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Abstract

In this project we model the spread of a virus on networks as a probabilistic process. We assume
the virus breaks out at one vertex on a network and then spreads to neighboring vertices in
each time step with a certain probability. Our objective is to find probability distributions
that describe the uncertain number of infected vertices at a given time step. The networks we
consider are paths, cycles, star graphs, complete graphs, and broom graphs. Through the use of
Markov chains and Jordan Normal Form we analyze the probability distribution of these graphs,
characterizing the transition matrix for each graph as well as the Jordan Form matrices.
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1
Introduction

In this project we model the spread of a virus on graphs as a probabilistic process. The analysis

of this process is useful in understanding how a virus or information is transmitted through

different types of networks. Our model assumes that at the initial time step a virus breaks out

on a graph at one vertex. In the following time steps the virus spreads to neighboring vertices

with probability p and doesn’t spread with probability (1− p). Using this model our goal is to

determine the probability distribution that describes the number of infected vertices at a given

time step on different types of networks.

This project was inspired by Anam Nasim’s senior project Spread of a Virus on Networks:

A Probabilistic Approach [5] and Yushan Jiang’s senior project The Analysis of Probabilistic

Spread on Complete Graphs [4]. They introduced a probability model and used it to study the

spread of a virus on different graphs. Anam Nasim studied the spread of a virus on paths, cycles,

star graphs, and complete graphs while Yushan Jiang focused her study on complete graphs. In

Anam Nasim’s project she introduced a method of analyzing this model using Markov chains.

Both Anam and Yushan used this method to study virus spread on complete graphs. In this

project we use this same Markov chain method to study virus spread on paths, star graphs,

cycles, complete graphs, and broom graphs which we define in Chapter 6. In our analysis of

these graphs we also use the Jordan Normal Form to simplifiy our Markov chain computations.
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Let’s look at an example of a virus spreading on the star graph with 3 vertices denoted S3

(see Figure 1.0.1).

x y

z

Figure 1.0.1. The star graph S3

On this graph we assume the virus breakes out at the vertex y. Suppose we want to find the

probability that the virus spreads to one more vertex after one time step. This can happen two

ways.

Case 1: The virus spreads to x and not to z. The following table illustrates this probability.

t = 0 t = 1 Probability

x y

z

x y

z

p (1
−

p
)

p(1− p)

A virus breaks out at y The virus spreads to x
and doesn’t spread to z

Case 2: The virus spreads to z and not to x. The following table illustrates this probability.

t = 0 t = 1 Probability

x y

z

x y

z

(1− p)

p

p(1− p)

A virus breaks out at y The virus spreads to z
and doesn’t spread to x

Adding these two cases together we get that the probability of exactly one more vertex being

infected after one time step is p(1− p) + p(1− p) = 2p(1− p).
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In this project we analyze one time-step probabilities like this one in our Markov chain process.

If we arrange all the possible one time step probabilities into a matrix we get

T =


p11 p12 . . . p1n
p21 p22 . . . p2n
...

...
. . .

...
pn1 pn2 . . . pnn


where each element pij , is the probability of moving from i infected vertices to j infected

vertices in one time step.

We find for paths with n vertices that this matrix is an n× n matrix of the form

T =



(1− p) p 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
... (1− p) p
0 . . . . . . 0 1


,

for cycles with n vertices this matrix is an n× n matrix of the form

T =



(1− p)2 2p(1− p) p2 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
... (1− p)2 2p(1− p) p2

... (1− p)2 2p(1− p) + p2

0 . . . . . . . . . 0 1


,

and for star graphs with n vertices this matrix has elements such that

pij =

(
n− i
j − i

)
pj−i(1− p)n−j .

In Chapter 2 we introduce basic terminology for graph theory, linear algebra, probability, and

Markov chains. In Chapter 3 we introduce our probability model and how to analyze it using

Markov chains. In Chapter 4, we present theorems specific to our probability model that will

be useful throughout this project. In Chapter 5 we analyze virus spread on paths, star graphs,
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cycles, and complete graphs. In Chapter 6 we define broom graphs and analyze their transition

matricies. Finally, in Chapter 7 we see how our Markov chain method doesn’t work with all

graphs and how to modify it so that it does.



2
Preliminaries

In this chapter we review some basic concepts of graph theory, linear algebra, and probability

that will be needed to understand this project.

2.1 Graph Theory

In this section we will review some basic elements of graph theory. Our main reference for this

section is Wilson [7].

A simple graph G consists of a non-empty finite set V (G) of elements called vertices

(or nodes) and a finite set E(G) of distinct unordered pairs of the elements in V (G) called

edges. An edge {v, w} is said to join the vertices v and w and is often abbreviated to vw. For

example, Figure 2.1.1 shows a simple graph G with vertex-set V (G) = {u, v, w, z} and edge-set

E(G) = {uv, uw, uz, wz, vw}. Note that in this project we will only be considering simple graphs

but will refer to them as graphs.

Two vertices v and w are adjacent if there is an edge vw joining them, and the vertices v and

w are then incident with that edge. The degree of a vertex v is the number of edges incident

with v. For example, in Figure 2.1.1 the vertex u is adjacent to the vertex z since there is an

edge uz joining them. Therefore, u and z are incident with the edge uz. Also, the vertex u has

degree 3 since it is incident with the edges uv, uw and uz.
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v w

u z

Figure 2.1.1. A simple graph G

Now we will discuss the types of graphs that will be used in this project. Definitions 2.1.1 and

2.1.2 were taken directly from Wilson [7, p. 9-10].

Definition 2.1.1. If two graphs G1 and G2 and their vertex sets V (G1) and V (G2) are disjoint,

then their union G1 ∪G2 is the graph with vertex set V (G1)∪V (G2) and edge-family E(G1)∪

E(G2).

The following figure illustrates the union of two graphs G1 and G2.

b c

a

G1

∪ u

v

G2

=
b c

a

u

v

G1 ∪G2

Figure 2.1.2. The union of G1 and G2

Definition 2.1.2. A graph is connected if it cannot be expressed as a union of graphs, and

disconnected otherwise.

Definition 2.1.3. A path is a connected graph with two vertices of degree 1 and all other

vertices of degree 2. A path can be drawn so that all of its vertices and edges lie on a straight

line. We denote a path with n vertices by Pn.

Figure 2.1.3. The path P4
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Definition 2.1.4. A star graph with n vertices is a connected graph that has one vertex of

degree n− 1 and n− 1 vertices of degree 1. There is one vertex at the center of the graph that

is adjacent to all of the other nodes. A star with n vertices is denoted Sn.

Figure 2.1.4. The star graph S7

Definition 2.1.5. A cycle is a connected graph in which each vertex has degree 2. A cycle can

also be thought of as a path with an edge connecting the endpoints. We denote a cycle with n

vertices by Cn.

Figure 2.1.5. The cycle graph C5

Definition 2.1.6. A complete graph is a connected graph in which all vertices are adjacent

to each other. We denote a complete graph with n vertices as Kn.

Figure 2.1.6. The complete graph K5
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2.2 Linear Algebra

In this section we review some basic concepts of linear algebra. Our main reference for this

section is Edwards and Penney [1].

A matrix is an n×m array of numbers with n rows and m columns. The identity matrix

is a square matrix I that has 1’s on the diagonal and 0’s everywhere else. The n × n identity

matrix has the property that AI = IA = A for any n ×m matrix A. Note that in this project

we only consider square n× n matrices.

The following definition is taken from Edwards and Penney [1, p. 190].

Definition 2.2.1. A matrix B such that AB = BA = I is called an inverse matrix of the

matrix A. There is precisely one matrix B such that AB = BA = I and it is often denoted A−1.

Example 2.2.2. Let A =

(
4 5
2 3

)
. Then A−1 =

(
1.5 −2.5
−1 2

)
, as shown below:

AA−1 =

(
4 5
2 3

)
·
(

1.5 −2.5
−1 2

)
=

(
1 0
0 1

)
= I

and

A−1A =

(
1.5 −2.5
−1 2

)
·
(

4 5
2 3

)
=

(
1 0
0 1

)
= I

Definition 2.2.3. An upper triangular matrix is a square matrix that has only zeros below

the diagonal.

The following definition is taken directly from Edwards and Penney [1, p. 366]

Definition 2.2.4. The number λ is said to be an eigenvalue of the n× n matrix A provided

there exists a nonzero vector v such that

Av = λv,

in which case the vector v is called an eigenvector of the matrix A. We also say that the

eigenvector v is associated with the eigenvalue λ, or that the eigenvalue λ corresponds to the

eigenvector v.

Example 2.2.5. Let A =

(
0 3
2 1

)
. If the vector v1 =

(
1
1

)
, then
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Av1 =

(
0 3
2 1

)(
1
1

)
=

(
3
3

)
= 3

(
1
1

)
= 3v1

Therefore v1 is an eigenvector of A associated with the eigenvalue λ1 = 3.

If the vector v2 =

(
−3
2

)
, then

Av2 =

(
0 3
2 1

)(
−3
2

)
=

(
6
−4

)
= −2

(
−3
2

)
= −2v2

Therefore v2 is an eigenvector of A associated with the eigenvalue λ2 = −2. In summary,

the numbers λ1 = 3 and λ2 = −2 are both eigenvalues of the matrix A and correspond to the

eigenvectors v1 =

(
1
1

)
and v2 =

(
−3
2

)
, respectively.

The following definition is taken from Edwards and Penney [1, p. 368].

Definition 2.2.6. The number λ is an eigenvalue of the matrix A if and only if λ satisfies the

characteristic equation of A,

det(A− λI) = 0.

Theorem 2.2.7. If a matrix A is upper triangular then the eigenvalues of A lie on the diagonal.

Example 2.2.8. Consider the matrix A =

1 4 1
0 2 5
0 0 3

. To find the eigenvalues of A we solve

the characteristic equation det(A− λI) = 0 so,

det(A−λI) = det

1− λ 4 1
0 2− λ 5
0 0 3− λ

 = (1−λ)

(
2− λ 5

0 3− λ

)
= (1−λ)(2−λ)(3−λ) = 0.

Therefore the eigenvalues of A are λ = 1, 2, 3 which are the elements that lie on the diagonal

of A.

The following definition is taken from Edwards and Penney [1, p. 451].

Definition 2.2.9. If λ is an eigenvalue of the matrix A, then a rank r generalized eigenvector

associated with λ is a vector v such that

(A− λI)rv = 0 but (A− λI)r−1v 6= 0.
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If r = 1 then this simply means that v is an eigenvector associated with λ. Then finding an

eigenvector of rank 2 associated with λ means finding v2 such that (A−λI)v2 = v1. Furthermore,

a length k chain of generalized eigenvectors based on the eigenvector v1 is a set

{v1, v2, ..., vk} of k generalized eigenvectors such that

(A− λI)vk = vk−1,

(A− λI)vk−1 = vk−2,

...

(A− λI)v2 = v1.

Example 2.2.10. Let A =

(
2 5
0 2

)
. Because A is upper triangular by Theorem 2.2.7 we know

that the eigenvalues of A are λ = 2 and λ = 2. Let v1 =

(
1
0

)
. Then we have that

Av1 =

(
2 5
0 2

)(
1
0

)
=

(
2
0

)
= 2

(
1
0

)
= 2v1.

Note v1 is the only eigenvector of A. Since λ = 2 has multiplicity 2 we need to find the rank 2

generalized eigenvector v2 such that (A− 2I)v2 = v1. Let v2 =

(
0
1
5

)
. Then we have that

(A− 2I)v2 =

(
0 5
0 0

)(
0
1
5

)
=

(
1
0

)
= v1.

Therefore v2 =

(
0
1
5

)
is a generalized eigenvector of A associated with the eigenvalue λ = 2.

