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Abstract  

 

 

 
 

 

 

 

 

 

 

 

 

 

The goal of this project is to provide multiple approaches for warping a flat image to 

 

fit the curvature of a geodesic dome, to be presented as an immersive, Augmented Reality  

 

(AR) environment. This project looks to develop an algorithmic method of warping any 

 

image to fit perspective distortion for a dome-like surface. Despite fairly common 

 

usage in planetarium methods and other such shows, there is very little 

 

documented method that would allow for the warping of images to fit a curved 

 

projection surface. The methods will be explored include using Processing, OpenCV, 

 

and fisheye image filters. In addition to the paper, this research will also produce an 

 

online library of documents and resources for preforming these warps. 
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Introduction 

 

 

 

 

 

 

 

 

 

 

 
1.1 Background 

 
The concept of virtual reality first appeared in Stanley G. Weinbaum’s short story 

Pygmalion’s Spectacles in 1935 [7]. There it was described as a goggle based virtual 

reality system with holographic recordings of fictional experiences including smell and 

touch. In the short story Weinbaum writes “A movie that gives one sight and sound [...] 

taste, smell, and touch. [...] You are in the story, you speak to the shadows (characters) 

and they reply, and instead of being on a screen, the story is all about you, and you are in 

it." This may be the first comprehensive model for virtual reality. In the 1950’s Morton 

Hellig wrote of an “Experience Theater” that could involve the user in the experience 

with all 5 senses, and built a prototype of his design, calling it “Sensorama”. In 1978 MIT 

created a hypermedia [8] virtual reality system called the Aspen Movie Map, which was a 

crude simulation of Aspen, Colorado in three modes: summer, winter, and polygons. The 

first two were simply photographs of every possible movement through the town in both 
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seasons, and the third was a basic graphical representation of the city constructed via 

early 3D modeling software. Virtual reality continued to appear in popular and 

mainstream media throughout the 1980’s in movies such as Brainstorm and The 

Lawnmower Man. In 1991 Sega came out with the Sega VR [9] headset for arcade games 

and the Mega Drive Console, which was the first of what we think of as virtual reality 

today. VR continued to gain in popularity and accessibly through the video game 

industry, first appearing in large arcade games and flight simulators, and more recently 

being moved over to console and PC compatible third party brand VR goggles that can be 

used at home.  

Augmented Reality (AR) arose from VR more recently; AR is an environment 

that is immersive and interactive but not confined to goggles or a projection device. AR 

environments are based on the subject’s surroundings rather than existing completely in 

virtual space. The only common example of AR in modern culture is a planetarium, 

where the show is projected onto a specially designed dome ceiling, which is sometimes 

with added spheres to act as planets and mobile devices that simulate orbits.  AR has 

existed only very recently in pop culture as well, being featured in the popular Netflix 

show, Black Mirror. 

Computer vision is an interdisciplinary field based in computer science. It deals 

with artificial systems’ ability to extract information from digital images and process this 

information; this lead to the ability to reconstruct images and even corrects for 

perspective distortion when viewing the image. This project will specifically focus on the 

area of computer visions the deal with image projection and projective geometry.  
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1.2 Previous Work  

We built our research on previous work done in the fields of image projection and 

image warping. Software such as the one created for this project is used in planetariums 

to warp images to fit the curvature of the domes onto which they are projected. The goal 

of this project is to implement two previously used methods of warping images for 

projection and use them in a new environment. Since there is a lack of work in the field 

of warping live images fed to the program form a camera, the research for this project has 

been based on several previous works in the fields of image warping and image 

projection. Paul Borke [4] has written several papers on image warping for use in 

projection on the inside of a dome and Codeanticode [10] sites his work in the 

Planetarium code article. Other sources describe methods of warping images based on 

matrix multiplication using homogeneous coordinates described in section 2.1.  

 

1.3 Motivation 
 

The inspiration for this project came out of melding two ideas. Professor Ben 

Coonley, in the electronic arts department at Bard College designed and built a geodesic 

dome intended for use as an immersive virtual reality environment (VRE). Images were 

to be projected on the inside of the dome, warped so that the perspective gave the illusion 

of a 3D environment surrounding the subject inside the dome. Initially Professor O’Hara 

suggested designing an interactive experience or game of some variety for the dome. 

However I was set on the idea of working with drones after taking a class on robotics the 

previous semester. As we moved forward and developed our idea more the idea of using 

the dome stuck. My initial idea was to use a drone to map and render images from its 



 4 

camera to then be transformed into virtual 3-dimensional maps of the landscape it flew 

over, however, integration of this idea and the dome proved difficult. We finally decided 

to push forward with the idea of using the dome for some variety of interactive 

experience. The shape of the project then began to take more detailed form; we decided 

to write an image-warping program to manipulate projections so that the perspective 

inside of the dome was not distorted. There are many different approaches to this task, so 

several different strategies would be explored. Most of the previous work in the field of 

computer vision in regards to image distortion and image warping is done with the goal 

in mind of correcting for distortion in images captured with fisheye lenses or other types 

of lenses. There exists very little previous work in the field of warping images to a 

particular distortion factor in order to be projected on a non-flat surface.  

