
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Fall 2017 Bard Undergraduate Senior Projects

Fall 2017

Thinking Outside The Box: Computing 3D Volume in 2D Thinking Outside The Box: Computing 3D Volume in 2D

Alexandra D. Morris
Bard College, am5246@bard.edu

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_f2017

 Part of the Graphics and Human Computer Interfaces Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Morris, Alexandra D., "Thinking Outside The Box: Computing 3D Volume in 2D" (2017). Senior Projects Fall
2017. 28.
https://digitalcommons.bard.edu/senproj_f2017/28

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_f2017
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_f2017?utm_source=digitalcommons.bard.edu%2Fsenproj_f2017%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.bard.edu%2Fsenproj_f2017%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_f2017/28?utm_source=digitalcommons.bard.edu%2Fsenproj_f2017%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Thinking Outside The Box:Computing 3D
Volume in 2D

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Alexandra Morris

Annandale-on-Hudson, New York
December, 2017

ii

Abstract

This project explores how to compute 3D volume of cardboard boxes in 2D without a calibrated
camera. Computer vision techniques to obtain 3D volume typically require camera calibration,
the standard method for mapping 3D points to 2D. We created our own solution that doesn’t rely
on camera calibration and obtains the areas of each box with unknown dimensions with the help
of chessboard pattern placed on each box side. The solution is a proportion that given the box
area in pixels, chessboard pattern in pixels, and the chessboard pattern in inches, determines the
box area in inches. We tested this method on 20 boxes, 5 pictures of each side for one box. The
results showed positive feedback compared with the defined areas/ volumes and compared with
the results of our Homographies. Ultimately we determined that our solution has the potential,
with improved photos, test methods, etc. to accurately find an unknown box’s volume given only
the provided 2D data.

iv

Contents

Abstract iii

Dedication vii

Acknowledgments ix

1 Introduction 1
1.1 Motivation . 1

2 Background 3
2.1 Pin-Hole Cameras . 3

2.1.1 Homogeneous Coordinates . 3
2.1.2 Transformations . 4
2.1.3 Camera Calibration . 6
2.1.4 Homographies . 7

2.2 Resources . 7
2.2.1 OpenCV . 7

3 Methods and Execution 9
3.0.1 Proposed Algorithm for finding area . 10
3.0.2 Homographies . 15

4 Results 17
4.0.1 Algorithmic Results . 17
4.0.2 Homography Results . 28

5 Discussion 33
5.1 Challenges/ Limitations . 33
5.2 Conclusions . 36

6 Future Directions 39

vi

7 Appendix 41

Bibliography 61

Dedication

I would like to dedicate my research to my parents who have relentlessly cultivated my curiosity
and guided me to be disciplined in order to achieve my goals. In addition I dedicate my project
to my sister Avery, who is the best sister that anyone could ask for. In addition, I thank my
Grandma, Aunt Frannie and Uncle Richard, for their unrelenting generosity and encouragement.
Without them, this project might not have happened.

viii

Acknowledgments

I thank and acknowledge Keith for guiding me along the way and initiating and cultivating
my fascination with computer vision. I am indebted to his support, in addition to the support
from the other computer science faculty, Sven and Becky who similarly have been profound
inspirations in my life.

x

1
Introduction

1.1 Motivation

You are taping up boxes of winter gear to put away in storage. In anticipation of having more

than the average amount of boxes, you call the storage facility and request a large unit. Now

that the boxes are all packed up, you load them into the car, and drive to the storage unit. After

unloading and placing the boxes in the unit, you realize you’ve made a terrible mistake; you’ve

rented out a unit twice the size of all your boxes. Precision in the process of moving, whether

it involves keeping track of your belongings in each box or knowing the total amount of goods

you are storing, is a field that lags behind in fulfilling modern technology’s potential. At the

end of each school year, Bard students face this dilemma with regards to moving. Bard College

requires that each student move his/her belongings out of his/her dorm for the summer. Each

year, students become over sized storage unit victims and overpay for something that should

be so simple. Through this study, we investigate how to obtain a box’s volume (with unknown

dimensions) without using camera calibration, which is the standard method for mapping 3D

points to 2D.[2] Not only is obtaining box size data important for individuals planning on

moving or renting a storage unit, but imagine the negative financial repercussions of a UPS

employee who isn’t sure how many boxes he/she can fit in his truck? Envision a company that

manages a large amount of inventory overpaying for an over sized space thus setting them back

2 1. INTRODUCTION

financially? In addition, according to the United States Census Bureau, young adults have the

highest migration rate compared to any other generation and account for 43% of movers[7]. Due

to this statistic, the Millennial generation, which relies heavily on smart phone assistance would

benefit greatly from a program to detect box sizes in order to improve their moving experiences.

Gaining 3D data (without relying on camera calibration) for any box size is not only a fascinating

computer vision problem, but if well executed, there could be an economic demand to solve this

problem for the Millennial generation. In this project, we ask: Can we accurately obtain a box’s

volume of unknown dimensions using an uncalibrated camera? We created our own solution that

doesn’t rely on camera calibration and obtains the areas of each box of unknown dimensions

with the help of chessboard pattern placed on each box side. The solution is a proportion that

given the box area in pixels, chessboard pattern in pixels, and the chessboard pattern in inches,

determines the box area in inches. We tested this method on 20 boxes, 5 pictures of each side

for one box and obtained positive results that were similar to our defined data.

2
Background

2.1 Pin-Hole Cameras

2.1.1 Homogeneous Coordinates

Homogeneous coordinates are essentially cartesian coordinates
[
x, y
]

with the addition of another

parameter: w, or the scalar.

ṽ =

xy
w


Homogeneous coordinates are widespread within computer vision as they enable transforma-

tions such as translation, rotation, scaling and perspective projection to be represented as a

matrix by which the homogeneous coordinate vector is multiplied. Homogeneous coordinates

can be used for both 2D and 3D points making them incredibly versatile[1].

ṽ =


x
y
z
w


In addition, it is very simple to convert homogeneous coordinates to non-homogeneous coor-

dinates. All you need to do is divide all parameters by the scalar, w[1].

ṽ =

xy
w

 → [
x/w
y/w

]
= v

4 2. BACKGROUND

If you have a non-homogeneous point and want it to be homogeneous, all you need to do is

add the additional scale parameter, and normalize it making w = 1. [1]

v =

[
x
y

]
→

xy
1

 = ṽ

2.1.2 Transformations

Homogeneous coordinates are essential to completing nearly all computer vision geometric trans-

formations that account for perspective. But first, it is necessary to understand the pin-hole

camera model.

Much of computer vision assumes the pin-hole camera model (also known as camera obscura).

Solem writes about the pin-hole camera in Programming Computer Vision with Python:

“The name comes from the type of camera, like a camera obscura, that collects light through

a small hole to the inside of a dark box or room. In the pin-hole camera model, light passes

through a single point, the camera center, C before it is projected in front of the camera center.

The image plane in an actual camera would be upside down behind the camera center, but the

model is the same[2].”

A camera obscura is in its basic form a box with a hole on one side. Light passing through

that hole forms an inverted image of the object on the opposite side of the box [10].

[10]

In the following camera obscura model,we define variables enabling a variety of calculations.

2.1. PIN-HOLE CAMERAS 5

[2]

In the pin-hole camera model, C represents the camera center and f is the focal length or

distance from the camera center to the image plane. The image point, c = [cx, cy] is where the

optical axis intersects the image plane[2]. X is the 3D point, and x is the 2D image point.

We can use the pin-hole camera model to perform transformations allowing us to manipu-

late images. With the additional help of homogeneous coordinates, we can perform translation,

rotation, scaling, perspective projections, and calibrate cameras.

6 2. BACKGROUND

[1] The calibration matrix is composed of translation and rotation transformations.

2.1.3 Camera Calibration

We can model the pin-hole camera by a matrix that maps 3D points to 2D[2]. We first find the

camera matrix, which includes many of the same variables from the Pin-Hole camera model.