The following definitions are taken from Edwards and Penney [1, p. 378].

Definition 2.2.11. The n× n matrices A and B are called similar provided that there exists

an invertible matrix P such that

B = P−1AP.

Definition 2.2.12. the matrix D is diagonal if it has zeros everywhere except the diagonal.

Definition 2.2.13. The matrix A is diagonalizable if it is similar to a diagonal matrix D;

that is, there exists a diagonal matrix D and an invertible matrix P such that

A = PDP−1.
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Theorem 2.2.14. If a square matrix A is similar to the matrix B then there exists an invertible

matrix P such that

An = PBnP−1

where n is a positive number.

Proof. Suppose A = PBP−1. Then we have

An = (PBP−1)n

= (PBP−1)(PBP−1)...(PBP−1)

= PB(P−1P )B(P−1P )...(P−1P )BP−1

= PBnP−1.

In this project we analyze the matrix T to the power of t where t is a positive integer.

However, if T is diagonalizable, we can look at the diagonal matrix D that is similar to T .

Diagonal matrices are easy to multiply so finding Dt will simplify our computation. However,

most of the matrices we will look at won’t be diagonalizable, so we will look at their Jordan

Normal Form instead.

The following theorem and definition about Jordan Normal Form are taken directly from

Edwards and Penney [1, p. 460].

Theorem 2.2.15. If the n × n matrix A has s linearly independent eigenvectors v1, v2, ..., vs,

then it is similar to a block-diagonal matrix of the Jordan Normal Form

J =


J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Js

 ,

where each submatrix Ji is a k × k Jordan block of the form
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Ji =


λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . λi 1
0 0 0 . . . λi

 ,

with λi being the eigenvalue of A corresponding to the eigenvector vi; if k = 1, then Ji =
(
λi
)
.

Definition 2.2.16. If the Jordan block Ji is of size k × k, then it corresponds to a length k

chain of generalized eigenvectors based on the eigenvector vi. If all these generalized eigenvectors

are arranged as column vectors in proper order corresponding to the order of the Jordan blocks,

the result is a nonsingular n× n matrix Q such that

J = Q−1AQ.

The block diagonal matrix J such that A = QJQ−1 is called the Jordan Normal Form of the

matrix A and is unique.

Example 2.2.17. Let A =

(
2 5
0 2

)
. From Example 2.2.10 we know that the eigenvalues are

both λ = 2 and that the only eigenvector of A is v1 =

(
1
0

)
. Therefore J is made up of one

Jordan block. So

J = (J1) =

(
2 1
0 2

)
.

We can find the matrix Q by arranging the eigenvectors and generalized eigenvectors of A

into a matrix;

Q =

(
1 0
0 1

5

)
where Q−1 =

(
1 0
0 5

)
.

Therefore the Jordan Normal Form of A is

QJQ−1 =

(
1 0
0 1

5

)(
2 1
0 2

)(
1 0
0 5

)
=

(
2 5
0 2

)
= A.

2.3 Probability

In this section we review some basic concepts of probability. Our main reference for this section

is Schay [6].
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A sample space S is a set which contains all the possible outcomes of a situation. For

example, when flipping a fair coin there are two possible outcomes, heads or tails, so the sample

space is S = {H,T}. The elements of the sample space are called events. The probability of

event A is denoted by P (A). In the example of flipping a fair coin P (H) = 1
2 . The conditional

probability of event A given event B is denoted P (A|B). A random variable X is a real

valued function on a sample space S. The value of X is a numerical value that represents an

outcome of an experiment. See Example 2.3.1.

Example 2.3.1. Consider tossing a fair coin twice. The possible outcomes of this event are

described by the sample space S = {HH,HT, TH, TT}. Let X be our random variable that

denotes the number of heads obtained. The following table represets the value of X for each

outcome in the sample space.

Outcome HH HT TH TT

X 2 1 1 0

From the table we can see that P (X = 0) = 1
4 , P (X = 1) = 1

2 , and P (X = 2) = 1
4 .

Note that all random variables in this project will be discrete random variables, meaning

that X only takes on a finite or countably infinite number of values.

The following definition is taken from Schay [6, p. 72].

Definition 2.3.2. For any probability space and any random variable X on it, the function

f : X → R defined by f(x) = P (X = x), is called the probability function of X.

We will also refer to this function as the probability distribution of X.

Example 2.3.3. Consider tossing a fair coin twice and let X be the random variable that

represents the number of heads obtained as in Example 2.3.1. Then the probability distribution

of X is given by

f(x) =


1
4 , if x = 0
1
2 , if x = 1
1
4 , if x = 2

.
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Theorem 2.3.4. (The Law of Total Probability) Suppose B1, B2, ..., Bn are mutually ex-

clusive events with non-zero probabilities, whose union B1 ∪ B2 ∪ ... ∪ Bn = S. Then any event

A in the sample space S can be written as

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + ...+ P (A|Bn)P (Bn)

Definition 2.3.5. A binomial coefficient describes the number of different ways r elements

can be chosen out of a set of n elements and is denoted

(
n

r

)
. The formula for the binomial

coefficient is

(
n

r

)
=

n!

r!(n− r)!

The following definition is taken directly from Schay [6, p. 74].

Definition 2.3.6. A random variable X is called a binomial random variable with param-

eters n and p, if it has the binomial distribution with probability function

f(x) =

(
n

x

)
px(1− p)n−x if x = 0, 1, 2, ..., n

Another way to think of a binomial random variable is that it counts the number of ”successes”

in n trials. Example 2.3.7 illustrates this.

Example 2.3.7. Suppose there’s a jar that contains 3 red marbles and 2 blue marbles. Let X be

the number of red marbles obtained when we pick two marbles from the jar with replacement.

In this example we are considering picking a red marble as a success. The sample space for

this experiment is S = {RR,RB,BR,BB}. Our parameter p is the probability of a success, the

probabiliy of picking a red marble from the jar, so p = P (R) = 3
5 . Our paramere n is the number

of trials so n = 2 since we are picking 2 marbles from the jar.

The following table illustrates the events in the sample space and the value of X for each

event.

Outcome RR RB BR BB

X 2 1 1 0
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Using the binomial distribution formula we can find P (X = x) for each x.

P (X = 0) =

(
2

0

)(3

5

)0(
1− 3

5

)2
=

4

25

P (X = 1) =

(
2

1

)(3

5

)1(
1− 3

5

)1
=

12

25

P (X = 2) =

(
2

2

)(3

5

)2(
1− 3

5

)0
=

9

25

2.4 Markov Chains

In this section we will review Markov chains. Our main references for this section are Hillier and

Lieberman [3] and Grinstead and Snell [2].

A Markov chain is a type of stochastic process, which is a collection of random variables

{Xt} indexed by t ∈ {0, 1, 2, ...}. The random variable Xt represents the state or position of the

system at time t. The states of the system are expressed as Xt = 0, 1, 2, ....

In this project we will only be considering discrete time stochastic processes with a finite

number of states.

Definition 2.4.1. A stochastic process is a Markov Chain if it has the following Markovian

property

P (Xt+1 = j|X0 = i0, X1 = i1, ..., Xt−1 = it−1, Xt = i) = P (Xt+1 = j|Xt = i).

This says, given that the present state is Xt = i, the next state in the process Xt+1 is

independent of any past events and depends only on the present state.

These probabilies are called one-step transition probabilities and are denoted

pij = P (Xt+1 = j|Xt = i).

This is the probability that in one time step the process will move from state i to state j.

These probabilities can be arranged in an n× n matrix

T =


p11 p12 . . . p1n
p21 p22 . . . p2n
...

...
. . .

...
pn1 pn2 . . . pnn

 .
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This is called the transition matrix of the Markov Chain.

Example 2.4.2. Let the following Markov chain represent a weather system that transitions

between cloudy, sunny, and rainy weather. In this Markov chain one day is one time step and

the states are the different types of weather C, S, and R.

T =

C S R( )C .25 .5 .25
S .45 .25 .3
R .25 .25 .5

If it’s cloudy today, there’s a 50% chance of it being sunny tomorrow, a 25% chance of being

cloudy, and a 25% chance of being rainy. If it’s sunny today, there’s a 45% chance of it being

cloudy tomorrow, a 25% chance of it being sunny, and a 30% chance of being rainy. If its rainy

today, there’s a 25% chance of it being cloudy tomorrow, a 25% chance of being sunny, and a

50% chance of being rainy.

The following theorem is taken from Grinstead and Snell [2, p. 407]. The proof is ours.

Theorem 2.4.3. Let T be the transition matrix of a Markov chain. The ijth entry p
(n)
ij of the

matrix Tn gives the probability that the Markov chain, starting in state i, will be in state j after

n steps.

Proof. We will use induction on n.

Base Case: If n = 1, then p
(1)
ij is the probability that the Markov chain starts in state i and

after 1 time step is in state j. This is true by the definition of transition probabilities.

Induction Hypothesis: Let n ≥ 1. Assume that the ijth entry p
(n)
ij of Tn is the probability

that the Markov chain has gone from state i to state j after n time steps.
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Induction Step: Suppose the induction hypothesis holds. Let m be the total number of states

in the Markov chain. Then

p
(n+1)
ij = (Tn+1)ij

= (Tn · T )ij

= p
(n)
i1 · p

(1)
1j + p

(n)
i2 · p

(1)
2j + ...+ p

(n)
im · p

(1)
mj

=
m∑
k=1

p
(n)
ik · p

(1)
kj

Note, we are taking the dot product of the ith row of Tn and the jth column of T to get the

ijth element of Tn+1. By the induction hypothesis we know that p
(n)
ik is the probability that the

Markov chain goes from state i to state k in n time steps. Hence
∑m

k=1 p
(n)
ik · p

(1)
kj covers all the

possible states k and therefore all possible ways the Markov chain can get from state i to state

j. Hence p
(n+1)
ij is the probability that the Markov chain, starting in state i, will be in state j

after n+ 1 time steps.

Example 2.4.4. Using the Markov chain from Example 2.4.2, what is the probability that it

will be sunny two days from now given that it’s cloudy today? By Theorem 2.4.3 we can find

this probability by looking at the element p
(2)
CS of the matrix T 2. So we have,

T 2 =

0.25 0.5 0.25
0.45 0.25 0.3
0.25 0.25 0.5

 ·
0.25 0.5 0.25

0.45 0.25 0.3
0.25 0.25 0.5



=

C S R( )C 0.35 0.3125 0.3375
S 0.3 0.3625 0.3375
R 0.3 0.3125 0.3875

.

Therefore, the probability that it will be sunny two days from now given that it’s cloudy today

is p
(2)
CS = 0.3125.

The following theorem is taken from Grindstead and Snell [2, p. 409]. The proof is ours.
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Theorem 2.4.5. Let T be the transition matrix of a Markov chain, and let u be the probability

vector which represents the starting distribution. Then the probability that the chain is in state

i after n steps is the ith entry in the vector

u(n) = uTn

In other words, this theorem allows us to find the probability that a Markov chain is in state i

after t time steps. This theorem will be helpful in finding the probability distributions of Markov

chains.

Proof. We will use induction on n.

Base Case: Let n = 1. Let Xt be the random variable that represent the state of the Markov

chain at time t. We define u
(n)
j as the jth element of the vector u(n). So, u

(1)
j = P (X1 = j). By

the law of Total Probability we have

P (X1 = j)

= P (X1 = j|X0 = 1)P (X0 = 1)+P (X1 = j|X0 = 2)P (X0 = 2)+...+P (X1 = j|X0 = k)P (X0 = k)

=
k∑

i=1

P (X1 = j|X0 = i)P (X0 = i).

