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ABSTRACT 
 

 

 

Learning is an enigmatic process composed of a multitude of cognitive systems that are 

functionally and neuroanatomically distinct. Nevertheless, two undeniable pillars which 

underpin learning are attention and memory; to learn, one must attend, and maintain a 

representation of, an event. Psychological and neuroscientific technologies that permit 

researchers to “mind-read” have revealed much about the dynamics of these distinct 

processes that contribute to learning. This investigation first outlines the cognitive pillars 

which support learning and the technologies that permit such an understanding. It then 

employs a novel task—the amSMART paradigm—with the goal of building a real-time, 

closed-loop, electroencephalographic (EEG) neurofeedback paradigm using consumer-

grade brain-computer interface (BCI) hardware. Data are presented which indicate the 

current status of consumer-grade BCI for EEG cognition classification and enhancement, 

and directions are suggested for the developing world of consumer neurofeedback. 

 

 

 

 

 

 

 



IMPROVING LEARNING WITH NEUROFEEDBACK 8	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IMPROVING LEARNING WITH NEUROFEEDBACK 9	

INTRODUCTION 

Section 1: Learning 

 1.1 What is Learning?  

 The only sound in the library at this time of night is the low hum that fluorescent 

bulbs emit when they flicker. Glowing rods sway overhead like pendulums. The 

oversized clock hung on exposed brick ticks 3:00 AM. You have seven hours to see how 

much meaning can float off the pages of notes in front of your eyes and into the organ 

behind them.  

 If an outsider were to observe this situation, they’d likely say that you’d be better off 

sacrificing this late-night quest to shove a few facts up your sleeve for the benefits of a 

decent, if half-, night of sleep. But sitting alone, at the end of a long table, papers piled 

high around you and the blue-tinted fluorescent lights dissuading your brain from 

understanding that the sun set over nine hours ago, there’s no one—or nothing—to tell 

you this. 

 

  Learning is a dynamic and enigmatic process. In the above scenario, the best 

recourse for your learning is likely not trying to learn anything more that night. How can 

this be? 

  Even attempting to define learning—which seems like an important foundation for 

any investigation into its nature—is an elusive project; or at the very least, contentious: 

There exist innumerable “types” of learning, each distinguished from the others by the 

theoretical framework of which group of theorists attempt to define it. Under more 
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traditional, psychological frameworks, learning might be understood chiefly as the 

acquisition of knowledge and skills (Shuell, 1986), but in the current era, the concept 

could cover a much larger field of sub-concepts that embrace an interacting body of 

emotional and social dimensions—or even a dimension for how tired the subject is—for 

example (Illeris, 2009). Accordingly, it is difficult to identify from where one might derive 

any foundations for an investigation into learning—where to find the solid ground from 

which to leap. 

 A loose description might be enough to move forward: Learning is “any process 

that in a living organisms leads to permanent capacity change and which is not solely 

due to biological maturation or ageing” (Illeris, 2007, p. 3). Thus, in order to say that 

something can learn, it must update a response to an environmental factor based on 

previous encounters with environmental factors. 

 Following this line of thought, learning seems to involves two fundamental things: (1) 

The separation of “pertinent” from “not pertinent” information, and (2) the maintenance of 

that information. That is, an organism must attend a stimulus and its effect and then 

employ a predictive representation of that relationship in the future; an organism must 

notice something and be changed by it. While not the sole supporters of learning 

processes, attention and memory seem to provide much of the cognitive infrastructure. 

Like learning, however, there are many heads bobbing underneath the singular 

umbrellas of “attention” and “memory.”  

 This paper traces the roots of how attention and memory have become defined, 

surveys the technological tools used to reveal these definitions, and investigates a novel 
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means of attempting to improve learning by combining the psychological frameworks 

outlined herein with advancements in neuroscientific technologies. 

 

 1.2 Attention 

 The brain has plenty of remarkable feats to accomplish, but a chief purpose of its 

nature is to navigate the perceived world—to find a route; semblance of signal out of 

sensory noise. It seems logical then that the capacity to remain focused on a feature of 

the environment or on a singular task is a vital underpinning of many cognitive functions, 

including learning.  

 Phenomena such as inattentional blindness (Simons & Chabris, 1999)—a failure of 

the attentional system in which conspicuous material is not noticed due to the presence 

of distractors—demonstrate the continual necessity of distinguishing pertinent from 

extraneous information in sensory data. And such failures of attention can be dangerous: 

Indeed, for example, attentional deficits predict rates of car crashes and treatment with 

first line pharmaceuticals for ADHD (attention-deficit hyperactivity disorder) has been 

shown to reduce these and other problematic driving outcomes (Jerome, Segal, & 

Habinski, 2006; Barkley, Murphy, O’Connell, & Connor, 2005). Elucidating and 

understanding the inner workings of attention therefore remains a core aim of subfields 

in cognitive science, both for those attempting to understand its dynamics and basis (e.g., 

Heinke & Humphreys, 2005) as well as how to reduce the rates and effects of its failures 

(e.g., Romer, Lee, McDonald, & Winston, 2014). 

 Selection is obviously a crucial component of attention because it is more or less 
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entailed by the concept; in the act of attending something, its characteristics are selected 

from less relevant and (thereby) distracting information (Remington & Folk, 2001). Imagine 

being at a boisterous work event. Cocktails are being served and your boss is being 

particularly loud (no causal relationship is being assumed, but there is no doubt that one 

might exist); being so loud, in fact, that—despite the fact that she is at the other side of 

the room—you can’t even hear the one co-worker next to you with whom you are trying 

to have a conversation! Your ears may be receiving all the information necessary to 

parse out your co-worker’s words, but the signal is all mixed up with the noise of your 

boss’s shrill laugh. The brain’s job here is to process the information from the ears such 

that the relevant signal (the words of your co-worker) is distinguishable. Maybe the best 

feature to focus on in order to “select” your coworker’s words would be the pitch of their 

voice (because it’s much higher or lower than that of your boss); maybe you’re facing 

away from your boss, but towards your coworker and can use spatial inference to select 

the information stream in “front” of your ears. The phenomenon’s name comes from this 

common example: the Cocktail Party Effect (Cherry, 1953). To select the signal, the brain 

must segregate and rummage through different components of the audio information 

[i.e., spatial, spectral (frequency/amplitude), intensity, content, etc.]—which are 

categorized via perceptual segregation and perceptual grouping (e.g., temporal 

grouping, spectral grouping, etc.; Bregman, 1990; Treisman, 1982). For ease of 

understanding, a visual analog of perceptual grouping is seen in Figure 1.  

 Much of the early work on attention was also inspired by studies that demonstrated 

a robust effect of spatial orienting, accounting for data showing attentional bias towards 
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areas in visual space previously occupied by other stimuli (or auditory “space” (Smith et 

al., 2010); and the interaction of these two via multisensory integration (Nardo, 

Santangelo, & Macaluso, 2014; Razavi, O’Neill, & Paige, 2007)), referred to as spatially 

predictive cues (Posner, 1980; Chica, Martín-Arévalo, Botta, & Lupiáñez, 2014). Thus, the 

presence of a potentially predictive cue like the negative “square” in Figure 1 might bias 

visual attention in future trials to that location in the search space (Posner, 1980). 

 

Figure 1. Despite the fact that no rectangle is actually present in this image, the four 

collinear “pacmen” in the middle right of the figure (with the two rays inside) demonstrate 

the brain’s ability and propensity to select potentially pertinent signals (here, simple 

patterns—a square) in noisy information from perception and group them. Adapted from 

“Perceptual Organization, Visual Attention, and Objecthood” by Kimchi, Yeshurun, 

Spehar, & Pirkner, 2015, Vision Research, 126, 34-51. 

 

 While no one doubts the inherency of selection in mental processing, within this 

conceptual scheme of attention-as-selection, one can imagine that a central question is: 

How and when does this selection occur? While the exact mechanisms and dynamics of 
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this system are far from being fully understood, one of the most long-standing and 

contentious debates regarding the attentional system orients around the temporal 

characteristic of distractor influence and the resulting mechanistic implications of either 

an “early” selection or a “late” selection effect of attention.  

 The early selection account—most prominently spearheaded by Broadbent (1958) 

and Treisman (1969; though their accounts do have some major differences related to 

the nature of the attentional filter)—maintains that perception is a capacity-limited 

process requiring selection before passing along the information to the rest of the mind. 

Thus this selection occurs “early”—only after basic feature processing has offered 

enough information for selection to occur—and unattended stimuli are not passed on to 

the mechanisms of conscious perception (in full for Treisman, 1969; Lavie, 1995). Data 

supporting this early selection theory were mostly derived from dichotic listening 

experiments in which participants attended two audio streams being presented to either 

ear. The participants were asked to attend audio on the basis of a feature, such as the 

perceived gender of the speaker or which ear the audio was being sent into (Broadbent, 

1958). These experiments typically relied on direct measures of awareness (e.g., 

“shadowing”—repeating the words of—the attended or unattended person’s voice). But 

while these direct measures often indicated that there might be an early bottleneck for 

perception, more indirect measures suggested that such a bottleneck was not always 

present (Murphy, Groeger, & Greene, 2016).  

 The “opposing” opinion in the literature is the “late” selection account. This theory 

was advanced most prominently by Deutch and Deutch (1963), who proposed that all 
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stimuli are processed indiscriminately and input to the perceptual system to be 

subsequently selected for response- and memory-making (Treisman & Geffen, 1967). 

Thus, perception would not be capacity-limited but an unlimited filter applied to all 

sensory input. By the early 1990s, while some evidence had suggested that the early 

selection account is not a holistic view of the nature of the attentional filtering, likewise 

the late selection hypothesis did not account for all of the findings in the field, either. 

How can these conflicts of data be compatible? 

 In the 1990’s, a newer, more nuanced formulation of attention began brewing. 

Yantis and Johnston (1990) proposed a hybrid model, suggesting that the location of the 

selective filter might shift location in the processing pipeline based on what kind of 

processing was going on (i.e., how much and what kind of sensory information). Building 

on this, Lavie & Tsal (1994) coined a new account, “load theory,” which promoted an 

intermediary solution between early and late selection theories (cf. Benoni & Tsal, 2013). 

Evidence supporting this account suggests that the degree to which a person’s 

perceptual systems are loaded with task-relevant information greatly affects how the 

attention systems performs its selection. That is, perceptual load, as a function of the 

number of items or groups of items contained in the search space to be processed (set-

size; Lavie, 1995), determines the efficiency and efficacy of distractor rejection. This 

theory has grown in popularity since its inception, at least in part, due to the fact that it 

formulated a middle-ground between early and late selection theories in which the 

success or failure of attentional selection depends on the current demands of the system 

(Murphy et al., 2016). 
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 As attention is so inherent to experience, it’s clear why there is so much debate 

about its characteristics. But a unified theory of attention that applies to both the 

“voluntary” and “involuntary” instances is difficult: Attention is not a unitary system at a 

location and time in the processing pipeline of the brain; in fact, there are two 

independent, generally identified pathways of attention: Bottom-up and top-down—these 

are also referred to as stimulus-driven and goal-oriented attention respectively (Corbetta 

& Shulman, 2002; Jonides, 1981). Think of it this way: You’re sitting in your living room 

listening intently to a Mendelssohn piano concerto—what you might consider the most 

beautiful music ever composed. But nonetheless, when the smoke alarm goes off in the 

kitchen (because, in the midst of your audial reverie, you’ve long neglected the tea kettle 

you put on the stove 15 minutes ago) you quickly “forget” about—more properly, your 

attention is drawn away from—the music and you rush into the kitchen to open a window 

and turn off the kettle. This would be a case of your bottom-up (stimulus-driven) attention 

system taking precedence over your top-down (goal-oriented) attention, drawing your 

mind away from the music and towards the most salient, threatening stimulus in the 

environment. Novel, unexpected, and potentially dangerous stimuli in the environment 

drive this bottom-up attention system while factors such as goals, knowledge, and 

expectations construct top-down attention. It seems necessary that this bottom-up 

system be the circuit-breaker for the top-down one; if humans were so prone to being 

carried away by music that they failed to recognize the salient growl of a predator behind 

them, it would be doubtful that they would have gotten far at all. It’s proposed that the 

interaction of these two independent attentional processes dictate when and to what one 
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pays attention (Corbetta & Shulman, 2002).  

 But this theory is also inadequate in explaining all the dynamics of attention. For 

example, Awh, Belopolsky, & Theeuwes (2012) put forward a model of attention that goes 

beyond this dichotomy of top-down vs. bottom-up attention. Their reconceptualization 

aligns with data that evidences a lingering bias in selection for features previously 

selected (“selection history”) and for those that people have been previously rewarded 

for selecting (“reward history”)—features that the authors claim are insufficiently 

accounted for by the dichotomous attention model. Thus, they suggest expanding on a 

framework by which people create priority maps—conceptual representations that 

integrate multiple selection influences, such as salience or position in the visual space—

to include these other elements (e.g., selection and reward history; Awh, Belopolsky, & 

Theeuwes, 2012; Klink, Jentgens, & Lorteije, 2014). So how do these researchers build 

and test these models? 

 The mode of attention most easily evident for humans is that of visual attention (as 

was demonstrated in using Figure 1 as an aid for understanding). Accordingly, one can 

imagine that attentional research is often visual in nature; thus, a prominent tool for 

investigating attentional processes is the visual search task. Everyone is, in fact, very 

familiar with this task because everyone performs it all the time: Visual search refers to a 

perceptual process that requires attention in which one actively scans the visual 

environments for a particular object or feature (called the target) among other objects 

and features (called distractors; Treisman & Gelade, 1980). So when someone named 

Sam is looking for their name in a pile of nametags at a conference, they might determine 
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the letter S to be an important object or three-letter names to be a feature of interest—

ideally, both at the same time. But also a possibility is that while searching for these 

objects and features, they might spot the bright red in the logo of the institution they 

represent and their eye might be instantly drawn to it—voila!—Sam has found their 

nametag. The former means of finding the nametag in this situation would recruit top-

down processes (based on goals—finding a specified letter or number of letters); the 

latter, bottom-up processes, based on sensory salience—here, the color of the company 

logo (but if Sam were actively searching for that color, then that would represent a top-

down process which would help that color feature “pop” out; more on this soon). 

 In the laboratory, the visual search tasks that are used are usually much simpler 

than this complex problem for the sake of not having to control so many variables, and 

may look like the search spaces in Figures 2a and 2b.

 

Figure 2. A simple visual search task paradigm. a) Feature Search; the letter T (the target) 

is presented among a series of Ls (distractors). b) Conjunction search; the same task as 

(a) but with a red T target and half as many distractors sharing the color feature of the 

target; black letters can be ignored without determinant to the efficiency of the search 

due to color being a selected search feature. c) The efficiency of the search is 

represented by the slope—relating reaction time (RT in milliseconds) to the set size in the 
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visual search space—of the functions for visual search tasks (a) and (b). Reprinted from 

“Five Factors That Guide Attention in Visual Search” by Wolfe and Horowitz, 2017, Nature 

Human Behavior, 1(3), 1-8. 