 

1.4 Review of Literature 
 

3D projection and augmented reality (AR) software is used commonly today in a 

variety of fields. The most common use for spherical projection warping is in planetarium 

light shows [10]. Due to the spherical structure of the planetarium projection screen the 

images must either be manipulated of projected form multiple different sources to appear 

undistorted when viewed on the curved surface. In AR projection is less common, usually 

AR software relies on a device or screen that the manipulated environment is viewed 

through, such as games like Pokémon Go™ and other mobile apps. One of the only fields 

in which projection AR is common is electronic and film art – in which abstract images 

are rendered digitally and projected on the inside of a dome or room to be viewed in an 

immersive environment. This review of literature will seek to create an overview of the 
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existing work in the field of image warping and computer projection as well as analyze 

existing strategies used to warp images for projection purposes. It will also discuss work 

that has been done with AR systems implementing projective tools and establish a stable 

foundation of technical knowledge on which we will discuss the approaches and concepts 

used in this project.  

AR is a relatively new concept in the field of computer vision and human/technology 

interaction, and only very recently has begun to be used for entertainment. In 1997 

Ronald T Azuma conducted a survey of the existing augmented reality technology and 

applications for the MIT press Journal Presence: Teleoperators & Virtual Environments 

[1].  The survey first seeks to define what AR is and how it is to be distinguished from 

VR and other interactive technologies; the qualifications given are that something that is 

considered to be AR must:  

1. Combine both real and virtual aspects that are related.  

2. Be interactive in real time.  

3. Be registered and act in 3 dimensions.  

Building on this definition the survey looks at why AR is interesting and what we can use 

AR technology for; AR enhances the users perception, it creates an interactive 

environment that is not confined to a virtual space and has many, many real world 

applications. In the medical field AR could be used to augment surgery, to super impose 

CT or MRI scanned images on the patient to make surgery more efficient, as well as 

provide real time imagery of surgery to aid in technical training. In the field of 

manufacturing, schematics and repair manuals could be projected onto the project, giving 

workers better information on how to fix and build products. In every day life AR could 
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allow for annotation of the world around us, providing useful quantitative information 

immediately. Azuma goes on to discuss the applications of AR in entertainment, which is 

where this project falls. In entertainment Azuma discusses several projects employing AR 

tactics, including a 1995 performance exhibition using real life actors and digital project 

environments, and the ALIVE project by MIT where virtual intelligent creatures populate 

the environment around the user and interact with them.  

In the field of computer vision the idea of correcting images based on perspective 

distortion is not only common, but also very crucial for many applications. J.K. Aggerwal 

and Shishir Shah discuss the applications of calibration and correction of a fish eye 

distortion model in regard to computer vision in their 1996 paper Intrinsic Parameter 

Calibration Procedure for a (high-distortion) Fish-eye Lens Camera With Distortion 

Model and Accuracy Estimation [2]. Their approach was to establish a camera calibration 

model for removing the distortion from images captured with a fish-eye lens. This 

procedure is essential for many computer vision applications including robot navigation, 

stereovision, AR and VR, and robot vision. Using a basic grid pattern they present a 

calibration method for high distortion cameras based on the effective focal length of the 

lens, the optical center, one-pixel width on the image plane, and the distortion 

coefficients present in the transformation matrix. This approach is similar to the one we 

took in our research in process but the goal is different. Where Aggerwal and Shah seek 

to correct for the distortion present in an image captured with a distortion heavy lens, we 

look to implement a perspective distortion warp to images in order for them to be 

projected in a dome and appear undistorted. They also implement a more physical 

method of acquiring data on image distortion, using a perforated piece of paper as the 
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grid in order to more easily obtain the optical center, where most of the methods and 

image manipulation we conduct are only based on digital parameters.  

Next we will look at what algorithms and resources exist in the field of computer 

vision (CV) in terms of projection and projective transformations (Homographies). 

Andrea Vadaldi and Brian Fulkerson detail many of these resources in their work on 

VLFeat –VLFeat – An Open and Portable Library of Computer Vision Algorithms [3].  

Vadaldi and Fulkerson discuss what resources are available to computer vision 

researchers and students through VLFeat as well as what format they are in and what 

specific CV algorithms are available. VLFeat is important to acknowledge for this project 

as it gives us a definite sense of what resources exist and what aspect of CV have been 

well documented. VLFeat is similar to OpenCV in its nature as a library of algorithms. 

OpenCV is one of the main resources we rely on for this project. VLFeat, like openCV, 

contains numerous easily accessed and easily implementable algorithms for computer 

vision that have been streamlined into a standard format for simple access (MATLAB for 

VLFeat, C++/C/Java/python for OpenCV).  