Since pij = P (Xt+1 = j|Xt = i) we have

u
(1)
j = p1j · u(0)1 + p2j · u(0)2 + ...+ pkj · u

(0)
k

=

k∑
i=1

piju
(0)
i = u(0)Tj .

Where Tj is the jth column of the transition matrix T .

Therefore u
(1)
j = u(0)Tj . So for all j ∈ {1, ..., k} we have u(1) = u(0)T 1

Induction Hypothesis: Assume u(n) = u(0)Tn.

Induction Step: Suppose the induction hypothesis holds. Then we have

u
(n+1)
j = P (Xn+1 = j) =

k∑
i=1

P (Xn+1 = j|Xn = i)P (Xn = i)

by the law of Total Probability. So,

u
(n+1)
j = u(n)Tj
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and for all j ∈ {1, ..., k} we have

u(n+1) = u(n)T.

By the induction hypothesis

u(n+1) = u(n)T = (u(0)Tn)T = u(0)Tn+1.

Example 2.4.6. Using the Markov chain from Example 2.4.2, let the vector that represents

the starting distribution be u = (1/3, 1/3, 1/3) that is u = (P (X0 = C) = 1/3, P (X0 = S) =

1/3, P (X0 = R) = 1/3). Then we can calculate the distribution of the states after 2 days by

using Theorem 2.4.5 and the transition matrix T 2 that we found in Example 2.4.4.

u(2) = uT 2 = (1/3, 1/3, 1/3) ·

0.35 0.3125 0.3375
0.3 0.3625 0.3375
0.3 0.3125 0.3875


= (0.316667, 0.329167, 0.354167).

Therefore, P (X2 = C) = 0.316667, P (X2 = S) = 0.329167, and P (X2 = R) = 0.354167.
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3
The Markov Chain Model

In this chapter we see how a virus spreads across a graph by setting up guidelines for our

probability model. We see two methods for analyzing virus spread on graphs. The first method

involves finding individual probabilities and looking for patterns while the second method sets

up graphs as Markov chains.

3.1 Guidelines for Our Model

In this section we set up the guidelines for our model and then illustrate them using an example.

1. Each graph has a vertex called the root node. The root node is the initial infected vertex

at time t = 0.

2. If a vertex v is infected the virus can spread to any uninfected vertex adjacent to v in the

next time step with probability p and not spread with probability (1− p).

3. Once a vertex is infected it cannot be uninfected or re-infected.

4. The virus spreading to one vertex is independent of the virus spreading to another vertex

within the same time step. For example, if a vertex v is infected and is adjacent to two

uninfected vertices x and y, both x and y can become infected in the same time step with

probability p2.
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5. Throughout this project the symbols we use are the following:

• t denotes the time step.

• Xt is our stochastic random variable that represents the total number of infected

vertices at time t.

Now let’s look at an example of a virus spreading on the graph P3.

Example 3.1.1. Consider the following path P3.

In this graph the root node is at the endpoint. This graph has 3 vertices so the random variable

Xt can equal 1, 2, or 3.

Let’s look at the probability that at time step 1 the graph has 1 infected vertex, denoted

P (X1 = 1). This is the probability that after 1 time step the virus didn’t spread to any other

vertices. The only vertex that the virus could have spread to in one time step is the center

vertex since it is the only vertex adjacent to the root node. Therefore P (X1 = 1) = (1−p). This

probability is illustrated in the following table.

t = 0 t = 1 Probability

(1− p)
(1− p)

Now let’s look at P (X2 = 1). This is the probability that after 2 time steps the virus still

hasn’t spread from the root node. Two time steps gives the virus 2 chances to spread to the

adjacent vertex so P (X2 = 1) = (1− p)2. The following table illustrates this probability.

t = 0 t = 1 t = 2 Probability

(1− p) (1− p)
(1− p)2

Now let’s look at P (X1 = 2). This is the probability that in one time step the virus spreads

to one more vertex. Since there is only one adjacent vertex this probability is P (X1 = 2) = p.

As illustrated in the following table.
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t = 0 t = 1 Probability
p

p

Now let’s look at P (X2 = 2). This is the probability that after 2 times steps the graph has

two infected vertices. There are two ways this can happen;

Case 1: The virus doesn’t spread in the first time step and then does spread in the second

time step.

Case 2: The virus spreads in the first time step and then doesn’t spread in the second time

step.

The following table illustrates these cases.

Case t = 0 t = 1 t = 2 Probability

Case 1
(1− p) p

p(1− p)

Case 2
p (1− p)

p(1− p)

Adding these cases together we get P (X2 = 2) = p(1− p) + p(1− p) = 2p(1− p).

Now let’s look at P (X1 = 3). This is the probability that after 1 time step there are 3

infected vertices. The virus can only spread to vertices adjacent to an infected vertex in a time

step. So after one time step this graph can have a maximum of 2 vertices infected. Therefore

P (X1 = 3) = 0.

Now consider P (X2 = 3). This is the probability that after two time steps there are 3 infected

vertices. This means that the virus has to spread in each time step so P (X2 = 3) = p2. The

following table illustrates this probability.

t = 0 t = 1 t = 2 Probability
p p

p2

Table 3.1.1 arranges all of these probabilities.
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P (Xt = 1) P (Xt = 2) P (Xt = 3)

t = 0 1 0 0

t = 1 (1− p) p 0

t = 2 (1− p)2 2p(1− p) p2

t = 3 (1− p)3 3p(1− p)2 1− [(1− p)3 + 3p(1− p)2]
...

...
...

...

t = n (1− p)n np(1− p)n−1 1− [(1− p)n + np(1− p)n−1]

Table 3.1.1. P (Xt = i) for the path P3.

From this Table 3.1.1 we can see how finding P (Xt = i) for larger values of t helps us see a

pattern in the probabilities for each i. Noticing the pattern in each column will lead us to the

probability distribution that describes the number of infected vertices at time t for the path P3.

3.2 Virus Spread using Markov Chains

In this section we look at a different method for finding probability distributions of graphs using

Markov chains. We set up a sequence of steps that illustrate our Markov chain method. These

steps will be demonstrated using an example.

The Markov Chain Method

Step 1: Compute the one-step transition probabilities pij and form the transition matrix, T .

Step 2: Compute the eigenvector matrix Q and find Q−1.

Step 3: Compute the Jordan Form matrix J and find J t.

Step 4: Solve T t = QJ tQ−1 to find T t.

Step 5: Multiply T t by the starting distribution u to obtain the probability distribution.

Example 3.2.1. Consider the path P3 as shown below.

Step 1: Compute the one-step transition probabilities pij and form the transition matrix, T .
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This graph has 3 vertices and therefore 3 states.

State 1 Xt = 1 One infected vertex

State 2 Xt = 2 Two infected vertices

State 3 Xt = 3 Three infected vertices

So we will get a 3× 3 transition matrix of the form

T =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 .

Recall from Section 2.4 that the transition matrix of a Markov chain contains the one-step

transition probabilities denoted pij . Where pij = P (Xt+1 = j|Xt = i) is the probability of

moving from state i to state j in one time step. Now let’s look at the elements of T for our graph

P3.

p11 = P (Xt+1 = 1|Xt = 1) is the probability that the graph starts in state 1 at time t and in

the next time step is still in state 1. This means that in one time step the virus didn’t spread

from the root node to the adjacent vertex. Therefore p11 = (1−p). The following table illustrates

this computation.

pij t t+ 1 Probability

p11
(1− p)

(1− p)

state 1 state 1

p12 = P (Xt+1 = 2|Xt = 1) is the probability that the graph starts in state 1 at time t and in

the next time step is in state 2. This means that in one time step the virus spread from the root

node to the middle vertex. So p12 = p. The following table illustrates this.

pij t t+ 1 Probability

p12
p

p

state 1 state 2

p13 = P (Xt+1 = 3|Xt = 1) is the probability that the graph starts in state 1 at time t and in

the next time step is in state 3. This means that the virus must spread from the root node to
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all of the other vertices in one time step. The virus can only move to the next adjacent vertex

in a time step so p13 = 0.

p21 = P (Xt+1 = 1|Xt = 2) is the probability that the graph starts in state 2 at time t and

in the next time step is in state 1. This is the probability that the graph went from having 2

vertices infected to having 1. A vertex cannot be uninfected so p21 = 0. This will also be the

case for p31 and p32 since the number of infected vertices cannot decrease.

p22 = P (Xt+1 = 2|Xt = 2) is the probability that the graph starts in state 2 at time t and in

the next time step is in state 2. This means that the graph has 2 vertices infected at time t and

in the next time step still has 2 infected. So p22 = (1− p). The following table illustrates this.

pij t t+ 1 Probability

p22
(1− p)

(1− p)

state 2 state 2

p23 = P (Xt+1 = 3|Xt = 2) this is the probability that the graph starts in state 2 at time t and

in the next time step is in state 3. This probability is similar to p12 in that the virus spreads to

the only adjacent vertex. So p23 = p. The following table illustrates this computation.

pij t t+ 1 Probability

p23
p

p

state 2 state 3

p33 = P (Xt+1 = 3|Xt = 3) is the probability that the graph starts in state 3 at time t and in

the next time step is still in state 3. Since there are no more vertices to be infected on this graph

and no vertex can become uninfected p33 = 1.

When we arrange these probabilities in the matrix T we get

T =

(1− p) p 0
0 (1− p) p
0 0 1

 .

Step 2: Compute the eigenvector matrix Q and find Q−1.
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Now that we have the transition matrix of one-step transition probabilities by Theorem 2.4.3

we can look at T t to find the t-step probabilities, or the probabilities that the Markov chain

moves from state i to state j in t time steps; denoted p
(t)
ij . In order to find T t we can look at the

Jordan Normal Form of T since T t = QJ tQ−1 (see Theorem 2.2.15 and Definition 2.2.16).

Let’s start by finding the matrix Q of T . By Theorem 2.2.7 we know that because T is upper

triangular the eigenvalues of T lie on the diagonal. Therefore the eigenvalues are λ = (1 − p),

λ = (1 − p), and λ = 1. The matrix Q is made up of the eigenvectors of T so we will start by

finding the eigenvector associated with λ = 1. We want (T − 1I)v1 = 0. So

(T − 1I)v1 =

−p p 0
0 −p p
0 0 0

 ·
x1x2
x3

 = 0

implies

−px1 + px2 = 0

and

−px2 + px3 = 0.

The solution to these two equations is x1 = x2 = x3. Therefore the eigenvector associated

with the eigenvalue λ = 1 is

v1 =

1
1
1

 .

Now we will find the eigenvectors associated with the eigenvalue λ = (1 − p). We want

(T − (1− p)I)v2 = 0. So

(T − (1− p)I)v2 =

0 p 0
0 0 p
0 0 p

 ·
x1x2
x3

 = 0
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implies

px2 = 0

and

px3 = 0.

Therefore x2 = x3 = 0 and x1 can be anything. So the only eigenvector associated with

λ = (1− p) is

v2 =

1
0
0

 .

However, there are two eigenvalues that equal (1− p) so we need to find a generalized eigen-

vector such that (T − (1− p)I)v3 = v2. Therefore

(T − (1− p)I)v3 =

0 p 0
0 0 p
0 0 p

 ·
x1x2
x3

 =

1
0
0


implies

px2 = 1

and

px3 = 0.

So x2 = 1
p , x3 = 0, and x1 can be anything.Therefore the generalized eigenvector based on

the eigenvector v2 is

v3 =

0
1
p

0

 .

When we arrange the eigenvectors and generalized eigenvectors of T into a matrix we get

Q =

1 1 0
1 0 1

p

1 0 0

 where Q−1 =

0 0 1
1 0 −1
0 p −p

 .
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Step 3: Compute the Jordan Form matrix J and find J t.

