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Abstract

A ubiquitous problem within the field of computational neuroscience is the

determination of biological neural network structure and connectivity from

imaging of stochastic, large-scale network activity. We propose an algorithm

inspired by convolutional approaches to image processing, adapted to the

graph structure of neural networks. To achieve this, we redefine locality in

terms of graph adjacency, and create a scale-independent algorithm facilitated

by modern machine learning techniques to incorporate this locality data into

individual connection prediction.



1 Introduction

Artifical neural network-based solutions emerging in recent years have become

a preeminent method for achieving accurate reconstructions of biological neu-

ral networks.[10] However, the methods used tend to not take advantage of

features unique to biological neural networks that can assist in producing re-

constructions. We present an architecture for determining network structure

inspired by convolutional neural networks. Whereas in image processing, the

typical use case for convolutional networks, pixel and feature adjacency corre-

lates with shared meaning, there exists no such metric for data extracted from

biological neural networks, as per-neuron spike trains can be reconfigured into

various permutations without necessitating a change in the structure of the

network that generated those spikes. Thus our architecture redefines adjacency

to a version more suited to the unique features of biological neural networks,

derived from locality within the original graph structure.
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2 Background

2.1 Biological Neural Networks

Biological neural networks in the sense we will refer to them here are collec-

tions of neurons, the connections between which enable cognition. Neurons

themselves consist of a cell body, from which emerge axons and dendrites.

Axons extend from the neuron body to meet the dendrites emerging from an-

other neuron, and this forms an electrochemical one-way connection.1 Neurons

may connect to and receive connections from many other neurons, and the ax-

ons can be so long as to render physical adjacency of neurons in a network

irrelevant in terms of connection probability.[13]

2.1.1 Neuron Behavior

Neurons generally sit at a resting voltage, but upon receiving a high enough

total input level from incoming connections to exceed a particular threshold,

they spike, rapidly increasing in voltage and then dropping again. [8] This

voltage travels down the neuron’s axons and in turn provides input to other

neurons.

1This is something of an oversimplification, but it will suffice for our purposes; see [11]

3



2.1.2 Extracting Data

Due to the three-dimensional nature of most brains, the sheer quantity of neu-

rons, and their small size, manually mapping out a brain, and in particular

the actual connections from neuron to neuron, is practically impossible. In

order to monitor activity within a biological neural network, then, some com-

promises must be made. Several techniques exist for neuron monitoring; on

the very small scale is the patch clamp technique, in which a pipette is directly

attached to a single neuron[7]; on the larger scale is in-vivo calcium imaging,

in which a dye is injected into a living brain, leading the neurons to fluoresce

when spiking[14]. As calcium imaging allows observation of as many neurons

as can be seen by a camera, we are interested in data that are derived from

this process.

Figure 2.1: Spike

time raster plot

Although calcium uptake into neurons during spiking

is relatively slow, making determination of precise spike

time difficult, use of existing deconvolution algorithms

can facilitate the creation of spike-time raster plots[15].

These plots contain a binary representation of neuron

spiking: at each timestep, each neuron is either spiking,

or not. In Figure 2.1, each column corresponds with one

neuron, and each row represents a timestep; a filled block

indicates a spike, and an unfilled block indicates no spike.

2.2 Graphs

In general, we define a graph as a collection of nodes and edges, where nodes

represent states or components of a system, and edges represent the connec-
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tions between those nodes[3]. An example graph can be found in Figure 2.2.

0 1

2

Figure 2.2: Digraph

Graphs can be used to describe many systems; for ex-

ample, social groups can be represented in graph form,

where people are nodes and friendships are edges. In

such a case, the edges in the graph are bidirectional

(one hopes). In describing other systems, however,

edges are often unidirectional. Such a graph is called

a directed graph, or digraph.[3] The graphs we consider here will be digraphs

in that a biological neural network can be thought of as a directed graph. As

described in 2.1, physical adjacency of individual neurons does not necessarily

play a role in the likelihood of a connection existing. This makes graphs an

ideal representation for biological neural networks: placement of nodes when

visualizing a graph is purely arbitrary, with only the nodes and their con-

nections being important. Thus we will consider biological neural networks

through a graph representation, wherein the nodes are neurons and the edges

are axons.

2.2.1 Graph Structures in Biological Neural Networks

0 1

2 3

Figure 2.3: 3-simplex

Graph analysis of naturally-occurring networks, in-

cluding neural networks, reveals the consistent rep-

etition throughout of small patterns, known as mo-

tifs, and suggests that network robustness towards

perturbation is in part due to the presence of these

underlying structures, which do not occur at com-

parable rates in random graphs.[5, 9] Figure 2.2 is an example of a directed

simplex, a type of motif in which each node is unidirectionally connected to
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every other node, with one node, termed the source, only possessing outgoing

connections, and another, termed the sink, only receiving incoming connec-

tions. In Figure 2.3, node 0 is the source, and node 3 is the sink.

Since these simplices and other motifs appear in biological neural networks

with unusual regularity[11], we may be able to take advantage of these local

properties in reconstruction.

2.3 Artificial Neural Networks

Artificial neural networks, as the name implies, are computational networks,

usually intended for processing data, inspired by the structure of biological

networks. They are typically composed of one or more layers, where a layer

is a set of units that take inputs, either from a previous layer or input data

directly, and provide output based thereupon.

2.3.1 Feedforward Network Operation

i0

i1

h1

h0

h2

O

Figure 2.4: Simple ANN

We will concern ourselves primarily with feedfor-

ward networks: those in which values move exclu-

sively forward through the layers. Consider the

network in Figure 2.4. It takes two input values,

i0 and i1, which constitute its input layer. These

inputs are mapped to units h0−2, which together

make up the intermediary layer of this network,

often referred to as a ‘hidden’ layer. This tran-

sition of values is handled by a weight, wij, associated with each connection

ii → hj. We can consider all of these weights together as a matrix, and the

6



entire transition as such:h0h1
h2

 =

w00 w01

w10 w11

w20 w21

× [i0
i1

]
(2.1)

Some activation function f is generally applied to the resultant values before

storing them or calculating the next layer, and in that case we can describe the

entire transition as ∀j ∈ (0, 2);hj = f(wj0i0 + wj1i1). There are a variety of

viable activation functions depending on the type of data being processed, and

they are an important part of how effective ANNs are. For example, a network

with only two layers but a nonlinear activation function can be trained as an

arbitrary function approximator.[1]

Training

The process of optimizing the values in the layer transition matrices is known as

training, and is often performed by gradient descent via backpropagation[12].