The intrinsics matrix (K) includes the focal length and the image point (c).

K =

fx 0 cx
0 fy cy
0 0 1


Next the camera matrix (P) is obtained when the intrinsics matrix is multiplied by the ex-

trinsics matrix [R | t].

P = K[R | t]

Finally, the camera matrix is multiplied by the 3D point (X) to determine the 2D point (x).

x = PX

Camera calibration is the process of finding P (the camera matrix) from 3D/2D corresponding

coordinates, though for this study, it is unnecessary and we work only with 2D planes.

2.2. RESOURCES 7

2.1.4 Homographies

Homographies are essentially projective transformations as indicated above.See figure 2.1.2 They

are used to map points from one projective space to another[2]. The concept of mapping one

projective space to another can be seen in this image.

[11]

We used the OpenCV library’s function getPerspectiveTransform() in order to obtain our

homography data.

2.2 Resources

2.2.1 OpenCV

We used the OpenCV library as the basis of our project. The OpenCV Library, or Open Com-

puter Vision Library is an open source computer vision and machine learning library. It con-

tains more than 2500 optimized algorithms ranging from face detection, to camera calibration,

to augmented reality. This Library can be used in Python, C++, and Java[5]. Due to the

simple interface, we decided to use Processing, a more user-friendly, graphically minded Java

platform. We began using the data structures PVectors and Mat, and the OpenCV functions

findChessboardCorners() and getPerspectiveTransform().

PVectors are essentially 2 or 3 dimension vectors that take both magnitude and direction as

inputs. The PVector class has convenient functions that allow obtaining magnitude, direction,

multiplying or adding vectors simple. We incorporated PVectors in order to acquire both the

box and chessboard areas, enabling us to accurately calculate the area of a box side in pixels.

8 2. BACKGROUND

Though we used findChessboardCorners() for a majority of the study, we ended up not using

it as it presented too many bugs to enhance our program.

findChessboardCorners() takes a grid chessboard image and determines the 2D pixel loca-

tions of the corners.

10 3. METHODS AND EXECUTION

3
Methods and Execution

3.0.1 Proposed Algorithm for finding area

	

	

	
 	
 	
 	
 	
 	
 	
 	
 A	

	

	
 	
 	
 	
 	
 	
 C	

	
 	
 h	
 	
 	
 	
 	
 	
 B	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 w	

	
 	
 	
 	
 	
 	
 	
 l	
 	

	

	

	

11

1. Load box side image.

The box sides are categorized as the following:

Plane A = l ∗ w

Plane B = l ∗ h

P lane C = w ∗ h

Each image is identified as: BoxIdentifier PlaneType PictureNumber.jpg

2. Enter the number of chessboard squares in pop-up window.

The chessboard number only includes squares that have a clear boundary edge.The user clicks

on the 4 corners (clockwise, starting from top left) that make up the perimeter of the chessboard

region.

3. The user clicks on the 4 corners of the box plane region, clockwise, starting

from top left.

12 3. METHODS AND EXECUTION

4. Compute the real area (in inches) of the chessboard region.

chessRealArea = .828 ∗ box num

.828 is the area of one single chessboard square.

5. The areas (in pixels) of the box side and chessboard region are calculated

6. The real area (in inches) is found using the following proportion

Chessboard region area (PX)

Box P lane Region (PX
=

Chessboard region area (IN)

Box P lane Region (IN)

Box P lane Region (IN) =
Box P lane Region (PX) ∗ Chessboard region area (IN)

Box P lane Region (PX)

The user defines the chessboard region to have 24 squares as sectioned off in the above image

(for the majority of the images). The corners of the box side region are shown in blue. Our area

finding algorithm is repeated for each of the three planes.

To find the pixel areas, we needed to ensure that our algorithm was adaptable for any quadri-

lateral, as the pixel areas are not specifically defined quadrilaterals as they would be in real

world areas. Given that we had 4 PVectors (each being one of the clicked corners), we found

two parallel angles within the quadrilateral. Then, we extracted the lengths of all the sides, and

calculated the following area:

area = .5 ∗ (a ∗ b) ∗ sin(ang AB) + .5 ∗ (c ∗ d) ∗ sin(ang CD)

a , b , c , d are the distances between corners

13

ang AB = the angle in between distance a and b

ang CD = the angle in between distance c and d

While each side’s area is being found, the length, width, and height of the box (in inches) are

not able to be obtained as our ratio only relates area, not side measurements. Thus, we needed

a way to determine the volume of a box with only the three given areas. Using substitution, we

found a succinct formula for the box’s volume in inches.

Given that-

Plane A = l ∗ w

Plane B = h ∗ l

P lane C = h ∗ w

from the formula,

V = l ∗ w ∗ h

the volume of a box is

V olume = Plane B ∗
√

Plane C ∗ Plane A

Plane B

.

By substitution:

V = l ∗ w ∗ h

V = B ∗ w

and,

A = l ∗ w

l =
A

w

Then,

B = h ∗ l

14 3. METHODS AND EXECUTION

B = h ∗ A
w

w

A
∗B = h ∗ A

w
∗ w
A

w

A
∗B = h

Similarly,

C = h ∗ w

h =
C

w

Next,

w

A
∗B = h

w

A
∗B =

C

w

A

w
∗ w
A
∗B =

C

w
∗ A
w

B =
C ∗A
w2

1

C ∗A
∗B =

C ∗A
w2

∗ 1

C ∗A
B

C ∗A
=

1

w2

B ∗ w2 = C ∗A

B ∗ w2

B
=

C ∗A
B

√
w2 =

√
C ∗A
B

w =

√
C ∗A
B

Finally,

V = l ∗ w ∗ h

V = B ∗ w

V olume = Plane B ∗
√

Plane C ∗ Plane A

Plane B

.

15

3.0.2 Homographies

The homography method used to verify our algorithm has two components. First, we find the

homography that maps the chessboard pixel corners to the chessboard inch corners. Since the

chessboard squares each have a pre-measured side length, we could easily obtain the chessboard

coordinates in inches.

The built in OpenCV homography function called getPerspectiveTransform() accepts the 4

outer chessboard pixel coordinates as matrices. This function takes two matrices the source and

the destination. It returns the 3x3 homography matrix. Still using homogeneous coordinates, we

need to relate the resulting homography (H) to the box area pixel corners. In order to do this,

we take our 3x4 matrix of all the box area pixel corners and use matrix multiplication to merge

it with our H. Finally we convert the resulting 3x4 matrix to non-homogeneous coordinates and

obtain the real area of each side in inches.

The homography algorithm to find the real areas (in inches) works as follows:

1. We input the total number of chessboard squares, and pre-define the chessboard square length

thus the chessboard area is determined.

2. The user inputs:

-the chessboard area pixel coordinates by clicking on the corners.

-the box area pixel coordinates by also selecting the corners.

3. The OpenCV function getPerspectiveTransform() is called and returns the homograpy

matrix.

4. The homography matrix is multiplied by the box area pixel coordinates to obtain the real

area in inches.

16 3. METHODS AND EXECUTION

4
Results

4.0.1 Algorithmic Results

For the majority of our tests, we used International Paper boxes, a box company that Amazon

commonly uses to ship their products. International Paper boxes were a convenient option as

each box had a labeled identifier (e.g 1A7 or 1AD) and the dimensions of these boxes were easy

to obtain online [9]. Soon after evaluating the pre-measured International Paper box dimensions,

we determined that the length, width, and height of the boxes are measured when the box is

flat packed. Thus for the other boxes which we measured by hand, we made the necessary

adjustments to have the measurements consistent with International Paper’s measurements.

18 4. RESULTS

A Flat-packed box.