We saw in Step 2 that T has two linearly independent eigenvectors. Therefore the Jordan Form

matrix J will be made up of two Jordan blocks by Theorem 2.2.15. T also has a generalized

eigenvector based on the eigenvector v2 which is associated with λ = (1 − p). Therefore the

Jordan blocks are

J1 = (1) and J2 =

(
(1− p) 1

0 (1− p)

)
.

So we have

J =

(
J1 0
0 J2

)
=

1 0 0
0 (1− p) 1
0 0 (1− p)

 .

Using Mathematica we can find J t,

J t =

1 0 0
0 (1− p)t t(1− p)t−1
0 0 (1− p)t

 .

Step 4: Solve T t = QJ tQ−1 to find T t.

T t = QJ tQ−1 = Q =

1 1 0
1 0 1

p

1 0 0

 ·
1 0 0

0 (1− p)t t(1− p)t−1
0 0 (1− p)t

 ·
0 0 1

1 0 −1
0 p −p



=

(1− p)t tp(1− p)t−1 1− (1− p)t − tp(1− p)t−1
0 (1− p)t 1− (1− p)t
0 0 1

 .

Step 5: Multiply T t by the starting distribution u to obtain the probability distribution.

Now we can find the probability distribution that describes the number of infected vertices at

time t on the graph P3. The starting distribution of P3 is u = (P (X0 = 1), P (X0 = 2), P (X0 =

3)) = (1, 0, 0) since at time 0 there is only one vertex infected, the root node. By Theorem 2.4.5

the vector that describes the probability distribution of this graph is
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u(t) = uT t = (1, 0, 0) ·

(1− p)t tp(1− p)t−1 1− (1− p)t − tp(1− p)t−1
0 (1− p)t 1− (1− p)t
0 0 1


= ((1− p)t, tp(1− p)t−1, 1− (1− p)t − tp(1− p)t−1).

Note u(t) = (P (Xt = 1), P (Xt = 2), P (Xt = 3)).

Therefore the probability distribution of P3 is

P (Xt = i) =


(1− p)t, if i = 1

tp(1− p)t−1, if i = 2

1− [(1− p)t + tp(1− p)t−1], if i = 3

.

Recall from Table 3.1.1 that we found the same proabability distribution.



4
Linear Algebra of the Markov Chain Model

In this chapter we present some theorems that will be useful in understanding the rest of this

project. We see a theorem that describes what the eigenvalues look like for the transition matrix

of every graph, a theorem that describes two eigenvectors of the transition matrix T of every

graph, and theorems that describe what J t looks like for J that contains Jordan blocks Ji that

are 3× 3 or smaller.

4.1 Eigenvalues and Eigenvectors of T

Theorem 4.1.1. The eigenvalues for the Transition Matrix T of a graph with n vertices are 1

and (1− p)m where m ∈ N.

Proof. Let T be the Transition Matrix of a graph with n vertices. All the entries of T are defined

as pij = P (Xt+1 = j|Xt = i) which is the probability that that graph is in state i and in the

next time step is in state j. Consider pij where i > j. This is the probability that the number

of infected vertices on the graph decreases. Because a vertex cannot be uninfected pij = 0 when

i > j. Therefore T is an upper triangular matrix. By Theorem 2.2.7 we know that the eigenvalues

of an upper triangular matrix lie on the diagonal. Therefore the eigenvalues of T are all the entries

pij where i = j. These are the probabilities that the graph starts with i infected vertices and in
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the next time step still has i infected vertices. This means that the virus didn’t spread from any

of the infected vertices. This probability is equal to (1 − p)m where m is the number of edges

connected an infected vertex to an uninfected vertex. Note that pnn = (1− p)0 = 1 since there

are no more vertices to be infected.

For example, recall the transition matrix of the path P3 that we found in Example 3.2.1 as

shown below.

T =

(1− p) p 0
0 (1− p) p
0 0 1


T is upper triangular so by Theorem 2.2.7 the eigenvalues are λ = (1− p) and λ = 1.

Theorem 4.1.2. The basis of eigenvectors for the transition matrix T of a graph with n vertices

contains the vectors

v1 =


1
1
...
1

 and v2 =


1
0
...
0


Proof. By Theorem 4.1.1 we know that λ1 = 1 is an eigenvalue of every graph. For each row i

of a Markov chain we know that the elements of that row add up to 1 since they cover all the

possibilities of moving from state i to another state. Therefore when we solve (T − 1I) we are

subtracting 1 from each row so the elements of each row now add up to 0. Therefore the first

entry of v2 can be anything. So

(T − 1I)


1
1
...
1

 = 0 so, v1 =


1
1
...
1

 is an eigenvalue of T .

Because T is upper triangular we know that the element p11 is an eigenvalue of T by Theorem

2.2.7. So when we find (T − p11I)v2 = 0 we have that the matrix (T − p11I) is a matrix with

zeros in the first column. Therefore
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(T − p11I)


1
0
...
0

 = 0 so, v2 =


1
0
...
0

 is an eigenvalue of T .

Recall from Example 3.2.1 that the eigenvector of T associated with the eigenvalue λ = 1 is

v1 =

1
1
1

 .

And the eigenvector associated witht the eigenvalue λ = p11 = (1− p) is

v2 =

1
0
0

 .

4.2 The Jordan Block J ti

The following theorems show what the Jordan block J t
i looks like for Ji that are 3×3 or smaller.

From these theorems we can determine what J t looks like for J that is made up of Jordan blocks

that are 3× 3 or smaller.

Theorem 4.2.1. If the Jordan block Ji =

(
λ 1
0 λ

)
then J t

i =

(
λt tλt−1

0 λt

)
where t is a positive

integer.

Proof. We will use induction on t.

Base Case: Let t = 1. Then J1
i =

(
λ1 1 · λ1−1
0 λ1

)
=

(
λ 1
0 λ

)
= Ji.

Induction Hypothesis: Assume J t
i =

(
λt tλt−1

0 λt

)
for some t ≥ 1.

Induction Step: Suppose the induction hypothesis holds. Then

J t+1
i = J t

i · Ji

=

(
λt tλt−1

0 λt

)
·
(
λ 1
0 λ

)
=

(
λt+1 (t+ 1)λ(t+1)−1

0 λt+1

)
.
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Theorem 4.2.2. If the Jordan block Ji =

λ 1 0
0 λ 1
0 0 λ

 then, J t
i =

λt tλt−1 Tt−1λ
t−2

0 λt tλt−1

0 0 λt


where t is a positive integer and where Tt−1 is the (t − 1)th term in the Triangular Number

Sequence such that T0 = 0, T1 = 1, T2 = 3, etc.

Proof. We will use induction on t.

Base Case: Let t = 1. Then

J1
i =

λ1 1 · λ0 T0
0 λ1 1 · λ0
0 0 λ1

 =

λ 1 0
0 λ 1
0 0 λ

 = Ji.

Induction Hypothesis: Assume J t
i =

λt tλt−1 Tt−1λ
t−2

0 λt tλt−1

0 0 λt

 .

Induction Step: Then

J t+1
i = J t

i · Ji =

λt tλt−1 Tt−1λ
t−2

0 λt tλt−1

0 0 λt

 ·
λ 1 0

0 λ 1
0 0 λ

 =

λt+1 (t+ 1)λt Ttλ
t−1

0 λt+1 (t+ 1)λt

0 0 λt+1

 .

Recall from Example 3.2.1 that the matrix J for the path P3 is made up of two Jordan blocks

J1 = (1) and J2 =

(
(1− p) 1

0 (1− p)

)
.

So,

J =

(
J1 0
0 J2

)
.

Therefore we have that

J t =

(
J t
1 0

0 J t
2

)
where

J t
1 = (1t) = 1 and J t

2 =

(
(1− p)t t(1− p)t−1

0 (1− p)t
)
.
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So,

J t =

1 0 0
0 (1− p)t t(1− p)t−1
0 0 (1− p)t

 .
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5
Virus Spread on Paths, Stars, Cycles, and Complete
Graphs

In this chapter we use Markov chains to study the spread of a virus on paths, stars, cycles, and

complete graphs. We find the transition matrix T for n-paths, n-stars, n-cycles, and complete

n-graphs. We also find the Jordan Normal Form matrices J and Q for paths, stars, and cycles.

5.1 Virus Spread on Paths

In this section we analyze the spread of a virus on paths where the root node is positioned at

one of the endpoints.

5.1.1 Transition Matrices for the Paths P3 and P4

We now look at the transition matrices for the paths P3 and P4. These examples will help us

formulate the transition matrix for any n-path.

In Example 3.2.1 we found that the transition matrix for the path P3 is

T =

(1− p) p 0
0 (1− p) p
0 0 1

 .

Example 5.1.1. In this example we will find the transition matrix for the path P4 as shown

below.
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This graph has 4 vertices and therefore 4 states; state 1 = 1 vertex infected, state 2 =

2 vertices infected, etc. The following table illustrates the transition probabilities pij of the

transition matrix for the path P4.

pij Time = t Time = t+ 1 pij =

p11
(1− p)

(1− p)

p12
p

p

p22
(1− p)

(1− p)

p23
p

p

p33
(1− p)

(1− p)

p34
p

p

p44 1

Table 5.1.1. Elements of the transition matrix for the path P4

For example, consider p23. This is the probability that the graph starts in state 2 at time t

and in the next time step is in state 3. This means that in one time step the virus spread to one

more vertex. There is only one possible vertex for the virus to spread to so this probability is

p23 = p.

Note that the elements below the diagonal (p21, p31, p32, p41, p42, and p43) are all the probabil-

ities where the number of infected vertices decreases. Since a vertex cannot become uninfected

these probabilities are 0.
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The elements p13, p14, and p24 are all the probabilites where the virus must spread to two or

more vertices in a time step. On a path the virus can only spread to a maximum of one vertex

in a time step so these probabilities are 0.

When we arrange these probabilities into a matrix we get

T =


(1− p) p 0 0

0 (1− p) p 0
0 0 (1− p) p
0 0 0 1



5.1.2 Transition Matrix for an n-Path

Theorem 5.1.2. The Transition Matrix T for a path with n vertices Pn is the n× n matrix

T =



(1− p) p 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
... (1− p) p
0 . . . . . . 0 1


.

Proof. Let T be the transition matrix for a path Pn. Consider the elements pij where i > j.

Note pij = P (Xt+1 = j|Xt = i) is the probability that the graph is in state j given that in the

previous time step the graph was in state i. When i > j, pij is the probability that the number

of infected vertices decreases. Since a vertex cannot become uninfected this probability is 0.

Consider pij where i = j 6= n. This is the probability that the graph stays at i infected vertices

during a time step. On a path there is only one vertex that the virus can move to in a time step

so when i = j 6= n, pij = (1− p). Consider pij where i = j = n. Then pij = 1 since there are no

more vertices for the virus to spread to and no vertex can be uninfected.

Consider pij where j = i+ 1. This is the probability that the virus spreads to one more vertex

in a time step. On a path there is only one vertex that the virus can move to in a time step so

pij = p.
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Consider pij where j ≥ i + 2. This is the probability that the virus spreads to 2 or more

vertices in a time step. On a path there is only one possible vertex that can be infected in a

time step so pij = 0.

5.1.3 The Matrix Q for the Paths P3 and P4

In this section we find the matrix Q for the paths P3 and P4. These examples will help us

formulate the matrix Q for any n-path.

In Example 3.2.1 we found that the Jordan Form matrix Q for the path P3 is

Q =

1 1 0
1 0 1

p

1 0 0


Example 5.1.3. In this example we find Q for the path P4. The matrix Q is made up of the

eigenvectors of T . We know that T has four eigenvalues λ = 1 and three that are λ = (1− p).

By Theorem 4.1.2 we know that the eigenvector associated with λ = 1 is

v1 =


1
1
1
1

 .