One example of a different application of image warping in the field of projection 

and projective geometry is work done by Paul Bourke. Most of the examples are used to 

correct for distortion already present in the images so they can be viewed in a natural 

100-degree field of view (FoV) on a flat surface. This study done by Paul Bourke in 2004 

entitled Converting a Fisheye Image into a Panoramic, Spherical or Perspective 

Projection [4] discusses how to correct for the distortion present in a photo taken with a 

fisheye lens with the intent to project to photo as a flat panorama. This differs from 

previously discussed study, Aggerwal and Shah, as Aggerwal and Shah simply designed 
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a calibration scheme to correct for perspective distortion in images captured with a 

fisheye camera. Bourke takes fisheye images and creates a 3D grid pattern based on the 

perspective of the image, thus making it possible to view different parts of the image with 

the correct perspective. This allows for a different distortion to be present on different 

parts of the image (such as is needed to unwarp a panoramic photo captured with a 

fisheye lens). Bourke details that most flat images are viewed with a 100-dgree FoV, this 

causes complications when dealing with fisheye images that are panoramic in nature and 

contain more than a 100-degree FoV, if the image grid is warped to fit a flat surface it 

will still appear to be distorted. Bourke’s solution is to treat the camera’s position not as a 

viewpoint but as a point in space and warp each section of the image based on relation to 

the camera’s position in 3D space. See figure from Bourke’s paper below.  
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Figure 1. Taken from Paul Bourke's paper [4] showing the different capacities in which the un-

warped fisheye image can be viewed 

 

The figure demonstrates the original fisheye image (top left), the un-warped 100-degree 

FoV image (top right), a view or the bottom right corner adjusted based on the cameras 

positioning in space (bottom left), and a rotated view with a larger than 100-degree FoV 

(bottom right). There are several key elements to these transformations, the first is that 

from the original state the main goal of the distortion correction is to create parallel lines 
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in the image as can be seen in all but the top left. Once all the lines are straight and 

parallel other transformations can be performed and the perspective can be changed to 

any 100-degree FoV segment of the image. The discrepancy between the fisheye image 

and a regular 100-dgree FoV image on flat surface is important to note as it presents an 

issue for our goal in the project, namely that any image that looks normal when viewed 

on a flat surface at 100-degrees FoV will not entirely fit to a spherical warp. This leaves 

us two options, either warp what we have of a normal image and correct for any 

discrepancies that arise (Figure 4.1), or use images that are panoramic in nature so that 

there is a natural wrap around the viewer (Section 4.1).  

 
 

 

 

 

 

 

 

 

 

 

 

 



2 

 

Mathematical Concepts and Construction 
 

This section will discuss some of the basic mathematical concepts that make up this 

project, as well as some more advanced projective geometry concepts and models that 

will be used in image warping. It will also describe the basic dome construction and the 

projector set up that was used throughout the project.  

 
 

 

 

 

 

 

 

 

2.1 Homogeneous Representation   

 
Homogeneous coordinates were fist introduced by August Ferdinand Möbius, and 

would become a powerful tool in the field of computer vision and projective geometry. 

The homogeneous approach is an alternative to the standard Euclidian, or inhomogeneous 

approach that is faced with some limitations. One of the limitations of the Euclidian 

system is that it allows for only linear transformations that fix the origin. Another 

limitation is that it does not have a finite representation for a point or line at infinity. The 

homogeneous method solves this issue by using an extra dimension. This extra dimension 

allows for representation of points and lines at infinity. The homogeneous method also 

allows for the representation of projective transformations as matrices, which is how we 
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will refer to them in the rest of this paper. This offers an easy and convenient way to 

preform such transformations.  

 

Definition 2.1.1 Let P be a finite point, and (x, y) be its representation in Cartesian 

coordinates. A homogeneous representation of point P is any point (x, y, w) w ≠ 0. The 

last coordinate w is called the homogenous coordinate. A homogeneous representation of 

a finite point has a non-zero homogeneous coordinate, and a point at infinity has a 

homogeneous coordinate of zero.  

 

Example 2.1.2. Let P1 be a two dimensional point with Cartesian coordinates (x, y). A 

possible homogeneous representation of P1 is (x, y, w), or, more generally, (wx, wy, w) 

for any w ≠  0. Let P2 be another point in two dimensions with homogeneous 

representation (x, y, w). P2 can be represented in Cartesian coordinates as (
𝑥

𝑤
. 

𝑦

𝑤
).  

 

Definition 2.1.3. Let l be a straight line in two dimensions defined by the equation 𝑎𝑥 +

 𝑏𝑦 +  𝑐 =  0. Then (a, b, c) is the homogeneous representation of line l.  

Again the homogeneity in this representation comes from the fact that (va, vb, vc) 

represents the line vax + vby + vc = 0, which is the same as line ax + by + c = 0 

represented by (a, b, c), for any v ≠ 0.  