See 4.2 for more information on this.

2.3.2 Convolutional Neural Networks

Convolutional neural networks provide a method for analyzing data comprising

many similar features. CNNs as we know them today were popularized by

LeCun et al. in 1998, in a seminal paper[4] demonstrating the use of CNNs

for text recognition in images. They recognized the problem inherent in using

an artificial network scaled to the size of the input (one in which the number

of input layer units is comparable to the pixels, for instance) as such:

. . . the main deficiency of unstructured nets for image or speech

applications is that they have no built-in invariance with respect

7



to translations, or local distortions of the inputs . . . learning such

a task would probably result in multiple units with similar weight

patterns positioned at various locations in the input so as to detect

distinctive features wherever they appear in the input.[4, p. 5]

This, in a nutshell, describes the utility of convolutional neural networks: for

data containing multiple features of the same type, such as characters in a sen-

tence, training a model that simultaneously considers all parts of the input is

unecessary; instead, train a local receptive field, or filter, capable of recognizing

that type of feature, and step it across the input.

The benefits of this approach are enormous. Consider text processing: an

ANN trained, for example, to digitize books by processing an entire page at

a time would require, at the least, a first layer of similar dimensions to the

size of a page in pixels. By contrast, a filter just large enough to process a

character contains many times fewer values, and hence a much lower memory

and processing load; also recall that having fewer values to optimize renders

the training process faster and more effective.

2.4 Graph Adjacency

We established in 2.2.1 that biological neural networks contain high levels of

local structure, and in 2.3.2 that a convolutional architecture, consisting of

filters that evaluate small chunks of data for particular features, is ideally

suited to analyzing such data.

Before making the jump to applying a convolutional architecture to our

problem, though, we must confront one of the reasons that convolutional filters

are effective: adjacency. In the case of image analysis, the fact that one pixel
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or group of pixels is next to another is itself important data, as it implies a

relationship of some nature between those elements. In our problem, there is

no such data available; local structure in a graph is analagous to adjacency in

an image, but it is specifically that structure data that we are trying to derive.

In the second layer of our model, defined in 3.2.2, we offer one solution to this

dilemna.

Fortunately, we can apply at least one aspect of a convolutional architecture

in each layer: while some transforms are defined in terms of the size of the

input data, all calculations are performed via transposition of a filter across

the input dataset.

2.5 General Operations & Notation

Before diving into the specifics of data production, model architecture, and

training, it’s important to establish a firm understanding of the operations

that will be involved in Chapter 3.

2.5.1 Matrix Operations

Most of the layers in our architecture can be understood with a basic working

knowledge of matrix math, but some operations may be unfamiliar; we will

also clarify some notation choices.

Concatenation We will periodically need to concatenate matrices on the

vertical axis, that is, stack them on top of each other; this is the vertical

equivalent of matrix augmentation. We denote this operation with a horizontal

9



bar between the matrices or vectors in question. Example:

A =

[
1 2 3

4 5 6

]
B =

[
7 8 9

] A
B

=

1 2 3

4 5 6

7 8 9


Note that the second dimension of both matrices must be the same; the first,

as in this example, need not. However, every concatenation in our model

involves matrices of equal dimensions.

Entrywise Product Also known as the Hadamard or Schur product, we

denote the entrywise product as such:

C
x×y

= A
x×y
� B

x×y
⇒ {cij} = {aij × bij} (2.2)

2.5.2 Adjacency Matrices

The representation of neural network connectivity that we will focus on is the

adjacency matrix. For n neurons, an adjacency matrix M will be of dimensions

(n×n). A simplistic method of predicting network activity at the next discrete

timestep, and one that we will use to produce our data, is to multiply this

matrix by an n-vector representing current activity at each neuron. Such an

operation appears as follows for n = 3:

St+1 = M× St =

a b c

d e f

g h i

×
xy
z

 =

ax+ by + cz

dx+ ey + fz

gx+ hy + iz

 (2.3)

Thus the activity for a given neuron is defined entirely in terms of network

activity at the previous timestep and the weights in the adjacency matrix in the

row corresponding to that neuron. We thereby arrive at a simple expression

of the mechanics of adjacency matrices:
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1. Weights in some row i define inputs to neuron i

2. Weights in some column j define outputs from neuron j

3. The weight at Mij defines the connection from neuron j to neuron i.

Keeping this inverse relationship in mind will help prevent confusion in

later chapters.

2.5.3 Matrix Visualization

For most data produced by our trained model, be it an output or a weight

matrix, we will use the following method of visualization as demonstrated in

Figure 2.5. Color depth is obtained via Cij = 255× Mij

max(M)
.


0.6949 3.9742 1.2562 0.0910 0.1149 0.2512 1.4527 2.4163 1.2178

1.7070 2.4687 2.1925 3.6878 3.7935 1.8565 1.2150 2.1221 0.9360

2.1112 1.2398 1.2909 2.0331 1.4475 1.7356 2.2461 2.9234 2.3341

2.9004 2.0559 2.8357 2.6226 0.8173 1.6788 3.9330 0.4249 2.9650



⇒

(a) max: 3.97

Figure 2.5: The same matrix, in numerical and visual forms
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3 Model

3.1 Data

Training a network requires inputs representing the known data about the sys-

tem we wish to model, as well as output data we wish the network to produce

from the inputs. More generally, input data usually entails information that is

easy to acquire about the process being modeled, while output data, which we

treat as our targets, correspond to a dataset that is difficult to acquire gener-

ally. Of course, this means that the first step in training a neural network is to

assemble a sufficiently large set of inputs and outputs in order to characterize

the problem at hand.

We wish to map from relatively easily available data about biological net-

works, individual neuron spike times, to network structure, which is often un-

known. While such data exist, generating our own allows us to better analyze

the results of the algorithm.

3.1.1 Generation

In order to demonstrate the validity of our algorithm for graph convolution,

we opt for a simplified form of the kind of data that would be used in a real-

world setting. To this end, we create adjacency matrices representing simple,

12



small-n toy networks.

0 1

2

from

0 1 2

0 0 0 0

to 1 1 0 0

2 1 1 0

Figure 3.1: Example of 3-neuron network and adjacency matrix.