And we know that an eigenvector associated with λ = p11 = (1− p) is

v2 =


1
0
0
0

 .

When we solve for v2 we get

(T − (1− p)I)v2 =


0 p 0 0
0 0 p 0
0 0 0 p
0 0 0 −p



x1
x2
x3
x4

 = 0.

This implies
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px2 = 0

px3 = 0

px4 = 0

−px4 = 0

Therefore x2 = x3 = x4 = 0 and x1 can be anything. So the only eigenvector associated with

λ = (1 − p) is v2. However, λ = (1 − p) has multiplicity 3 so we need to find two generalized

eigenvectors such that (T − (1− p)I)v3 = v2 and (T − (1− p)I)v4 = v3. We will start by finding

v3.

(T − (1− p)I)v3 =


0 p 0 0
0 0 p 0
0 0 0 p
0 0 0 p

 · v3.

Let v3 =


0
1
p

0
0

 Then

(T − (1− p)I)v3 =


0 p 0 0
0 0 p 0
0 0 0 p
0 0 0 p

 ·


0
1
p

0
0

 =


1
0
0
0

 = v2.

Hence v3 is a generalized eigenvector of T .

Now we will find v4.

(T − (1− p)I)v4 =


0 p 0 0
0 0 p 0
0 0 0 p
0 0 0 p

 · v4.

Let v4 =


0
0
1
p2

0

. Then
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(T − (1− p)I)v4 =


0 p 0 0
0 0 p 0
0 0 0 p
0 0 0 p

 ·


0
0
1
p2

0

 =


0
1
p

0
0

 = v3.

When we arrange these eigenvectors and generalized eigenvectors into a matrix we get

Q =


1 1 0 0
1 0 1

p 0

1 0 0 1
p2

1 0 0 0



5.1.4 The Matrix Q for an n-Path

Lemma 5.1.4. Let T be the transition matrix for a path with n vertices Pn. Then T has two

distinct eigenvalues λ = 1 and λ = (1− p) where λ = (1− p) has multiplicity n− 1 and the only

eigenvector associated with λ = (1− p) is

v =


1
0
...
0

 .

Proof. Let T be the transition matrix of a path with n vertices, Pn. The matrix T is upper

triangualr so by Theorem 2.2.7 the eigenvalues lie on the diagonal. Recall from Theorem 5.1.2

that the diagonal entries of T are 1 and (1−p). Therefore the eigenvalues are λ = 1 and λ = (1−p)

where (1 − p) has multiplicity n − 1. To find the eigenvectors associated with λ = (1 − p) we

solve (T − (1− p)I)v = 0. So

(T − (1− p)I)v =



0 p 0 . . . 0

0 0 p
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 p
0 . . . . . . 0 −p


·



x1
x2
...
...
xn

 = 0

implies
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px2 =0

px3 =0

...

pxn =0

−pxn =0.

Therefore x2 = x3 = x4 = ... = xn = 0 and x1 can be anything. So the only eigenvector

associated with λ = (1− p) is

v =


1
0
...
0

 .

Theorem 5.1.5. The matrix Q for the transition matrix T of a path with n vertices Pn is the

n× n matrix

Q =



1 1 0 . . . . . . 0

1 0 1
p

. . .
...

1 0 0 1
p2

. . .
...

...
...

...
. . .

. . . 0
...

...
...

. . . 1
pn−2

1 0 0 . . . 0 0


Proof. Let T be the transition matrix of the path with n vertices, Pn. The matrix Q is made up

of the eigenvectors of T . By Theorem 4.1.2 we know that

v1 =


1
1
...
1

 and u1 =


1
0
...
0


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are eigenvectors of the transition matrix T where v1 is associated with λ = 1 and u1 is

associated with λ = p11 = (1 − p). By Lemma 5.1.4 u1 is the only eigenvector associated with

λ = (1 − p). However, λ = (1 − p) has multiplicity n − 1 so there is a length n − 1 chain of

generalized eigenvectors based on the eigenvector u1. This chain of generalized eigenvectors is a

set {u1, u2, ..., un−1} such that

(T − (1− p)I)u2 = u1

(T − (1− p)I)u3 = u2
...

(T − (1− p)I)un−1 = un−2.

We will prove what the generalized eigenvectors look like through induction on k.

Base Case: We know that the first eigenvector in the chain is

u1 =


1
0
...
0

 =


1

p1−1

0
...
0

 .

Induction Hypothesis: Assume uk is the kth generalized eigenvector where k 6= n− 1. Assume

uk =



0
...
0
1

pk−1

0
...
0


where 1

pk−1 is the kth entry in the vector uk.

Induction Step: Suppose the induction hypothesis holds. Then solving for the next generalized

eigenvector in the chain, uk+1,means solving
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(T − (1− p)I)uk+1 =



0 p 0 . . . 0

0 0 p
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 p
0 . . . . . . 0 −p


·



x1
x2
...
...
xn

 =



0
...
0
1

pk−1

0
...
0


= uk.

Solving for the elements of uk+1 we get the following equations

0x1 + px2 + 0x3 + ...+ 0xn = 0

...

0x1 + ...+ 0xk−1 + pxk + 0xk+1 + ...+ 0xn = 0

0x1 + ...+ 0xk + pxk+1 + 0xk+2 + ...+ 0xn = 1
pk−1

0x1 + ...+ 0xk+1 + pxk+2 + 0xk+3 + ...+ 0xn = 0

...

0x1 + ...+ 0xn−1 + pxn = 0

Let xk+1 = 1
pk

and let every other xi = 0. Then 0x1 + ...+ 0xk + pxk+1 + 0xk+2 + ...+ 0xn =

pxk+1 = p
pk

= 1
pk−1 and all other equations equal 0. Hence all the equations are satisfied.

Therefore

uk+1 =



0
...
0
1
pk

0
...
0


where 1

pk
is the k + 1th element of the vector uk+1.

5.1.5 Jordan Form Matrix J for the Paths P3 and P4

In this section we find the matrix J for the paths P3 and P4. These examples will help us

formulate the matrix J for any n-path.



46 5. VIRUS SPREAD ON PATHS, STARS, CYCLES, AND COMPLETE GRAPHS

In Example 3.2.1 we found that the Jordan Form matrix J for the path P3 is

J =

1 0 0
0 (1− p) 1
0 0 (1− p)


Example 5.1.6. In this example we find the matrix J for the path P4. In Example 5.1.1 we

found that the transition matrix for P4 is

T =


(1− p) p 0 0

0 (1− p) p 0
0 0 (1− p) p
0 0 0 1

 .

By Theorem 2.2.7 we know that the eigenvalues of T lie on the diagonal. So, T has two distinct

eigenvalues λ = 1 and λ = (1 − p) where λ = (1 − p) has multiplicity 3. By Lemma 5.1.4 we

know that there is only one eigenvector associated with λ = (1−p). Therefore T has two linearly

independent eigenvectors, so J is made up of two Jordan blocks by Theorem 2.2.15

J1 = (1) and J2 =

(1− p) 1 0
0 (1− p) 1
0 0 (1− p)

 .

Therefore we know

J =

(
J1 0
0 J2

)
=


1 0 0 0
0 (1− p) 1 0
0 0 (1− p) 1
0 0 0 (1− p)



5.1.6 Jordan Form Matrix J for an n-Path

Theorem 5.1.7. The Jordan Form matrix J for the transition matrix T of a path with n vertices

Pn is the n× n matrix

J =



1 0 0 . . . 0

0 (1− p) 1
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 . . . . . . 0 (1− p)


.
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Proof. Let T be the transition matrix for the path Pn. Let J be the Jordan Form matrix of T . We

know T is upper triangular so by Theorem 2.2.7 the eigenvalues lie on the diagonal. Therefore

by Theorem 5.1.2 the eigenvalues are λ = 1 and λ = (1− p) where λ = (1− p) has multiplicity

n− 1. By Lemma 5.1.4 we know that there is only one eigenvector associated with λ = (1− p).

Therefore T has two linearly independent eigenvectors so J is made up of two Jordan blocks by

Theorem 2.2.15.

J1 = (1) and J2 =



(1− p) 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . (1− p) 1
0 . . . . . . 0 (1− p)


where J2 is an n− 1× n− 1 matrix. Therefore

J =

(
J1 0
0 J2

)
= J =



1 0 0 . . . 0

0 (1− p) 1
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 . . . . . . 0 (1− p)


.

5.2 Virus Spread on Star Graphs

In this section we analyze the spread of a virus on star graphs where the root node is at the

center vertex.

5.2.1 Transition Matrix for the Star Graph S4

In this section we find the transition matrix for the star graph S4. This example will help us

formulate the transition matrix for any n-star.

Example 5.2.1. In this example we find the transition matrix of the star graph S4 as shown

below.
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This graph has 4 vertices and therefore 4 states. Consider the state where 2 vertices are

infected. This state can be represented three ways, as shown below.

We consider each of these representations the same state since each graph can be rearranged to

look like the other. We also get the same transition probabilities no matter which representation

we choose. For example, consider the probability p22 for each representation. In each one there

are two uninfected vertices that the virus could spread to so for each this probability is (1− p)2.

Therefore p22 = (1− p)2 for the graph S4. This is also the case for the state where 3 vertices are

infected.

Now, let’s find the transition probabilities for S4. Consider p12. This is the probability that

the virus spread from the root node to just one of the adjacent vertices. This can happen three

ways, as shown below.

p (1
−

p
)

(1− p)
or

(1− p)

p

(1− p)
or

(1− p) (1
−

p
)

p

Therefore this probability is p12 = 3p(1− p)2. Another way to think of this probability is that

out of the 3 vertices the the virus can spread to we want to choose 1. If we consider the virus

spreading to a vertex a success we can use the binomial distribution to find this probability.

Therefore

(
3

1

)
p1(1− p)3−1 = 3p(1− p)2.

We can use the same method to find p13. This is the probability that the virus spreads from

the root node to two more vertices. Hence the virus spreads to two out of the three uninfected

vertices. Therefore p13 =

(
3

2

)
p2(1− p)3−2 = 3p2(1− p).
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Table 5.2.1 illustrates the rest of the transition probabilities for the star graph S4.

pij Time= t Time= t+ 1 pij =

p11
(1− p)

(1
−

p
)

(1− p)
(1− p)3

p14
p

p

p
p3

p23

p

(1− p)

or 2p(1− p)

(1
−

p
)

p

p24

p

p
p2

p33
(1− p)

(1− p)

p34
p

p

p44 1

Table 5.2.1. Elements of the transition matrix for the star graph S4

Note that the elements below the diagonal (p21, p31, p32, p41, p42, and p43) are all the elements

where the number of infected vertices decreases. Because of the fact that a virus cannot become

uninfected, these probabilities are 0.
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When we arrange these probabilities into a matrix we get

T =


(1− p)3 3p(1− p)2 3p2(1− p) p3

0 (1− p)2 2p(1− p) p2

0 0 (1− p) p
0 0 0 1


5.2.2 Transition Matrix for an n-Star

Theorem 5.2.2. The Transition Matrix T for a star graph with n vertices Sn is the n × n

matrix with elements pij such that

pij =


(
n− i
j − i

)
pj−i(1− p)n−j , if i ≤ j

0, if i > j

Note, the elements pij of the transition matrix of a star graph with n vertices follow a binomial

distribution with parameters n− i and p.