[12]

[13]

The equipment used to obtain our results included an iPhone camera, 20 brown cardboard

boxes (International Paper Brand, Target, Lowes, etc.), a printed copy of OpenCV chessboard

pattern, packing tape, and a gray backdrop (which provided enough contrast to the brown

boxes) [4] [9].

For our volume algorithm tests, we had the following assumptions:

1. There are chessboard squares in a grid on each box surface.

2. The box surface is flat and parallel to the chessboard square sheet of paper.

3. All box side corners are visible.

These are the following types of images in our dataset:

19

1. The image plane is parallel to the 3D points and there are 24 chessboard squares counted.

2. The image plane is parallel to 3D point and less chessboard squares are on the box sides.

3. The smaller box surface and chessboard square pattern extend beyond the side’s area.

20 4. RESULTS

4. 24 square image with distortion

5. The image contains less than 24 squares and the image is distorted.

The boxes we tested ranged in volume between 160in3 to 6672.75in3. We tested our algorithm

on 20 boxes, 5 images per box side, thus 15 images per box. The results and data extracted from

these tests are listed below.

21

Table 4.0.1. Volume Comparisons
Box Avg Volume Defined Volume Volume Avg Error
A3 or BY1 383.07 367.50 4.24%
Shar 153.15 224.86 31.89%
int paper 1AD BNA 280.70 448.88 37.47%
LLBean 330.77 550.00 39.86%
Target model 439 sm 1385.50 1653.75 16.22%
N3 or B41 617.94 1023.75 39.64%
CVS box 2383.09 3655.39 34.81%
Lowes Box 1824.99 2304.00 20.79%
Int Paper 1A5 B45 596.10 705.38 15.49%
int paper 0A0 94.61 135.28 30.06%
Int paper A4 550.63 714.00 22.88%
Int paper 1A7 702.78 841.00 16.44%
int paper BP0 122.75 160.00 23.28%
int paper 2AA 1356.58 1632.00 16.88%
int paper 2A0 1873.55 2240.00 16.36%
int paper BP1 226.97 283.22 19.86%
int paper 2A5 785.14 935.00 16.03%
int paper 2A8 3822.86 4446.00 14.02%
int paper 3A1 6652.82 6672.75 0.30%
int paper B0 1820.16 2057.00 11.51%

Table 4.0.2. Area Average Compared With True Areas
Box length width height Defined Area (A) Defined Area (B) Defined Area (C)
A3 or BY1 10 7 5.25 70.00 52.5 36.75
Shar 10.25 6.75 3.25 69.19 33.3125 21.9375
int paper 1AD BNA 13.5 9.5 3.5 128.25 47.25 33.25
LLBean 13.75 8 5 110.00 68.75 40
Target model 439 sm 17.5 13.5 7 236.25 122.5 94.5
N3 or B41 16.25 12 5.25 195.00 85.3125 63
CVS box 21.65 13.4 12.6 290.11 272.79 168.84
Lowes Box 16 12 12 192.00 192 144
Int Paper 1A5 B45 13.5 11 4.75 148.50 64.125 52.25
int paper 0A0 9.25 6.5 2.25 60.13 20.8125 14.625
Int paper A4 12 8.5 7 102.00 84 59.5
Int paper 1A7 14.5 8 7.25 116.00 105.125 58
int paper BP0 10 8 2 80.00 20 16
int paper 2AA 24 16 4.25 384.00 102 68
int paper 2A0 20 16 7 320.00 140 112
int paper BP1 13.25 9.5 2.25 125.88 29.8125 21.375
int paper 2A5 20 11 4.25 220.00 85 46.75
int paper 2A8 26 19 9 494.00 234 171
int paper 3A1 31 20.5 10.5 635.50 325.5 215.25
int paper B0 17 11 11 187.00 187 121

22 4. RESULTS

Table 4.0.3. Algorithmic Results
Box (A) Min Error (B) Min error (C) Min Error (A) Max Error (B) Max Error (C) Max Error
A3 or BY1 8.05% 0.40% 5.53% 13.29% 5.45% 34.87%
Shar 0.50% 9.09% 6.38% 4.05% 15.17% 18.97%
int paper 1AD BNA 0.89% 10.12% 1.14% 16.21% 14.74% 9.25%
LLBean 0.73% 7.29% 2.70% 8.44% 16.20% 12.65%
Target model 439 sm 0.18% 17.98% 9.13% 10.82% 36.59% 23.82%
N3 or B41 0.77% 0.28% 0.84% 4.47% 13.49% 43.42%
CVS box 0.40% 1.36% 3.04% 7.12% 9.17% 9.93%
Lowes Box 6.09% 6.66% 10.56% 10.70% 10.70% 21.04%
Int Paper 1A5 B45 9.81% 16.32% 8.61% 16.16% 23.16% 16.83%
int paper 0A0 0.67% 0.91% 3.06% 13.23% 7.41% 14.75%
Int paper A4 11.28% 1.13% 6.80% 13.80% 11.88% 12.98%
Int paper 1A7 18.18% 6.98% 10.18% 23.43% 10.00% 17.30%
int paper BP0 10.00% 1.10% 0.51% 19.68% 4.68% 20.29%
int paper 2AA 13.97% 7.51% 13.20% 15.96% 12.93% 21.32%
int paper 2A0 15.68% 8.97% 13.50% 17.04% 14.20% 18.89%
int paper BP1 13.09% 4.33% 2.54% 18.72% 12.20% 20.64%
int paper 2A5 11.21% 11.23% 10.68% 14.35% 20.39% 21.69%
int paper 2A8 13.05% 12.96% 15.75% 15.66% 19.58% 22.09%
int paper 3A1 13.74% 50.64% 18.68% 17.77% 55.36% 23.15%
int paper B0 11.02% 18.78% 20.50% 19.35% 21.36% 24.77%

23

Table 4.0.4. Algorithmic Results
Box (A) Avg Error (B) Avg Error (C) Avg Error
A3 or BY1 4.42% 2.36% 16.43%
Shar 0.83% 10.70% 9.29%
int paper 1AD BNA 5.09% 12.77% 1.40%
LLBean 3.82% 12.13% 8.14%
Target model 439 sm 1.81% 24.95% 18.44%
N3 or B41 2.41% 4.51% 16.08%
CVS box 2.73% 0.57% 5.67%
Lowes Box 8.25% 7.91% 15.30%
Int Paper 1A5 B45 13.58% 19.87% 12.61%
int paper 0A0 5.18% 1.72% 8.86%
Int paper A4 12.54% 4.27% 8.81%
Int paper 1A7 21.31% 8.57% 13.81%
int paper BP0 13.92% 0.16% 10.73%
int paper 2AA 14.86% 10.84% 16.51%
int paper 2A0 16.43% 11.29% 15.89%
int paper BP1 15.76% 8.32% 9.95%
int paper 2A5 12.63% 15.09% 16.78%
int paper 2A8 14.48% 16.39% 19.12%
int paper 3A1 15.51% 52.24% 21.34%
int paper B0 14.58% 19.80% 22.46%

24 4. RESULTS

Table 4.0.5. Algorithmic Results
Box Min A Max A Min B Max B Min C Max C
A3 or BY1 63.49 79.30 49.64 53.81 38.78 49.57
Shar 66.38 71.52 36.34 38.36 17.78 23.40
int paper 1AD BNA 107.46 130.52 40.29 42.47 32.35 36.33
LLBean 100.72 109.20 57.61 63.74 34.94 38.92
Target model 439 sm 223.35 261.82 144.53 167.32 103.13 117.01
N3 or B41 186.28 196.50 74.32 96.82 35.64 65.29
CVS box 269.46 304.77 256.04 297.82 152.08 163.71
Lowes Box 203.69 212.54 204.79 212.55 159.21 174.29
Int Paper 1A5 B45 163.07 172.50 74.59 78.97 56.75 61.04
int paper 0A0 52.17 60.53 20.46 22.36 14.18 16.78
Int paper A4 113.51 116.07 82.99 93.98 63.55 67.22
Int paper 1A7 137.09 143.18 112.46 115.64 63.91 68.03
int paper BP0 88.00 95.74 19.34 20.94 15.92 19.25
int paper 2AA 437.66 445.27 109.66 115.18 76.97 82.50
int paper 2A0 370.17 374.53 152.56 159.88 127.12 133.15
int paper BP1 142.35 149.43 31.10 33.45 21.92 25.79
int paper 2A5 244.66 251.56 94.54 102.34 51.74 56.89
int paper 2A8 558.48 571.37 264.33 279.83 197.94 208.77
int paper 3A1 722.83 748.46 490.33 505.69 255.46 265.08
int paper B0 207.60 223.18 222.13 226.94 145.81 150.97

25

By manually entering the total number of chessboard squares, we guarantee that in each im-

age, the chessboard squares are arranged in a quadrilateral shape. After we obtained the areas

for each side of every box, we used the following calculations to help evaluate our algorithm’s

accuracy:

1.