Binary values are used throughout these toy networks: either a connection

exists or it doesn’t; either a ‘neuron’ is spiking or it isn’t. To produce spiking

data, we create an n-vector S representing the current state of the toy network,

with random neurons already spiking based on a chosen spike rate. From here,

the process is as in 2.5.2, where M is the adjacency matrix:

St+1

n×1
= M

n×n
× St

n×1
(3.1)

Additonally, St+1 may have one or more neurons spike randomly, as determined

by the spike rate of the simulation.1 Because nodes can receive inputs from

multiple other nodes, as well as random activity, the vector, St+1, produced

in (3.1), may contain values greater than one. Therefore, after each step, all

values are clipped to the range (0, 1). After this clipping, S is appended to an

output matrix, which is saved after simulation is complete. For t simulation

steps, the completed output has shape (n× t).

Generally, we ran simulations as described for 50 steps2, then saved the

resulting output matrix. As many as fifty thousand simulations were run for

each generator network. As well as saving the simulated spike trains, we save

1SEE APPENDIX
2See 3.1.2
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the adjacency matrix describing the generator, in order to provide a target for

the model to train on.

Example Data Generation

Consider the network defined in Figure 3.1. Supposing that we randomly spike

neuron 0 at the first step, our initial state appears as such, where O is the

output matrix and R0 is an n-vector wherein each element has been randomly

assigned 0 or 1, based on the spike rate of the simulation:

M =

0 0 0

1 0 0

1 1 0

 S0 =

1

0

0

 O =

1

0

0

 R0 =

0

1

0


We now compute S1 as above:

S1 = (M× S0) + R0 =


0 0 0

1 0 0

1 1 0

×
1

0

0


+

0

1

0

 =

0

1

1

+

0

1

0

 (3.2)

In this case, neuron 1 spiked randomly (R0[1] = 1), but was also caused to

spike by virtue of its connection from 0; this would result in a value greater

than one. As discussed previously, we clip the values in S1 to a maximum of

1, in order to prevent cases such as this one from causing spikes of greater

magnitude to propagate through the network. Thus we have our final value

for S1, and append it to O.

S1 =

0

1

1

 O =

1 0

0 1

0 1


If we were to repeat this process several more times, we might end up with an

output matrix such as in Figure 3.1.1.

O =
[
S0 | S1 | S2 | S3 | S4

]
=

1 0 1 0 0

0 1 0 1 0

0 1 1 1 1


14



Figure 3.2: Example output matrix for a 3-neuron network simulated

for five steps.

Practically, the number of iterations was usually set to 50; this provided

more than enough data to converge, particularly for small n.

3.1.2 Restructuring

Input Data

The model accepts data in the form of a spike-time raster plot of dimensions

(n × t), where n is the number of neurons and t is the number of timesteps

being considered. The axes are reversed in comparison to the data created

by the generator, and thus in the process of loading in the spike trains we

transpose the matrices to the expected dimensionality. Additionally, it is not

always necessary to use the full number of steps generated, depending on the

size of the generator network in question, as well as its spike rate. In such a

scenario, we truncate the time dimension appropriately.

For a network accepting t timesteps of data from n neurons, the data fed

into the network takes the general form found in Figure 3.3a. Applying this

process to the data in Figure 3.1.1, including truncating the time dimension

to four, produces the data in Figure 3.3b.
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
x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xt1 xt2 . . . xtn


(a) Generalized shape of restructured

data


1 0 0

0 1 1

1 0 1

0 1 1


(b) Output from Figure 3.1.1,

transposed and truncated

Figure 3.3: Input data dimensionality

Target Data

As described in 3.1.1, we save the adjacency matrix corresponding to the

generator along with the simulated spiking files. When an adjacency matrix is

loaded into the target dataset for training a model, we flatten it, from (n×n)

to (1 × n2). This allows us to directly compare our targets to the outputs of

the model, which will be of the same dimensionality.

3.1.3 Generalizability

In most ANN implementations, inputting various data with the same target

attached to it results in the network learning to ignore the input data and

always return the desired target, rendering it useless. However, due to the

unique structure of our model, this sort of overfitting is impossible.3 There-

fore, we must merely construct a suitably representative generator network,

meaning that it contains all of the inter-neuron relationships we expect to see

in the data we ultimately use to test it.

3See 3.2.5
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3.2 Architecture

We will first describe the architecture in terms that, while accurate on the

macroscopic level, do not fully reflect the actual transformations occuring in

the implemented model. We will then proceed to a mathematically repre-

sentative version, leaving explanation of the batched version of the model

to A.1. Additionally, we describe a benchmark model not involving locality

calculations, in order to provide a point of reference for the efficacy of our

implementation.

3.2.1 Structure & Computation Details

Dimensionality-defining Variables

Only two parameters characterize the matrices and transitions involved in the

model, the effective values for which we determined through experimentation:

b: The number of steps of input data the model considers in a given segment

of data.

d : The length of the vectors characterizing each potential connection ij. This

restricts the maximum information about each potential neuron pair that

the model can maintain across layer transitions.

While we use the number of nodes in the generator graph, n, to calculate

summations and averages, the structure of our calculations is such that no

aspects of the model are defined in terms of n.

17



Omitted Details

An elementwise activation function4 is applied to the matrix outputs from

each layer. While this is crucial to network function, our primary focus in this

section is the underlying principles and mathematical expressions thereof, and

activation is somewhat trivial in comparison. For details on the activation

functions used, see 4.1.

3.2.2 Conceptual Model

The operations we describe here represent a per-edge approach to our archi-

tecture; i.e., the layer transitions are defined in terms of calculations applied

to single pairs of nodes, as opposed to the whole-matrix operations that the

architecture as implemented relies on.

First Transition

To generate the first layer of the network, we inspect every pair of neurons in

the input data. Since no pair of neurons is distinguishable from another, the

comparison applied is the same in all cases: we apply the same convolutional

filter to all pairs. We achieve this by concatenating the spike train of each

neuron i individually with every other neuron j, then multiplying by a matrix

W of dimensionality (d × 2b). To this product we add a bias vector, B, of

dimensionality (d× 1).

The transition appears as follows, where Ix
b×1

is the input column at x :

∀i, j | 0 ≤ i, j < n : d′ij
d×1

= W
d×2b
×
(
Ii
Ij

)
+ B

d×1

This leaves us with n2 d -vectors, each characterizing one potential edge ij.