  

 Visual search becomes interesting when used as a tool for determining how 

attention is applied to a search space. A red T among black Ts is easy to find (referred to 

as “feature search”; like Figure 2a, which uses shape rather than color as the 

distinguishing feature) because the relevant feature pops out. Figure 2b is referred to as 

conjunction search because it requires the integration of more than one feature (here, 

color and shape) in order to distinguish the target, and thus much more time. The feature 

integration theory (Treisman & Gelade, 1980) attempts to explain these results by 

proposing that certain visual features (e.g., color, orientation, luminance, motion, speed) 

are registered in a rapid, automatic way using preattentive processes; but when 

integrating multiple features—like in conjunction search—a later, attentional process is 

recruited which integrates these features and binds them together into a singular object 

by which they can be coded serially via focal attention. Further evidence for this theory 

has been put forth based on conjunction illusions, in which features are incorrectly bound 

to objects. For example, if a green O and a red X are flashed on a screen so quickly that 

these later processes (serial search/focal attention) do not engage, an observer is likely 

to report having seen a red O and a green X (Treisman & Gelade, 1980). Similar illusions 

occur outside of the visual domain as well (e.g., in the auditory domain; Thompson, Hall, 

& Pressing, 2001), suggesting that this process is “feature-independent.” It becomes 

clear why visual searches are such a valuable tool: By varying factors of the search 
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space—e.g., frequency of features, selection history, etc.—or adding factors into the 

search space—e.g., spatial cues, rewards—one can determine much about the human 

attentional system and distinguish the processes at play in attention. But what do these 

distinctions really mean? What can they tell us? 

 One thing that these distinctions inform are the uncovering of the mechanisms of 

these processes: Selection is chiefly achieved via a system called the frontoparietal 

attention network, which actively adjusts the susceptibility of neurons in perceptual areas 

of the brain (e.g., the visual cortex; Silvanto, Muggleton, Lavie, & Walsh, 2009; Taylor, 

Nobre, & Rushworth, 2007). This constructs a kind of priority map on “top” of extracted 

perceptual features (such as color features or spatial frequency in the visual domain; see 

Figure 3). It’s important to note that this frontoparietal “attention” network “map” is not 

specific to vision or sensation, but is instead thought to be multisensory (feature-

independent) and to integrate both top-down and bottom-up inputs—anatomically 

distinct sub-networks (see Figure 4; Ptak, 2012). Paradigms such as the visual search task 

allow the characterization of brain dynamics and reveal how the brain represents 

information and maintains attentional processes. 
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Figure 3. A simple model of the computation of attention. A sensory-domain area—here 

the visual cortex—automatically (pre-attentively) deconstructs an input into a series of 

feature maps, representing different aspects of the input (we see in the above picture 

spatial frequency, intensity, and color—deconstructed aspects of the image). The priority 

map then integrates these feature maps and combines them with top-down information 

(held in working memory), which reflects top-down orientations such as goals, plans, and 

expectations. Selection of spatial priority therefore represents the interaction of 

functionally distinct top-down and bottom-up processes. Reprinted from “The 

Frontoparietal Attention Network of the Human Brain: Action, Saliency, and a Priority Map 

of the Environment” by Ptak, 2012, The Neuroscientist, 18(5), 502-515. 

 

Figure 4. An anatomical model of attentional control. a) Dorsal (blue) and ventral (orange) 



IMPROVING LEARNING WITH NEUROFEEDBACK 22	

frontoparietal network regions in the human brain: The dorsal network is thought to 

mediate top-down processes such as working memory, intentions and more abstract 

reasoning, while the ventral network represented here indicates stimulus-driven, bottom-

down processes. b) Model of the functional interaction of these two anatomical systems. 

IPs and FEF are modulated by stimulus-driven control originating from the ventral 

network; TPJs and IPs can block on-going top-down control processes when salient and 

unattended stimuli are detected in some sensory domain. IPL, inferior parietal lobule; IPs, 

intraparietal sulcus; FEF, frontal eye field; IFg, inferior frontal gyrus; L, left; MFg, middle 

frontal gyrus; R, right; SPL, superior parietal lobule; STG, superior temporal gyrus; TPJ, 

temporoparietal junction; VFC, ventral frontal cortex. Adapted from “Control of Goal-

Directed and Stimulus-Driven Attention in the Brain” by Corbetta and Shulman, 2002, 

Nature Reviews Neuroscience, 3(3), 201-215. 

 

 While few deny that uncovering the neural bases of processes such as attention is 

interesting, many might claim that doing so has few applications, or reveals little other 

than associations between brain states and experience (such as the experience of 

performing a visual search task). But the cognitive sciences have much to unravel, and 

subsequently, much to apply, from learning about localization in the brain. This has 

certainly proven true in research of the other primary component of learning yet to be 

discussed: Memory. 

 

 1.3 Memory  

 Despite the omnipresence of memory in daily life—remembering how to fill the 

coffee pot in the morning; recalling distinct sensory details of events that happened 

decades ago; or even predicting novel, future events (Shacter et al., 2012) —the rigorous 
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study of memory is a relatively recent development. As such an obvious and essential 

function of the brain, why is it that memory so eludes inspection? Part of the problem is 

that the brain is always adjusting itself to new information; just by reading this sentence, 

your brain has been changed ever-so-slightly. Thus memory is a vastly complex, 

ephemeral system. How does one study something whose process is so hidden—

physically and conceptually (ineffable?)—and whose state is in constant flux? 

 The word “memory” also has many different functions and meanings. Memory might 

refer to (1) the location where information is stored, (2) the object that contains the 

content of experience (like an engram; more on this soon), or (3), a process by which one 

acquires, stores, or retrieves information to be utilized such that it may be available later 

to inject into the current mental state (Radvansky, 2015). Taking a dive into the historical 

roots of attention research might provide some clarity on how memory is defined in 

modern day psychology and neuroscience. 

 To Plato, memory acted as the bridge between the perceptual world and the world 

of the abstract (Radvansky, 2015). He likened it to a block of wax in the soul upon which 

perceptions and thoughts may be imprinted, but also by which memory might be “rubbed 

out” of existence (Bernecker, 2010). But it wasn’t until Quintilian, in his treatise On the 

Education of the Orator, that the history of memory research alluded to the idea that 

memories take some non-zero amount of time to form proper—a “process of ripening 

and maturing” that can happen overnight. This is the only known reference to the 

process of memory consolidation—wherein memory traces become stabilized—until the 

late 19th century (Polster, Nadel, & Schacter, 1991, p. 96). It seems that the earliest forms 
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of studying memory relied heavily on metaphor—and it might make sense that the 

preserved history of the study of memory is delivered in this way because metaphors can 

make statements more likely to be remembered as well as more likely to be considered 

reliable, and therefore disseminated; Read, Cesa, Jones, & Collins, 1990). It was out of 

this idea of memory consolidation that much of what we know about memory in the brain 

began to unfold.  

 Ribot, among those studying memory at the turn of the 19th century, invoked the 

idea of memory consolidation to explain the retrograde amnesia of a brain trauma patient 

of his by stating that “in order that a recollection may organize and fix itself, a certain time 

is necessary, which [in this case of trauma] does not suffice” (Ribot, 1892, p. 799). It was 

after this, in the early 20th century, that a productive and fierce debate oriented around 

forgetting began; it was revealed, non-intuitively perhaps, that forgetting is in a large part 

due to memory interference rather than simple decay (e.g., McGeoch, 1932)—though 

more modern perspectives on this issue propose contributions and functional 

interactions of both systems during and after consolidation processes (e.g., Altmann & 

Gray, 2002). As behaviorism become a strong force in the field of psychology and 

internal investigation waned, many basic questions about consolidation remained 

unprobed until the early 40s, during which Zubin and Berrera (1941) presented a 

paradigm for systematic investigation into consolidation via electroconvulsive shock 

(Polster et al., 1991). Their discovery that by shocking the brain, one could disrupt 

consolidation processes had a large impact on the psychological world. This renewed 

interest in memory processes gave rise to a more internally-focused movement in the era 
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of behaviorism.  

 The work of Lashley in the mid-20th century also assisted this post-behaviorist 

attitude by bringing the question “where are memories located?” back to the 

psychological forefront. By parametrically lesioning rats’ brains and subsequently running 

them through mazes designed to test their spatial memory, Lashley ostensibly appeared 

to have ended the debate: No matter where Lashley lesioned rats’ brains, they were 

mostly still able to remember how to move through their maze; it was, rather, the 

proportion of brain matter removed that best predicted rats’ memory failures (see Figure 

6). This lead to the evolution of two neuroscientific hypotheses: the mass action 

hypothesis—the notion that the whole brain participates in every behavior; and the 

principle of equipotentiality—which refers to the apparent capacity for functions of 

damaged regions to be adopted by undamaged regions; and additionally to the 

conclusion that the engram—matter in which a memory is stored—lacks a specific 

location. [Where a memory is located was thus perhaps an ill-posed question—“perhaps” 

because “where” might not be a singular location (or perhaps it can be; see McCormick 

et al., 1981)].  This seemed entirely contrary to the conclusions of neurological 

researchers at the end of the 20th century, who claimed that functions were segregated 

in space within the brain (e.g., Broca and Wernicke, see section 2.3). How can these two 

seemingly incompatible accounts of how the brain is organized be reconciled? 
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Figure 6. The results of Lashley’s search for the engram; memory errors increase 

exponentially relative to the percent of brain lesioned. Reprinted from “Human Memory” 

(2nd edition) by Radvansky, 2015, Routledge.  

 
 
 On the shoulders of Lashley, psychologists at the midpoint of the 20th century were 

committed to the account of memory as a distributed system in the brain. At the time, the 

cognitive faculties were divided functionally by types of intellect and perception: There 

was a verbal system, a visual system, an auditory system, etc.; and the memories for each 

of these processes (e.g., “verbal memory”) was stored in these distinct brain areas 

(Eichenbaum, 2013). But all of that was about to change with patient H.M. 

  At the same time that the cognitive revolution in psychology was beginning to 

simmer, Scoville and Milner reported, in 1957, the profound mnemonic side-effect of a 

rare and experimental surgery performed to abate severe epilepsy—a bilateral medial 

temporal lobe (MTL) resection—of patient H.M. (1926-2008; see Figure 7). Little did Milner 

know that this case study would become a foundational investigation that would rocket 

the neurosciences through the cognitive revolution and beyond.  
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Figure 7. Magnetic resonance images compare the temporal lobes of patient H.M. (at 

age 67) to those of a comparable subject (66-year-old male). Structures crucial for proper 

memory encoding were removed from H.M.’s brain in an experimental surgery; they are 

highlighted by the labels listed above. The images move from rostral (a) to caudal (c). 

Reprinted from “The Cognitive Neuroscience of Human Memory Since H.M.” by Squire 

and Wixted, 2011, Annual Review of Neuroscience, 34, 259–288. 

 

 H.M., if you were to have met him, would have appeared fairly normal. In fact, you 

might even have been able to have a conversation with him without noticing his 

impairment, as long as you didn’t reference the conversation itself. That is, after the 

surgery, H.M. developed profound anterograde amnesia—he forgot daily events nearly 

as fast as they occurred—but maintained his general intelligence, perceptions, etc. 

(Squire, 2009). Additionally, the memory impairments were global, meaning that the 
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deficits were evident across all modalities of cognition (e.g., his memory for auditory 

things was just as impaired as his memory for visual things; Eichenbaum, 2013). These 

findings (reported in Scoville & Milner, 1957) shattered the world of memory research: 

Memory was promoted from an integrated feature of modalities to a distinct cerebral 

function, and, at least in part, a distinct locale; specifically, this finding introduced the idea 

that the brain has separated its perceptual and cognitive areas and functions from the 

system that maintains memories for the engagement of these systems (Squire & Wixted, 

2011). 

 But this wasn’t all that H.M.’s situation told us about the brain. First, while H.M. 

wasn’t able to acquire new information very well, Corkin (1968) showed that H.M. had no 

trouble acquiring novel motor skills; so motor skill acquisition occurs—at least 

predominantly—elsewhere than the medial temporal lobe. Second, H.M. was able to 

sustain his attention well and maintain memories for items for short periods of time; so 

the resected areas were not overwhelmingly responsible for immediate memory or for 

rehearsal and maintenance of what is now known as working memory. Third, H.M. had 

good access to facts and (at least appeared to have “good” access to; see Moscovitch et 

al., 2005) events from the time before his surgery; so, the medial temporal lobe can’t be 

the sole or chief area for the storage of long-term memories either—that function has 

mostly been attributed to neocortical regions (Squire & Wixted, 2011) as well as to a 

diversity of supporting networks (which support and maintain, e.g., classical conditioning 

and nonassociative learning; see Figure 8). What H.M. could not do also uncovered a 

previously unsegregated type of memory called declarative memory, referring to the 
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acquisition of explicit facts and events (see Figure 8; Squire, 2009; Squire & Wixted, 2011; 

Eichenbaum, 2013).  

 

 
 

Figure 8. Taxonomy of memory. Declarative memory refers to the conscious 

remembrance of facts and events; nondeclarative memory references the group of 

memory types that alter behavior unconsciously and are independent of the medial 

temporal lobe—they include skills and habits, priming, classical conditions, and 

nonassociative learning. Reprinted from “The Medial Temporal Lobe Memory System” by 

Squire and Zola-Morgan, 1991, Science, 253(5026), 1380–1386. 

 

 Each of these ideas has generated a substantial body of literature and informed the 

progression of the relevant sub-fields of psychology and neuroscience as well as both as 

a whole. For example, later research (Squire & Zola-Morgan, 1991), spurned by this 

discovery, identified many functional (see Figure 9) components of the medial temporal 

lobe memory system—consisting of the hippocampus as well as the bordering perirhinal, 

entorhinal, and parahippocampal cortices (see Figure 10). But while it would seem then 

that each of these systems should now be clearly delineated, active research since H.M. 

on this basis has postulated that the medial temporal lobe can be involved in other 
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functions beyond declarative memory, such as visual perception, working memory, and 

forms of spatial cognition; though the most robust effects are still in the declarative 

memory realm (Squire & Wixted, 2011). 

 

Figure 9. A diagram representing the connections of the medial temporal lobe memory 

system for declarative memory. Reprinted from “Role of Functional MRI in Presurgical 

Evaluation of Memory Function in Temporal Lobe Epilepsy” by Limotai and Mirsattari, 

2012, Epilepsy Research and Treatment, 2012, 1-12 

 
 
Figure 10. Stained (Nissl method) coronal section of the medial temporal lobe (at the 



IMPROVING LEARNING WITH NEUROFEEDBACK 31	

caudal aspect of the uncus). ab, angular bundle; CA2, CA2 field of the hippocampus; 

CA3, CA3 field of the hippocampus; cf, choroidal fissure; DG, dentate gyrus; EC, 

entorhinal cortex; FG, fusiform gyrus; hf, hippocampal fissure; PaS, parasubiculum; PRC, 

perirhinal cortex (areas 35 and 36); PrS, presubiculum; V, temporal horn of the lateral 

ventricle. Reprinted from “The Hippocampus Book” by Andersen et al., 2007, New York: 

Oxford University Press. 

 

 The legacy of H.M. continues to define contemporary debates about the bases of 

memory. While the results of H.M.’s (and rare few other patients’) bilateral MTL lesions 

informed researchers as to the role of the medial temporal lobe—particularly the 

hippocampus—in many operations, such as recall (the capacity to retrieve memories sans 

any cue), disputes rage on about potentially more nuanced and complicated processes in 

the brain: For example, as to whether recognition of past information is impaired in such 

a circumstance of lesions (Lacot et al., 2017). 