Error For Box P lane =
|Defined Area− Test Result Area|

Defined Area

2.

V olume = Plane B avg ∗

√
Plane C Avg ∗ Plane A Avg

P lane B Avg

3.

V olume Average Error =
|Defined V olume − Test Result V olume|

Defined V olume

26 4. RESULTS

	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

De-ined	

Volume	

Test	
 Result	

Average	

Volume	

Our results can also be viewed in the below column chart for easy comprehension. Our algo-

rithm worked for the distorted and undistorted images. This result along with successful tests

gave our area obtaining ratio validity.

Box A3 Distorted Image:
64.36 square inches

Box A3 Undistorted Image:
63.73 square inches

27

Box A3 Distorted Image:
49.64 square inches

Box A3 Undistorted Image:
49.84 square inches

10.25 x 6.75 x 3.25 Distorted Image:
130.52 square inches

10.25 x 6.75 x 3.25 Undistorted Image:
129.39 square inches

Target Box Distorted Image:
261.82 inches Target Box Undistorted Image:

236.67 square inches

Box A4 Distorted Image:
76.57 square inches

Box A4 Undistorted Image:
74.59 square inches

28 4. RESULTS

4.0.2 Homography Results

As discussed previously, we decided to use homographies to use as evidence that our proposed

algorithm produces similar results. The homography results were very successful. Though we

didn’t test the homography program on all of our box images, the results are pretty much spot

on with the pre-defined box areas.

Table 4.0.6. Plane A: True Values vs. Our Results vs. Homography
Box Our Test Result Avg (Plane A) Plane A Defined Area Plane A Area: Test 1 Plane A Area: Test 2
A3 or BY1 66.91 70.00 53.78 64.86
Target model 439 sm 240.53 236.25 201.73 192.10

29

Table 4.0.7. Plane B: True Values vs. Our Results vs. Homography
Box Our Test Results (Plane B) Plane B Defined Area Plane B Area: Test 1 Plane B Area: Test 2
A3 or BY1 51.26 52.5 39.69 41.37
Target model 439 sm 153.07 122.50 120.77 123.28

30 4. RESULTS

Table 4.0.8. Plane C: True Values vs. Our Results vs. Homography
Box Our Test Results Avg (Plane C) Plane C Defined Area Plane C Area: Test 1 Plane C Area: Test 2
A3 or BY1 42.79 36.75 33.49 35.33
Target model 439 sm 111.92 94.50 94.54 93.48

31

In this diagram, the areas for the first box, plane A are not as accurate due to the fact that the

areas in the images are not exactly flat as we were not consistent in taping down the box flaps.

Though this doesn’t necessarily justify our algorithm as being a method to find the volume of

any box, the similar feedback between the homography and our proposed algorithm results is

evidence that our method has the potential to be valid.

32 4. RESULTS

5
Discussion

5.1 Challenges/ Limitations

Over the course of this project, we faced a fair number of challenges and limitations that pre-

vented certain aspects of the project from becoming reality.

The first significant hurdle we encountered was the OpenCV findChessboardCorners() func-

tion. Though initially we aimed to use this function to automatically determine the number of

small chessboard squares in each image, the function had too many problems in actually detect-

ing the corners, that using it would make the results faulty. This function returned three types

of erroneous feedback:

a. Detected no corners

34 5. DISCUSSION

b. Detected too few corners

c. Detected too many corners and/ or in the wrong locations

5.1. CHALLENGES/ LIMITATIONS 35

Due to the temperamental nature of the findChessboardCorners() function, we resorted in

having the user click on the outer four chessboard corners as well as the outer box area corners.

This solution was not ideal but due to the time constriction, was necessary.

Relying on the user to click the outer box and chessboard region corners showcased other limita-

tions in our program. Not only does having the user click on the corners increase the likelihood

of inaccuracies, but we learned that there are likely discrepancies between the initial box mea-

surements (determined when the boxes are flat-packed in 2D) and when they are measured after

being constructed in 3D. When a box is assembled, often the length, width, and height are

amplified because of how a box is folded. Since the user clicks on the corners while the box is in

3D, this might have caused discrepancies in the outcome.

In addition, the data set of images could have been more precise. In many of the photos, the

box flaps were not properly taped down so the chessboard pattern did not lay flat on the box

side. This inconsistency made it so in many images the box sides weren’t actually flat surfaces,

altering the accuracy of the outcome.

Box flaps are not properly taped

Occasionally not all the box corners were displayed in the images. If we had access to a larger

backdrop, it would have been easier to incorporate all the box corners into every frame. Also,

36 5. DISCUSSION

with a larger backdrop, we would have been able to vary our test results more and use larger

boxes, extending the distance between image points and the 3D points.

Not all box corners are visible

In evaluating this project as a whole, it could have been more productive to control the an-

gles and amounts of image distortion to obtain more consistent feedback.

Also, we could have ensured more accuracy if we used all International Paper boxes that were

pre-measured or only used boxes that were hand measured [9]. This would have guaranteed more

consistency in our data.

5.2 Conclusions

In conclusion, our results were more successful when images included more chessboard squares.

This is an example of an unsuccessful image, that contains too few chessboard squares resulting

in a less accurate volume calculation.

5.2. CONCLUSIONS 37

In addition, the fact that the homography results were similar to our algorithm’s results

suggests that our algorithm has the potential to be a valid way to determine a box’s volume

without the use of camera calibration.

38 5. DISCUSSION

6
Future Directions

In terms of future pursuits, we can greatly improve this project in the following ways.

Incorporating the use of Harris corners could work better than the findChessboardCorners()

function to automate the process of finding the number of squares. Also, we could fully imple-

ment line detection to automatically detect the box areas’ boundaries. It would be beneficial to

explore the optimal amount of chessboard squares for a box surface. From a few experiments,

we have found that the more chessboard squares on a box side, the more accurate the area

calculation is of that surface.

In this example, the box side has a chessboard duct tape pattern on it. There are 246 small

40 6. FUTURE DIRECTIONS

squares on this surface. The area of one small square is .0977 inches. When the area is calcu-

lated, the result is 134.14 square inches. Thus the error is only 9.7% which is less than our average

error for this side which was 14%. Thus, this method of including more chessboard squares per

surface shows preliminary potential. In addition, if we were to address the problem of millennials

needing to know the total volume of all their boxes quickly, a more practical solution may be a

mobile application platform for a future project.