4See 4.1
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Locality Layer

In this layer, we incorporate information from all nodes potentially adjacent

to each edge ij. From our previous layer, we have a matrix of shape (d × n2)

that we will refer to as D′, but it will be useful to keep in mind an alternate

representation of that matrix, one in three dimensions, which we shall refer to

as D′N . This transformation is demonstrated in Figure 3.4.

n
1

d
⇔

n

n

d

D′ D′N
Figure 3.4: Relationship between D′ and D′N .

Consider some d′ij in D′N . Then we can say the following:

1. d′ij is a d -vector representing the connection from j to i as it may or may

not exist in this network

2. ∀k | 0 ≤ k < n, d′jk represents a potential input to j

3. ∀k | 0 ≤ k < n, d′ki represents a potential output from i

In our determination of the presence or absence of a connection from j to i, we

wish to incorporate information from these potentially connected nodes; that

is, these inputs and outputs represent potential neighbors in terms of graph

locality. To achieve this, we perform the following computations for each dij
d×1

:
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I
d×1

=
1

n

n−1∑
k=0

d′jk O
d×1

=
1

n

n−1∑
k=0

d′ki (3.3a)

ID
d×1

= W′in
d×d
×
(
I� d′ij

)
OD
d×1

= W′out
d×d
×
(
O� d′ij

)
(3.3b)

Here we arrive at the output, d′′ij:

d′′ij
d×1

= W′tot
d×2d
×
(

ID
OD

)
+ B′

d×1
(3.3c)

Conceptually, in (3.3a) we first average all potential inputs to and outputs

from potential edge ij. Then, we compute an entrywise product (�) of these

vectors with the vector describing the edge in question, d′ij. While we have

integrated locality data into the results thus far, the network has not been

allowed any processing over the resultant data, which we rectify by multiplying

the input and output vectors with separate dimensionality-preserving (d× d)

matrices. We thus arrive at (3.3b), with vectors ID and OD representing edge ij

with inputs and outputs, respectively, taken into consideration. In (3.3c), we

arrive at d′′ij by multiplying a third weight matrix by the vertical concatenation

of ID and OD. This matrix, W′tot, allows the network to optimize for whichever

elements in ID and OD are most important in the prediction of ij. Additionally,

a bias vector, B′, is added to this product, and at this point we have d′′ij as it

will be seen by the next layer of the network.5

Our concatenation approach in (3.3c) stands in contrast to the strategy

taken in (3.3b), where integration of the input and output data is forced via

entrywise product computation. For discussion of this attribute, see 4.3.2.

Note again that none of the computations involved in this layer are de-

pendent on n; as the summations are averaged, the values contained in their

5Disregarding the activation function
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resultant vectors will be of similar magnitude for any number of neurons un-

der consideration. After executing this algorithm for each d′ij, we are left with

another (d× n2) output matrix, D′′.

Final Transition

The shift from (d × n2) is comparatively simple, being only a dimensionality

reduction:

∀d′′ij ∈ D′′ : dfij
1×1

= Wf

1×d
× d′′ij

d×1
(3.4)

This leaves us with a (1 × n2) matrix, which, following application of an ac-

tivation function as defined in 4.1.2 and transposition to (n× n), we treat as

the adjacency matrix of the generator associated with the input data.

3.2.3 Matrix Model

While the processes defined in 3.2.2 are accurate representations of the opera-

tions undertaken in our model, they are generally defined in terms of individual

vectors, with iteration over all vectors necessarily implied. This does not take

advantage of the computational abilities of modern GPU computing, and, if

implemented as such, would render training times astronomical. Therefore, we

create a version of our model executed entirely in terms of matrix operations,

ideal for GPU execution.

First Layer

In the first layer, we wish to compare each input vector against every input

vector by way of concatenation and matrix multiplication to reduce dimen-

sionality. To achieve this via matrix operations is fairly simple. We first define
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two helper matrices:

E
n×n2

=


1

1×n
. . . 0

...
. . .

...

0 . . . 1
1×n


T

n×n2
=
[
In | . . . | In

]
With I

b×n
as our input data, the first layer transition is as follows:

D′
d×n2

= W
d×2b

(
I× E
I× T

)
+

(
B
d×1
× 1

1×n2

)
(3.5)

Example: Consider a model for which b = 3 and n = 2. Suppose that we

have the following input matrix:

I =

1 1

1 0

0 1


Then our helper matrices would appear as such:

E =

[
1 1 0 0

0 0 1 1

]
T =

[
1 0 1 0

0 1 0 1

]

And our matrix stack:

I =

1 1

1 0

0 1

 I× E
I× T

=



1 1 1 1

1 1 0 0

0 0 1 1

1 1 1 1

1 0 1 0

0 1 0 1


Thus, over all of the columns in the resulting stack, every vector in I is paired

with all such vectors, including itself.
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Locality Layer

In the conceptual model, there are two averages of sums involved in processing

each vector in D′; one over the horizontal axis of D′N , and the other over the

vertical axis. These can be found in (3.3a). Consider two vectors dij, dil ∈ D′N .

For both of these vectors, the average input vector is the same, its calculation

being only dependent on the first coordinate, i. The inverse holds for vectors

with the same second coordinate. Thus we see that these calculations need only

be performed once for each k ∈ [0, n). Considering the (d×n2) representation

of the current data matrix D′, the ‘vertical’ summation of column i appears

as such:

O =
∑
k

d′ki = D′0+i + D′n + D′2n+i + · · ·+ D′(n−1)n+i

This is the inverse of the tile operation executed by T in the first layer, and

that same matrix allows us to compute all outputs to all edges simultaneously:

O
d×n

=
1

n

(
D′ × T>

)
(3.6)

Similarly, to calculate the sum of row j in D′N :

I =
∑
k

d′jk =

j+n−1∑
l=j

D′l

This is the inverse of the expand operation executed by E, and once again we

can use that same matrix to compute all edge inputs simultaneously:

I
d×n

=
1

n

(
D′ × E>

)
(3.7)

These operations allow us to avoid ever transposing D′, instead allowing us to

work directly on it.

For both I and O, we still need to pair the vectors within with the ap-

propriate vector in D′. To accomplish this, we must expand both matrices to

(d× n2).
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For some vector Ix, we wish to pair it with all vectors dkx ∈ D′N | k ∈ [0, n).