Proof. Let T be the transition matrix of a star graph with n vertices, Sn. Consider pij where

i > j. This is the probability that the number of infected vertices on the graph decreases. A

vertex cannot become uninfected so this probability is 0. Consider pij where i ≤ j. This is the

probability that the virus spreads to j−i more vertices. Note that on a star graph all the vertices

are adjacent to the center vertex (the root node) so the virus can spread to any number of the

uninfected vertices in a time step. The number n− i is the number of uninfected vertices left on

the graph. Therefore

(
n− i
j − i

)
is the number of ways the virus can spread to j − i more vertices

out of the remaining n − i vertices. The probability pj−i(1 − p)n−j is the probability that the

virus spreads to j− i more vertices and doesn’t spread to the remaining n−j vertices. Therefore

pij =

(
n− i
j − i

)
pj−i(1− p)n−j when i ≤ j.

5.2.3 The Matrix Q for the Star Graph S3

In this section we find the matrix Q for the star graph S3. This example will help us formulate

the matrix Q for any n-star.
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Example 5.2.3. In this example we find Q for the star S3. The matrix Q is made up of the

eigenvectors of the transition matrix of S3. Using Theorem 5.2.2 we can find the transition

matrix for this graph, as shown below.

T =

(1− p)2 2p(1− p) p2

0 (1− p) p
0 0 1


T is upper triangular so by Theorem 2.2.7 the eigenvalues lie on the diagonal. Therefore the

eigenvalues of T are λ = 1, λ = (1− p), and λ = (1− p)2. By Theorem 4.1.2 we know that the

eigenvector associated with λ = 1 is

v1 =

1
1
1


and the eigenvector associated with λ = p11 = (1− p)2 is

v2 =

1
0
0

 .

Now, lets find the eigenvector v3 associated with λ = (1− p). We want (T − (1− p)I)v3 = 0.

Therefore

(T − (1− p)I)v3 =

−p(1− p) 2p(1− p) p2

0 0 p
0 0 p

 ·
x1x2
x3

 = 0

which implies −p(1 − p)x1 + 2p(1 − p)x2 + p2x3 = 0 and px3 = 0. Let x1 = 2, x2 = 1, and

x3 = 0. Then both equations are satisfied. Therefore

v3 =

2
1
0

 .

When we arrange these eigenvectors in a matrix we get

Q =

1 2 1
1 1 0
1 0 0





52 5. VIRUS SPREAD ON PATHS, STARS, CYCLES, AND COMPLETE GRAPHS

Using Mathematica we can find the matrix Q for S4 and S5 as well.

Q for S4:

Q =


1 3 3 1
1 2 1 0
1 1 0 0
1 0 0 0


Q for S5:

Q =


1 4 6 4 1
1 3 3 1 0
1 2 1 0 0
1 1 0 0 0
1 0 0 0 0


These matrices help us form the following conjecture about Q for Sn.

5.2.4 The Matrix Q for an n-Star

Conjecture 5.2.4. The matrix Q for the transition matrix T of a star graph with n vertices

Sn is the n× n matrix

Q =



(
n−1
0

) (
n−1
1

)
. . . . . .

(
n−1
n−1
)(

n−2
0

) (
n−2
1

)
. . .

(
n−2
n−2
)

0
... . .

.
. .
. ...

... . .
.

. .
. ...(

n−n
0

)
0 . . . . . . 0


5.2.5 Jordan Form Matrix J for the Star Graph S4

In this section we find the matrix J for the star graph S4. This example will help us formulate

the matrix J for any n-star.

Example 5.2.5. In this example we find J for the star S4. In Example 5.2.1 we found that the

transition matrix for S4 is

T =


(1− p)3 3p(1− p)2 3p2(1− p) p3

0 (1− p)2 2p(1− p) p2

0 0 (1− p) p
0 0 0 1

 .



5.2. VIRUS SPREAD ON STAR GRAPHS 53

By Theorem 2.2.7 we know that the eigenvalues of T lie on the diagonal. So, T has 4 distinct

eigenvalues λ = 1, λ = (1 − p), λ = (1 − p)2, and λ = (1 − p)3. Hence there are 4 linearly

independent eigenvectors so by Theorem 2.2.15 J is made up of 4 Jordan blocks.

J1 = (1), J2 = ((1− p)), J3 = ((1− p)2) and J4 = ((1− p)3). So

J =


1 0 0 0
0 (1− p) 0 0
0 0 (1− p)2 0
0 0 0 (1− p)3



5.2.6 Jordan Form Matrix J for an n-Star

Theorem 5.2.6. The Jordan Form J for the transition matrix T of a star graph with n vertices

Sn is the n× n matrix

J =



1 0 . . . . . . 0

0 (1− p)
. . .

...
...

. . . (1− p)2
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 (1− p)n−1


.

Note that the matrix J is diagonal for star graphs.

Proof. Let T be the transition matrix for the star graph Sn. We know that T is upper triangular

so by Theorem 2.2.7 the eigenvalues of T are all the elements pii. By Theorem 5.2.2 we know that

pii =

(
n− i
i− i

)
pi−i(1− p)n−i = (1− p)n−i. Therefore there are n distinct eigenvalues of the form

λ = (1− p)n−i where i ∈ {1, 2, ..., n}. Therefore there are n linearly independent eigenvectors so

J is made up of n Jordan blocks. Hence

J =



1 0 . . . . . . 0

0 (1− p)
. . .

...
...

. . . (1− p)2
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 (1− p)n−1


.
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5.3 Virus Spread on Cycles

In this section we analyze the spread of a virus on cycles.

5.3.1 Transition Matrix for the Cycle C4

In this section we find the transition matrix for the cycle C4. This example will help us formulate

the transition matrix for any n-cycle.

Example 5.3.1. In this example we will find the transition matrix for the cycle C4 as shown

below.

Note on this graph the virus can start from any vertex.

This cycle has 4 vertices and therefore 4 states. So we will get a transition matrix of the form

T =


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

 .

Consider the probability p14. This is the probability that the virus spreads from the root node

to all other vertices in one time step. The root node is only adjacent to two vertices so it’s

impossible for the virus to spread to all 4 vertices in one time step. Therefore p14 = 0.

Consider the probability p34. This is the probability that the graph has 3 vertices infected at

time t and then spreads to the last vertex in the next time step. The last vertex is adjacent to

two infected vertices so this can happen two ways.

Case 1: The virus spreads from one vertex and not the other.

Case 2: The virus spread from both vertices.

The following table illustrates these cases.

Adding these two cases together, we get p34 = 2p(1− p) + p2.
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Case Time= t Time= t+ 1 Probability

Case 1

(1− p)

p

or 2p(1− p)
p

(1
−

p
)

Case 2

p

p

p2

Note that the elements below the diagonal (p21, p31, p32, p41, p42, and p43) are all the elements

where the number of infected vertices decreases. Because a vertex cannot become uninfected

these probabilities are 0. Table 5.3.1 illustrates the rest of the transition probabilities for the

cycle C4.

When we arrange these probabilities into a matrix we get

T =


(1− p)2 2p(1− p) p2 0

0 (1− p)2 2p(1− p) p2

0 0 (1− p)2 2p(1− p) + p2

0 0 0 1

 .

5.3.2 Transition Matrix for an n-Cycle

Theorem 5.3.2. The Transition Matrix T for a cycle with n vertices Cn is the n× n matrix

T =



(1− p)2 2p(1− p) p2 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
... (1− p)2 2p(1− p) p2

... (1− p)2 2p(1− p) + p2

0 . . . . . . . . . 0 1


.
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pij Time= t Time= t+ 1 pij =

p11
(1− p)(1

−
p
)

(1− p)2

p12
(1− p)

p

or 2p(1− p)

p(1
−

p
)

p13
p

p
p2

p22
(1− p)

(1− p)

(1− p)2

p23
p

(1− p)

or 2p(1− p)

(1− p)

p

p24
p

p

p2

p33

(1− p)

(1
−

p
)

(1− p)2

Table 5.3.1. Elements of the transition matrix for the cycle C4
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Proof. Let T be the transition matrix for the cycle graph Cn. Consider pij where i > j. This

is the probability that the number of infected vertices decreases after one time step. No vertex

can become uninfected so this probability is 0.

Consider pii or when i = j. When i = j = n this is the probability that if every vertex is

infected at time t that every vertex will still be infected at time t + 1. Because no vertex can

become uninfected and there are no more vertices for the virus to spread to so pnn = 1. When

i = j 6= n this is the probability that the virus doesn’t spread to any more vertices in the next

time step and that there is at least one uninfected vertex left. On a cycle there are always two

different ways the virus can spread when i 6= n so pii = (1− p)2.

Consider pij where j = i+ 1. This is the probability that the virus spreads to just one more

vertex in a time step. This can happen in two different cases.

Case 1: Let i = n−1 and j = n. This is the case where there is only one uninfected vertex left

on the graph which means that it is adjacent to two infected vertices. This vertex can become

infected in two ways. Either the virus spreads from one of the infected vertices and not the other

or it spreads from both. This probability is pij = 2p(1− p) + p2.

Case 2: Let i ≤ n− 2 and j ≤ n− 1. This is the case where there are at least two uninfected

vertices left on the graph. This means that the virus can spread to two different vertices in one

time step. The probability that the virus only spreads to one of them is pij = 2p(1− p).

Consider pij where j = i+2. This is the probability that the virus spreads to two more vertices

in one time step. When j = i + 2 there are always 2 uninfected vertices adjacent to infected

vertices on the graph. Therefore the probability the virus spreads to both of them is pij = p2.

Consider pij where j ≥ i + 3. This is the probability that the virus spreads to 3 or more

vertices in a time step. On a cycle the virus can spread to at most two more vertices in a time

step. So the probability the virus spreads to three or more vertices in a time step is 0.

5.3.3 The Matrix Q for the Cycle C3

In this section we find the matrix Q for the cycle C3. This example will help us formulate the

matrix Q for any n-cycle.
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Example 5.3.3. In this example we find the matrix Q for the cycle C3. By Theorem 5.3.2 we

know that the transition matrix for C3 is

T =

(1− p)2 2p(1− p) p2

0 (1− p)2 2p(1− p) + p2

0 0 1

 .

The matrix Q is made up of the eigenvectors of T which by Theorem 2.2.7 are the elements on

the diagonal. So the eigenvalues of T are λ = 1 and λ = (1−p)2 where (1−p)2 has multiplicity 2.

By Theorem 4.1.2 we know that the eigenvector associated with λ = 1 is v1 and the eigenvector

associated with λ = p11 = (1− p)2 is v2 where

v1 =

1
1
1

 and v2 =

1
0
0

 .

When we solve for v2 we get

(T − (1− p)2I)v2 =

0 2p(1− p) p2

0 0 2p(1− p) + p2

0 0 1− (1− p)2

 ·
x1x2
x3

 = 0.

This implies

2p(1− p)x2 + p2x3 = 0

[2p(1− p) + p2]x3 = 0

Therefore x3 = 0, x2 = 0 and x1 can be anything. So the only eigenvector associated with

λ = (1 − p)2 is v2. Because λ = (1 − p)2 has multiplicity 2 we need to find a generalized

eigenvector v3 such that (T − (1− p)2I)v3 = v2. Therefore

(T − (1− p)2I)v3 =

0 2p(1− p) p2

0 0 2p(1− p) + p2

0 0 1− (1− p)2

 ·
x1x2
x3

 =

1
0
0


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which implies

2p(1− p)x2 + p2x3 = 1

[2p(1− p) + p2]x3 = 0

Therefore x1 = x3 = 0 and x2 = 1
2p(1−p) . Therefore

v3 =

 0
1

2p(1−p)
0

 .

When we arrange v1, v2, and v3 into a matrix we get

Q =

1 1 0
1 0 1

2p(1−p)
1 0 0



5.3.4 The Matrix Q for an n-Cycle

Lemma 5.3.4. Let T be the transition matrix for a cycle with n vertices Cn. Then T has two

distinct eigenvalues λ = 1 and λ = (1 − p)2 where λ = (1 − p)2 has multiplicity n − 1 and the

only eigenvector associated with λ = (1− p)2 is

v =


1
0
...
0

 .