 

Definition 2.1.4. The degrees of freedom of a system are the number of independent 

parameters that define the system and are free to vary.  
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Example 2.1.5. For any Cartesian point in two dimensions the parameters are the x and 

the y coordinates. Thus any 2D point has exactly 2 degrees of freedom. Now, recall that 

any line in defined by some equation of the form ax + by = c (ax + by + c = 0). Where a 

and b are coefficients to the variables x and y and c is a constant coefficient. However, 

even though the line’s equation has 3 variables there are only 2 unique parameters that 

the line varies by, which are the slope and the Y intercepts commonly represented as m 

and b in the equation y = mx + b.  

 

2.2 Transformations  

This section of the paper deals with graphical transformations on 2D images. In 

the field of computer vision, transformations are functions of pixels, represented by x y 

coordinates that return new coordinates for each given pixel of input. Some simple types 

for transformations that can be preformed on pixels include translation, rotation, affine, 

and scaling (See figure 2.2.1) These transformation functions form a basis for more 

complicated transformations that can be preformed as a set of these simple functions, 

including projective transformations (homography). The process of applying any of the 

transformative functions to some image is called warping.  
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Figure 2. Shows a physical representation of each of the listed transformations on a Cartesian 

coordinate plane 

 

Next we will discuss some of the fundamental transformations of two-

dimensional images listed above and in figure 2.2.1. For each transformation listed we 

provide a definition and a matrix notation that offers a convenient way to apply them to 

any given 2D image. Since the transformations discussed in this section do not preserve 

the origin point (the pixel at (0 ,0)), matrix notation of them is only possible when we use 

homogeneous coordinates as discussed in the previous section.  

Definition 2.2.1.1 Translation is a transformation that shifts any given input image by a 

vector to another point in the 2 dimensional Cartesian plane.   

Definition 2.2.1.2 Rotation is a transformation that rotates any given input image around 

the centermost point of the image. 

Definition 2.2.1.3 Scaling is a transformation that affects the size of any given input 

image by a constant factor for all the image pixels.  
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Definition 2.2.1.4 Affine is any transformation on any given input image that preserves 

parallel lines and distance ratios between points on a straight line in the source image. 

Translation, rotation, and scaling are all examples of affine warps.  

 

2.3 Homographies and Transformation Matrices 

2.3.1 Matrices and Matrix Multiplication 

Definition 2.3.1 A matrix is a rectangular array of number, variable, symbols, 

expressions or equations arranged in rows and columns. The dimensions of a matrix are 

denoted with the number of rows first then the number of columns like (rows x columns). 

Vectors are (3x1) matrices. The elements of the matrix define operations that can be 

preformed.  

 

Definition 2.3.2 Matrix multiplication, or matrix product, is a binary operation that 

produces one matrix form two by multiplying together the components of each. Let M be 

and n x m matrix that is being multiplied together with matrix N, which must be m x p, 

where p is arbitrary. The product of M and N, L will be a n x p matrix. Note that it is only 

possible to multiply N and M together if they share the value m, which must be the 

number of columns for N and the number of rows for M. see figure 2.3.1 for a more 

detailed example of how to obtain each value in the product matrix.  
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2.3.2 Warping Matrices 

Matrices and matrix multiplication can also be used to represent transformations 

of images in virtual space for projection. Typically transformations are represented as 

matrices for ease of multiplying the x and y coordinates of each pixel in an image by the 

contents of the matrix. The following matrices matrix can be used to represent each of the 

above transformations form section 2.2 assuming that the images coordinates are in 

homogeneous representation: 

Translation can be represented by a 2x3 or 3x3 matrix taking the form 

T = [
1 0 ∆𝑥
0 1 ∆𝑦

] 

T = [
1 0 ∆𝑥
0 1 ∆𝑦
0 0 1

] 

For some change in the x position ∆x, and some change in y position ∆y.  
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The result of the matrix multiplication on a Cartesian coordinate point is  

(
𝑥 + ∆𝑥
𝑦 + ∆𝑦

)  And   (
𝑥 + ∆𝑥
𝑦 + ∆𝑦

1
) 

Rotation is typically represented by a 2x2 matrix but can also be shifted to a 3x3 matrix if 

the points are in homogeneous representation.  

R = [
cos θ − sin θ
sin θ cos θ

] 

R = [
cos θ −sin θ 0
sin θ cos θ 0

0 0 1
] 

Scaling transformations take the form of a single integer scaling-factor and are not 

effected by what type of coordinate system is used.  

These transformations can be combined to affect the image in other ways too, usually 

done by combing the transformation matrices. An example is the following matrix that 

represents a scaling and rotational transformation.  