 Recognition involves assessing whether or not, or to what extent, a stimulus has 

been previously experienced. A contentious topic in contemporary memory research 

revolves around the question of whether or not this cognitive function is underpinned by 

a single- or dual-process system, and where they are localized. The dual-process 

account suggests that recognition is the result of two, at-least-partially independent 

systems: Familiarity, referring to—put colloquially—the distinct feeling of having 

experienced the object before; and also recollection, typically conceived of as a slower, 

more effortful occurrence that brings to conscious mind information about the prior 

occurrence of the object of recognition and the contexts in which it has previously 
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appeared. According to those in favor of a single-process account, assessments as to 

whether or not the subject has experienced the current information are attributed solely 

to the familiarity system (Squire & Wixted, 2011; Gardiner & Parkin, 1990; Rugg & Curran, 

2007). While still a hot topic, most of the research has fallen on the side of the dual-

process accounts; and on the notion that these mnemonic operations are hippocampally 

mediated (Rugg & Curran, 2007; Squire & Wixted, 2011, but cf. Slotnick, 2014 or Slotnick 

& Dodson, 2005).  

 

 1.4 Interactions of Attention and Memory 

 While it’s easy to separate attention and memory into sections of a paper, it’s 

much harder to separate them in the brain. Even when one’s mnemonic and attentional 

goals are in conflict, there seems to be something inseparable about the two systems 

(Chun & Turk-Browne, 2007). Why so? 

 For example, in attempting some mnemonically-mediated processes, attention 

may be a hindrance: Moments of insight (“Aha!”) in which it would appear that the answer 

to a problem suddenly arises to consciousness without being attended (“Eureka!”), may 

be facilitated by a lack of attention. Evidence for this phenomenon comes from research 

showing that—relative to healthy controls—those who lack attention-mediating brain 

areas are actually much better at solving some types of difficult (i.e., non-intuitive) 

problems which require relaxations of particular constraints imposed upon the 

parameters of the problem based on memory for the function of those items (Reverberi, 

Toraldo, D’Agostini, & Skrap, 2005). The relevant researchers refer to this phenomenon 
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as the result of a deficiency of attentional processes which “sculpt the response space”—

processes which identify the context-reasonable responses to problems from those that 

do not fit the problem. For example, we don’t build our houses of glass because we 

know—we have a memory for the fact that—glass breaks easily.  

 Further evidence (Metzler, 2001) for this relationship has shown that left frontal 

cortex damage can eliminate semantic priming effects. [Semantic priming refers to the 

automatic context evaluation of responses; for example, the word “car” is identified more 

quickly or accurately after the presentation a related word—like “wheel”—relative to an 

unrelated word—like “fork”]. Likewise, Thompson-Schill and colleagues (1998) 

demonstrated that similar damage can reduce one’s abilities to generate verbs that are 

appropriate for nouns, suggesting that the “wrong” (i.e., context-nonspecific) 

information—as determined by a mnemonic categorization process—is more likely to be 

selected when one has diminished attentional control. 

 Additionally, for some attention-mediated processes, memory can be a hindrance to 

one’s goals; such an interaction may be evidenced by the Think No-Think paradigm 

(Anderson & Green, 2001), which requires participants to either think or not think about 

an associate of an item. For example, having studied “wolf” and “chicken” as a cue-and-

response pair, when presented with “wolf,” one either tries to think of “chicken” (think) or 

tries their best to not think about “chicken” (no-think). This work has suggested that 

attention may not solely be applied to the external environment, but also the internal 

one, demonstrating that attentional processes can facilitate or inhibit mnemonic ones: In 

the process of trying to think about something, one’s attention is oriented towards their 
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memories and top-down attentional processes (primarily via the dorsolateral prefrontal 

cortex; Anderson et al., 2004) might increase activity in the hippocampus such that the 

response would be “picked out” more easily; while in the process of not thinking about 

something, one’s attention could be oriented away from their memory (and, say, towards 

the perceptual features of the word cue on the screen) and this top-down activity may 

actively inhibit activity in the hippocampus, drawing ones attention away from the 

response when cued. This inhibitory exemplar is thought to induce a "suppression mode” 

of the hippocampus, in contrast to an effortful direction of attention towards retrieval—

which would produce a “retrieval mode” (Hulbert, Hirschstein, Brontë, & Broughton, 2018; 

Rugg & Wilding, 2000). 

 The AtoM (Attention to Memory) hypothesis, put forward by Ciaramelli, Grady, and 

Moscovitch (2008) attempts to align with these and other dynamical interactions of 

attention and memory. AtoM is a dual-process theory which holds that the top-down 

system mediates strategic retrieval—which directs mnemonic searches, constrains the 

search space, and reinstates material that is goal-relevant in response to irrelevant 

events so as to monitor and verify the products of retrieval. The second, bottom-up, 

“attention-to-memory” process mediates direct retrieval, capturing attention when 

memory contents retrieved by the medial temporal lobe match a current event (as a 

target might capture one’s attention in visual search space; see Cabeza et al., 2011). 

Examples of the former might occur if an individual is not confident in a memory or when 

current events are similar, but not identical to a memory (i.e., when discrimination is 

difficult or stimuli ambiguous); examples of the latter might occur when one is confident 



IMPROVING LEARNING WITH NEUROFEEDBACK 35	

and when memories are rich, strong, and/or match current events well. 

 Other interactions of attention and memory are demonstrated when examining the 

relationship between attentional burden and memory processes. Divided attention has 

been shown to disrupt effortful and elaborative encoding, but have little effect during 

retrieval of that information (Craik, Govoni, Naveh-Benjamin, & Anderson, 1996). It’s 

thought that additional attentional costs in phases of encoding may reflect the entering of 

an encoding mode—a state associated with preparing and maintaining intentional 

encoding processes—which requires sustained attentional resources. This is perhaps 

due to the need to maintain encoding procedures and transfer them into working 

memory (Naveh-Benjamin et al., 2007). However, recent findings have demonstrated 

that divided attention while encoding has another consequence related to the 

reduction of attentional control capacity: increased encoding of non-target items (which 

would be expected to create interference between the target items and any encoded 

distracters; Weeks & Hasher, 2017). Furthermore, these effects may be present under 

both intentional and incidental learning instruction conditions.  

 Intentional encoding refers to when one intends to remember an event for later, 

while incidental encoding happens often, referring to a more passive acquisition of 

memory for events. While, intuitively, intentional encoding can facilitate better memory 

performance (e.g., Neill et al., 1990), this is not always the case. For example, visual 

information tends to be equally able to be recognized in incidental and intentional 

encoding paradigms (Castelhano & Henderson, 2005; Bird, 1976). Furthermore, implicit 
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memory for unattended, novel shapes can be preserved over long delays, yet explicit 

memory for these objects might be entirely unavailable (DeSchepper & Treisman, 1996).  

 Within encoding, incidental and intentional processes produce different brain 

activity patterns as well (Bernstein, Beig, Siegenthaler & Grady, 2002); however, previous 

studies have often found no effect between incidental and intentional learning on brain 

activation in recognition phases (van der Veen et al., 2006). While differences in 

activations can predict successful recognition in some paradigms, overall it appears that 

differences in encoding strategies often have stronger observable effects on brain 

activity during encoding than during recognition (Bernstein et al., 2002).  

 Furthermore, correlates of successful vs. unsuccessful incidental memory 

formation have also suggested distinct brain activation patterns and a non-intuitive 

involvement of attention in incidental encoding. Clemens and colleagues (2015) 

demonstrated that those who exhibited greater incidental memory performance showed 

greater activity in attentional (and salience-detection) brain areas. Thus even in incidental 

encoding, attentional processes may play a crucial role in remembering.  

 

 As we’ve seen, answers to questions about localization and time course of function 

assist in determining how the brain operates on and represents information (and its 

implications are much debated; e.g., Bennett, Dennett, Hacker, & Searle, 2009). This 

paper has discussed how lesions and patient studies (and even electroconvulsive shock) 

can help answer this question; but much of the research referenced from recent years 

has become increasingly reliant on and interested in using advanced hardware and 
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computational techniques to elucidate the role of cognition in the brain. The following 

section explores the technical methods employed in these contemporary 

psychological/neuroscientific investigations and their physiological bases. 

 

Section 2 

 2.1 Psychological Technology 

 Psychology was once limited to studying mental processes through self-

examination or by observing behavior through one’s eyes. A survey of these historical 

foundations of psychology might summon other intellectuals from the past, like 

Descartes, who employed introspection to uncover mechanisms of the mind; or 

Ebbinghaus (1885/1913), whose famous forgetting curve was derived solely from his own 

behavioral self-experimentation.  

 Before this time—the formalization of psychology—studying the mind was 

attributed to paranormalism and the occult, feared for its agents’ “mind-reading” abilities 

and their purported connections to evil spirits or demons (Benjamin, 2000). Now, uses of 

contemporary technology in psychological inquiry have largely supplanted this image: 

Colorful models of brains-in-function, high-resolution images of in-vivo neurons, and a 

resulting set of applications unimaginable but fifty years ago typify its popular depictions 

today. The arcane and suspiciously-viewed psychology of the past now touts scientific 

rigor; its cultural “connections” to paranormalism in media and culture have been largely 

supplanted by ones of materialism. 

 Now, anchored by the powers of new technology, the capability for actual mind-
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reading may be closer at hand than ever before. Contemporary science-fiction writers 

have sculpted great and terrible worlds that result from the clever or misuse of such 

capabilities. But how far, exactly, have the advancements of this technology truly taken 

us in mind-reading? To where do they promise? 

 

 2.2 What Is Mind Reading? 

 Sarah and Greg go to the same school. One day in the library, as she sits next to 

him, Sarah recognizes that Greg’s face appears more blushed. If Sara were to infer that 

Greg has a crush on her—purely based on this physiological information—is that mind-

reading? Now, if a computer had access to every face in the world, at all points in time, 

and were to analyze the color spectrum of Greg’s face based on these “training data” 

and come to the same conclusion as Sarah with the same degree of certainty, would the 

answer to that question be the same? In fact, Greg is just anxiously trying to learn a 

whole semester of content before his test begins in seven hours—did Sarah fail to read 

his mind? Would the computer have failed to read his mind as well? 

 “What is mind-reading?” seems like a remarkably simple question at the outset. 

But in attempting to draw a clear line, the definitions blur. How does one even begin to 

measure a mind’s actions? 

 

 2.3 Functional Localization 

 Today, one might take for granted the idea of functional localization—the notion 

that different brain regions have distinct functions. While it was not always known that the 
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brain is segregated by function, even in ancient Greece (where the soul was variously 

thought to reside in body parts such as the heart and the liver) intellect had been 

associated with the head (Zola-Morgan, 1995). Indeed, the organization of the nervous 

system was first uncovered by Greek anatomist Galen (130-200 AD), who, using animal 

models, determined many things about how the brain operates: that the brain was the 

source of sensation and thought; the controller of movement; and that the spinal cord 

was an extension of the brain, conducting sensory signals from nerves and sending 

motor signals to muscles. Rather than expanding on these findings, however, later 

generations in Europe “accepted as undisputed and indisputable his views in every 

branch of medicine” (Gross, 1987, p. 844) and Galen’s ideas dominated thought around 

the functioning of the brain for 1500 years. 

 While some researchers (e.g., Thomas Willis and Robert Whytt) pushed the 

boundaries of neurological knowledge in the 17th-18th centuries, most of the debate in 

Europe was influenced by the leanings of a series of powerful religious groups and 

centered around whether mental functions derived from brain matter itself or the space 

in the brain’s ventricles (which gained significant following because empty space was 

more conceptually infinite, and God’s role in the brain was thought to be too limited by 

material existence). It was not until the 19th century that those who studied the brain were 

pursuing useful questions about localization (Gross, 1987). 

 Franz Joseph Gall, whom many claim as the founder of the school of the 

pseudoscience “phrenology” (Gall is often associated with the phrenology movement—

e.g., Tyler, 2014; Berker, Berker, & Smith, 1988; but cf.  Zola-Morgan, 1995), was among 
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those most prominent who put forward evidence and advocated for functional 

localization in the brain. Gall attempted to define the many functions of the brain 

according to specific morphological features of the skull and the shape of the head 

(Eichenbaum, 2011). While this might have ultimately been a fairly fruitless endeavor 

(spoiler: There’s no real relation), Gall and others did enough to get the ball rolling in the 

right direction.  

 By the 1870s, studies utilizing brain stimulation on dogs (that had, crucially, much 

larger cortices than other animal models previously used to investigate functional 

localization—like birds; Eichenbaum, 2011) began to investigate the localization of motor 

areas. Fritsch and Hitzig were the pioneers of this model. They showed that stimulating 

zones in the frontal cortex resulted in specific muscle movements and that by adjusting 

the locus of stimulation, they could determine a relative “map” on the cortex 

corresponding to different motor areas (e.g., “zapping” an anterior-lobe area might 

produce movement of the forepaw on the contralateral side, while doing so to the 

posterior-lobe area might produce the same movement on the adjacent side; 

Eichenbaum, 2011). While this evidenced the idea of functional localization, and further 

substantiation was put forth by Ferrior (using monkeys to ascertain the loci of sensation 

processing; Heffner, 1987), the questions as to whether “higher order” functions were 

localized in humans had yet to be confirmed.  

 Around the same time, Broca, a French physician, reported a patient with a severe 

condition that prevented him from speaking words, yet the patient’s mouth was not 

affected and he was able to understand speech perfectly well. The patient was known as 
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“Tan” for the sound of the vocalizations he produced (real name: Labourgne). Upon Tan’s 

death (unrelated to the neurological condition in question), Broca performed an autopsy 

and discovered a specific area of neurological damage on the third convolution of the left 

frontal lobe (Broca, 1861/2003). The case report provided additional support for the idea 

of localization in the brain, and its association with the selective behavioral disorder was 

compelling evidence for the functional localization of “higher functions.” Further 

substantiation was provided when Carl Wernicke discovered a complementary case in 

1894. This patient was not impaired in any relevant modality other than being severely 

impaired in the ability to comprehend speech; in line with what Broca had uncovered, 

Wernicke found neurological damage restricted to a nearby, but morphologically distinct 

brain region in the left temporal cortex (Eichenbaum, 2011) (see Figure 11).  

 

Figure 11. Diagram of the left cortical regions functionally associated with verbal 

language. Broca’s area (4) and Wernicke’s area (2) are still the terms used to refer to the 

regions responsible for the majority of speech production and comprehension, 

respectively. 1, Heschel’s gyrus; 3, arcuate fasciculus; 5, angular gyrus; 6, motor cortex. 

Reprinted from “Disorders of the Nervous System” by Reeves, 2008, dartmouth.edu. 
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 Historically, neuroscience has derived much of its foundation from the study of 

those with damage to particular brain areas. But these methods of the past are limited in 

both their accessibility and scope: There are few people who lack specific anatomical 

regions of the brain, and frequently those who are missing particular regions have further 

damage elsewhere (often due to the cause of their relevant neurological condition). Even 

conclusions drawn from research on H.M. have suffered from the potential of a 

concealed prefrontal lesion that had previously gone undetected, throwing much of the 

data collected with H.M. into question (Annese et al., 2014). Furthermore, regulation 

resultant from ethically dubious research, a greater understanding of the import of the 

brain as a whole, and advancements in treatment modalities have discouraged surgical 

methods of "correcting" neurological disorders or disordered behavior. So while this 

technique has proved fruitful in the immediate sense of providing a platform of functional 

localization, it’s quite clear that it would be advantageous for new methods to evolve for 

studying brain function.  

 Much of what is known in modern times about localization in the brain has arisen 

quite recently due to rapid development of psychological technology, most prominently 

functional magnetic resonance imaging (fMRI). Today, functional magnetic resonance 

imaging (fMRI) is used to measure brain activation patterns and is perhaps the most well-

known modern psychological technology; it was only first introduced in the 1990s and yet 

accounts for at least 40,000 published papers (Eklund, Nichols, & Knutsson, 2016). Is 

fMRI simply “the new phrenology” (Uttal, 2002), associating psychological states with 
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brain states? Or does fMRI hold the secret to mind-reading? 