Proof. Let T be the transition matrix of a cycle with n vertices Cn. The matrix T is upper

triangualr so by Theorem 2.2.7 the eigenvalues lie on the diagonal. Recall from Theorem 5.3.2

that the diagonal entries of T are 1 and (1 − p)2. Therefore the eigenvalues are λ = 1 and

λ = (1 − p)2 where (1 − p)2 has multiplicity n − 1. To find the eigenvectors associated with

λ = (1− p)2 we solve (T − (1− p)2I)v = 0. So
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(T − (1− p)2I)v =



0 2p(1− p) p2 0 . . . 0

0 0 2p(1− p) p2
. . .

...
...

. . .
. . .

. . . 0
...

. . . 2p(1− p) p2

... 0 2p(1− p) + p2

0 . . . . . . . . . 0 1− (1− p)2


·



x1
x2
...
...
xn

 = 0

implies

2p(1− p)x2 + p2x3 =0

2p(1− p)x3 + p2x4 =0

2p(1− p)x4 + p2x5 =0

...

2p(1− p)xn−1 + p2xn =0

[2p(1− p) + p2]xn =0

[1− (1− p)2]xn =0

Working backwards through these equations we get xn = 0 which implies xn−1 = 0 which implies

xn−2 = 0...etc. This process continues through all the equations. Therefore we get x2 = x3 =

... = xn = 0 and x1 can be anything. So the only eigenvector associated with λ = (1− p)2 is

v =


1
0
...
0

 .

Theorem 5.3.5. The matrix Q for the transition matrix T of a cycle with n vertices Cn is the

n× n matrix
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Q =



1 1 0
1 0 1

2p(1−p)
...

... 0 . . . . . .
...

...
...

1 0 0


where the n− 2 columns to the right of the partition are the elements of a length n− 1 chain

of generalized eigenvectors based on the vector in the second column of Q. The n− 2 generalized

eigenvectors are defined as follows:

Let gk be the kth generalized eigenvector in the chain such that

g1 =


0
1

2p(1−p)
0
...
0

 .

Let xi be the ith element of the vector gk and let yi be the ith element of the previous vector

gk−1. Then

x1 = 0, xn =
yn

[1− (1− p)2]
=

yn−1
2p(1− p) + p2

, and xi =
yi−1 − p2xi+1

2p(1− p)
for all xi where 2 ≤ i ≤ n−1.

Proof. Let T be the transition matrix of the cycle Cn. The matrix Q contains the eigenvectors

of T . We know by Lemma 5.3.4 that T has two distinct eigenvalues λ = 1 and λ = (1 − p)2

where (1− p)2 has multiplicity n− 1. Lemma 5.3.4 also tells us that the only eigenvectors of T

are

v1 =


1
1
...
1

 and v2 =


1
0
...
0


where v1 is associated with λ = 1 and v2 is associated with λ = (1− p)2. Because λ = (1− p)2

has multiplicity n− 1 and it only corresponds to one eigenvector, there is a length n− 1 chain
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of generalized eigenvectors based on v2 such that

(T − (1− p)2I)g1 =v2

(T − (1− p)2I)g2 =g1

...

(T − (1− p)2I)gn−2 =gn−3

Where gk is the kth generalized eigenvector in the chain. To find gk we solve (T−(1−p)2I)gk =

gk−1. Let xi be the ith element in the vector gk and let yi be the ith element in the vector gk−1.

Then

(T−(1−p)2I)gk =



0 2p(1− p) p2 0 . . . 0

0 0 2p(1− p) p2
. . .

...
...

. . .
. . .

. . . 0
...

. . . 2p(1− p) p2

... 0 2p(1− p) + p2

0 . . . . . . . . . 0 1− (1− p)2


·



x1
x2
...
...
...
xn


=



y1
y2
...
...
...
yn


which implies

2p(1− p)x2 + p2x3 =y1

2p(1− p)x3 + p2x4 =y2

2p(1− p)x4 + p2x5 =y3

...

2p(1− p)xn−1 + p2xn =yn−2

[2p(1− p) + p2]xn =yn−1

[1− (1− p)2]xn =yn
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Therefore x1 can be anything so let x1 = 0,

xn =
yn

[1− (1− p)2]
=

yn−1
2p(1− p) + p2

, and

xi =
yi−1 − p2xi+1

2p(1− p)
for all xi such that 2 ≤ i ≤ n− 1.

5.3.5 Jordan Form Matrix J for the Cycle C4

In this section we find the matrix J for the cycle C4. This example will help us formulate the

matrix J for any n-cycle.

Example 5.3.6. In this example we find J for the cycle C4. In Example 5.3.1 we found that

the transition matrix for C4 is

T =


(1− p)2 2p(1− p) p2 0

0 (1− p)2 2p(1− p) p2

0 0 (1− p)2 2p(1− p) + p2

0 0 0 1

 .

By Theorem 2.2.7 we know that the eigenvalues of T lie on the diagonal. So, T has two distinct

eigenvalues λ = 1 and λ = (1 − p)2 where λ = (1 − p)2 has multiplicity 3. By Lemma 5.3.4 we

know that there is only one eigenvector associated with λ = (1 − p)2. Therefore T has two

linearly independent eigenvectors, so J is made up of two Jordan blocks by Theorem 2.2.15

J1 = (1) and J2 =

(1− p)2 1 0
0 (1− p)2 1
0 0 (1− p)2

 .

Therefore

J =


1 0 0 0
0 (1− p)2 1 0
0 0 (1− p)2 1
0 0 0 (1− p)2


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5.3.6 Jordan Form Matrix J for an n-Cycle

Theorem 5.3.7. The Jordan Form J for the transition matrix T of a cycle with n vertices Cn

is the n× n matrix

J =



1 0 0 . . . 0

0 (1− p)2 1
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 . . . . . . 0 (1− p)2


.

Proof. Let T be the transition matrix for the cycle Cn. Let J be the Jordan Form matrix of

T . We know T is upper triangular so by Theorem 2.2.7 the eigenvalues lie on the diagonal.

Therefore by Theorem 5.3.2 the eigenvalues are λ = 1 and λ = (1− p)2 where λ = (1− p)2 has

multiplicity n− 1. By Lemma 5.3.4 we know that there is only one eigenvector associated with

λ = (1 − p)2. Therefore T has two linearly independent eigenvectors so J is made up of two

Jordan blocks.

J1 = (1) and J2 =



(1− p)2 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . (1− p)2 1
0 . . . . . . 0 (1− p)2


where J2 is an n− 1× n− 1 matrix. Therefore

J =

(
J1 0
0 J2

)
=



1 0 0 . . . 0

0 (1− p)2 1
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 . . . . . . 0 (1− p)2


.

5.4 Virus Spread on Complete Graphs

In this section we analyze the spread of a virus on complete graphs.
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5.4.1 Virus Spread on the complete graph K4

In this section we analyze the spread of a virus on the complete graph K4, as shown below.

Consider the probability p34. This is the probability that the graph has 3 vertices infected at

time t and spreads to the last uninfected vertex in the next time step. The last vertex is adjacent

to 3 infected vertices so this can happen three ways:

Case 1: The virus spreads from one of the three vertices.

Case 2: The virus spreads from two of the three vertices.

Case 3: The virus spreads from all three vertices.

Table 5.4.1 illustrates these cases. Note that the dashed line indicates the edge that the virus

spreads over. Adding these cases together we get p34 = 3p(1− p)2 + 3p2(1− p) + p3.

Computing the rest of the transition probabilities the same way we get that the transition

matrix for the graph K4 is

T =


(1− p)3 3p(1− p)2 3p2(1− p) p3

0 (1− p)4 4p(1− p)3 + 2p2(1− p)2 4p2(1− p) + p4

0 0 (1− p)3 3p(1− p)2 + 3p2(1− p) + p3

0 0 0 1


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Case Time= t Time= t+ 1 Probability

Case 1
or

3p(1− p)2
or

Case 2
or

3p2(1− p)
or

Case 3 p3

Table 5.4.1. p34 for the complete graph K4
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5.4.2 Transition Matrix for Kn

In Yushan Jiang’s senior project The Analysis of Probabilistic Spread on Complete Graphs [4]

she came up with a theorem that describes the transition matrix for a complete graph with n

vertices Kn. The following theorem is taken directly from her project, Jiang [4, p. 33]

Theorem 5.4.1. Every pij in the transition matrix P of the Markov chain for Kn follows

pij =

(
n− i
j − i

)
· [1− (1− p)i]j−i · [(1− p)i]n−j0 ≤ i ≤ j ≤ n.

Note that
(
n−i
j−i
)

= 0 if j < i.
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6
Virus Spread on Broom Graphs

In this chapter we introduce a new type of graph called Broom graphs and analyze their

transition matrices.

6.1 Broom Graphs

Definition 6.1.1. A broom graph is the union of a path and another type of simple graph

where both graphs are connected by an edge.

We specifically look at star-brooms denoted by PmSn, cycle-brooms denoted by PmCn,

and complete-brooms denoted by PmKn where m is the number of vertices in the path and

n is the number of vertices in the attached graph.

Figures 6.1.1, 6.1.2, and 6.1.3 illustrate the star-broom graph P4S4, the cycle-broom graph

P3C4, and the complete-broom graph P3K4, respectively.

Figure 6.1.1. The star-broom graph P4S4
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Figure 6.1.2. The cycle-broom graph P3C4

Figure 6.1.3. The complete-broom graph P3K4

6.2 Virus Spread on Star-Brooms

In this section we analyze the spread of a virus on star-broom graphs where the root node is the

starting vertex of the path.

6.2.1 Transition Matrix for the Star-Broom P2S3

In this section we look at the transition matrix for the star-broom P2S3. This will help us

formulate the transition matrix for a star-broom graph with m+ n vertices.

Example 6.2.1. In this example we find the transition matrix for the star-broom graph P2S3

as shown below.

Consider the probability p44. This is the probability that the graph starts in state 4 at time t

and in the next time step is still in state 4. On the graph P2S3 there are two different ways of
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representing state 4:

and .

In both representations there is only one vertex that could be infected in the next time step.

Therefore the probability that the graph stays in state 4 is p44 = (1− p).

The probability p45 is similar except in this case the virus is spreading to the last vertex.

Therefore p45 = p.

The probabilities p13, p14, p15, p24, and p25 are all the probabilites where the virus is spreading

by more than one vertex across a path. As we saw in Section 5.1, when a virus spreads across a

path it cannot spread to more than one vertex in a time step. Therefore these probabilities are

0.

Note that the elements below the diagonal are all the elements where the number of infected

vertices decreases. Since a vertex cannot become uninfected these probabilities are also 0.

Table 6.2.1 illustrates the rest of the elements of the transition matrix for P2S3

When we arrange these probabilities in a matrix we get

T =


(1− p) p 0 0 0

0 (1− p) p 0 0
0 0 (1− p)2 2p(1− p) p2

0 0 0 (1− p) p
0 0 0 0 1

 .

6.2.2 Transition Matrix for the Star-Broom PmSn

Theorem 6.2.2. Let T be the transition matrix for a star-broom graph PmSn with m+n vertices.

Then T is an m+ n×m+ n matrix
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pij Time = t Time = t+ 1 pij =

p11
(1− p)

(1− p)

p12
p

p

p22
(1− p)

(1− p)

p23
p

p

p33
(1− p)(1

−
p
)

(1− p)2

p34
p(1

−
p
)

or 2p(1− p)

(1− p)

p

p35
p

p

p2

p55 1

Table 6.2.1. Elements of the transition matrix of the graph P2S3
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T =



(1− p) p 0 . . . 0

0
. . .

. . .
. . .

... 0′s
...

. . .
. . .