7
Appendix

Finding Volume Algorithm Code

import Jama.*;

import gab.opencv.*;

import static javax.swing.JOptionPane.*;

import java.io.FileWriter;

import java.io.BufferedWriter;

float chessPixelArea;

ArrayList<PVector> cornerPoints;

OpenCV opencv;

int np1 = 0;

PVector p1[] = new PVector[8];

int wid = 4;

int leng = 9;

int npMAX = 8;

42 7. APPENDIX

int num = 1;

int box_num;

PImage pix;

void setup() {

background(255);

smooth();

pix = loadImage("box_6/side_A/6_A_2.jpg");

pix.resize(500, 0);

size(pix.width, pix.height);

opencv = new OpenCV(this, pix);

opencv.gray();

cornerPoints = opencv.findChessboardCorners(leng, wid);

}

void mousePressed() {

if (mouseX < width && mouseY <height) {

p1[np1] = new PVector(mouseX, mouseY, 1);

np1++;

}

}

43

float calcPixelAreaREAL(PVector v1, PVector v2, PVector p, PVector p2) {

PVector v1_copy = new PVector(v1.x, v1.y);

PVector v2_copy = new PVector(v2.x, v2.y);

float a = v2.dist(p);

float b = v1.dist(p);

float c = p2.dist(v1);

float d = p2.dist(v2); /

v1.sub(p);

v2.sub(p);

float p_ang = PVector.angleBetween(v1, v2);

v1_copy.sub(p2);

v2_copy.sub(p2);

float p2_ang = PVector.angleBetween(v1_copy, v2_copy);

float areaa = .5*(a*b)*sin(p_ang) + .5*(c*d)*sin(p2_ang);

return areaa;

}

void draw() {

image(opencv.getOutput(), 0, 0);

44 7. APPENDIX

noStroke();

float chessRealArea = .828*box_num;

for (PVector p : cornerPoints) {

fill(255, 0, 0);

ellipse(p.x, p.y, 5, 5);

}

if (np1 >= 8 && npMAX >=8) {

loadPixels();

updatePixels();

}

for (int i = 0; i < np1; i++) {

fill(0, 0, 255);

ellipse(p1[i].x, p1[i].y, 20, 20);

if (i==7) {

PVector pv1 = new PVector (p1[0].x, p1[0].y);

PVector v1 = new PVector (p1[1].x, p1[1].y);

PVector pv2 = new PVector (p1[2].x, p1[2].y);

PVector v2 = new PVector (p1[3].x, p1[3].y);

PVector pp1 = new PVector(p1[4].x, p1[4].y);

45

PVector vv1 = new PVector(p1[5].x, p1[5].y);

PVector pp2 = new PVector(p1[6].x, p1[6].y);

PVector vv2 = new PVector(p1[7].x, p1[7].y);

chessPixelArea = calcPixelAreaREAL(v1, v2, pv1, pv2);

float boxPixelArea = calcPixelAreaREAL(vv1, vv2, pp1, pp2);

println("area of box Pixel is " + boxPixelArea);

println("area of chessPixel is " + chessPixelArea);

println("box number is " + box_num);

println("area of box plane is " + (boxPixelArea*chessRealArea)/chessPixelArea + " inch");

try {

File f = dataFile("results_7.txt");

PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(f, true)));

out.println((boxPixelArea*chessRealArea)/chessPixelArea);

out.flush();

out.close();

}

catch (IOException e) {

println(e);

}

output.println("Test 5: Area of box plane is " + ((boxPixelArea*chessRealArea)/chessPixelArea) + " inch " + "box number:" +box_num);

output.flush();

to the file

output.close();

46 7. APPENDIX

exit();

}

}

}

..

import gab.opencv.*;

import org.opencv.imgproc.Imgproc;

import org.opencv.core.MatOfPoint2f;

import org.opencv.core.Point;

import org.opencv.core.Size;

import org.opencv.core.Mat;

import org.opencv.core.CvType;

OpenCV opencv;

PImage src;

float cardWidth = 3*.828;

float cardHeight = 8*.828;

int np1 = 0;

ArrayList<PVector> points = new ArrayList(4);

void setup() {

src = loadImage("5_C_5.jpg");

47

src.resize(500, 500);

size(src.width, src.height);

opencv = new OpenCV(this, src);

}

void mousePressed() {

if (mouseX < width && mouseY <height) {

points.add(new PVector(mouseX, mouseY));

println(mouseX, mouseY);

np1++;

}

}

Mat getPerspectiveTransformation(ArrayList<PVector> inputPoints, float w, float h) {

Point[] canonicalPoints = new Point[4];

canonicalPoints[0] = new Point(w, 0);

canonicalPoints[1] = new Point(0, 0);

canonicalPoints[2] = new Point(0, h);

canonicalPoints[3] = new Point(w, h);

MatOfPoint2f canonicalMarker = new MatOfPoint2f();

canonicalMarker.fromArray(canonicalPoints);

Point[] pointsArr = new Point[4];

for (int i = 0; i < 4; i++) {

48 7. APPENDIX

pointsArr[i] = new Point(points.get(i).x, points.get(i).y);

}

MatOfPoint2f marker = new MatOfPoint2f();

marker.fromArray(pointsArr);

return Imgproc.getPerspectiveTransform(marker, canonicalMarker);

}

void draw() {

image(src, 0, 0);

for (int i = 0; i < np1; i++) {

fill(255, 0, 0);

ellipse(points.get(i).x, points.get(i).y, 20, 20);

if (i==3) {

Mat transform = getPerspectiveTransformation(points, cardWidth, cardHeight);

println(transform.dump());

noLoop();

exit();

49

}

}

}

import gab.opencv.*;

import org.opencv.imgproc.Imgproc;

import org.opencv.core.MatOfPoint3f;

import org.opencv.core.Point;

import org.opencv.core.Size;

import org.opencv.core.Point3;

import org.opencv.core.Mat;

import org.opencv.core.CvType;

import org.opencv.core.Core;

OpenCV opencv;

PImage src;

float cardWidth = 3*.828;

float cardHeight = 8*.828;

int np1 = 0;

PVector pv1;

PVector v1;

PVector pv2;

PVector v2;

50 7. APPENDIX

void setup() {

src = loadImage("5_C_5.jpg");

src.resize(500, 500);

size(src.width, src.height);

size(300, 300);

opencv = new OpenCV(this, src);

Point3[] canonicalPoints = new Point3[4]; //for transformed card. will be inch chessboard outer corners

canonicalPoints[0] = new Point3(274, 151, 1); //counter clockwise!!!!!! start from top right

canonicalPoints[1] = new Point3(110, 164, 1);

canonicalPoints[2] = new Point3(139, 369, 1);

canonicalPoints[3] = new Point3(312, 346, 1);

Mat box_inch_pts = new Mat(3, 4, CvType.CV_32FC1);

Mat temp_H_inv = new Mat(3, 3, CvType.CV_32FC1);

Mat temp = new Mat();

temp_H_inv.put(0, 0, new double[] { //COPY HERE!!!!!!!!!

0.05092402444659763, -0.005819888508182581, -7.062434704679569,

0.005086898655335161, 0.06994485651085894, -15.09282831037952,

0.0005803706726008797, 5.488099837932256e-05, 1

}

51

);

//row,col

// println(temp_H_inv.dump());

box_inch_pts.put(0, 0, new double[] {

canonicalPoints[0].x, canonicalPoints[1].x, canonicalPoints[2].x, canonicalPoints[3].x,

canonicalPoints[0].y, canonicalPoints[1].y, canonicalPoints[2].y, canonicalPoints[3].y,

canonicalPoints[0].z, canonicalPoints[1].z, canonicalPoints[2].z, canonicalPoints[3].z

}

);

//temp_H_inv.mul(box_inch_pts);

Core.gemm(temp_H_inv, box_inch_pts, 1, new Mat(), 0, temp);

// opencv.convertPointsFromHomogeneous(temp);

//make homogeneous !!!!!!

