluidic chip having both large channels and very small ones that act as a filter to trap

objects like beads and cells.
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3.7.1 Interdigitated electrode

Interdigitated electrodes (IDEs) are planar capacitors with high surface area and are
useful for electrochemical impedance spectroscopy (Ohno et. al. 2013). The IDE we
fabricated by LAMP occupies an area of approximately 200 x 200 um and took only a couple
of minutes to pattern. The IDE was connected to leads that were over a centimeter long and
were made by a mask exposure. Had these leads been made with the laser it would have
taken hours to expose such a large area even if the speeds and powers were
doubled. Following LAMP, the IDE sample was gold coated and liftoff was performed leaving
the electrode on glass, which was imaged by reflectance microscopy (Figure 10). The inset
image in Figure 10 shows that the individual lines are about 3 pym wide, 200 pm long, and
spaced 12.5 pm apart. Such IDEs have been used in microfluidic channels for electrochemical
impedance spectroscopy of cells and bacteria (Varshney et. al. 2009; Wang et. al. 2009;

Dweik et. al. 2012)
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Figure 10: Optical micrograph in reflectance mode of an interdigitated electrode (IDE)
patterned by LAMP using S1813 photoresist. The inset shows a close-up view of the same

IDE.

3.7.2 Cell Trapping Microfluidic

Another application of LAMP using the negative tone resist SU-8F is for the creation
of microfluidic masters. A cell trapping array was fabricated by using a mask for an IDE like
pattern and the laser was used to define 2 um channels between the prongs. Following
development and PDMS molding, the mold was bonded to a glass slide. The result was
micron-scale channels in the location where the SU-8F was polymerized. 5 pm silica beads
were flowed in an aqueous solution through these channels and were trapped at the
intersection points between the laser drawn channels and the larger mask patterned
channels (Figure 11). As with other examples of soft lithography, the master could be used
repeatedly to generate new microfluidic molds. We used another mold to trap S. cerevisia

cells in a similar device. Devices that create arrays like this could be useful for multiplexed



21

single-cell assays, for size sorting particles or cells, or for mechanical deformability assays of
cells (Wlodkowic et. al. 2009).

The power of LAMP is that making and testing these types of devices is very quick
because the variable features, which are written with the laser, can be made in minutes and
the lead-in channels, and the features which are made with the mask, need not change
between prototypes. Thus LAMP enables prototyping with the “fail fast” mantra to quickly

troubleshoot and optimize a design before committing to an expensive mask for mass

production.

Figure 11: The image on the left shows an array of trapped 5 um diameter silica beads in a
PDMS microfluidic device containing green dyed water (scale bar is 50 um). The right image

shows an array of trapped S. cerevisia cells in a similar device (scale bar is 30 um).
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4. CONCLUSION

In this work, we demonstrated a new hybrid lithography technique that combines
conventional mask-based UV lithography with DLW to compensate for the drawbacks of
each. Using Laser Augmented Microlithographic Patterning, LAMP, we showed that sub-
micron laser written features could be registered to larger mask patterns to within about 2
um in both positive- and negative-tone photoresist. We demonstrated an interdigitated
electrode and a microfluidic device as typical examples of our LAMP technique. We hope
that others who have access to a DLW system, will consider using it to augment conventional

lithography to increase the speed and efficiency with which they can generate their samples.
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6.2 APPENDIX B: SU-8F Registration Data

From SEM measurements
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Wafer 1 DX DY Avg. DX Avg. DY Middle DX Middle DY End DX End DY
L10 1.134833333 4.77525  1.217541667 2.38003125 0.970416667 0.63075 1.464666667 4.1293125
L1 1.160833333 0.89625
R1 0.78 0.36525
R10 1.7945 3.483375
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Total Avg 1.088538889 1.186270833 Middle Avg. 0.807111111  0.709020833 End Avg. 1.369966667  1.663520833 how to use dy to find theta
n=144 n=96 n=72 n=48 n=72 n=49 the bar is 26,000um and is 1.66 um off
0.0036581149332 degree
SU-8F dx dy dx dy dx dy 0.000063846150000554 radians
Total Avg 1.432199135 1.783013807 Middle Avg. 1.385958076  1.385963498 End Avg. 1.478440193  2.180064116
n=120 n=80 n=60 n=40 n=60 n=40
51813 SU-8F
Total Average Middle Average End Average Total Average Middle Average End Average
dx dy dx dy dx dy dx dy dx dy dx dy
1.09 119 0.81 0.71 137 1.66
n=144 n=96 n=72 n=48 n=72 n=48
Total Center Outside Total Center Outside
dx 1.09 0.81 137 dx 143 139 1.48
dy 1.19 0.71 1.66 dy 1.78 1.39 2.18
nx= 144 72 72 nx= 120 60 60
ny= 9% 48 48 ny= 80 40 40

0.286257018  0.623381041

Total (S1813) Center (S181; Outside (S18 Total (SU-8F) Center (SU-81 Outside (SU-8F)

dx 1.09 0.81 1.37 143 139 148
dy 1.19 0.71 1.66 1.78 139 2.18
nx= 144 72 72 120 60 60

ny= 96 48 48 80 40 40
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