 

 2.4 fMRI 

 Magnetic resonance imaging (MRI; sans “functional”), only introduced 20 years 

prior to fMRI, is a technology primarily used to produce images of the internal body 

(organs, bones, muscles, brain, etc.). By inducing a strong magnetic field, scientists 

(chiefly Isidor Rabi) in the hay-day-of-quantum 1930s discovered that atomic nuclei 

absorb and emit electromagnetic radiation, and that they do so at a resonance specific to 

the type of atom—the “Larmor Frequency” (Buxton, 2013). 

 The nuclei of atoms—the ones that are capable of being imaged with MRI—

normally spin around an axis due to their magnetic properties, kind of like the earth. But 

the orientation of this spin is different across atoms in a sample (e.g., the body) because 

they aren’t aligned in nice little rows and columns, they’re floating in 3 dimensional 

space. When a magnetic field is applied to an object, however, some of the nuclei of the 

atoms in that object (i.e., those that are magnetically active; those that possess spin; 

those that are visible with MRI) are affected such that the movement of their nuclei align 

with the magnetic field (along a consistent vector) (Buxton, 2013; Goense, Bohraus, & 

Logothetis, 2016). Additional energy (i.e., radio frequencies) can then be directed at these 

magnetized nuclei such that it is absorbed by these aligned nuclei. The nuclei are thus 

slightly deflected from their magnetic vector because of this energy, so when the radio 

emission is turned off, the nuclei return to a resting state and re-emit electromagnetic 

frequencies specific to the magnetic properties of the isotope of the atoms (i.e., specific 
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to the altered spin). This produces a measure of the kind of atom present at that point in 

space. Conventional MRI uses hydrogen atoms due to the high presence of this element 

in water and the even higher presence of water in the human body (Sokoloff, 2008). By 

applying a gradient magnetic field and using computers to rapidly complete this process 

through space, this technology became able to create the meaningful images of the 

internal body one sees at the doctor’s office today. 

 One can imagine the impact such a technology might have had, especially on the 

medical community, given its ability to image in-vivo and its distinct advantages over x-

ray and CT scans that involve ionizing radiation (Buxton, 2013). One can also imagine that 

to psychologists (or philosophers, etc.) hopeful that imaging the in-vivo brain using MRI 

would uncover secrets of the mind, the technology’s limits as to such might have been 

disappointing: MRI was revolutionary for neurosurgeons, for example—it allowed faster 

identification and diagnosis of tumors, abscesses, aneurysms, hematomas, degenerative 

diseases, etc. based on morphology (Silva, See, Essayed, Golby, & Tie, 2017)—but 

ultimately, these scans alone tell very little about how the brain functions. Thus (and in 

complete acceptance of retrospective bias) an fMRI—avec “functional”—seems the 

logical next leap 

 Crucially, fMRI capitalizes on the physiology of neurons to image their “activity” 

throughout the brain as well. The crucial step in developing a functional MRI came with 

the discovery that the magnetic properties of hemoglobin—the molecule in blood that 

carries oxygen throughout blood—change when it becomes deoxygenated into 

deoxyhemoglobin as it does when neurons use the oxygen (Sokoloff, 2008). Because 
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blood is recruited by neurons in their activation, fMRI can measure correlates of activity of 

groups of neurons by imaging blood flow changes, or more precisely, measure 

oxyhemoglobin to deoxyhemoglobin ratio increases associated with neural blood 

recruitment. These changes in recruitment of oxygenated blood that fMRI detects are 

referred to as blood-oxygen level dependent (BOLD) signal (Ogawa, Lee, Key, & Tank, 

1990; Goense et al., 2016). Experiments performed by Sieji Ogawa and colleagues in the 

early 1990s were a critical leap for functional brain mapping, demonstrating that 

noninvasive neuroimaging can distinguish BOLD activity (Ogawa et al., 1990). This 

technology has become a staple of neuroscience because the data it provides are 

relatively spatially precise, enabling researchers to image where processes tend to occur 

in the brain. Typical brain-voxel resolution in fMRI is 3x3x3mm, which might sound small, 

but this resolution still sums over large populations of neurons. Even with recent 

neuroimaging advances—contemporary “high-resolution” fMRI is considered sub-

millimeter (Goense et al., 2016)—one cubic millimeter may still contain over one million 

individual cells (deCharms, 2008). But despite imperfections, fMRI offers a fairly rapid and 

non-invasive approach to functional brain assessment and continues to pave the way 

alongside contemporary psychological inquiry. 

 
 While fMRI is useful in delineating functional localization in the brain, it might 

appear to an outside viewer that the applications of the technology end there, but this is 

far from true. For example, while preliminary, fMRI techniques are of increasing interest in 

the domain of diagnostics. Patients with disordered cognition, mood, etc. may one day 
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be able to be identify or even diagnosed without need for potentially slower behavioral 

assessments, or fMRI might reduce ambiguity or disagreement via traditional clinical 

diagnostics (Melo et al., 2017); this has become a cutting edge field with the development 

and application of deep learning methods to process neuroimaging data (Wen et al., 

2018), especially in identifying Alzheimer’s disease. fMRI used in combination with other 

investigative tools, such as genetics, pushes the boundaries of its capabilities (Matthews, 

2006). Furthermore, presymptomatic diagnostics offers the potential to recognize 

disordered brain function before problems even present themselves in patients’ daily life, 

potentially allowing for quick intervention. Such clinical interventions may also be 

enhanced and further understood through the use of this technology: While preliminary, 

research utilizing fMRI as direct assessment of drug action have become increasingly 

common and proves to inform dose-ranging investigations and enhance pharmacokinetic 

data (Matthews, 2006).  

 Functional decoding is another pioneering application of fMRI technology, 

constituting a more direct form of mind-reading: Decoding allows for predictions of the 

perceptions of an individual using their functional brain data. In the visual cortex, for 

example, decoding enables researchers to decipher the visual experience of an 

individual (e.g., what people are seeing in their dreams (Horikawa, Tamaki, Miyawaki, & 

Kamitani, 2013); or determine whether or not someone is currently viewing a sentence 

that is ambiguous or not ambiguous (Mitchell et al., 2004). Such analysis is intensive, and 

generally performed using machine-learning classification of the functional neuroimaging 

data, especially multi-voxel pattern analysis (MVPA) to detect changes in activity patterns 
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across chunks of brain. While traditional univariate forms of whole-brain analysis simply 

search for correlations between fMRI time course and a reference (control data), thus 

assuming no spatial relevance for more “active” voxels or regions (and thus covariance 

across surrounding voxels is not taken into account), MVPA allows for the simultaneous 

analysis of voxels (i.e., does not consider each area to be independent of its neighbors). 

This helps to extract the signal from patterns of activation where, for example, a given 

voxel might not be significantly responsive to a condition in question but still related to it 

(Norman, Polyn, Detre, & Haxby, 2006; Haxby, Connolly, & Gunupalli, 2014).  

 Classification techniques rely on pre-recorded datasets to “train” classifiers by 

providing a subset of activation patterns with labels that represent the experimental 

manipulation into a classification algorithm. This allows for the “learning” of a function 

that meaningfully associates activity patterns with experimental conditions (see Figure 12; 

Norman et al., 2006). 
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Figure 12. A representative model for how MVPA can be effectively utilized to classify 

brain states via fMRI time series data  a) Stimulus categories are chosen and feature 

selection identifies relevant brain areas for classification by analyzing which areas most 

highly represent the experimental manipulation. b) fMRI data patterns from relevant 

features at each time point in the series are labeled to correspond to their stimulus 

category (bottle vs. shoe). The pattern templates are separated into datasets that are to 

train the algorithm or later test the algorithm’s performance. c) The algorithm 

(classification function; f(v)) is trained to identify patterns and their corresponding stimulus 

condition. d) The classifier-derived decision boundary is defined in multi-dimensional 

space (simplified into 2D here). Every data point on the feature space defines a pattern of 

activity over time and the color defines its experimental stimulus category, while the 

colors of the feature space defines the classifier’s indication of category based on these 

patterns. The classifier algorithm can now predict stimulus category for the held-out test 

dataset: In this hypothetical example, the circled dot on the right represents a correct 

category classification (bottle-like pattern predicts bottle stimulus), while the dot circled 

on the left represents an incorrectly classified pattern (bottle-like pattern predicts bottle 

stimulus, even if the pattern was actually exhibited during the perception of a shoe 

stimulus). Adapted from “Beyond mind-reading: Multi-voxel pattern analysis of fMRI data,” 

by Norman et al., 2006, Trends in Cognitive Sciences, 10, 424-430.  

 

 2.4 Real-time fMRI and Brain-computer Interfaces 

 
 Having shown that algorithms can be trained to predict mental states, it follows 

that these predictions may be linked to virtual or physical commands. Implementations 
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like this are referred to as brain-computer interfaces (BCI), which allow their user to 

control or communicate using algorithmic predictions of brain states based on brain data. 

BCIs are increasingly common (see Figure 13). They have been used recently, for 

example, to control neuroprostheses by imaging somatomotor BOLD activation patterns. 

This permits amputees or tetraplegics the ability to direct movement of artificial 

prosthetics using only neuroimaging technology and their willing of the limb to move (Lee 

et al., 2008) or move virtual cursors (Weiskopf et al., 2004). In most instances, the 

realization of these BCI applications also requires that the data be collected and 

analyzed at speeds such that the processing and implementation delay of neuro-

generated features are imperceptible to the user of the device—coined to be real-time 

(RT). Lee and colleagues’ (2008) demonstration of this similarly required the use of an 

“off-line” training session (without RT feedback) to define regions-of-interest (ROIs) in 3D 

activation maps (relative to resting baseline) that were exclusive to the imagining of one 

movement of the robotic arm. In the on-line sessions then, the BOLD signal generated by 

imagined movement in the ROIs signaled parameters to the robotic arm and allowed the 

BCI user to control the arm. Due to the movement-sensitive and magnetic nature of fMRI, 

the user was held in place with a head restrictor and visualized the movement of the 

robotic arm (based on BOLD contrast levels in motor ROIs) via MR-compatible visual 

goggles in RT. This allowed the modulation of activation in particular brain regions based 

on RT visual feedback. While these constrictions make this far from an ideal BCI 

prosthetic, advances in other imaging techniques, such as electroencephalography 

(EEG), offer mobile BCI paradigms. 
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Figure 13. Peer-reviewed brain-computer interface publications have become 

increasingly common in the last 30 years. Reprinted from “Brain-computer interfaces in 

medicine,” by Shih, Krusienski, & Wolpaw, 2012, Mayo Clinic Proceedings, 87(3), 268-

279. 

 
 Evidence suggesting that individuals have the capacity to modulate activity in 

specific brain regions based on meaningful neurofeedback has spurred the imagination 

of neuroscience researchers. Growing evidence has also suggested the possibility of 

using BCI not just to alter our outside world, but to influence and augment the very 

cognitive assets we possess as well. The new frontier is no longer looking outward 

towards the horizon—it’s looking inward. 

 For example, appropriate fMRI-based neurofeedback has shown to be able to 

target regions of the brain which are responsive to positive affective images in patients 

with major depression. The BCI users then successfully trained themselves to increase 

target area activity. Relative to non-neurofeedback controls, those in the active condition 

had significant improvements on measures of depression and also showed an increase 

of activity in the ventral striatum—which is notably involved in reward prediction and the 
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development of reward-based behaviors, such as drug addiction and drug-seeking 

(Haber, 2011)—and other cognitive control regions throughout the training period (Linden 

& Lancaster, 2011). The treatment of disordered behavior and thinking with 

neurofeedback is an emerging avenue of clinical neuroscience. While the current results 

are fairly mixed (Fielenbach et al., 2018), such organic methods of brain state changes 

promise to give patients a sense of control over their experience of mental illness which 

might be lacking, especially for those with treatment-resistant symptoms or those who 

dislike—or have strong side-effects from—traditional medication interventions. 

 Recent attempts to implement non-clinical cognition-enhancing neurofeedback 

paradigms have also been met with some success. One such investigation 

(deBettencourt, Cohen, Lee, Norman, & Turk-Browne, 2015) used a type of BCI that 

allows for closed-loop neurofeedback. This approach utilizes MVPA-processed 

neuroimaging data to update task stimuli in a way such that the brain state triggered by a 

stimulus at one particular moment influences the presentation of the stimulus the next, 

which then changes the brain state as it reacts to the new stimulus, which triggers the 

stimulus to update, ad infinitum (hence closed-loop). In this study, deBettencourt and 

colleagues asked participants to selectively attend overlapping stimuli (i.e., 50% an 

image of face, 50% an image of a place), training a whole-brain RT fMRI classifier to 

discriminate between whether its user was attending one category or the other. On 

neurofeedback trials, then, the researchers altered the ratio of the task-relevant and task 

irrelevant stimulus on the screen based on the extent to which their detected brain state 

indicated that the participant was attending the task-relevant category of stimulus (see 
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Figure 14). This paradigm rewards task-relevant brain states by increasing task-relevant 

overlay and likewise penalizes task-irrelevant brain states, functionally magnifying the 

consequences of one’s attentional state on the following trial.  

 
Figure 14. Category decoding (top) output informed the extent to which the participant 

was attending the overlaid face or scene stimuli. This prediction altered the ratio of face 

to place on the subsequent stimulus via a sigmoidal function (right) such that more 

attention paid to one category of overlay increased its stimulus proportion on the 

following presentation (bottom). Reprinted from “Closed-loop Training of Attention with 

Real-Time Brain Imaging” by deBettencourt et al., 2015, Nature Neuroscience, 18(3), 470-

478.  

 

 Participants in this study were instructed not only to attend the task-relevant 

category of image and respond with a button press at each trial, but were also asked to 

withhold responses to a subcategory of task-relevant stimuli which occurred less 

frequently than the primary subcategory (i.e., a go/no-go task). For example, if the task-

relevant category was places, they might be asked to withhold responses to indoor 
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places. Behavioral performance, measured by the number of correctly responded-to or 

withheld responses, improved after one training session and RT neurofeedback relative 

to control participants who received sham neurofeedback (which corresponded to pre-

recorded neuroimaging data from others’ brains). The improvement was greatest when 

feedback carried information relevant to the frontoparietal attention network. Together, 

the results of this study indicate that failures of attention, and potentially other cognitive 

features, are not necessarily resultant from reaching a ceiling of capacity, but can be 

trained with neurofeedback. 

 In these studies, and others (e.g., Yoo et al., 2012), fMRI provided meaningful RT 

neurofeedback to participants. But in some paradigms, the caveats of fMRI might 

outweigh its benefits. A major caveat of fMRI is that the size of the datasets makes them 

demanding to manage or analyze, and difficult to do so without significant delay. The 

additional delay introduced by the flow of blood relative to neuronal activity 

(“hemodynamic lag”) also constitutes a significant problem for real-time analysis. 

Furthermore, fMRI machines’ innate lack of portability (regularly weighing in over 50,000 

pounds) and exorbitant price tag (usually requiring at least a million-dollar investment) 

make the equipment prohibited to most. It has also been evidenced that much of the 

allure and perceived credibility of research using brain images is accounted for by 

readers’ affinity for reductionist explanations (manifest in fMRI images) of abstract 

phenomena like cognition (McCabe & Castel, 2008). As such, fMRI may present 

challenges to some paradigms. However, in addition to fMRI, there has been an 

abundance of recent work applying BCI methodology to data from other devices 
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measuring brain activity, for example, training classifiers of brain states for single trial 

EEG data. 