In terms of D′, these vectors map to D′kn+x; i.e., we wish to create a matrix into

which we distribute a given vector in I n times, n columns apart. Once again,

we already have a matrix specifically capable of this operation: T. Similarly,

we wish to pair any given vector Ox with all vectors dxk ∈ D′N | k ∈ [0, n),

which correspond with D′xn+k: for each vector in O, we broadcast it into a

(d×n2) matrix such that it repeats n times. Yet again, an established matrix

will complete this task: E. Thus our intermediary steps for this layer are quite

similar to (3.3b):

ID
d×n2

= W′in
d×d
× ((I× T)� D′) OD

d×n2

= W′out
d×d
× ((O× E)� D′) (3.8a)

And we arrive at the matrix expression of the locality layer:

D′′
d×n2

= W′tot
d×2d
×
(

ID
OD

)
+

(
B′
d×1
× 1

1×n2

)
(3.8b)

Final Layer

The operation for the matrix version of the final layer is effectively the same

as (3.4):

Df

1×n2
= Wf

1×d
× D′′

d×n2
(3.9)

3.2.4 Benchmark Model

The model we provide as a benchmark mimics our model in its first (3.5) and

final (3.9) layers. The difference lies in the second layer: where in (3.8) we

perform a variety of transforms to incorporate locality data, here this layer is

entirely defined by the following equation:

D′′
d×n2

= W′
d×d
× D′

d×n2
+ B′

d×1
× 1

1×n2
(3.10)
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3.2.5 n-independence

Trainable Values

Between all of the operations defined in 3.2.3 (and equivalently in 3.2.2), the

following matrices are the only values that are optimized by the learning al-

gorithm:

First Layer

W
d×2b

: weight matrix used to merge columns of input data

B
d×1

: bias vector added to every D′k | k ∈ [0, n).

Locality Layer

W′in
d×d

: weight matrix used to process data entering an edge

W′out
d×d

: weight matrix used to process data exiting an edge

W′tot
d×2d

: weight matrix used to merge the data produced by W′out
d×d

and W′in
d×d

B′
d×1

: bias vector added to every D′′k | k ∈ [0, n).

Final Layer

W
1×d

f : weight matrix used to collapse all n2 vectors into n2 scalars.

Benchmark Model Our benchmark model shares first and final layer

structures with the overall model, leading to its having the same optimizable

parameters for those layers. Its second layer retains the bias vector B′, but

that and a single (d× d) matrix W′ are the only optimizable values.
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Implications

As noted previously, none of these matrices are dependent on n. Furthermore,

even in the matrix model (3.2.3), the weight matrices operate individually on

each ij vector, and the same bias is added to each vector. Because the network

is not provided any trainable matrices with dimensionality even partly defined

by n, all calculation and training is done per node pair. This obviates the

typical neural network problem of overfitting to its training dataset to the

point it simply memorizes appropriate outputs.6 Additionally, this allows for

application of a trained model to data produced by generators of a different

size than those used to train the model. Because our model operates entirely

on local graph features, the only requirement for such an application is that

the training data contain a set of features also representative of the new data.

6See 5.1
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4 Training

4.1 Activation Functions

4.1.1 Initial & Convolutional Layers

At the end of each transition, an elementwise activation function is applied

following completion of all computations, including multiplication by the rel-

evant weight matrix. For all but the final layer, that function is ReLU[6],

defined in figure 4.1.

relu(x) =

0 x < 0

x x ≥ 0

−1 −0.5 0 0.5 1

0

0.5

1

0

0

Figure 4.1: ReLU function definition and graph

4.1.2 Final Layer

ReLU’s preservation of positive values and elimination of negative values work

in concert with the activation function of the final layer, hyperbolic tangent
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(Figure 4.2). The clipping of negative values to 0 in previous layers of the

network allows greater imprecision in the penultimate layer in order to predict

a 0 in the output adjacency matrix: rather than needing to fine tune the filters

to produce exactly 0 for nonexistent connections, the model need only drive

the values for such neuron pairs into the negatives, and let the application of

ReLU correct.

−1 1 2 3 4 5

0

1

0

Figure 4.2: Graph of y = tanh(x)

Similarly, the final layer tanh allows

the network to drive weights for prob-

able connections far into the positives,

with the activation function ultimately

mapping large values into a small range

closely approaching 1.

4.2 Loss & Optimization

In a nutshell, backpropagation via gradient descent is a method for training

neural networks by calculating the extent to which each value in a particular

layer is responsible for the overall network error on a single data point or

batch, then correcting that value by an amount commensurate to its error and

overall learning rate. This process operates from the final layer back to the

first, hence ‘backpropagation’.[12]

In order to effectively descend the gradient, a network needs a function

defining error from the desired output and an algorithm for applying gradient

descent based on that error and a specified learning rate.

The loss function must provide useful values to the optimizer in order to al-

low effective gradient descent towards the goal, and the optimizer must adjust

the network fast enough to converge to the target while avoiding converging to
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a suboptimal solution. As the network gets closer to an optimal state, adjust-

ing at the same rate as at the start of training will almost invariably overshoot

the desired configuration. Due to this, the optimizer must dynamically modify

the extent to which it adjusts the network as training goes on.

4.2.1 Loss Function

We define a basic custom loss function in order to better fit the outputs we

expect to see.

For final model output O and target T, we take the sum squared difference,

S, of the two vectors and the sum over T, ST , (4.1a), and divide these two

values to achieve loss L.1

S =
∑
i

(Oi − Ti)
2 =

∑
i

[(O− T)i)]
2 ST =

∑
i

Ti (4.1a)

L =
S

ST

(4.1b)

Thus, rather than scale loss with the number of total possible connections

(n2) as with a mean squared error, we scale our loss with the number of actual

connections in the true adjacency matrix, keeping the loss values somewhat

higher in the early stages of training, yet still falling to levels comparable to

that of MSE as the model learns to predict appropriately.