. . . 0
0 . . . 0 (1− p) p

0′s
T for Sn


where the top left box is an m×m+ 1 block and the bottom right box is an n× n block. Note

the bottom right n×n block contains the same elements as the transition matrix for the star Sn.

The matrix T has elements such that

pij =



(1− p), if i = j ≤ m
p, if j = i+ 1 ≤ m+ 1(
n− i
j − i

)
pj−i(1− p)n−j , if i > m

0, otherwise

Proof. Let T be the transition matrix for the star-broom PmSn with the root node at the

endpoint of the path. The first m rows are the probabilities of the virus spreading from state

i where i ≤ m. Since there are m vertices on the path portion of the graph these probabilities

will be the same as a virus spreading on a path with m+ n vertices. So

pij =


(1− p), if i = j ≤ m
p, if j = i+ 1 ≤ m+ 1

0, otherwise

Once the virus spreads to m + 1 vertices the virus has reached the center of the star graph.

Every vertex on the path portion has been infected so the virus can only spread to the rest of

the star portion of the graph. Therefore the transition probabilities are exactly what they would

be for a star with n vertices. Hence

pij =

(
n− i
j − i

)
pj−i(1− p)n−j , if i > m.
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6.3 Virus Spread on Cycle-Brooms

In this section we analyze the spread of a virus on cycle-broom graphs where the root node is

the starting vertex of the path.

6.3.1 Transition Matrix for the Cycle-Broom P2C3

In this section we look at the transition matrix for the cycle-broom P2C3. This will help us

formulate the transition matrix for a cycle-broom graph with m+ n vertices.

Example 6.3.1. In this example we will find the transition matrix for the cycle-broom graph

P2C3 as shown below.

Consider the probability p45. This is the probability that the graph starts with 4 infected

vertices at time t and spreads to the last vertex in the next time step. The last vertex is adjacent

to two infected vertices so there are two different ways this can happen; The virus spreads from

one vertex and not the other or it spreads from both. This probability is p45 = 2p(1− p) + p2.

Table 6.3.1 illustrates some of the elements of the transition matrix of P2C3.

The transition matrix for the graph P2C3 is

T =


(1− p) p 0 0 0

0 (1− p) p 0 0
0 0 (1− p)2 2p(1− p) p2

0 0 0 (1− p)2 2p(1− p) + p2

0 0 0 0 1

 .

6.3.2 Transition Matrix for the Cycle-Broom PmCn

Theorem 6.3.2. Let T be the transition matrix for a cycle-broom graph PmCn with m + n

vertices. Then T is an m+ n×m+ n matrix
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pij Time = t Time = t+ 1 pij =

p11

(1− p)

(1− p)

p12

(1− p) p

p

p22

(1− p)

(1− p)

p33

(1−
p)

(1
− p

)

(1− p)2

p34
p

(1
− p

)

or 2p(1− p)

(1−
p)

p

p35
p

p

p2

p44

(1−
p)

(1
−

p
)

(1− p)2

Table 6.3.1. Elements of the transition matrix of the graph P2C3
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T =



(1− p) p 0 . . . 0

0
. . .

. . .
. . .

... 0′s
...

. . .
. . .

. . . 0
0 . . . 0 (1− p) p

0′s
T for Cn


where the top left box is an m×m+ 1 block and the bottom right box is an n× n block. Note

the bottom right n × n block contains the same elements as the transition matrix for the cycle

Cn.

The proof is similar to the proof of Theorem 6.2.2.

6.4 Virus Spread on Complete-Brooms

In this section we analyze the spread of a virus on complete-broom graphs where the root node

is the starting vertex of the path.

6.4.1 Transition Matrix for the Complete-Broom P2K4

In this section we find the transition matrix for the complete-broom graph P2K4 as shown below.

Table 6.4.1 illustrates some of the elements of the transition matrix for the graph P2K4.

Using the same method we can find the rest of the transition probabilities for P2K4. Therefore

T =



(1− p) p 0 0 0 0
0 (1− p) p 0 0 0
0 0 (1− p)3 3p(1− p)2 3p2(1− p) p3

0 0 0 (1− p)4 4p(1− p)3 + 2p2(1− p)2 4p2(1− p) + p4

0 0 0 0 (1− p)3 1− (1− p)3
0 0 0 0 0 1

 .
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pij Time= t Time= t+ 1 Probability

p12

p

p

p22

(1− p)

(1− p)

p33

(1−
p)

(1
−
p)

(1− p)

(1− p)3

p34

(1−
p)

p

(1− p)

or 3p(1− p)2

(1−
p)

(1
−
p)

p

or

p

(1
−
p)

(1− p)

Table 6.4.1. Elements of the transition matrix of the graph P2K4
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6.4.2 Transition Matrix for the Complete-Broom PmKn

Theorem 6.4.1. Let T be the transition matrix for a complete-broom graph PmKn with m+ n

vertices. Then T is an m+ n×m+ n matrix

T =



(1− p) p 0 . . . 0

0
. . .

. . .
. . .

... 0′s
...

. . .
. . .

. . . 0
0 . . . 0 (1− p) p

0′s
T for Kn


where the top left box is an m×m+ 1 block and the bottom right box is an n× n block. Note

the bottom right n×n block contains the same elements as the transition matrix for the complete

graph Kn.

The proof is similar to the proof of Theorem 6.2.2.



7
Modifying the Markov Chain Model

The Markov chain method that we have been using defines the states as being the number of

infected vertices on a graph. For example, state 1 = 1 vertex infected, state 2 = 2 vertices

infected, etc. In this chapter we see that this definition of states doesn’t work with all graphs.

We see an example of a graph that doesn’t work and see how to modify our model so that it

does.

7.1 Graphs that don’t Work with the Markov Chain Method

In this section we look at an example of a graph that doesn’t work with our current Markov

chain model.

Example 7.1.1. In this example we look at the path P4 where the root node is at the second

vertex from the left, as shown below.

We define the states of this graph the same way we have in previous chapters, state 1 = 1

vertex infected, state 2 = 2 vertices infected, etc.

Let’s look at how these states are represented on the graph P4.
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State 1:

State 2:

(a)

(b)

State 3:

(a)

(b)

State 4:

There are two different ways to represent state 2 and state 3. The graphs that represent state

3 are essentially the same since the probabilities p33 = (1−p) and p34 = p are the same for both

representations.

Now, let’s look at the the transition probabilities involving state 2, the second row of the

transition matrix (p21, p22, p23, p24).

p21: This is the probability that the graph has 2 infected vertices and then decreases to 1

infected vertex in the next time step. No vertex can become uninfected so this probability is 0.

p22: This is the probability that the graph has two vertices infected at time t and in the next

time step still has 2 vertices infected. Lets consider this probability for both graphs (a) and (b)

that represent state 2.

Graph (a): There is only one vertex that the virus could spread to so this probability is (1−p).

Graph (b): There are two vertices that the virus could spread to so this probability is (1−p)2.

Therefore p22 = (1− p) + (1− p)2.



7.2. MODIFYING THE MARKOV CHAIN METHOD 81

p23: This is the probability that the graph has two vertices infected at time t and in the next

time step has 3 vertices infected. Lets consider this probability for both graphs (a) and (b) that

represent state 2.

Graph (a): There is only one vertex that the virus could spread to so this probability is p.

Graph (b): There are two vertices that the virus could spread to so this probability is 2p(1−p).

p24: This is the probability that the graph has 2 vertices infected at time t and in the next

time step has 4 infected vertices. This probability is only possibel in graph (b) since there are 2

uninfected verties adjacent to an infected vertex. Therefore this probability is p2.

Note that when we look at the transition matrix for this graph that the elements of row 2

add up to 2.

T =


p11 p12 p13 p14
0 (1− p) + (1− p)2 p+ 2p(1− p) p2

p31 p32 p33 p34
p41 p42 p43 p44



(1− p) + (1− p)2 + p+ 2p(1− p) + p2 = 2

In a Markov chain the elements of each row need to add up to 1 because each row covers

all the possibilities. Therefore this graph doesn’t work with our current Markov chain model of

defining the states as the number of vertices infected.

7.2 Modifying the Markov Chain Method

In this section we see how to modify our current Markov chain method to work with the path

P4 where the root node is at the second vertex.

Instead of defining the states as the number of infected vertiecs we define them as follows:
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State 1

State 2

State 3

State 4

State 5

This graph now has 5 states so it will have a 5×5 transition matrix. Let’s look at the transition

probabilities for this graph.

Consider the probability p23. This is the probability that the graph is in state 2 at time t and

then moves to state 3 in the next time step. In state 2 an endpoint of the graph is infected and

in state 3 only the center two vertices are infected. Since the endpoint can’t become uninfected

this probability is 0. Similarly, p32 = 0.

Table 7.2.1 illustrates the rest of the transition probabilities for this graph. When we arrange

these probabilities into a matrix we get

T =


(1− p)2 p(1− p) p(1− p) p2 0

0 (1− p) 0 p 0
0 0 (1− p)2 2p(1− p) p2

0 0 0 (1− p) p
0 0 0 0 1

 .

Defining the states of a graph this way opens up an area of study for future work. All the

graphs analyzed in this project were chosen because they work with our previous Markov chain

model of defining the states as the number of infected vertices. By modifying our method we

are now able to study the spread of a virus on different types of graphs.
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pij Time= t Time= t+ 1 Probability

p11
(1− p) (1− p)

(1− p)2

p12
p (1− p)

p(1− p)

p13
(1− p) p

p(1− p)

p14
p p

p2

p22
(1− p)

(1− p)

p24
p

p

p34
p (1− p)

or 2p(1− p)
(1− p) p

p35
p p

p2

p44
(1− p)

(1− p)

p45
p

p

p55 1

Table 7.2.1. Elements of the transition matrix for the graph P4 where the root node is at the
second vertex
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Appendix A
Transition Matricies

A.1 Transition Matrix of an n-Path

T =



(1− p) p 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
... (1− p) p
0 . . . . . . 0 1


.

A.2 Transition Matrix of an n-Star

pij =


(
n− i
j − i

)
pj−i(1− p)n−j , if i ≤ j

0, if i > j

A.3 Transition Matrix of an n-Cycle

T =



(1− p)2 2p(1− p) p2 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
... (1− p)2 2p(1− p) p2

... (1− p)2 2p(1− p) + p2

0 . . . . . . . . . 0 1


.
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Appendix B
The Eigenvector Matrix Q

B.1 The Matrix Q for n-Paths

Q =



1 1 0 . . . . . . 0

1 0 1
p

. . .
...

1 0 0 1
p2

. . .
...

...
...

...
. . .

. . . 0
...

...
...

. . . 1
pn−2

1 0 0 . . . 0 0



B.2 The Matrix Q fot n-Stars

Q =



(
n−1
0

) (
n−1
1

)
. . . . . .

(
n−1
n−1
)(

n−2
0

) (
n−2
1

)
. . .

(
n−2
n−2
)

0
... . .

.
. .
. ...

... . .
.

. .
. ...(

n−n
0

)
0 . . . . . . 0



B.3 The Matrix Q for n-Cycles

Q =



1 1 0
1 0 1

2p(1−p)
...

... 0 . . . . . .
...

...
...

1 0 0


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Appendix C
The Jordan Form Matrix J

C.1 The Matrix J for n-Paths

J =



1 0 0 . . . 0

0 (1− p) 1
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 . . . . . . 0 (1− p)


.

C.2 The Matrix J fot n-Stars

J =



1 0 . . . . . . 0

0 (1− p)
. . .

...
...

. . . (1− p)2
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 (1− p)n−1


.

C.3 The Matrix J for n-Cycles

J =



1 0 0 . . . 0

0 (1− p)2 1
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 . . . . . . 0 (1− p)2


.
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