𝐴 = [
s cos θ −sin θ 0
sin θ s cos θ 0

0 0 𝑠 1
] 

 

2.3.3 Homographies 

Definition 2.3.3 A homography, also called a projective transformation or perspective 

transformation, is a transformation of a two-dimensional source image I to another two-

dimensional image I’ in the same coordinate plane, such that all straight lines and 

distance ratios between pixels in I are preserved in I’, it is represented by a 3x3 matrix  
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Homographies are use to map an image on a plane, in this case a flat plane as you 

would normally view on laptop or any other flat surface, to another image with a 

perspective distortion, such as viewing a billboard image from an angle.  

There are two distinct types of homography based warping: forward and backward 

warping. Forward warping takes each pixel in the source image and maps it via the 

homography matrix to a location in the transformed image. This presents potential 

difficulties with large distortions because there can be gaps in the image since there is 

nothing to prevent multiple pixels in the source image from being mapped to the same 

location in the destination image. Backwards warping differs in that instead of iterating 

through the pixels in the source image it iterates through the pixels in the destination 

image and fills each one with color based on the corresponding pixel in the source-image. 

This ensures that all of the pixels in the destination image are filled and no two source-

image pixels are mapped the same destination-image pixel, however it can also run into 

difficulties when the distortion is large because pieces and detail form the source-image 

can be lost.  
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2.4 Dome Construction  

This section will detail the construction of the dome on which the final, warped images 

are to be projected.  

The dome is constructed of 40 cardboard triangles clamped together and resting a 

top a custom build wooden base. 15 of the triangles are 35”x35”x35” and 25 of them are 

31”x31”x35” as detailed in figure 2.3.1.  
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Inside the dome we set up a spherical mirror to bounce the projected image off of and to 

save space within the dome another mirror that reflects the projected image up to the 

spherical mirror, which in turn bounced the warped image up on to the inside of the dome 

surface, as shown in figure 2.4.2.  

 

This set up, while convenient does add a second layer of distortion to the image. Now we 

have to compensate for the distortion of projecting a flat image onto a curved surface, as 

well as a surface that is angled away from the projecting lens. As you can see in figure 
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2.4.2 the dome surface angles away from the projector causing the top of any un-warped 

image projected on the surface to be stretched out. Therefore our correction warp needs 

to be two-fold both correcting for the domes curvature and the angel at which the image 

hits the surface of the dome. 

The dome was designed and built by professor Ben Coonley of Bard College’s 

electronic arts department for an exhibit at the Whitney Museum of American Art title 

Dreamlands: Cinema and Art 1905-2016 [15]. Refer to the website listen in the table of 

contents for more information.  
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3 

Software and Warping  

 

 

 

 

3.1 Processing, Open CV 

3.1.1 Processing 

In order to correctly implement the projection and graphics for this project we 

decided to use and IDE called processing coding in Java. The main interface utilized for 

the code aspect of the project is Processing Pixels. Processing Pixels is a package built 

into the Processing IDE; it allows the user to manipulate the pixel of any image via a 

pixel array (see figure 3.1.1).  
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 The pixels array is a one-dimensional array, where each pixel’s position in the array is 

denoted by the x value plus the y value multiplied by the width of the image. This sets it 

up so that each row of pixels is in order one after the other with the right most pixel of the 

previous row being adjacent the left most pixel of the current row. As you can see in 

figure 3.1.1 pixel 5 (position 4) is directly adjacent to pixel 6 (position 5) in the array. 

However in the actual source image pixel 5 and 6 are not adjacent. In order to manipulate 

pixels in the destination image pixels array, the pixels within the array must have their 

RGB (Red, Green, Blue) values shifted based on pixels from the source image. The 

destination image’s pixel array is then updated and the destination image is drawn based 

on the new pixel array. Figure 3.1.2 shows a very basic example of pixel manipulation 

using the processing pixels array.  

 

 

Figure 3.1.2. The result of the following code - using the pixel array to assigning colors based on 

brightness values. 
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3.1.2 OpenCV 

OpenCV is a resource library used for computer vision and image manipulations. 

OpenCV stands for Open Source Computer Vision. Using the OpenCV library allows us 

to implement data types and other resources that are not otherwise available in 

Processing. Although primarily designed and written in C++ there are versions that work 

with Java (what we are using), Python and MATLAB.  
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3.2 Warping Strategies  

There are many different ways to go about warping an image for projection. In this 

section we will discuss the methods of warping that were attempted and why some failed. 

For more detailed analysis of some methods see section 4.2.  

 

3.2.1 Spherical Warping 

One method often employed in planetarium style projection is something we will 

refer to as spherical warping. Spherical warping means taking any image as input and 

warping it uniformly to the surface of a sphere. To do this we used a processing graphic 

module called “planetarium” which rendered an environment four times from four 

different perspectives, one form each side of the sphere in order to create the illusion of a 

3D sphere in the image. The idea was to use the same math and multi-rendering process 

to warp an input image to fit the curvature of a sphere. Two problems were encountered 

with this strategy, firstly that, as discussed before, the dome is not a perfect sphere and 

the projection surface is angled in relation to the projector, this angle creates a vertical 

stretch distortion that a basic spherical warp would not correct for. Second was the fact 

that the domes surface is not oriented exactly inline with the camera. So the apex of the 

dome is not the center of the projected image, which presented an issue for the spherical 

warp because the environment generated by the multi-rendering approach required the 

apex of the curvature to be in the center of the image.  