Effects

1Recall from 3.1.2 that the targets T given to the model are the flattend generator

adjacency matrix; dimensionality (1× n2).
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0 1 2

0 0 0 0

1 1 0 0

2 1 1 0

Figure 4.3: Example

adjacency matrix

Consider a model analyzing data from a 3-node gen-

erator with an adjacency matrix as given in Figure

4.3, and suppose that its output is a vector contain-

ing two correct values and one wrong value. Then

our parameters for determining loss by way of (4.1)

are as follows:

O =
[
0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0

]
T =

[
0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0

]
(O− T)2 =

[
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0

]
S =

∑
i

(Oi − Ti)
2 = 2.0

ST =
∑
i

Ti = 3.0

And our loss is finally determined:

L =
S

ST

=
2.0

3.0
= .6

Thus, our loss function ‘punishes’ the network equally for false positives and

false negatives: due to the squared difference, a 1 where there should be a 0

adds the same loss as a 0 where there should be a one. This is perhaps not

the ideal method; see 6.2.2. The value produced for each input/target pair is

then passed to the optimizer.

4.2.2 Optimizer Function

We used the Adam optimizer as provided by TensorFlow[2], providing different

initial learning rates per dataset. Those values were arrived at via experimen-

tation. After initializing the optimizer, it is passed the loss at each step and

performs gradient descent on the trainable matrices.
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Adam adjusts its learning rate as time goes on, according to the following

equation, where βt
n indicates exponentiation by t and lr denotes learning rate:

β1 = 0.9

β2 = 0.999

lrt = lrinit ×
√

1− βt
2

1− βt
1

20 40 60 80 100

0.15

0.35

Step

√
1−βt

2

1−βt
1

Figure 4.4: Adam decay function over 100 steps.

Converges asymptotically to 1.

4.3 Matrices

4.3.1 Initialization

Initially, we seeded our matrices with random values from a normal distribution

of standard deviation 1.0 and mean 0, using the TensorFlow implementation of

tf.random normal(<dimensions>). Due, however, to the cumulative nature

of our matrix operations (in the locality layer, for instance, there are three

separate multiplications (3.2.3)), we found that the values of the outputs were

so high or low as to render the model somewhat random in its convergence, or

lack thereof.
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We found that by reducing the standard deviation of our distributions to

0.25, we can ensure that most, if not all, training runs of our model converge. If

raised higher, models trained on complex generator networks may consistently

fail to converge, and a lower value tends to lead to convergence on non-optimal

solutions, such as prediciting all zeroes.

4.3.2 Locality Layer Operations

As discussed in 3.2.2, a different method for integrating inputs and outputs

to a given edge was originally considered. If I is the average input vector for

some edge dij, and O is the average output vector, then the original operations

went as follows:

ID
d×1

= W′in
d×2d
×
(

I
d′ij

)
OD
d×1

= W′out
d×2d

×
(
d′ij
O

)
(4.2a)

d′′ij = ID + OD (4.2b)

This was suboptimal for a variety of reasons. The addition of the two vectors in

the final step implied that both inputs and outputs were of exactly equal value

in determining the existence of an edge, and even further that, for any index

into those two vectors, the values at that index would be usefully comparable

in some way.

Beyond this, the integration of locality data in this format seemed to re-

quire careful tuning, and gradient descent did not work well with this setup.

Specifically, at an initial network state, the first layer has not been optimized

to provide useful data targeted at the second layer summations that produce

I and O. However, the only reason for the network to trend towards this type

of data shaping in the first layer would be an observed decrease in loss. While

doubtless possible, it seems a more attractive (loss optimizing) option appears:
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zero the left side of W′in, and the right of W′out. As the noisy locality data is

removed from the system, the loss decreases, and eventually the network ar-

rives at a somewhat remarkable state: the halves of the weight matrices that

remain in use converge to the same values, operating as they are on the same

data.

For these reasons, we opted for the implementation described in 3.2.2, in

which we force the integration of locality data into the model’s calculations

via entrywise multiplication, and provide an optimizable matrix for combining

input and output data, allowing the network to learn which parts are most

important.

4.4 Hyperparameter Optimization

4.4.1 Batch Size

‘Batching’ refers to the process of assembling a set of items from the training

data and passing them through the network in parallel, then optimizing over

the resulting losses simultaneously. This greatly speeds computation speed by

removing the costly optimization operation from each step. We found that

32 units per batch was an effective number, offering high training speeds with

relatively stable loss curves.
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5 Results

5.1 Overfitting

b (timesteps) 8

d 5

Batch size 32

Training steps 20000

Learning rate .0005

Training samples 18000

Validation samples 4500

Figure 5.1: Training parameters

for null hypothesis networks

As discussed in 3.1.3 and 3.2.5, the unique

structure of our model prevents it from

overfitting to a particular generator topol-

ogy, allowing us to create a single gener-

ator containing connections representative

of the types of data we expect to analyze

with the trained model. We demonstrate

this aspect of our architecture in two test

cases: by training models on an empty dataset paired with one adjacency ma-

trix throughout, and training with a random dataset paired with that same

adjacency matrix.

5.1.1 Empty Data

We ran a combined 100 training sessions of the benchmark model and our

convolutional model, with parameters as defined in Figure 5.1, on a dataset

whose inputs contained only zeroes and whose target was the adjacency ma-

trix in Figure 5.4. For both models, exactly two losses and corresponding
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outputs repeatedly occurred (Figure 5.2), with the models demonstrating a

total inability to memorize the target data.

0 1 2

0 .3 .3 .3

1 .3 .3 .3

2 .3 .3 .3

(a) loss: 0.6

0 1 2

0 0 0 0

1 0 0 0

2 0 0 0

(b) loss: 1.0

Figure 5.2: Predictions and losses when training on an empty dataset

5.1.2 Random Data

0 1 2

0 0 .5 .5

1 .5 0 .5

2 .5 .5 0

Figure 5.3: Average

prediction for ran-

dom data. loss: 0.5

For this trial, all model parameters were identical to

those in 5.1.1. In this case, however, the data fed into

the network consisted of raster plots whose items had

been randomly assigned to 0 or 1. While the results

were somewhat less consistent, over the course of 100

training sessions, the models that were able to converge

to a minimum loss predicted the matrix in Figure 5.3

the overwhelming majority of the time.

5.1.3 Analysis

While the results of 5.1.2 are at first confusing, given the per edge architec-

ture of our model, this result is not particularly surprising: in the first layer

transition, every spike vector is compared against every other spike vector,

including itself. Thus the model was in fact able identify a set of connections

ij exhibitng a particular feature: in the first layer, Ii = Ij. Because it could re-
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liably identify these pairs, meaning the optimizer could target them, gradient

descent minimized loss appropriately and adjusted the weight matrices such

that, for such an ij pair, D′′ij = 0.