 While fMRI technology promises to reveal much about the functioning of the brain, 

its headline-generating glitz (McCabe & Castel, 2008) might overshadow the potential of 

another, slightly older technology currently more attuned for consumer BCI: 

electroencephalography (EEG). 

 

Section 3: EEG 

 3.1 Basis of the Electroencephalogram   

 To understand how EEG works, it’s necessary to go all the way down to the 

cellular level. Neurons are surrounded in a lipid bilayer membrane, a fatty barrier which 

allows it to regulate its internal contents from its external environment. By controlling the 

flow of electrically-charged ions (Na-, Cl-, K+; the negatively charged ones are called 

anions and the positively charged ones are cations) through the neurons’ membranes 

with selectively permeable ion channels and pumps—proteins that do exactly what it 

sounds like they do, pump ions across the lipid bilayer—neurons can change the 

electrical potential across their membranes. Membrane potential: The difference 

between the potential on the inside of the cell and the potential on the outside (Vm = Vin - 

Vout). The resting membrane potential of neurons—their default state—is about -60mV to -

70mV (Holmes and Khazipov, 2007). 

 The brain consists of roughly a hundred billion neurons, all communicating by 

sending electrical signals along their synapses and exciting or inhibiting other neurons 
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with these signals. In order to communicate, the neurons must generate a strong enough 

electrical current to activate other cells; this is called an action potential. These occur 

when the membrane potential reaches a threshold (around -55mV) that causes voltage-

gated Na+ (sodium ion) channels to open and sodium to rush into the cell, making the 

inside of the cell positively charged—depolarized—but only for about one millisecond 

before the K+ (potassium) channels open and the positive charge is dispersed (Teplan, 

2002; see Figure 15). The speed of this process makes it possible for neurons to “spike” 

rapidly—up to hundreds of time per second. 

 
Figure 15. Opening of ion channels during an action potential. Na+ rushes into the cell, 

making its charge more positive (increasing depolarization). This positivity causes more 

Na+ to rush into the cell and depolarization accelerates, creating a positive feedback 

loop. Once sufficiently depolarized for the action potential to reach peak (creating an all-

or-nothing effect), an influx of K+ ions is triggered and Na+ influx decreases; this results in 

an efflux of positive charge from the cell and it repolarizes back to the resting membrane 

potential. Reprinted from “Basic neurophysiology and the cortical basis of EEG” by 

Holmes and Khazipov, 2007, The Clinical Neurophysiology Primer, 19-33. 
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 Extracellular electrodes can detect action potentials from individual neurons, but 

only if the electrodes are comparably sized (i.e. a few micrometers) and really close to 

the cell body. Conventional EEG electrodes—on the scalp and of a size on the order of 

centimeters—are thus much too far and much too large to detect these individual 

neuronal activities. So why introduce all of this information to talk about EEG? Well, 

neurons don’t just fire alone. The action potentials they generate are sent down through 

the “axonal” connections (down the little wires called axons that transmit signals to other 

neurons’ dendrites), depolarizing the membrane potentials in adjacent regions and 

causing other Na+ channels to open; the firing of one neurons can result in the firing of 

others to which its connected, which then spreads from the originating neuron down 

through the others in a continuing cycle. When many neurons fire in unison, their 

summated potential (called a population spike) can be detected in EEG recordings. 

However, most of the signal detected by EEG actually results from post-synaptic 

potential—changes in membrane potential of the postsynaptic cell caused by 

neurotransmitters. Thus EEG is the measurement of electrical activity on the scalp 

resultant from synchronous activity of neural populations in the brain (Teplan, 2002).  

 The EEG signal being recorded is obviously, then, biased to the activity of closer, 

cortical neurons on the surface of the brain. But not only are EEGs biased to surface 

activity, they are also biased to specific orientations of neurons, namely the pyramidal 

cells that form a kind of columnar sheet on the cortex and provide much of the useful 

EEG signal (Holmes & Khazipov, 2007). So it would seem that deeper structures are not 
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directly relevant to the signal; but because of the interconnected circuits of neurons in 

the brain, signals originating deep within the brain can have a substantial impact on the 

surface electrical activity (see Figure 16).  

 

Figure 16. Surface EEG voltage patterns are dependent on the location of (even sub-) 

cortical activity. A) Input from the thalamic axons to these hypothetical pyramidal neurons 

would result in a positive-going surface potential while the input in B) would result in a 

negative-going EEG. Reprinted from “Basic neurophysiology and the cortical basis of 

EEG” by Holmes and Khazipov, 2007, The Clinical Neurophysiology Primer, 19-33.  

 
 Because this measure is generated by neuronal electrical potential, rather than 

relying on correlates of such activation—as in fMRI, which uses blood flow—the signal 

being recorded is a direct measure of electrical activity. EEGs can be obtained because 

the current generated in the brain flows between the electrical generator (source) and 

the recording electrodes on the scalp: Thus its major disadvantage over fMRI is that EEG 

provides a two-dimensional projection of a three-dimensional process; EEG cannot “find” 
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the location of the source of the signals it records. 

 That being said, in its various forms, EEG has been used in creative ways to 

elucidate and explore inner operations of the brain. While its spatial resolution is 

extremely limited, as bias to higher-layer cortical neurons and signal 

interaction/cancellation entail (Tatum et al., 2008), EEG allows for excellent temporal 

resolution (1-10ms) in comparison to fMRI (Weiskopf et al., 2004). EEG and its devices are 

also much more accessible due to their lower price tag, cost of usage, safety, size, 

portability, and increased speed of data processing relative to fMRI. 

 

 3.2 Utilizing EEGs 

 
 Brain patterns as detected by EEG form brainwaves that are fairly sinusoidal. 

Signals range from 0.5 to 100 µV in amplitude and are typically measured from peak-to-

peak as a way to determine their underlying rhythmic frequency (Teplan, 2002). These 

signals also pick up subjects’ movements, even small ones like eye-blinks, and electrical 

noise present in the recording surround. Applying Fourier transformations to the EEG 

data can reveal the power spectra (rhythmic oscillations in voltage) of the data. While the 

power spectrum is technically continuous (ranging all the way from 0Hz to one half of the 

sampling frequency), today’s standard frequency bands are: delta, 0.5–4Hz; theta, 4–

8Hz; alpha, 8–12Hz; beta, 12–30Hz; and gamma, > 30Hz. This delineation was done 

without much knowledge of the mechanisms at play and separated somewhat arbitrarily, 

though they have some relevance and drive much investigation still today (see Figure 

17b). Thus, oscillations generated by the same mechanisms at different ages, across 
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species, or even between individuals often fall into different bands without regard for 

their mechanics (Buzsáki, 2009). Nonetheless, brain states make EEG oscillatory 

frequencies more or less dominant over given time windows, and when data are 

averaged and combined at the group level, strong predictions can be made. 

 With contemporary EEG, there are three principal categories of features used to 

analyze human whole-brain electrophysiology: Event-related potentials, power spectra, 

and topography. The first technique is the evaluation of electrophysiological changes 

across the scalp time-locked to some event (often the onset of a stimulus), called event-

related potentials (ERPs; Sutton, Tueting, Zubin & John, 1967). These are, in theory, the 

brain’s direct reaction to a specific event, which cause short bursts of activity (called 

deflections) in response. Thus ERP deflections are typically very small voltage 

fluctuations only examined <1500 ms after the event (e.g., a stimulus presentation or a 

button-press) occurs and baselined to pre-event activity. The second common form of 

EEG analysis is the evaluation of frequencies, which describe the oscillatory patterns of 

activity across different areas. The third involves analyzing the topography of voltages or 

voltage patterns, or where the signals “travel” across a representational map of a scalp 

(e.g., Ko, Komarov, Hairston, Jung, & Lin, 2017). It’s important to note that these features 

may be utilized in tandem for a given investigation and are not mutually exclusive. For 

example, a particular ERP deflection difference between conditions might only appear 

over a specific region of the scalp. See Figure 17 for a diagram of how these features 

differ and appear. 
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Figure 17. The forms that EEG data take. a) A representative ERP deflection. ERPs 

measure small electrophysiological changes (potential) after an event, typically a stimulus 

presentation. The P1, N1, P2, N2, and P3 indicators denote components of ERPs typically 

observed. b) Oscillations in electrophysiology were first primarily used (and still are) to 

quantify states of arousal and consciousness. An excited state is typically evidenced by 

beta waves, a relaxed state by alpha waves, a drowsy state by theta waves, sleep by the 

presence of sleep spindles (bursts of 12-14Hz activity, shown above in circles), and deep 

sleep by delta waves. c) A simple topographical map showing normalized amplitude over 

a time window. This might represent the magnitude of voltage, or the presence of a 

certain power band, over the scalp during an epoch of an experiment. 

 

 Due to the fact that EEGs are directly related to cortical activity, EEG analysis can 

assist researchers in determining and delineating the mechanisms facilitating particular 

cognitive functions or other brain states (e.g., Headley & Paré, 2017). For example, 

previous investigation has evidenced a robust involvement of EEG oscillations in 

attentional engagement: increases in frontomedial theta activity are often observed when 

sustaining attention; localized gamma oscillations promote activation of task-relevant 

processes across the brain; and the generation of alpha oscillations in task-irrelevant 

cortical regions decreases activity so as to inhibit distracting brain processes (Clayton, 

Yeung, & Cohen Kadosh, 2015).  

 In the memory domain, EEG studies can assist researchers in identifying the 
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mechanisms of memory maintenance, encoding, consolidation, and retrieval (Düzel, 

Penny, & Burgess, 2010). A common means of identifying correlates of memory 

processes such as encoding is to compare data from when a participant is experiencing 

a stimulus that they later remember to data from when that participant experiences a 

stimulus they later forget: A difference in ERPs can be predictive of later memory (Paller, 

Kutas, & Mayes, 1987) and differences in oscillatory EEG patterns have also been shown 

to predict later memory (e.g., Hanslmayr, Staudigl, & Fillner, 2012)—these are called 

subsequent memory effects.  

 Applications of EEG technologies include rehabilitation, diagnostics (by identifying 

abnormal patterns), neuroentertainment (e.g., Yan et al., 2016, who triggered theatrical 

events on a stage based on the audience’s level of engagement as determined via EEG; 

Dale, 2014), and cognitive training, many of which may seem quite distant from current 

possibility, but are closer than one might anticipate. For example, researchers can 

already use real-time EEG patterns to help control automated wheelchairs or regain 

motor abilities via neuroprosthetic limbs by having users simply imagine or intend the 

movement of that limb as well (e.g., Fok et al., 2011). These applications largely require 

the use of BCIs. Consequently, EEG BCI might sound like a natural step for this 

technology, but implementing EEG BCI in RT effectively brings many challenges; chiefly, 

data cannot be averaged over many trials, but need be processed on a moment-to-

moment basis, and thus with a very small amount of data. Oscillatory patterns may have 

some basic advantages over ERPs in BCI for this reason; the small voltage differences 

present in ERPs typically require many trials to be averaged before meaningful 
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information may often be detected (with the notable exception of some P3-based ERP 

BCIs, such a P3 spellers; see Fazel-Rezai at al., 2012 for a review of current applications 

and directions). while oscillatory investigations still require chunks of time before analysis 

can proceed, classifying the moment-to-moment activity by oscillations has shown to 

generally be more reliable. An additional challenge in EEG BCI is that it requires, unlike 

typical EEG procedures, that the pipeline for analysis be designed and implemented prior 

to data collection. For a typical EEG-based BCI neurofeedback pipeline, see Figure 18.  

 

 
Figure 18. An example real-time electroencephalographic neurofeedback pipeline. 

Computer 1 sends trigger signals to computer 2 indicating where events are occurring in 

the time-series data being acquired by computer 2 from an EEG. The data are 

preprocessed, relevant EEG features are extracted from the dataset, and then chunks of 

data (relevant chunks indicated by the triggers) are classified based on a series of pre-

established variable criteria. Based on the classification of the brain state data, 

neurofeedback is sent to the user or used to control prostheses/robots/software/etc. In 

this example, a good brain state permits the presentation of the stimulus (word on the 

screen to be learned), while a bad brain state withholds the stimulus. 
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 3.3 Changing the Brain with EEG Neurofeedback 

 In the course of the last twenty years, many EEG neurofeedback paradigms have 

evidenced the exciting possibility of monitoring and modulating the brain. One of the 

most common techniques involves an operant conditioning approach, whereby users 

monitor their own levels of activity in a neurofunctional feature of interest (e.g., activity in 

a region or power band of interest) and voluntarily control this signal by adjusting their 

behavior accordingly. 

 It has been shown in ophthalmic surgical settings that operant neurofeedback—in 

this study, informed by alpha-theta ratio and mu rhythm increases (without concurrent 

increases in theta and high beta; mu = 9-11Hz over motor cortex)—prior to surgery 

improves surgical techniques and decrease the duration of surgeries (Ros et al., 2009). 

Reddy, Rajan, Bagavathula, and Kandavel (2009) reported a case study of a patient with 

traumatic brain injury that resulted in detriments to memory functions; over the course of 

a neurofeedback training procedure, the patient was able to increase theta activity and 

decrease alpha activity, as the neurofeedback had intended, simply by viewing an 

indicator of these two features; and these changes were associated with improvements 

in verbal and visual learning and memory. Berman and Frederick report (2009)—in a 

similar procedure, over 30 sessions of 30 minutes each—normalization of EEG patterns 

and significant improvements in executive function and memory in patients who have 

dementia. Pineda and colleagues (2008) showed that improvements in sustained 

attention and the Autism Treatment Evaluation Checklist can be induced in children with 

autism after several weeks of training—in this paradigm, alpha band-controlled (more 
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specifically, mu-controlled) neurofeedback affected the progression of a computer-based 

videogame or video. EEG-mediated neurofeedback has also been shown to decrease 

recidivism rates of incarcerates in proportion to the number of sessions they receive 

(Quirk, 1995). While these operant methods are of increasing interest, they are limited in 

many ways. Perhaps more complex forms of EEG analysis can provide new ways of 

harnessing the power of neurofeedback paradigm. 

 For example, Fukuda and Woodman published (2015) one of the first reports of 

effective, single-trial classification of cognitive states with EEG; they then improved 

participants’ memory for “poorly-studied” images (as defined by their classifier) by having 

them restudy items in follow-up. The authors began by identifying two robust EEG 

subsequent memory effects from the literature that predict later memory: sustained 

positivity of ERPs in frontal electrodes and alpha activity at occipital sites at encoding. 

Using a simple behavioral paradigm in which participants studied images and then 

performed a confidence-rated recognition test for each image, the authors first confirmed 

the presence of these features in their EEGs and identified the time windows of greatest 

EEG differences between remembered and forgotten items (ERPs from 200-1000ms; 

occipital alpha from 400-1250ms). Following this, Fukuda and Woodman designed an 

online implementation of this framework in which a classifier reliably selected which 

items were more poorly studied using these pre-defined neural measures and targeted 

these items for additional study. The difference in baseline (prior to the neurofeedback 

stage) performance between well-studied items—categorized as being in the largest 40% 

of frontal positivity measures and in the lowest 40% of occipital alpha power—and poorly-
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studied items—in the smallest 40% of all frontal positivity and highest 40% of occipital 

alpha power—was eliminated after their re-study paradigm, which re-presented these 

images to participants. Studying the poorly-studied items (as defined by EEG measures) 

again had a 30% larger benefit of restudying than the benefit for restudying those items 

which were well-studied, suggesting that the detriments of natural encoding ability 

fluctuations can be minimized via relevant neurofeedback. 