 26 

 

3.2.2 Affine Triangle Warping  

As discussed in section 2.2.1 an affine transformation is any transformation of an 

image that preserves parallel lines and distance ratios between pixels in straight rows or 

columns in the source image. In order to implement this method successfully first we 

would need to break the source image into triangles that would then be warped to fit the 

perspective distortion of each section of the dome as depicted in figure 2.4.1. A grid 

pattern would be projected onto the projection surface of the dome and the end points of 

each of the triangles would be identified. Next the source image would be marked with 

the end points of the triangles and each would be distorted via affine transformation to fit 

the perspective distortion of the dome face. However the main problem this method 

presented us was how to separate the source image in the appropriate triangles 

corresponding to each triangle on the face of the dome. Since the end points on the 

projected image would also be distorted there was no direct way to find the un-warped 

end point locations on the source image.  While simple in the practice of only using 

affine warps, it is also inefficient, as multiple warps have to be preformed for each image 

render.  
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3.2.3 Forward Warping  

A program would be written that would iterate through each pixel in the source 

image and map it to a new location in the destination image. The main issue with a 

forward approach is that there is no guarantee that the same pixel in the destination image 

will not be filled by multiple from the source image. This also presents the potential of 

gaps appearing in the destination image and leads us to the conclusion that the 

destination-to-source warping strategy (3.2.4) is more advantageous.  
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3.2.4 Backwards Warping  

Backwards warping is the intuitive opposite of forwards warping. A loop iterates 

through each pixel in an existing but empty destination image and fills each with RGB 

values corresponding to a pixel in the source image. This strategy eliminated the potential 

of gaps or pixels overlap in the destination image as every pixel is covered by the loop as 

needed. The only significant draw back of the strategy is that sometimes pixels form the 

source image can be ignored is they do not map to any pixel in the destination image, we 

have found that this is almost always a non-significant effect to the image.  

Both of these pixel array based warping strategies also run into the same trouble as the 

spherical filter warping does, since any algorithm or equation would have to be based on 

the x and y coordinates of each pixel. The warping factor would thus be based on the 

distance form the center of the image for each pixel, so it would only be able to produce 

spherical images as well.  

 

3.2.5 OpenCV warping 

The last method of image warping we will discuss uses the OpenCV library 

available online. The OpenCV library in processing has built in objects called Mat 
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(matrix) that allows us to simply give a method (getPerspectiveTransformation) an input 

of PVectors in 2 arrays and it will output the matrix used to acquire the specific 

perspective distortion between the two arrays of points. This matrix is then used in the 

warpPerspetive method to apply that specific distortion to an image also given as input. 

OpenCV allows for a much easier interface with the warping methods, however is does 

present the challenge of acquiring a matrix-based transformation that is capable of 

producing a spherical warp. 
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4 

Results 

 

 

 

 

 

4.1 Image selection and Projector calibration  

Before moving to the results of the image warping and projection there are several issues 

and factors that need to be discussed.  

One of the major issues that we encountered while setting up the projection was 

choosing image that when warped would fit the shape of the dome projection surface. 

Due to the limitation of the corrections that can be made on image in order for them to 

not appear stretched or deformed even with correct perspective distortion image shape 

and field of view (FoV) plays a significant role in how successful and projection is.   
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4.1.1 Image Selection  

 

As shown in figure 4.1 a regular image (1,200px X 675px as displayed on a computer 

screen) used as an example of a pre-rendered warped image, when projected on the dome 

surface with no other distortion shows large blank spaces on either side of the image. 

These blank spaces are indicative of discrepancies in the field of view of the subject in 

the dome, an image that would be better suited to correct for something like this would be 

any image with a wider aspect ratio. However, if we use an image with wider aspect ratio 

that is still intended for a flat surface we run into the issue of having an immersive 

perspective in the dome when the original image was not immersive. The obvious 

solution to this problem is to use panoramic images that are taken at a wider-than 100-

degree FoV. Using a panoramic image would allow for a more immersive experience in 

the dome as well since a panoramic image is taken from a single point in space revolving 

around the point in 100+ degrees. This effectively creates a circular plane around the 

source point of the image that can be substituted with the dome surface, which is also 

curved and then the other distortion present can be corrected via software.  
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While simply using panoramic images sounds good in theory there are some 

spatial limitations based on the physical set up of the dome and the projection surface’s 

distance from the projector. The camera being used in this project for capturing images 

projected on the dome surface is only equipped with a normal lens, in order to capture a 

full panoramic image, we would need a wide angle or greater than 100-degree FoV 

camera. Another spatial issue is the projector’s distance from the projection surface – due 

to the close quarters inside of the dome only a portion of the computer screen can be 

viewed on the projection surface. These factors lead to choosing a 900x600 pixel aspect 

ratio for projection, so the entire image can be manipulated and viewed. 