For the remainder of the potential connections, the model, lacking any

way to distinguish between them, found an equilibrium value that, when ap-

plied to the remaining connections, minimized loss. Note that both uniformly

increasing or decreasing the nonzero weights in Figure 5.3 increases loss.

The same is true of the results in 5.1.1, with the output in Figure 5.2b

particularly illustrative of the problem of entropy traps in neural networks.

For models that converged to this output, the initial seeding of the weight

and bias matrices was such that the fastest decreases in loss were found by

adjusting trainable values to produce an empty matrix. Once there, uniformly

increasing the output values would initially increase the loss, preventing the

network from pushing upward and eventually reaching the lower loss state of

Figure 5.2a.

5.2 3-neuron generator

We now consider a generator network consisting of three nodes connected as

in Figure 5.4. All weights are binary, and a spike rate of .25 was used.1

Reconstructing this simplified graph allows us to demonstrate that our con-

volutional approach is capable of reconstruction. Furthermore, the small gen-

erator size requires few timesteps and a small interlayer featurespace; i.e.,

b, d < 10. This results in a relatively simple set of transitions, allowing us to

explore and understand the inner workings of the network.

1SEE APPENDIX for information on spike rates
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0 1

2

0 1 2

0 0 0 0

1 1 0 0

2 1 1 0

Figure 5.4: Network structure and adjacency matrix of the

generator. (Reproduced from Figure 3.1)

5.2.1 Example Model

In order to demonstrate the internal mechanics of our model, we trained on

data produced by the generator given in Figure 5.4, with parameters as given

in 5.1. In this example, small values of b and d were used in order to allow for

better comprehension and visualization of the internal mechanics; the practical

effect of this is that relatively small matrices were available for the model to

optimize, making each value adjustment more impactful on output, and thus

each training step more dramatic. These are acceptable limitations, however,

insofar as they provide a more comprehensible model struture.

1 25,000 50,000

100

2 · 10−4

5 · 10−1

Step

L
os

s

b (timesteps) 8

d 5

Batch size 32

Learning rate .001

Training samples 36000

Validation samples 9000

Table 5.1: Loss & parameters for model 5.2.1. The loss here is choppy, due perhaps

to aggressive optimization by Adam. 2
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5.2.2 Trained Network Operation

Here, we will consider a single item of data as it travels through the model

trained in 5.2.1.

(a) Input

(max: 1.0)

(b) Output of first layer

(max: 4.33)

(c) Output of second layer

(max: 3.2)

(d) Output of final layer

(max: 30.97) (e) Prediction

(max: 1.0)

Figure 5.5: Path of data through network. Transparency for each value is scaled

relative to the maximum value found in the matrix.

In Figure 5.5, we demonstrate the progression of 5.5a through the trained

model. The final layer, including activation3, produces an n2-vector which,

when reshaped into an (n× n) matrix, is an exact match for the target, with

all connections located and weighted appropriately.4

2See 4.2.2
3See 4.1.2
4While [1, 0] and [2, 0] are predicted to be exactly 1.0, the precise value of [2, 1] in the

final prediction is 0.999999999957586, which we consider to be accurate enough.
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Brief Analysis

Figure 5.6: Final

weights

(max: 7.31)

Final Layer The final layer consists only of multi-

plying its weights (Figure 5.6) by the output from the

locality layer, and it is thus relatively easy to intepret

what the model has learned at this stage. As the first

two values of of the weight matrix are strongly posi-

tive, we can conlude that the first two values in each vector in the output from

the previous layer are highly important in the determination of connection

presence, with some weight also placed on the fourth item.

Locality Layer Functionality Note that, following the locality layer (5.5c),

the model has located the existent connections: if we transpose 5.5c from

(d × n2) to (n × n × d), as in Figure 3.4, the columns with high values, 3, 6,

and 7, correspond with d -vectors [1, 0], [2, 0], and [2, 1], respectively. These

tuples each correspond with a connection present in the adjacency matrix

(Figure 3.1) the model is trying to predict.

Proceeding any deeper than this, the operation of the model becomes fairly

opaque.

5.3 Higher-order Datasets

Because a 3-node generator not does contain much in terms of locality, we

created a graph structure containing slightly more complex relationships to

benchmark our model on; that generator can be found in Figure 5.7.

We trained 100 model/benchmark pairs on the data produced by this gen-
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2

3
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5 6
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8

9

0 1 2 3 4 5 6 7 8 9

0

1 1

2 1 1

3

4

5 1

6

7 1

8 1

9

Figure 5.7: Ten neuron generator and adjacency matrix. For purposes of clarity, all

zero values in the matrix have been omitted.

erator; the losses and parameters of the best-performing models of each type

can be found in Figure 5.8. The results, in which the losses of both types

of networks stayed extremely close, demonstrate that, while the locality-based

approach is able to reconstruct networks, it does not offer substantive improve-

ment over the much more straightforward benchmark model, at least in the

cases that we have considered. An example run can be found in Figure 5.9.

1 25,000 50,000

10−1

100

101

10−1.3

Step

L
os

s

Locality-based
Benchmark

b (timesteps) 30

d 40

Batch size 32

Learning rate .001

Training samples 36000

Validation samples 9000

Figure 5.8: Loss & parameters for model trained on data from generator given in

Figure 5.7
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(a) Input

(b) Locality-based model prediction

(c) Benchmark model prediction

Figure 5.9: Example of data from generator defined in Figure 5.7, passed through

the locality-based and benchmarks models.
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The same results were found with generators of various sizes and topologies.

However, few of those sizes far exceeded the network in question here.

5.4 Applicability Beyond Training Data

As described in 3.1.3, the fact that our model is trained on data produced

by only one generator is of little consequence; due to its structure, the only

information it can learn is relational, per neuron pair. Consider the following

examples, in which data was produced from several generator networks and

run through the models previously described.