 The use of these more modern computational methods has provided a robust 

avenue for future research in the field—and not just research, but also application. Mu, 

Hu, & Min (2017) have shown the potential of classifying fatigue level states of drivers via 

EEG, reporting over 98% classification accuracy across participants using entropy-based 

feature extraction (which measures the uncertainty or amount of information provided by 

an event) and a type of machine learning algorithm called a support vector machine (see 

Min, Wang, & Hu, 2017 as well). Support vector machines are classifiers which operate by 

mapping the data input into a higher dimensional (parameter) space and, subsequently, 

applying a hyperplane to the feature space which best separates the data classes 

(ƒ(x)=wx+b, with w being the weight vector and b being the bias). The efficacy of this 

hyperplane is maximized by calculating the smallest margins from the hyperplane to the 

nearest data point (Güler & Ubeyli, 2007). 

 Furthermore, Huang et al. (2016) implemented an online, closed-loop, EEG-based 

fatigue detector which monitored oscillatory activity. These data were decomposed using 

independent components analysis and then a Fast Fourier Transformation was applied to 

derive the time-frequency patterns. Subsequently, the researchers provided auditory 
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warnings to drivers when fatigue was detected in a virtual reality driving simulator; their 

results showed decreased reaction times and better detection of potentially dangerous 

driving situations when receiving neurofeedback. 

 Machine learning tools applied to BCIs often take a different approach than the 

operant paradigms introduced at the beginning of this sub-section. Instead of selecting 

features a priori which align with mechanistic (or potentially pseudo-mechanistic) 

predictions, the majority of these these approaches rely on training datasets which are 

acquired when a user or set of users performs a particular cognitive action. Instead of 

training the user to adapt to the structure of a neurofeedback paradigm (e.g., modulate 

alpha levels), by training a classifier on the data from pre-recorded sets, the feedback 

system adapts itself to the specificities of the users’ brain—sometimes referred to as non-

stationary signals (Krusienski et al., 2011). Typical methods of data analysis in 

neuroscience can be blind to the wealth of dynamics and variability when analyzing the 

“average” brain patterns; but the drawback to more adaptive styles with BCI is that it 

requires computational methods to extract complex and high-dimensional features in 

order to classify robustly. 

 

 3.4 Current Proposal 

 
 One major challenge in EEG BCI efficiency is that many researchers select 

features of interest via the already existing categories of oscillatory activity. It has been 

suggested (Sherry & Schacter, 1987) that diverse demands throughout humans’ 

evolutionary history prompted incompatible computational requirements of the memory 
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and attention system and forced it to dissociate and specialize, but these brain regions 

are thought to still share many low-level features, including oscillatory activity—which is 

used to promote inter-regional communication and unify processing goals (Headley & 

Paré, 2017). As a result, it might seem reasonable that selecting these as features of 

interest is always valuable, but for that to be the case, the literature would have to 

maintain unified understanding of the functions of this communicatory pathway. 

However, the brain’s oscillatory dynamics are largely elusive, and comprehensive 

accounts are lacking and attempts to simplify or ignore these complexities in EEG BCI 

often leave something to be desired.  

 For example, a recent investigation conducted by Salari & Rose (2015) used a 

trigger-based neurofeedback design in which participants were presented with novel 

information at the detection of high beta activity; they showed a clear memory-related 

advantage for processing stimuli in a brain state producing this power band—this 

particular investigation could not replicate the same findings with theta activity. Their 

theory-driven approach of using beta and theta activity was based on research indicating 

the involvement of these bands in memory encoding (e.g., Sholz, Schneider, & Rose, 

2017). But because the mechanisms of oscillatory memory patterns are not fully 

explained, the simplicity of these more theory-driven methods leaves many questions 

unanswered, and might not demonstrate the full potential of these BCI systems for 

cognition-enhancing neurofeedback. In dealing with extremely dynamic processes like 

memory and attention, harnessing more flexible EEG-based cognition-enhancing BCI 

may prove to increase the strength and explanatory power of results. 
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  Another major challenge in BCI applications is related to efficacy: the large inter-

subject variability in the spatiotemporal characteristics of EEG. Prompting participants to 

adapt their patterns of brain activity to fit the requirements of a BCI system such that they 

can regulate control over specific EEG features (e.g., Birbaumer et al., 2000; Ros et al., 

2009; Reddy et al., 2009; Berman et al., 2009; Salari & Rose, 2015) does not take into 

account the extent of this variability. Furthermore, even in clinical EEG neurofeedback 

studies which observed opposite effects in their physiological measures from prediction 

often report clinical improvements over non- or placebo-neurofeedback controls, 

demonstrating the wide variance in individual brain responses to neurofeedback 

(Fielenbach et al., 2018; Arns, Drinkenburg, Leon Kenemans, 2012). More adaptive BCI 

procedures (such as the Berlin BCI; Blankertz et al., 2007) allow greater control with 

minimal to no training intervention by identifying features in a subject-specific way using 

more flexible analysis like machine learning classifiers.  

 The goal of machine learning is to have computers make judgments about data 

without explicitly defining how it should be done. The computer learns from 

“experience”—training data provided which indicates the class the data belong to (e.g., 

epochs of EEG requiring top-down vs. bottom-up attention)—and develops a method 

based on this training data which “decides” which features are most relevant to or 

different between the classes. This is done offline by having a single, labelled dataset 

and performing crossvalidation, which essentially pulls out an epoch of data, runs the 

analysis on the rest of the data, and attempts to classify the pulled-out epoch based on 

the result of this analysis. So, provided new data (e.g., in real-time; “online”), that same 
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classifier could perform computational operations on it with the “knowledge” of how to 

separate it into one class or another, and output a judgement. This is the basis of flexible 

paradigms, which prove useful in EEG BCI due to the low signal-to-noise ratio of 

(especially single-trial) EEG data, allowing for small (but potentially robust) and subject-

specific class differences to drive the algorithms’ results. 

 The limited understanding of the direct link between mnemonic and attentional 

mechanisms and EEG signals is problematic for the development of a learning-enhancing 

EEG BCI. But it may perhaps be expedited by taking more data-driven approaches and 

then comparing results to contemporary theories as substantiation, rather than the other 

way around.  

 More flexible systems would also allow for learning improvements in sub-

populations that may have limited access to or control over specific cognitive and neural 

factors that are conducive to learning. While much attention has been paid to improving 

learning capabilities in neurotypical people, specific individuals, or even the relevant sub-

populations, few of these systems developed would be compatible across all groups if 

using rigid controls. Any particular individual might have a learning impairment specific to 

them and only them, thus systems designed to improve learning based simply on 

patterns of the general population might not be helpful. For example, someone’s memory 

abilities might be above-average, but their attention wanes might have a more extensive 

effect on their later remembrance than others; in data-land, this might manifest in a 

particular patterns of activity, thus an ideal neurofeedback paradigm would recognize 

this factor and adjust its predictions accordingly. Creating a system of neurofeedback 
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trained on one’s own specific behavioral and neural data promises to facilitate a 

technique agnostic to differences between groups of people and individuals. Given the 

vast variations in cognition, brains, and the mapping of these two systems onto one 

another, the apparatuses of cognitive modulation that society chooses to invest in must 

be flexible in order to adequately address the whole of the population. The sciences, 

including applied neurosciences, have an oft-ignored responsibility to make its systems 

as all-encompassing of the diversity of its users as that diversity itself extends. Such 

systems also facilitate more functional apparatuses in general—in that if fewer people 

can use the apparatus, it necessarily falls short of its broader goals. 

 Lastly, while much of the psychological and neuroscientific research endeavors to 

understand the dynamics of learning focus on retroactively ascertaining the mechanisms 

and associations of better or worse learning, an ideal way of implementing such attempts 

would be to do so “at the gate”—before the effects take place. Think back to this paper’s 

very first example of a student in the library late at night: A person might push through 

the night trying to learn something for the next day, so telling them in the morning 

whether or not they did a good job of learning isn’t that useful of a feature. While much of 

the past research using brain data devices have examined relationships between set 

variables retroactively, an ideal system would harness these new technologies and 

implement behavior-modifying feedback in real-time and accounting for the users’ ability 

in the moment. 

 

 The current study draws on the literature and framework introduced herein to 
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investigate the building of a BCI that encourages its users to adopt brain states that 

facilitate better learning. To do so, EEG data was recorded while participants completed 

a novel task developed for this project—the Attention/Memory Search-Manipulation and 

Recognition Task (amSMART). These data were then analyzed offline using EEG 

processing and classification techniques to determine how predictive and robust the 

data are for use in a neurofeedback paradigm. Subsequently, this could allow the 

presentation of neurofeedback to participants about the extent to which their current 

brain state is conducive to learning while they study novel information. 

 

Methods 
 
 The methods described in this section have been approved by the Bard College 

Institutional Review Board (see Appendix F) 

 
 Participants 
 
 All 6 participants (3 female, 1 non-identifying) in this study were undergraduates 

recruited from Bard College and the surrounding area via snowball sampling and 

advertising in the college’s campus center. All participants were between the ages of 18 

and 35, had normal (or corrected-to-normal) color vision, were native English speakers, 

and did not have diagnosed attention deficit disorders, learning disabilities, or other 

neurological disorders. 

 Four participants were excluded (not included in total participant number above): 

In the first case, the participant’s hair proved incompatible with the Emotiv Epoc+ device 

(some hairstyles are difficult for EEG devices in general due to the nature of the electrode 
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and the volume of hair that would be required to be underneath the electrode); in the 

second case, the EEG acquisition software provided from Emotiv crashed during the EEG 

data collection phase; in the third and fourth cases, EmotivPro failed to insert triggers into 

the recorded data. In instances of procedure failure, as soon as the error was realized, 

participants were debriefed, dismissed, and compensated like participants who 

completed the procedure fully. 

 
 EEG materials 
 
 Participants in this study were outfitted with an Emotiv Epoc+, an 

electrophysiological interface for consumer use—with potential for research, as well. See 

Badcock et al., 2015; Maskeliunas, Damasevicius, Martisius, & Vasilievas, 2016; Badcock 

et al., 2013; and Ekandem, Davis, Alvarez, James & Gilbert, 2012 for published research 

evaluating Emotiv’s neuroheadsets. Furthermore, classifiers built using data from 

Emotiv’s hardware has already been used to detect levels of memory competition and 

predict memory retention (Rafidi, Hulber, Pacheco, & Norman, forthcoming). The Epoc+ 

was used in place of traditional, higher-resolution alternatives for ease of use and to test 

how currently realizable cognition-enhancing neurofeedback is at the level of an 

everyday consumer. This device and its software also interfaces with a developing field 

of EEG software applications from third parties (such as FieldTrip, OpenVibe, Neuropype, 

who provide drivers and other software for real-time streaming BCI, etc.); thus this device 

was also chosen in order to expand the potential accessibility of the paradigm and the 

ability to port similar designs to new systems. 
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 The Epoc+ device is a consumer EEG headset containing 16 wet electrodes 

aligned with the 10-20 EEG system (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, 

FC4, M1, and M2); left and right mastoids (M1 and M2) were used as ground and 

reference positions (M1 acts as a ground reference point for measuring the voltage of the 

other sensors, while M2 acts as a feed-forward reference point for reducing electrical 

interference from external sources), providing a baseline voltage comparator for the 

other 14 electrodes from which data are actually saved (though data were re-referenced 

prior to analysis, see Data Methods). Gyroscopic information is also gathered during 

acquisition but was not used in the current experiment. Channel mapping is depicted in 

Figure 19 and corresponds to the standard 10-20 EEG system. However, due to the fixed 

positions of the electrodes relative to the headband (each electrode is connected via 

flexible plastic arms), variability in head-shape may have greater effects on electrode 

placement than in traditional EEG. The headset is entirely wireless, relying on a lithium 

battery for power and transmitting the data over Bluetooth to connected devices via 

USB. The sampling rate of the Epoc+ is 128 Hz. 
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Figure 19. The Emotiv Epoc+ neuroheadset is composed of 14 electrodes and two 

references (here M1 is labeled CMS; M2 is labeled DRL) and mapped to the scalp 

according to the 10-20 standard layout. Reprinted from “Emotiv User Manual” by Emotiv. 

 
 While EEG data quality is crucial to successful BCI performance, traditional, gel-

based EEG sensor rigs that offer higher-quality data are (1) much more expensive—easily 

exceeding 50,000 dollars for a medical-grade machine (for comparison, the Epoc+ costs 

about 800 dollars currently) (2) require much longer setup times than consumer devices 

such as the Epoc+ (traditional EEG capping takes >15 minutes, while the Epoc+ can take 

only a few seconds to establish a good signal) (3) involve more extensive clean-up 

processes which require careful cleaning of each sensor so as not to damage the 

electrodes and (4) another individual present to “cap” the EEG system (to put it in place 

on the scalp), while the Epoc+ is easily placed on the scalp by oneself. Thus EEG systems 

like the Emotiv Epoc+ that are portable, (relatively) cheap, and easier to use would be 

more accessible to the current consumer. 

 Electrode impedance was decreased by soaking proprietary felt pads purchased 

from Emotiv in a light saline solution. Emotiv’s custom system of signal quality detection 

(in EmotivPro) was used to gauge signal quality before the experiment; every electrode 

for all participants achieved Emotiv’s proprietary “green” signal, a measure of electrode 

impedence (in the 10-20 kΩ range; Duvinage et al., 2013) prior to data acquisition and 

were monitored throughout the experiment. Problematic electrodes (those that dropped 

from “green” to “orange” were re-wetted at the half-way point of the experiment and no 
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electrode signal quality indicator dropped below “orange” at any point during data 

collection. Raw EEG data were acquired using Emotiv’s EmotivPro software. 

 
  
 Behavioral Materials: The amSMART Paradigm 

 This preliminary research involved the development of a novel task, amSMaRT, 

which is split into two distinct phases. 

 The first phase consists of a computerized task (see Figure 20) in which 

participants complete two types of visual searches: A “difficult” visual search task and a 

relatively easier visual search task. In both types of visual search, the participants are 

instructed to find the red T (the target), among a 5x5 grid of Ts and Ls. Each trial of the 

task consisted of 25 Ts and Ls on the screen, overlaid on a black and white “distractor” 

image. In the easy visual search trials, the only red object on the screen is the target 

(feature search), while in the difficult visual search trials, each L was randomly assigned to 

be either blue or red (conjunction search), adding an additional source of complexity that 

requires greater attention to the task. Participants are instructed to press the key (1-5 on 

the number row) corresponding to the column in which the red T was present (e.g., in 

Figure 20, the participant would be tasked to press ‘2’). 

 Each image is presented on the screen for 8 seconds, during which time 

participants complete a series of visual search tasks of one type (i.e., a series of difficult 

searches or a series of easy searches). After the 8 seconds have elapsed, the image 

disappears from the screen, but the visual search display remains until a response to that 

array is registered. Once this response is registered, a new image and visual search 
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display (equal chance of difficult and easy type) is presented; ad infinitum, until all images 

(144 in the current study) are presented. 

 

Figure 20. Phase 1 of the amSMART paradigm consists of either a series of “easy” visual 

search trials (left) or “difficult” visual search trials (right) overlaid on a grayscale scene 

image. 

 

 The second phase of amSMART consists of a 2-stage recognition test for the 

black and white scene images that have been previously presented underneath the 

visual search displays (see Figure 21). In the first stage, a binary decision is made 

between two images on the screen: One of the images has been presented previously 

and is the correct image to choose, while the other image is a lure—a picture from the 

same scene category (e.g., if the correct image was a picture of a blue airplane in flight, 

the lure might be a picture of a red airplane on tarmac). The decision is then weighted in 
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the second stage based on the participants’ confidence in their previous response (see 

Data Methods for more detail). Both stages are repeated in Phase 2 for every image 

presented in Phase 1. 