 

4.1.2 Projector Calibration  

Due to the set up of the projector in the dome and the image being bounced of off 

multiple mirrors there is a much larger distortion factor from minor shifts in the projector 

placement. Before choosing the images to calibrate the warping matrix it was essential to 

correct for any variation in projector placement, this includes lateral shifts and distance 
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from the flat mirror. The issue of switching projectors midway through the project forced 

us to deal in depth with projector positioning and the effect it can have on image 

distortion. Due to technical difficulties that lead to the switching of projectors there was 

also a 3-5 week period in which access to projecting images in the dome was not 

possible, forcing the use of virtual simulations and only proof of concept test for the 

software.  

 

4.2 Initial projections and Code.  

As described previously there are several different forms that the image-warping 

piece of this experiment can take. While all revolve around images being projected on a 

non-planar surface, namely the inside face of a dome, they each take different methods of 

distorting the image to fit the projection surface. As described in section 3.2 the five basic 

categories of warping that were considered are spherical warping, affine triangle warping, 

forward pixel warping, backward pixel warping, and OpenCV based warping. In the 

initial stages of set we were able to eliminate spherical warping, as we knew the dome 

was not a perfect sphere and thus there would be far too much disparity between the 

projected image and the projection surface.  

 

4.2.1 Initial Affine Warping  

Initially affine warping was also eliminated because there was no clear way to 

separate the flat images into triangles corresponding to the dome’s structure. Due to the 

distorted nature of our projection set up the image would have to be marked with the end 

points of each triangle while being projected on the dome surface. While this part is 
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entirely possible the next stage presents a problem that would initially double the 

workload. First the image would have to be marked at the corresponding points on a flat 

surface, or we would have to implement some method of unwarping the image captured 

on the domes surface, once this image was flat we would be able to divide it into the 

corresponding triangles and run each triangle through a perspective distortion to then be 

recompiled and projected once again. However we still had to address not having a 

method of unwarping the image, as all of the previous work done on distortion correction 

in projected images relies on symmetry and the distortion coming from the lens with 

which the image was captured.  

 

4.2.2 Pixel Array Based Warping 

Next we looked at the implementation of pixel array based warping. This would 

include both forward and backward warping using the pixel array in the Processing IDE. 

The base concept would be to create a method that calculates the distortion between a flat 

grid image and the same grid image projected onto the dome. This distortion factor would 

be calculated as a matrix.  

We wrote a method taking 2 PVector arrays, each of length four, called 

getTransform() (adhering to basic Java naming conventions). Each PVector array 

contains 4 points from the flat image and the distorted image respectively. Then a 

distortion factor is calculated in the form of a matrix. First each of the input arrays is 

converted into a corresponding matrix representing the proportions of each image, ideally 

the points chosen would be as close to each of the corners of each image as possible in 

order to get the most accurate picture of the frame of each image. Next the eigenvalues 
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are calculated and the final transposition matrix is created from the smallest eigenvectors. 

This method produces a 3x3 homography initially but could, in theory, be scaled up to 

create larger, more complicated matrices for non-homographic transformations. Next we 

turned our attention to how to get the PVector arrays from each image and how to render 

the transformed image form the transposition matrix. First we addressed the method used 

to get the PVector points from each image, this is later used in the OpenCV warping 

technique as well. Using the built-in void mousePressed() function in Java a method was 

written to capture the mouse position as a PVector of x and y position wherever the 

mouse was clicked.  

 

This PVector is then automatically sorted into the appropriate array based on which 

image it is in. Once each array size is equal to four the program call the getTransform() 

method using the newly filled PVector arrays as input. Next, using the processing pixels 

array defined in section 3.1.1 each pixel in the form of a homogeneous coordinate 

PVector is fed though the matrix and its new x and x position is dictated based on the 

matrix calculated by the getTransform() method. The code that was used to construct this 
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software was based on a lab assignment form Professor O’Hara’s computer vision class 

[Appendix C]. The problems we ran into with this method are centered around the 

complexity of a non-affine warp being implemented on the image. As defined before an 

affine wrap is any transformation of a grid that preserves straight lines in the image. 

Since the Dome’s surface is curved the lines needed in the source image are distinctly not 

straight and this presents a challenge when using a traditional matrix for warping the 

image.  