//System.out.println("box_inch_pts =\n" + temp.dump());

// println((double)temp.get(0, 0)/(double)temp.get(2, 0));

Mat final_box_inch_pts = new Mat(3, 4, CvType.CV_32FC1);

/*

//x’s in nonhomogeneous

println(temp.get(0, 0)[0]/temp.get(2, 0)[0]); //couner clockwise

println(temp.get(0, 1)[0]/temp.get(2, 1)[0]); //

println(temp.get(0, 2)[0]/temp.get(2, 2)[0]);

println(temp.get(0, 3)[0]/temp.get(2, 3)[0]);

52 7. APPENDIX

println();

//y’s in nonhomogeneous

println(temp.get(1, 0)[0]/temp.get(2, 0)[0]); //couner clockwise

println(temp.get(1, 1)[0]/temp.get(2, 1)[0]); //

println(temp.get(1, 2)[0]/temp.get(2, 2)[0]);

println(temp.get(1, 3)[0]/temp.get(2, 3)[0]);

*/

pv1 = new PVector ((float)(temp.get(0, 1)[0]/temp.get(2, 1)[0]), (float)(temp.get(1, 1)[0]/temp.get(2, 1)[0]));

v1 = new PVector (((float)temp.get(0, 0)[0]/(float)temp.get(2, 0)[0]), (float)(temp.get(1, 0)[0]/temp.get(2, 0)[0]));

pv2 = new PVector((float)(temp.get(0, 3)[0]/temp.get(2, 3)[0]), (float)(temp.get(1, 3)[0]/temp.get(2, 3)[0]));

v2 = new PVector ((float)(temp.get(0, 2)[0]/temp.get(2, 2)[0]), (float)(temp.get(1, 2)[0]/temp.get(2, 2)[0]));

/*

final_box_inch_pts.put(0, 0, new double[] {

(float)temp.get(0, 0)/(float)temp.get(2, 0), temp.get(0, 1)/temp.get(2, 1), temp.get(0, 2)/temp.get(2, 2), temp.get(0, 3)/temp.get(2, 3),

temp.get(1, 0)/temp.get(2, 0), temp.get(1, 1)/temp.get(2, 1), temp.get(1, 2)/temp.get(2, 2), temp.get(1, 3)/temp.get(2, 3),

temp.get(2, 0)/temp.get(2, 0), temp.get(2, 1)/temp.get(2, 1), temp.get(2, 2)/temp.get(2, 2), temp.get(2, 3)/temp.get(2, 3)

}

); */

// pr//intln("final_box_inch_pts =\n" + final_box_inch_pts.dump());

}

53

float calcPixelAreaREAL(PVector v1, PVector v2, PVector p, PVector p2) {

PVector v1_copy = new PVector(v1.x, v1.y);

PVector v2_copy = new PVector(v2.x, v2.y);

float a = v2.dist(p); //v2.y - p.y;

float b = v1.dist(p); //v1.x - p.x;

float c = p2.dist(v1); //p2.y-v1.y;

float d = p2.dist(v2); ///p2.x - v2.x;

v1.sub(p);

v2.sub(p);

float p_ang = PVector.angleBetween(v1, v2);

//--

v1_copy.sub(p2);

v2_copy.sub(p2);

float p2_ang = PVector.angleBetween(v1_copy, v2_copy);

//-------------------------------------

float areaa = .5*(a*b)*sin(p_ang) + .5*(c*d)*sin(p2_ang);

//println("area is " + areaa);

return areaa;

//area should be 2437.5

}

54 7. APPENDIX

void draw() {

float box_real_area = calcPixelAreaREAL(v1, v2, pv1, pv2);

println("box real area is " + box_real_area);

exit();

}

55

Table 7.0.1. Algorithmic Results
Box length width height Defined Area (A)
A3 or BY1 10 7 5.25 70
Shar 10.25 6.75 3.25 69.19
int paper 1AD BNA 13.5 9.5 3.5 128.25
LLBean 13.75 8 5 110
Target model 439 sm 17.5 13.5 7 236.25
N3 or B41 16.25 12 5.25 195
CVS box 21.65 13.4 12.6 290.11
Lowes Box 16 12 12 192
Int Paper 1A5 B45 13.5 11 4.75 148.5
int paper 0A0 9.25 6.5 2.25 60.13
Int paper A4 12 8.5 7 102
Int paper 1A7 14.5 8 7.25 116
int paper BP0 10 8 2 80
int paper 2AA 24 16 4.25 384
int paper 2A0 20 16 7 320
int paper BP1 13.25 9.5 2.25 125.88
int paper 2A5 20 11 4.25 220
int paper 2A8 26 19 9 494
int paper 3A1 31 20.5 10.5 635.5
int paper B0 17 11 11 187

Table 7.0.2. Algorithmic Results
Box Defined Area (B) Defined Area (C) test 1(A) test 2 (A) test 3 (A) test 4 (A) test 5 (A)
A3 or BY1 52.50 36.75 79.30 64.36 63.65 63.73 63.49
Shar 33.31 21.94 66.99 71.52 66.38 69.53 68.65
int paper 1AD BNA 47.25 33.25 114.11 107.46 129.39 130.52 127.10
LLBean 68.75 40.00 100.72 106.58 106.30 106.21 109.20
Target model 439 sm 122.50 94.50 236.67 223.35 247.95 232.86 261.82
N3 or B41 85.31 63.00 186.28 191.83 196.50 187.43 189.50
CVS box 272.79 168.84 304.77 288.95 274.52 269.46 273.30
Lowes Box 192.00 144.00 206.66 203.69 210.26 206.09 212.54
Int Papr 1A5 B45 64.13 52.25 167.55 168.69 171.49 172.50 163.07
int paper 0A0 20.81 14.63 52.17 53.74 58.90 60.53 59.70
Int paper A4 84.00 59.50 116.07 114.49 113.51 115.65 114.23
Int paper 1A7 105.13 58.00 142.20 143.18 141.02 140.13 137.09
int paper BP0 20.00 16.00 90.58 91.85 89.49 88.00 95.74
int paper 2AA 102.00 68.00 439.17 441.32 437.66 441.88 445.27
int paper 2A0 140.00 112.00 370.94 370.17 374.53 374.02 373.25
int paper BP1 29.81 21.38 148.78 145.03 142.35 149.43 142.98
int paper 2A5 85.00 46.75 245.68 245.55 244.66 251.56 251.45
int paper 2A8 234.00 171.00 565.59 564.16 558.48 568.03 571.37
int paper 3A1 325.50 215.25 742.18 748.46 725.30 722.83 731.71
int paper B0 187.00 121.00 215.34 213.22 211.93 207.60 223.18

56 7. APPENDIX

Table 7.0.3. Algorithmic Results
Box test 1(B) test 2 (B) test 3 (B) test 4 (B) test 5 (B)
A3 or BY1 50.29 49.64 49.84 52.71 53.81
Shar 36.34 36.35 38.36 36.55 36.78
int paper 1AD BNA 40.66 40.45 42.47 40.29 42.21
LLBean 62.11 58.39 63.74 57.61 60.22
Target model 439 sm 144.53 151.60 167.32 153.33 148.57
N3 or B41 85.07 75.23 96.82 74.32 75.90
CVS box 256.04 264.88 276.51 260.95 297.82
Lowes Box 206.95 212.55 206.06 204.79 205.55
Int Paper 1A5 B45 78.10 78.97 76.57 76.10 74.59
int paper 0A0 20.46 21.00 20.46 21.58 22.36
Int paper A4 87.01 84.95 82.99 89.00 93.98
Int paper 1A7 115.64 114.72 113.98 113.87 112.46
int paper BP0 19.78 19.49 20.61 19.34 20.94
int paper 2AA 112.80 113.98 115.18 109.66 113.65
int paper 2A0 155.24 157.30 154.08 152.56 159.88
int paper BP1 32.16 32.60 32.16 31.10 33.45
int paper 2A5 98.47 94.54 96.65 97.12 102.34
int paper 2A8 271.04 268.11 264.33 278.41 279.83
int paper 3A1 490.63 494.42 496.68 505.69 490.33
int paper B0 222.13 224.38 224.36 226.94 222.31