5.4.1 Model trained on 5.2

Inverted Network

0 1

2

0 1 2

0 0 1 1

1 0 0 1

2 0 0 0

Figure 5.10: Inverted version of Figure 5.4

Despite being a complete inversion of the generator used to train the model in

5.2, reconstruction of this network is simple, with the output given in Figure

5.11.
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(a) Input

(max: 1.0)

(b) Output of locality layer

(max: 5.29)

(c) Output of final layer

(max: 72.06)

0 1 2

0 0.0 1.0 1.0

1 0.0 0.0 1.0

2 0.0 0.0 0.0

(d) Prediction

(max: 1.0)

Figure 5.11: Data from Figure 5.10

Cyclical Network

0 1

2

0 1 2

0 0 1 0

1 0 0 1

2 1 0 0

Figure 5.12: Cyclical 3-neuron network

For a cyclical network, the situation is not quite so simple. Due to the perpet-

ual propagation of spikes through the generator, additional random spiking

can cause the input data to become an impenetrable mess. Tempering the

spike rate to 0.05 produces workable data, but the results are neither so clean

nor consistent as for terminating networks. Figure 5.13 demonstrates a case in

which the network was unable to accurately reconstruct due to the amount of

spiking. Note the maximimum values on the locality and final layers as com-

43



pared to those in Figure 5.11: although the final activation function brings

everything down to the range of 1, the model seems to be several times less

‘sure’ about its reconstruction. This also occurs in Figure 5.14, although the

prediction is correct. In a local feature-learning sense, the model never en-

countered this sort of local structure in its training. This trend continues if

we send data generated by three nodes but containing only two connections:

the model has never learned that unconnected nodes are a feature, and thus

fails repeatedly, as in 5.15.

(a) Input

(max: 1.0)

(b) Output of locality layer

(max: 1.23)

(c) Output of final layer

(max: 9.32)

0 1 2

0 0.0 1.0 .99

1 0.0 0.0 1.0

2 0.99 0.0 0.0

(d) Prediction

(max: 1.0)

Figure 5.13: Data from Figure 5.12; spike rate too high for accurate reconstruction.

Incorrect value is bolded.
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(a) Input

(max: 1.0)

(b) Output of locality layer

(max: 1.43)

(c) Output of final layer

(max: 10.45)

0 1 2

0 0.0 1.0 0.0

1 0.0 0.0 0.96

2 1.0 0.0 0.0

(d) Prediction

(max: 1.0)

Figure 5.14: Data from Figure 5.12; spikes very sparse, enabling good reconstruction

(a) Input

(b) Output of locality layer

(c) Output of final layer

(d) Prediction

Figure 5.15: Data from generator with only two connections. Model unable to guess

at a feature it has not seen before.
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6 Discussion

As described in 5.3, in all cases tested, models equipped with our locality layer

tended to stay very close to the benchmark models in loss, with a slight ten-

dency towards higher loss. This tendency is explained by the simple presence

of more values to optimize over. More to the point, we must return to the mo-

tivation behind incorporating locality into network reconstruction: we hope

that our model will learn to recognize recurrent local structures in biological

networks, and use that information to judge individual connection probability

in the context of its neighbors. Two potential factors in our model’s failure to

manifest this behavior are apparent: data used, and specific locality algorithm

design.

6.1 Data

An important part of analyzing the performance of our locality layer is to

understand what we are looking for. In the cases tested, the locality-enabled

model was not able to outstrip the benchmark model in terms of loss or pre-

dictive accuracy, but this likely speaks more to the type of data being used to

train the networks than to the relative efficacy of either architecture. If three

matrix multiplications are sufficient to reconstruct the structure of a network,
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there is little need for a model to involve abstract concepts like locality, and,

even if forced to do so, it’s not clear that having such concepts available would

contribute to more effective reconstruction. The ideal test dataset, then, would

be one on which the benchmark model does not converge to an accurate pre-

diction, allowing us to train a locality-enabled model and get some idea of how

much useful information is actually added. Here, we outline some directions

we could go in data generation.

6.1.1 Complex Neurons

As it stands, every generator we used to produce data consisted of binary con-

nections and created binary outputs. There are clearly more accurate methods

of simulating biological neural network activity, such as implementing Izhike-

vich neurons1, or going as far as generating data with NEST2. However, while

more complex neurons would probably encourage the model to look to locality

for information, this alone would not suffice.

6.1.2 Larger, Structured Networks

A model being able to leverage its access to locality data to locate 2-simplices

will not encounter any particular benefit from this ability if the generators

it is tasked with reconstructing contain at most one such structure. Indeed,

preliminary results suggest that a large gap opens between models considering

locality and those not when the training data is generated from a large (n ≈ 50)

network seeded with recurring motifs. On such a dataset, the benchmark

model cannot get below .5 loss, while the locality-enabled model hits .35 easily.

1Cite
2citation
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6.2 Improvements to Locality Processing

6.2.1 Layering

There may need to be more initial layers to provide useful data to the Locality

layers. As it stands, the model structure requires that the first layer both

compare the activities of neuron pairs and format the resulting data in such

a manner that the locality-based layer can usefully include it in determining

node existence. Adding at least one intermediary processing layer might allow

the network to format the data going in to the locality layer in a more useful

way. Merits further testing.

6.2.2 Loss

As described in 4.2.1, our custom loss function equally weights false positives

and false negatives. Consider these cases:

1. Output 0.3; target 1.0: adds (0.3− 1.0)2 = 0.49 to the loss

2. Output 0.7; target 0.0: adds (0.7− 0.0)2 = 0.49 to the loss

Despite the equivalent loss contributions, the latter case is the less correct

of the two: while guessing a weak connection where there is a strong one is

not ideal, it is preferable to guessing a strong connection where there is none.

Thus our loss function might be modified to more strongly disincentive false

positives.
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6.3 Potential Applications/Further Develop-

ment

In the process of creating this network, we implemented a pure-numpy version,

which can run on matrices created by a model trained in TensorFlow. This

would, along with the portability of our model, allow for training and then

distributing ready-to-run reconstruction models, without the need for user

experience with GPUs, machine learning, or any of the like.
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A Appendix

A.1 Batched Architecture Calculations

In order to allow processing of many pieces of data at once, the matrix model

defined in 3.2.3 was adapted to a batched format. Given input matrices of

shape (b×n), the actual input to the model is now of shape (batchSize×b×n).

As previously discussed, iteration across lists or dimensions is not a computa-

tionally efficient option. Therefore we use tf.einsum, an implementation of

Einstein Sums. This allows, for example, the multiplication of two matrices,

one of dimension (i× j× k), and the other of dimension (h× j). An appropri-

ate function call might appear as tf.einsum(‘hj,ijk->ihk’, mat2, mat1).

The result is equivalent to the iterative multiplication of the (h × j) matrix

across all i, without the computational overhead of CPU involvement. Every

matrix multiplication in our model is implemented using this functionality.
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