 

Figure 21. Phase 2 of the amSMART paradigm consists of a two-stage judgment for each 

scene image viewed in Phase 1. First, participants make a binary choice between the 

previously viewed image and a category lure image, then participants rate their 

confidence in that choice. 

 

 amSMART Procedure 

 Participants first read the consent form (see Appendix A), and—upon providing 

consent—were outfitted with the Emotiv Epoc+ neuroheadset, sat, and placed their chin 

on a table-mounted chinrest at a fixed distance from the screen (visual angle 

approximately 15.5º). In consultation with the EmotivPro software display, electrodes 



IMPROVING LEARNING WITH NEUROFEEDBACK 78	

were placed and replaced and hair was adjusted underneath the electrodes until signal 

quality achieved Emotiv’s “green” signal across each electrode.  

 Participants were instructed that the task they were about to complete is a visual 

search task, which involves trying to locate a letter of a particular color among an array of 

other, colored letters; they were told that any image presented behind the visual search 

display was included as to distract the participant from paying attention to the primary 

task (the visual search). The researcher explained that keyboard responses should be 

made as quickly as possible without making mistakes. Participants were given four 

breaks during this phase, evenly distributed throughout the phase by portion of stimuli 

viewed. 

 At the completion of the first phase, participants were given Sudokus (see 

Appendix B) to complete for 5 minutes as a filler task between Phase 1 and 2 in order to 

reduce recency effects on Phase 2 memory data. Contact quality was also monitored 

throughout Phase 1 and electrodes were readjusted at the end of Phase 1 in the case of 

“imperfect” (according to the aforementioned proprietary Emotiv signal quality indicator) 

signal quality. 

 Before the second phase, participants were informed that the next section of the 

amSMaRT would be testing for the images that they’d previously considered to be 

distractors. After being instructed on how to respond to the display prompts, participants 

completed the two-stage recognition task for each scene stimulus. 
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 After completion, the Epoc+ was removed, a post-experiment questionnaire (see 

Appendix D) was completed, and participants were debriefed and dismissed. Participants 

were compensated with entry into a raffle for gift cards ($50).  

 

 Apparatus 

 This research was conducted using a Dell XPS13 running Ubuntu 16.04 for the task 

display, and a Dell XPS15 running Windows 10 for data acquisition, processing, and 

analysis. Stimulus presentation was performed using Matlab and Psychtoolbox-3. Data 

were collected using EmotivPro’s acquisition service and analyzed using Matlab, Fieldtrip 

toolbox, and Donders Machine Learning Toolbox (DMLT). Event markers were sent over 

2 male-to-female USB-serial port converters attached to a male-to-male serial cable from 

Psychtoolbox to EmotivPro, and a trigger output duration of .0076 seconds was selected 

for a single signal to be detected from the Psychtoolbox function by EmotivPro. 

 

 Data methods 

 EEG data were loaded into Matlab and reorganized to match the data formats 

compatible with Fieldtrip. These data were then categorized into four discrete bins: data 

corresponding to performing high attention (difficult search) trials in which the 

background image was previously recognized and done so with a confidence rating 

higher than 1 (hAhM; high attention, high memory); data corresponding to performing 

high attention (difficult search) trials in which the background image was previously not 

recognized and done so with a confidence rating higher than 1 ( (hAlM; high attention, 
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low memory); data corresponding to performing low attention (easy search) trials in which 

the background image was previously recognized and done so with a confidence rating 

higher than 1 ( (lAhM; low attention, high memory); and data corresponding to performing 

low attention (easy search) trials in which the background image was previously not 

recognized and done so with a confidence rating higher than 1 ( (lAlM; low attention, low 

memory); see Table 1 for a visual layout. These data were not segmented, epoched, or 

binned by Fieldtrip Toolbox due to differences in EmotivPro’s output EDF+ format from 

traditional EDF+ formatting; instead, these operations were performed “manually” using 

Matlab. 

 

hAhM (bin 1) 

• Participant was completing 

the difficult visual search task 

• Participant indicated the 

correct image (confidence > 1) 

hAlM (bin 3) 

• Participant was completing 

the difficult visual search task 

• Participant indicated the 

incorrect image (confidence > 1) 

lAhM (bin 2) 

• Participant was completing 

the easy visual search task 

• Participant indicated the 

correct image (confidence > 1) 

lAlM bin (bin 4) 

• Participant was completing 

the easy visual search task 

• Participant indicated the 

incorrect image (confidence > 1) 

 

Table 1. Data bins extracted from continuous EEG data according to the difficulty level of 

the visual search task during each image presentation in Phase 1 and the participants’ 

subsequent responses to the image in Phase 2. 
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 Emotiv’s output also automatically implements built-in digital notch filters at 50 

and 60 Hz, and subsequently a built-in band-pass filter of 0.2–45 Hz; no filters were 

otherwise applied to the data. A select few trials with extreme values, which typically 

reflect muscular or ocular artifacts, were rejected manually and blind to data condition 

using Fieldtrip’s visual inspection GUI (average rejected per person was 2.86 trials). Data 

were preprocessed using Fieldtrip and re-referenced to every electrode, rather than 

Emotiv’s default of referencing to the left mastoid sensor. A custom layout was also built 

based on the 10-20 system to fit the Emotiv electrode placement and input to Fieldtrip at 

this stage as well. The EEGs were then averaged separately and in two different ways for 

the purposes of data exploration and ascertaining the most efficacious processing 

pipeline: by “raw” voltages and by frequencies. 

 Timelocked averages were computed per trial based on Voltage (amplitude; 

channels x time) using Fieldtrip. Timelocked time-frequency representations were 

generated using sliding wavelet convolution (mtmconvol) with hanning tapers per 

frequency window of 1 Hz. Classification was performed using a Fieldtrip wrapper for 

DMLT functions. First, individual data was normalized (z-scores were calculated such that 

data have a mean 0 and standard deviation 1). Subsequently, a linear support vector 

machine was applied to the data. Behavioral data were analyzed and visualized in Matlab 

and Excel. 
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RESULTS 

 Visual search errors (selection of non-target columns) were relatively consistent 

across blocks of the amSMART (see Figure R1), suggesting that participants engaged with 

Phase 1 fairly uniformly throughout the duration of the task. 

 

Figure R1. Left: Percent of incorrect responses registered across blocks of Phase 1 of the 

amSMART (error bars = SD). Right: The number of incorrect responses registered across 

blocks of Phase 1 of the amSMART by participant.  
 

 Moreover, visual search error rates did not differ drastically between participants 

or between difficult search task trials and easy visual search task trials (Figure R2). This 

indicates that the additional attentional burden in difficult trials did not have a substantial 

impact on visual search target selection accuracy. 

 

Figure R2. Percent of visual search errors by participant during difficult and easy visual 

search trials. 
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 In Phase 2 of the amSMART, while rates of recognition remained relatively stable 

(Figure R3a), recognition confidence waned slightly throughout the phase (Figure R3b); 

concomitant was a decrease in reaction time throughout the duration of Phase 2 (Figure 

R3c). 

 

 

 

Figure R3. Averaged performance in Phase 2 of the amSMART across participants. a) 

Percentage of correctly recognized images per block. b) Average recognition confidence 

rating per block. c) Average recognition reaction times per block. 

 

 

a) 

b) 

c) 
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 Recognition accuracy across Phase 2 of the amSMART appeared to increase with 

participants’ subjective confidence ratings of their recognition judgments (Figure R4). 

 

Figure R4. Percent correct recognition responses by subsequent confidence rating. Error 

bars = SD. 

 

 Binary classifier performance (either across remembered and forgotten item 

bins—Figure R5, top—or across bins requiring the same level of attention—Figure R5, 

bottom) was higher for every participant by memory than by attention.  

 
 

Figure R5. Classifier performance for memory (top) and attention (bottom) by participant.  
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 Separating the data by mode of classification reveals further information about 

classifier performance (Figure R6). Classifying memory by frequency improved 

classification accuracy for all but one participant. The same trend was revealed in the 

attention classifiers, but even more robustly (Figure R7). In the current paradigm, 

classifying by frequency with the current method has an accuracy of about 55%; doing so 

by voltage revealed chance-level classification rates. Averaging across participants might 

make this effect clearer (see Figure R8). 

 
Figure R6. Accuracy improved for all participants except one when classifying across 

memory bins by frequency rather than by voltages. 

 
Figure R7. Accuracy improved for all participants when classifying across attention bins 

by frequency rather than by voltages. 
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Figure R8. Accuracy improved across both attention bins and memory bins when 

classifying by frequency rather than by voltages. 

 

 Classification accuracy (across conditions and modes of analysis) seems relatively 

unaffected by the number of folds used in the crossvalidation procedure (Figure R9)—

attention by frequency may see some benefit around the 15-fold mark (Figure R9b). 

 
Figure R9. K-fold crossvalidation accuracy by k across attention bins (b, d) and memory 

bins (a, c), for voltage-based (c, d) and frequency-based (a, b) analyses.  
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 Signals relevant to memory classification seem to be distributed throughout the 

amSMART trial, though slight advantages might be seen for the first half of the trials for 

memory (Figure R10). 

 

Figure R10. Classification accuracy for memory using only one-second epochs of the 

amSMART trials. Signals relevant to successful classification are distributed throughout 

the trials. All participants; all frequencies; 4-fold crossvalidation. 

 

 However, signals relevant to attention classification seem to be less distributed 

and more condensed towards the beginning of the amSMART trial (Figure R11). 

 

Figure R11. Classification accuracy for attention using only one-second epochs of the 

amSMART trials. Signals relevant to successful classification are mostly early in the trial 

period, though the “7-8” epoch may have relevance as well. All participants; all 

frequencies; 4-fold crossvalidation; note the different y-axis scale than Figure R10. 
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 Signals relevant to memory classification also seem to be distributed throughout 

the different frequency bands, though slight advantages might be seen for analysis over 

theta and high beta activity (Figure R12). 

 

Figure R12. Classification accuracy for memory using only delta (.5-4Hz), theta (4-8Hz), 

alpha (8-13Hz), all beta (13-30Hz), low beta (13-18 Hz), high beta (18-30 Hz), and gamma 

(30-45 Hz) activity. Signals relevant to successful classification seem relatively distributed 

throughout the bands. All participants; 4-fold crossvalidation. 

  

 However, signals relevant to attention classification seem much less distributed 

throughout the different frequency bands; successful classification appears to rely 

heavily on theta and alpha activity. (Figure R13). 
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Figure R13. Classification accuracy for attention using only delta (.5-4Hz), theta (4-8Hz), 

alpha (8-13Hz), all beta (13-30Hz), low beta (13-18 Hz), high beta (18-30 Hz), and gamma 

(30-45 Hz) activity. Signals relevant to successful classification seem primarily to be 

present in theta and alpha bands. All participants; 4-fold crossvalidation. 

 

 Topographic plots of the output weight matrices reveal that, on the group level, 

there is some overlap between the signals being weighted for classification of attention 

(Figure R14 left, frequencies; Figure R15 left, voltage) and memory (Figure R14 right, 

frequencies; Figure R15 right, voltage). However, there are also some differences to be 

noted: Namely, occipital electrodes (particularly O2) seem to be weighted heavily for high 

attention classification, but the same electrode is weighted highly for low memory 

classification. It seems that there are some spatially distinct signals which may be reliable 

for classification. 

 

Figure R14. Topographic maps of classification weights across attention (left) and 

memory (right) bins by frequences. All participants; 4-fold crossvalidation; all 8 seconds of 

data; note the different colorbar scales. 
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Figure R15. Topographic maps of classification weights across attention (left) and 

memory (right) bins by voltage. All participants; 4-fold crossvalidation; all 8 seconds of 

data; note the different colorbar scales. 

 

 However, these average weight values do not necessarily reflect the distribution 

of classifier weights of each participant. For example, there appears to be substantial 

variation between participants in the spatial distribution of signals useful for 

discriminating between attention classes (see Figure R16). 

 

 

Figure R16. Topographic maps of classification weights across memory bins for 

participant 5 (left) and participant 6 (right). The spatial distribution of classifier weights 
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varied considerably between participants. Voltage; 4-fold crossvalidation; all 8 seconds 

of data; note the different colorbar scales. 

 
 To further illustrate this point: Despite the fact that attentional state prediction 

using only gamma activity seems to be classified at chance-level (see Figure R13), doing 

this analysis per participant reveals that group-level activity appears to be a poor 

representation of the usefulness of this band in attentional state prediction. While four 

participants exhibit chance-level accuracy, two participants’ attentional states were able 

to be classified with over 60% accuracy and significantly from chance level as indicated 

by a binomial test (Figure R17). Result such as this are typical of the exploration thus far. 

 

 

 

Figure R17. Topographic maps of classification weights across attention bins for 

participants 1–6. Gamma Frequencies (30-45 Hz); 4-fold crossvalidation; all 8 seconds of 

data; note the different colorbar scales. 

 

61.4% accuracy 
p = .0349 

44.4% accuracy 
p = .9441 

49.6 % accuracy 
p = .7841 

53.7% accuracy 
p = .132 

60.9% accuracy 
p = .0118 

45.14% accuracy 
p = .8944 
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DISCUSSION 

 The ongoing, preliminary work presented here represents exploratory steps in the 

development of a neurofeedback paradigm for learning enhancement. After surveying 

the cognitive infrastructure for learning and the technical tools used to uncover and push 

the boundaries of the mechanics of learning, a novel task was tested for the purposes of 

ascertaining meaningful correlates of brain activity related to this infrastructure. 

Furthermore, this project aimed to determine whether EEGs recorded with consumer-

grade hardware were viable replacements for higher resolution and established tools for 

acquiring brain data. 

 Overall, there appears to be a classifiable signal detectable with consumer-grade 

EEG across attention and memory conditions of the amSMART. However, classification 

performance across most conditions is low on the group level, and subject-level 

exploration indicates that each user has potentially distinct signals which may not 

generalize to other users’ brain activity. Though classification performance, at its best, 

appears reasonably similar to other attempts to classify states related to learning with 

consumer-grade EEG (i.e., Rafidi et al., forthcoming), there are very few studies to 

compare the current results to. However, given the wide range of the data between 

subjects, it can be suggested that further research need focus on flexible 

implementations relevant to signal classification per individual. Chiefly, more advanced 

feature extraction methods, such as independent components analysis, need be 

implemented properly for the purposes of future exploration. Moreover, future work in 

the field of consumer EEG neuofeedback should focus on developing procedure and 
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analytical techniques which reduce the need for between-subject comparisons to be 

made. 

 Future directions of the current paradigm include most prominently the 

implementation of a classifier which can go beyond the binary classification procedures 

discussed in these results and towards a weighted, 4-class classifier which would provide 

much more rich data with which to potentially modulate neurofeedback levels. Multi-class 

classification in neurofeedback represents a mostly yet-to-be-explored domain of the 

field and promises more robust and effective neurofeedback intervention techniques. 