Table 7.0.4. Algorithmic Results
Box test 1(C) test 2 (C) test 3 (C) test 4 (C) test 5 (C)
A3 or BY1 39.20 43.96 42.43 49.57 38.78
Shar 23.40 19.04 20.54 17.78 18.74
int paper 1AD BNA 32.55 33.63 36.33 33.72 32.35
LLBean 37.48 36.07 34.94 38.92 36.32
Target model 439 sm 103.13 113.92 117.01 115.50 110.06
N3 or B41 63.71 65.29 63.53 35.64 36.18
CVS box 160.66 163.71 160.35 152.08 159.56
Lowes Box 168.25 161.57 159.21 166.84 174.29
Int Paper 1A5 B45 58.32 59.75 61.04 56.75 58.33
int paper 0A0 16.43 14.18 15.45 16.76 16.78
Int paper A4 64.93 67.22 64.42 63.55 63.58
Int paper 1A7 63.91 66.11 67.08 68.03 64.93
int paper BP0 18.49 18.21 19.25 15.92 16.72
int paper 2AA 77.77 79.06 79.83 82.50 76.97
int paper 2A0 129.41 127.12 127.84 133.15 131.49
int paper BP1 22.64 23.35 21.92 23.81 25.79
int paper 2A5 51.91 51.74 55.73 56.71 56.89
int paper 2A8 208.77 197.94 203.72 201.28 206.76
int paper 3A1 256.71 255.46 265.08 264.22 264.44
int paper B0 147.43 148.27 150.97 145.81 148.38

57

Table 7.0.5. Algorithmic Results
Box (A) Error Test 1 (A) Error Test 2 (A) Error Test 3 (A) Error Test 4 (A) Error Test 5
A3 or BY1 13.29% 8.05% 9.07% 8.96% 9.29%
Shar 3.18% 3.37% 4.05% 0.50% 0.77%
int paper 1AD BNA 11.02% 16.21% 0.89% 1.77% 0.89%
LLBean 8.44% 3.11% 3.36% 3.45% 0.73%
Target model 439 sm 0.18% 5.46% 4.95% 1.43% 10.82%
N3 or B41 4.47% 1.63% 0.77% 3.88% 2.82%
CVS box 5.05% 0.40% 5.37% 7.12% 5.80%
Lowes Box 7.63% 6.09% 9.51% 7.34% 10.70%
Int Paper 1A5 B45 12.83% 13.60% 15.48% 16.16% 9.81%
int paper 0A0 13.23% 10.62% 2.04% 0.67% 0.70%
Int paper A4 13.80% 12.24% 11.28% 13.38% 11.99%
Int paper 1A7 22.58% 23.43% 21.57% 20.80% 18.18%
int paper BP0 13.23% 14.81% 11.86% 10.00% 19.68%
int paper 2AA 14.37% 14.93% 13.97% 15.07% 15.96%
int paper 2A0 15.92% 15.68% 17.04% 16.88% 16.64%
int paper BP1 18.19% 15.22% 13.09% 18.72% 13.59%
int paper 2A5 11.67% 11.61% 11.21% 14.35% 14.29%
int paper 2A8 14.49% 14.20% 13.05% 14.98% 15.66%
int paper 3A1 16.79% 17.77% 14.13% 13.74% 15.14%
int paper B0 15.15% 14.02% 13.33% 11.02% 19.35%

Table 7.0.6. Algorithmic Results
Box (B) Error Test 1 (B) Error Test 2 (B) Error Test 3 (B) Error Test 4 (B) Error Test 5
A3 or BY1 4.21% 5.45% 5.06% 0.40% 2.50%
Shar 9.09% 9.12% 15.17% 9.71% 10.40%
int paper 1AD BNA 13.95% 14.38% 10.12% 14.74% 10.67%
LLBean 9.66% 15.07% 7.29% 16.20% 12.41%
Target model 439 sm 17.98% 23.75% 36.59% 25.17% 21.28%
N3 or B41 0.28% 11.82% 13.49% 12.88% 11.03%
CVS box 6.14% 2.90% 1.36% 4.34% 9.17%
Lowes Box 7.79% 10.70% 7.33% 6.66% 7.06%
Int Paper 1A5 B45 21.79% 23.16% 19.41% 18.67% 16.32%
int paper 0A0 1.70% 0.91% 1.70% 3.70% 7.41%
Int paper A4 3.58% 1.13% 1.21% 5.95% 11.88%
Int paper 1A7 10.00% 9.13% 8.43% 8.32% 6.98%
int paper BP0 1.10% 2.54% 3.07% 3.31% 4.68%
int paper 2AA 10.59% 11.75% 12.93% 7.51% 11.42%
int paper 2A0 10.88% 12.36% 10.06% 8.97% 14.20%
int paper BP1 7.87% 9.34% 7.87% 4.33% 12.20%
int paper 2A5 15.84% 11.23% 13.70% 14.26% 20.39%
int paper 2A8 15.83% 14.58% 12.96% 18.98% 19.58%
int paper 3A1 50.73% 51.90% 52.59% 55.36% 50.64%
int paper B0 18.78% 19.99% 19.98% 21.36% 18.88%

Table 7.0.7. Algorithmic Results
Box (C) Error Test 1 (C) Error Test 2 (C) Error Test 3 (C) Error Test 4 (C) Error Test 5
A3 or BY1 6.68% 19.61% 15.45% 34.87% 5.53%
Shar 6.67% 13.21% 6.38% 18.97% 14.56%
int paper 1AD BNA 2.12% 1.14% 9.25% 1.42% 2.70%
LLBean 6.30% 9.82% 12.65% 2.70% 9.21%
Target model 439 sm 9.13% 20.56% 23.82% 22.22% 16.46%
N3 or B41 1.13% 3.63% 0.84% 43.42% 42.58%
CVS box 4.84% 3.04% 5.03% 9.93% 5.50%
Lowes Box 16.84% 12.20% 10.56% 15.86% 21.04%
Int Paper 1A5 B45 11.62% 14.36% 16.83% 8.61% 11.64%
int paper 0A0 12.37% 3.06% 5.67% 14.58% 14.75%
Int paper A4 9.12% 12.98% 8.27% 6.80% 6.86%
Int paper 1A7 10.18% 13.99% 15.66% 17.30% 11.94%
int paper BP0 15.54% 13.84% 20.29% 0.51% 4.49%
int paper 2AA 14.37% 16.27% 17.39% 21.32% 13.20%
int paper 2A0 15.55% 13.50% 14.14% 18.89% 17.40%
int paper BP1 5.92% 9.24% 2.54% 11.41% 20.64%
int paper 2A5 11.04% 10.68% 19.20% 21.30% 21.69%
int paper 2A8 22.09% 15.75% 19.13% 17.71% 20.91%
int paper 3A1 19.26% 18.68% 23.15% 22.75% 22.85%
int paper B0 21.85% 22.54% 24.77% 20.50% 22.62%

58 7. APPENDIX

Table 7.0.8. Algorithmic Results
Box (A) Avg (B) Avg (C) Avg
A3 or BY1 66.91 51.26 42.79
Shar 68.62 36.88 19.90
int paper 1AD BNA 121.72 41.22 33.72
LLBean 105.80 60.41 36.75
Target model 439 sm 240.53 153.07 111.92
N3 or B41 190.31 81.47 52.87
CVS box 282.20 271.24 159.27
Lowes Box 207.85 207.18 166.03
Int Paper 1A5 B45 168.66 76.87 58.84
int paper 0A0 57.01 21.17 15.92
Int paper A4 114.79 87.58 64.74
Int paper 1A7 140.72 114.13 66.01
int paper BP0 91.13 20.03 17.72
int paper 2AA 441.06 113.06 79.23
int paper 2A0 372.58 155.81 129.80
int paper BP1 145.72 32.29 23.50
int paper 2A5 247.78 97.82 54.60
int paper 2A8 565.52 272.34 203.69
int paper 3A1 734.10 495.55 261.18
int paper B0 214.26 224.02 148.17

Table 7.0.9. Algorithmic Results
Box (A) Min Error (B) Min error (C) Min Error (A) Max Error (B) Max Error (C) Max Error
A3 or BY1 8.05% 0.40% 5.53% 13.29% 5.45% 34.87%
Shar 0.50% 9.09% 6.38% 4.05% 15.17% 18.97%
int paper 1AD BNA 0.89% 10.12% 1.14% 16.21% 14.74% 9.25%
LLBean 0.73% 7.29% 2.70% 8.44% 16.20% 12.65%
Target model 439 sm 0.18% 17.98% 9.13% 10.82% 36.59% 23.82%
N3 or B41 0.77% 0.28% 0.84% 4.47% 13.49% 43.42%
CVS box 0.40% 1.36% 3.04% 7.12% 9.17% 9.93%
Lowes Box 6.09% 6.66% 10.56% 10.70% 10.70% 21.04%
Int Paper 1A5 B45 9.81% 16.32% 8.61% 16.16% 23.16% 16.83%
int paper 0A0 0.67% 0.91% 3.06% 13.23% 7.41% 14.75%
Int paper A4 11.28% 1.13% 6.80% 13.80% 11.88% 12.98%
Int paper 1A7 18.18% 6.98% 10.18% 23.43% 10.00% 17.30%
int paper BP0 10.00% 1.10% 0.51% 19.68% 4.68% 20.29%
int paper 2AA 13.97% 7.51% 13.20% 15.96% 12.93% 21.32%
int paper 2A0 15.68% 8.97% 13.50% 17.04% 14.20% 18.89%
int paper BP1 13.09% 4.33% 2.54% 18.72% 12.20% 20.64%
int paper 2A5 11.21% 11.23% 10.68% 14.35% 20.39% 21.69%
int paper 2A8 13.05% 12.96% 15.75% 15.66% 19.58% 22.09%
int paper 3A1 13.74% 50.64% 18.68% 17.77% 55.36% 23.15%
int paper B0 11.02% 18.78% 20.50% 19.35% 21.36% 24.77%

59

Table 7.0.10. Algorithmic Results
Box (A) Avg Error (B) Avg Error (C) Avg Error
A3 or BY1 4.42% 2.36% 16.43%
Shar 0.83% 10.70% 9.29%
int paper 1AD BNA 5.09% 12.77% 1.40%
LLBean 3.82% 12.13% 8.14%
Target model 439 sm 1.81% 24.95% 18.44%
N3 or B41 2.41% 4.51% 16.08%
CVS box 2.73% 0.57% 5.67%
Lowes Box 8.25% 7.91% 15.30%
Int Paper 1A5 B45 13.58% 19.87% 12.61%
int paper 0A0 5.18% 1.72% 8.86%
Int paper A4 12.54% 4.27% 8.81%
Int paper 1A7 21.31% 8.57% 13.81%
int paper BP0 13.92% 0.16% 10.73%
int paper 2AA 14.86% 10.84% 16.51%
int paper 2A0 16.43% 11.29% 15.89%
int paper BP1 15.76% 8.32% 9.95%
int paper 2A5 12.63% 15.09% 16.78%
int paper 2A8 14.48% 16.39% 19.12%
int paper 3A1 15.51% 52.24% 21.34%
int paper B0 14.58% 19.80% 22.46%

Table 7.0.11. Algorithmic Results
Box Min A Max A Min B Max B Min C Max C
A3 or BY1 63.49 79.30 49.64 53.81 38.78 49.57
Shar 66.38 71.52 36.34 38.36 17.78 23.40
int paper 1AD BNA 107.46 130.52 40.29 42.47 32.35 36.33
LLBean 100.72 109.20 57.61 63.74 34.94 38.92
Target model 439 sm 223.35 261.82 144.53 167.32 103.13 117.01
N3 or B41 186.28 196.50 74.32 96.82 35.64 65.29
CVS box 269.46 304.77 256.04 297.82 152.08 163.71
Lowes Box 203.69 212.54 204.79 212.55 159.21 174.29
Int Paper 1A5 B45 163.07 172.50 74.59 78.97 56.75 61.04
int paper 0A0 52.17 60.53 20.46 22.36 14.18 16.78
Int paper A4 113.51 116.07 82.99 93.98 63.55 67.22
Int paper 1A7 137.09 143.18 112.46 115.64 63.91 68.03
int paper BP0 88.00 95.74 19.34 20.94 15.92 19.25
int paper 2AA 437.66 445.27 109.66 115.18 76.97 82.50
int paper 2A0 370.17 374.53 152.56 159.88 127.12 133.15
int paper BP1 142.35 149.43 31.10 33.45 21.92 25.79
int paper 2A5 244.66 251.56 94.54 102.34 51.74 56.89
int paper 2A8 558.48 571.37 264.33 279.83 197.94 208.77
int paper 3A1 722.83 748.46 490.33 505.69 255.46 265.08
int paper B0 207.60 223.18 222.13 226.94 145.81 150.97

60 7. APPENDIX

Table 7.0.12. Algorithmic Results
Box Avg Volume Defined Volume Volume Avg Error
A3 or BY1 383.07 367.50 4.24%
Shar 153.15 224.86 31.89%
int paper 1AD BNA 280.70 448.88 37.47%
LLBean 330.77 550.00 39.86%
Target model 439 sm 1385.50 1653.75 16.22%
N3 or B41 617.94 1023.75 39.64%
CVS box 2383.09 3655.39 34.81%
Lowes Box 1824.99 2304.00 20.79%
Int Paper 1A5 B45 596.10 705.38 15.49%
int paper 0A0 94.61 135.28 30.06%
Int paper A4 550.63 714.00 22.88%
Int paper 1A7 702.78 841.00 16.44%
int paper BP0 122.75 160.00 23.28%
int paper 2AA 1356.58 1632.00 16.88%
int paper 2A0 1873.55 2240.00 16.36%
int paper BP1 226.97 283.22 19.86%
int paper 2A5 785.14 935.00 16.03%
int paper 2A8 3822.86 4446.00 14.02%
int paper 3A1 6652.82 6672.75 0.30%
int paper B0 1820.16 2057.00 11.51%

Bibliography

[1] Richard Szeliski, Computer Vision: Algorithms and Applications, 1st, Springer-Verlag New
York, Inc., New York, NY, USA, 2010.

[2] Jan Erik Solem, Programming Computer Vision with Python, O’Reilly, 2012.

[3] Neale Godfrey, The Young And The Restless: Millennials On The Move, Forbes (2016).

[4] Atduskgreg, atduskgreg/opencv-processing (2017).

[5] Camera calibration With OpenCV OpenCV 2.4.13.4 documentation, OpenCV (2017).

[6] Adrian Rosebrock, Find distance from camera to object using Python and OpenCV, Py
Image Search (July 12, 2016).

[7] Megan J. Benetsky, Charlynn A. Burd, and Melanie A. Rapino, Young Adult Migration:
20072009 to 20102012, Census.gov (March 2015).

[8] How to Find the Area of a Quadrilateral, wikiHow (May 22, 2017).

[9] Kevin NA, A Catalog of Amazon.com Box Sizes, Incomptech.

[10] 3D Viewing: the Pinhole Camera Model, Scratch Pixel.

[11] Gabriel Taubin and Daniel Moreno, Simple, Accurate, and Robust Projector-Camera Cali-
bration, Brown University School of Engineering (2012).

	Thinking Outside The Box: Computing 3D Volume in 2D
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Motivation

	Background
	Pin-Hole Cameras
	Homogeneous Coordinates
	Transformations
	Camera Calibration
	Homographies

	Resources
	OpenCV

	Methods and Execution
	Proposed Algorithm for finding area
	Homographies

	Results
	Algorithmic Results
	Homography Results

	Discussion
	Challenges/ Limitations
	Conclusions

	Future Directions
	Appendix
	Bibliography