 Power bands most relevant to classification in this study appear to align with past 

investigations. Classification performance measures demonstrated in the current project 

tentatively support the role of oscillations in memory formation (e.g., Scholz, Schneider, & 

Rose, 2017). Specifically, these data support the role of theta frequencies in memory 

formation (see Figure R12; Fell et al., 2011; Staudigl & Hanslmayr, 2013; Sederberg et al., 

2013). Klimesch, Doppelmayr, Pachinger, & Ripper (1997) also found similar results for 

implicit subsequent memory effects, who suggest the possible relationship of this theta-

band activity and hippocampal theta induced in the cortex via hippocampo-cortical 

feedback loops. These data also seem to align with attempts to classify single-trial 

subsequent memory effects which evidence a robust involvement of high beta activity 

(e.g., Noh, Herzmann, Curran, & de Sa, 2014). While no association between memory 

states and gamma activity were evidenced in the current results (as in Sederberg et al., 

2003), this may be due to the notch filter cutting out high gamma frequencies, 

suggesting an explicit disadvantage of the materials utilized in this particular study. 
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Likewise, the alpha and theta band associated with successful attention classification 

have been previously evidence in the literature, particularly for sustained attention like in 

the current study (see Figure R13; e.g., Behzadnia, Ghoshuni, & Charmahini, 2017).  

  

 Limitations 

 The amSMART was developed for the purpose of determining whether the 

correlates of attention status and memory status as attained with consumer-grade EEG 

hardware are independently meaningful for classification. While the amSMART appears 

to have successfully manipulated attention and categorized memories in a tentatively 

EEG-detectable way, this paradigm has several notable limitations that should be 

addressed in future work.  

 While attention may have been manipulated and attentional correlates recorded, 

the question yet remains whether this kind of attentional process is generalizable to 

other forms of learning. Additionally, attention may have waned across the eight second 

trials, as evidenced by the general decrease in classifier accuracy as the trial epochs 

progressed (see Figure R11). As has been discussed in this paper thus far, attention is not 

a unitary process, nor is it inextricable from the types of neurological manipulation 

attentional networks employ. Thus, to some extent, these correlates reflect processes 

specific to the literal task as hand, potentially down to the color that is being selected for. 

Future work need explore and create a variety of systems for recording attentional 

processes that are as relevant to those in the learning environments intended for as 

possible. While visual attention is certainly important if one wishes to read a textbook 
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better, or faster, but if one wishes to better absorb, say, a recorded lecture, 

neurofeedback based solely on visual attention engagement would likely be 

unsuccessful in achieving effective results. 

 Likewise, memory correlates were attained via a combination of recognition 

processes. While this may be useful as a preliminary stage, it is doubtful that the 

correlates of image recognition processes are identical to those used in, for example, 

recalling detailed information about conceptual material—as one might try to do if this 

system were to be implemented in naturalistic learning environment such as during 

studying—or for rote memorization. While in the main, these data may reflect cognitive 

processes specific to memory, the question remains whether the kind of memory being 

utilized in the current paradigm is useful for more complex forms of learning for which the 

system was initially intended. Training a BCI for learning neurofeedback based on data 

that represents simple image recognition processes may be helpful if, say, the test that’s 

being studied for is an image recognition test; but to some extent, these data must reflect 

basic perceptual processes at play in recognizing an image that are not useful for 

conceptual learning processes. For example, having a category lure present during 

Phase 2 of the amSMART (recognition test) may actually decrease the effectiveness of 

neurofeedback for complex learning because what’s being tested for in such a scenario 

are the differences in perceptual features between the correct image and lure; it’s not as 

likely trained on conceptual features due to the nature of the test, which rewards 

perceptual discrimination and punishes scene image memories encoded conceptually 

rather than perceptually (e.g., if a user remembers that they had been seen a bike, but 
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nothing else, a bike lure would be selected 50% of the time, while if a user remembers 

the lines and shapes and shadows of the image—for example—but not the actual content 

of the image, this would be rewarded). For much learning, conceptual features are of 

priority, thus future investigations need carefully construct paradigms most relevant to 

the types of content one attempts to remember when learning in daily life.  

 Additional limitations of this paradigm include the necessity for regular motor 

responses during the recording of EEGs, which may have contaminated results and 

reduce classifier performance. Furthermore, participants in the current study completed 

differential numbers of visual search trials across condition (average visual search arrays 

responded to during a difficult visual search series = 4.73; average visual search arrays 

responded to during an easy visual search series = 8.12). This may have impacted 

classifier performance in many ways because on the one-hand, these motor results are 

contaminated the EEGs, but they are also predictive of the attention condition. Future 

work should examine the role of these motor artifacts in EEG classification performance.  

 

 This paradigm was intended as a first step in a larger project, as has been 

discussed. And a realization of this broader goal would mitigate many of these 

limitations. The amSMART was intended to essentially act as training wheels for a closed-

loop neurofeedback paradigm which automatically updates its algorithmic predictions of 

learning states as the user continues to engage with it (see Figure 22). Thus the training 

data recorded during the amSMART might be eventually overwritten or down-weighted 

as a user engages longer with the full neurofeedback paradigm.  
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Figure 22. A future goal of the amSMART paradigm. Brain states, classified in real-time 

(left), manipulate the extent to which the image presented to a user is decipherable 

(center)—rewarding brain states conducive to learning. Recognition tests at the end of 

each block (right) feed relevant brain data epochs back into the algorithm—weighting 

high-performance state correlates more highly and down-weighting poor-performance 

states—improving the classifier’s decision boundary and creating an unsupervised, self-

updating, closed-loop neurofeedback paradigm for learning. 

 
 While preliminary, this study (1) helps to exhibit and clarify some of the difficulties 

inherent in EEG-based paradigms, (2) presents a novel computer task used for acquiring 

correlates of attentional and memory processes, (3) provides preliminary data for 

designing real-time EEG classification of the states produced via the novel task, and (4) 

exhibits that memory and attentional data recorded with consumer-grade EEG may be 

classifiable—as would be useful in designing a portable neurofeedback paradigm to 

improve learning.  
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INFORMED CONSENT AGREEMENT 
 

Protocol number: 2018FEB07-HIR   Expires: February 7, 2019 
Study title: Paying Attention to Real-Time Neurofeedback 
Principal investigator: Zall Hirschstein 
 
You are being asked to take part in a research experiment at Bard College that seeks to learn about how 
different brain states are associated with performance abilities on certain computer-based tasks. 
To decide whether or not you wish to participate, you should know enough about its risks and benefits to 
make an informed judgment. This consent form gives you information about the research study, and the 
experimenter will provide you with additional information about the specific tasks that you will be 
performing. Once you are ready, you will be asked if you wish to participate and, if so, you will sign the 
consent form. You can choose not to participate, and you can choose to end your participation at any 
time during the study. 
 
What you will do in this study: Should you be eligible and decide to participate, you will be asked to 
make simple judgments about written (words), visual (images), or auditory materials (sounds) presented 
by a computer by pressing buttons, moving a mouse, or speaking out loud into a microphone that will 
capture your responses. The researcher will offer detailed instructions to guide you through each part of 
the experiment and answer any questions you may have about the procedure. After the experiment, you 
will then be asked to fill in a brief questionnaire about the experiment and given an opportunity to ask any 
remaining questions that you may have. 
During this task, we may record the tiny electrical signals generated by your brain (so-called brainwaves). 
To do this, small, sterilized electrodes (or ones buffered by clean, disposable felt pads) will be placed over 
your head using a small amount of gel or saline solution that helps transfer the signal from your body to 
the recording electrodes, with no risk that they could shock you. The whole process is non-invasive and 
not painful. You are encouraged keep the researcher informed of your continued comfort during the 
application of, removal of, and recording using these measurement devices. These data may be used to 
provide you with feedback about your brain state and may also alter stimuli presented to you on the 
screen. 
It is expected that the first 5-20 minutes of the experiment will be spent preparing you and the 
measurement devices, leaving the rest of session for the actual task and cleanup. The total time for a 
session is not expected to run longer than 2 hours. You will be offered the opportunity to take breaks 
throughout. You may be invited back for additional sessions, but similarly, you can end participation at 
any time or opt out of future sessions/contacts without penalty. Should you ever decide to end your 
participation early, you are encouraged to simply let the experimenter know. All the information and 
responses collected during the experiment will be deleted upon request.  
 
Risks and benefits: There are no health risks associated with this study and most participants report 
having a positive experience. Experiment sessions are kept as short as possible, and every attempt is made 
to ensure that participants are kept as comfortable as possible throughout. Participants are reminded that, 
should they become fatigued or in any way uncomfortable during the experiment, they may ask for a 
break or withdraw at any time without penalty. 
After the experiment, participants may prefer, for appearance reasons, to wash off remnants of the 
completely harmless electrode gel or solution with the provided soap and water. 
The words, images, and sounds participants may encounter during the experiment are intended to be 
neutral, non-threatening, and inoffensive. If you are a student at Bard College and find that any aspect of 
the experiment caused you distress, you are encouraged to contact the Bard Counseling Center at 845-
758-7433 during normal business hours or at 845-758-7777 after hours or on weekends. Even if you are 
not a Bard College student but find yourself experiencing significant distress, please contact the National 
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Alliance on Mental Illness (NAMI) at 1-800-950-NAMI (6264). 
While this research experiment may not provide participants with any direct benefits, the data collected 
from this study may help improve the scientific understanding of how to effectively control the focus of 
attention and the results of doing so. Additionally, we hope that some participants may come away from 
this experiment with a better grasp of how signals from the brain can influence your everyday life. 
Moreover, the researchers hope that participants gain insight into the research process at Bard College and 
beyond through their involvement with this work. 
The experimenter will tell you more about the study and our hypotheses at the end of the session.  
Compensation: In exchange for participating in this experiment, you may be offered a token piece of 
candy and raffle entries for Amazon gift cards (with the pot ranging from $25-50), with winners selected 
at random by May 22, 2017, plus any bonuses introduced during the procedure. Should you be invited 
back for additional experiment sessions, you will be compensated $5/hour for every hour in these 
additional sessions. 
 
Your rights as a participant: Your participation in this experiment is completely voluntary, and you 
may withdraw from the experiment at any time without penalty. You will still receive any stated 
compensation for your participation up until that point. You may withdraw by informing the experimenter 
that you no longer wish to participate.  
 
Confidentiality: All records from this study will be kept confidential. Your responses will be assigned an 
arbitrary participant number and kept strictly private, shared only with the investigator and trained 
members of the research team (faculty members and undergraduates at Bard College) who have been 
certified for work with human participants. We will not include any information that will make it possible 
to identify you in any report we might publish, including the resulting Senior Project, which will be 
publicly accessible at Bard College’s Stevenson Library and on the online thesis repository, the Digital 
Commons. Research records will be stored securely in a locked cabinet and/or on password-protected 
computers. 
If you have questions about this study, please ask your researcher, Zall Hirschstein (zh8605@bard.edu), 
or contact Dr. Justin Hulbert (Psychology Program, Bard College, Annandale-on-Hudson, NY 12504; 
jhulbert@bard.edu). If you have questions about your rights as a research participant, please contact the 
Bard College Institutional Review Board at irb@bard.edu.  
 
STATEMENT OF CONSENT: 
"The purpose of this study, procedures to be followed, and the risks and benefits have been 
explained to me. I have been given an opportunity to ask questions, and my questions have 
been answered to my satisfaction. I have been told whom to contact if I have additional 
questions. I have read this consent form and agree to be in this study, with the understanding 
that I may withdraw at any time." 
By signing below, I agree with the above statement of consent and further certify that I am at 
least 18 years of age. 
__________________________________   ____________ 
Participant signature     Date 
__________________________________ 
Participant name (printed)     
__________________________________ 
Experimenter signature    
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Study title: Paying Attention to Real-Time Neurofeedback 

Study Protocol Number: 2018FEB07-HIR 

Principal investigator: Zall Hirschstein (zh8605@bard.edu) 
Thank you for participating in this experiment. This research is designed to explore the basic mechanisms 
underlying attentional control and memory. By conducting this study, we hope to learn more about how 
people might learn to better focus their cognitive state in a way that allows them to remember what they 
want to remember and when they want to remember.  
In the first part of the experiment, we asked you to focus your attention on one or more primary tasks. 
Although we were interested in how well you performed on the primary task(s) by controlling your attention 
and the electrophysiological data recorded during this time, we were also interested in your performance 
and the electrophysiological data associated with memory for stimuli that appeared between, in, or around 
this attentional task. To examine this, we introduced “distractor” materials and later surprised you with a 
memory test for these distractors. 
The reason for withholding information about the upcoming memory task was that we required a measure 
of memory for events that took place without the intention for these events to be remembered. By combining 
the electrophysiological data associated with the attentional manipulation in the first task and the “incidental 
memory” correlates attained by relating the stimuli you remembered and forgot with the related 
electrophysiological data, we hoped to present you with neurofeedback that varied between being controlled 
by your personalized “high attention” brain state correlates and your “high incidental memory” brain state 
correlates. Because retention of information requires both attentional and memory processes, we 
hypothesize that ideal neurofeedback for explicit memory would be presented based on some combination 
of your electrophysiological correlates of these two tasks. 
By researching the nature of these combined brain states and utilizing them for feedback, we hope to 
increase our ability to control our retention for material. For example, students might be able to use this 
device and computer algorithm studying for an exam. 
This experiment required us to withhold information from you in order to avoid contaminating the results. 
In particular, we did not tell you in advance about the surprise memory test. Intentionally trying to learn is 
a very different process than the learning that incidentally occurs when you perform a task. In fact, past 
research has shown that trying to learn can interfere with more incidental forms of learning. Furthermore, 
the neurofeedback you observed may not have been related to the purported cognitive processes expressed 
by your experimenter. This would have been done in order to establish that real neurofeedback has benefits 
above and beyond that of feedback unrelated to your attentional/memory brain states, and we require some 
participants to act as a control in order to establish whether our hypotheses are correct. Therefore, telling 
you up front that you would be tested on these materials and that you may receive sham neurofeedback 
could invalidate the hypotheses being investigated. We apologize for withholding this information about 
the experiment before you participated. Please let your researcher know if we may still use your data in 
our study. 
Regardless, if you have any questions or concerns, you may ask your experimenter, Zall 
Hirschstein in person or at zh8605@bard.edu, or feel free to contact his faculty supervisor, Dr. 
Justin C. Hulbert, at jhulbert@bard.edu. You may email the Bard College Institutional Review 
Board at irb@bard.edu for questions about your rights as a participant.  
Again, we thank you for your participation. If you know of any friends or acquaintances that are 
eligible to participate in this study, we kindly request that you not discuss it with them until after 
they have had the opportunity to participate. Prior knowledge of questions asked during the study 
can invalidate the results. We greatly appreciate your cooperation. 
 

Bard Institutional Review Board Bard Counseling 
Center 

National Alliance on Mental 
Illness Hotline 

irb@bard.edu 845-758-7433 / 7777 1-800-950-NAMI (6264) 
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 Phase 1: 

• How often did you pay attention to the background “distractor” images while completing the 
visual search tasks? 

       Never           Rarely              Sometimes            Often             Always 
           0               1                   2                           3                  4 

 

• Did you ever pay attention to the background “distractor” images on purpose while completing 
the visual search tasks? 

       Never           Rarely              Sometimes            Often             Always 
           0               1                   2                           3                  4 

 

• To what extent did you expect to be tested for the “distractor” images before/while completing 
the visual search task? 

     Not at all           A little                  A bit         Quite a bit           A lot 
           0               1                   2                           3                 4 

 

 

 Phase 2: 

• Do you think the recognition test captured your memory for the images? 
     Not at all           A little                  A bit         Quite a bit           A lot 
           0               1                   2                           3                 4 

 

 

 General: 
• Last night, how many hours of sleep did you get? (estimate) 

≤2  3 4 5 6 7 8 9 10 ≥11 
 
• How often did you experience stress completing this experiment? 
 
       Never           Rarely              Sometimes            Often             Always 
           0               1                   2                            3                 4 
 
• Do you have other comments or questions? 
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