 

 

4.2.3 OpenCV Implementation  

The shortcomings of the previous strategy lead us to the computer vision library 

online, OpenCV. OpenCV has a structure called a Mat, which functions similarly to a 

traditional matrix, but has an entry for every single grid value in an OpenCV image 

object. Mat represents a n-dimensional dense numerical array, used to store values, 

matrices and equations. The complexity of a Mat object in OpenCV allowed us to 

achieve a much more accurate warp, having a data entry for each of the pixels from the 

source image, dictated by passing the Mat generating function the size of the source 

image as an argument,  was a great advantage. This strategy worked very similarly to the 

forward pixel based warping. Initially the images are declared and converted into 

OpenCV objects so they will be able to manipulate them using the algorithms later. Next 

we use the same method to acquire PVector coordinates from both a flat image and a 

warped image as described above. The same PVector arrays are input into a method 

called getTransform()  as well. The PVector arrays are then converted into processing 
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based Point objects, which are then converted into MatOfPoint2f objects one each for the 

warped image and the source image. The MatOfPoint2f object is a type of Mat with the 

image processing (imgproc) library of OpenCV, then a method called 

imgproc.getPerspectiveTransform() taking each of the two MatOfPoint2f objects as 

arguments, calculates the differences between the two Mat objects and outputs that 

difference as a third Mat object. This is done by calculating a 3x3 matrix based on four 

input points in each image and then formatting a Mat object based on the 3x3 matrix. 

Once the Mat object is created it is simply run through a method the converts the Mat and 

an input PImage to a new PImage with the perspective distortion represented by the Mat 

object. This PImage can then be drawn by Processing’s Draw() function.  

 

We had little success with this strategy as well since it was only able to create a Mat 

based on a 3x3 matrix – which was not clearly documented, and, as before, only a 

homographic transformation (see figure 4.4). Experiments were preformed with different 

arrays of input points (see figure 4.5) and varying the matrix size in order to have more 
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degrees of freedom, but we were only ever able to achieve a homographic transformation. 

This then turned us back to the affine warping strategy.  

 

4.2.4 Piecewise Affine Warping  

It seemed possible that we could manipulate this OpenCV based warping method to 

only warp certain parts of the source image, so once again if we could find a way to 

divide an image into the correct triangles, each triangle could be warped to fit a 

corresponding component of the dome. This was accomplished using the same 
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getTransform() method as before. As well as a similar strategy for capturing the mouse’s 

position in a PVector to be taken as input for this method. The basic process behind 

piecewise affine warping here is 

1. Split the image into corresponding triangles based on dome components, and on 

image contents, not vertex location - being sure to preserve their X and Y 

position.  

2. Warp each triangle using a Mat derived from the triangle and a master warp 

image.  

3. Re-render the full image out of each now-warped triangular piece of the image.  

The main change from the previous software is the addition of a method called 

alphaTriangle(Point[], PImage). This is used to separate out the triangle that exists based 

on the vertices of the triangle identified by mouseclicked.  This is done by first 

calculating an alpha map of the image based on the given vertices with the Jama.solve 

method, which is passed a matrix of the three vertices in the form  

𝐴 = [
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3
1 1 1

] 

And a matrix created based on the x and y coordinates of each pixel in the returned 

PImage 

𝑏 =  [
𝑖
𝑗
1

] 

 A.solve(b) (an equation of the form Ax=b) is solved for x, which is then given as a 3x1 

matrix  

𝑥 = [
𝑎
𝑏
𝑐

] 
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Next we check if a, b and c are all positive coefficients, if they are it means that the pixel 

at (i, j) can be solved for using the vertices of our triangle and thus pixel (i, j) is inside of 

our triangle. Looping through all the pixels in the given PImage, alpha values of pixels in 

the triangle are set to 255 (completely opaque) and alpha values of pixels outside of the 

triangle are set to 0 (completely transparent). Note that these alpha values are only 

manipulated in the output PImage and nothing in the source image is actually modified. 

The output PImage is warped with the same method before and is then added to global 

list PImage[] imgs. The counters and arrays are then reset so the next triangle can be 

identified. Once all of the triangles are warped and added to the array a PGraphics object 

is rendered from each of the PImages in the array (each containing one warped triangle) 

and the final sketch is rendered for projection in the draw()  function. The other option 

for rendering the image of combined triangles is to create one master PImage and or each 

image consisting of a single triangle transfer all of the pixels with alpha values of 255 to 

the master PImage and ignore all other pixels. Both options we explored (see figure 4.8).   

 

4.3 Results and Final Projections  

In order to calibrate our software to the specific distortions of the dome we 

projected a standard grid pattern with vertices marked every 4 units on the to dome 

surface. Then we marked where the field of view of the camera used to capture the 

images ended, figure 4.6 shows this, as well as an estimation of each triangle visible in 

the domes structure and an estimation of the borders of the projection surface visible 

through the camera.  
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Next we ran the un-warped grid image through the piecewise affine warping code, 

making sure that each triangle was correctly marked with the points on the grid image 

above. The marking of these triangles proved to be a difficult to control variable in the 

consistency of the projections (see figure 4.7).   

 

 

Another issue that arose in terms or projection consistency was the pros and cons of using 

different rendering methods. As discussed at the end of section 4.2 there are a few 
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different options when it comes to rendering each of the triangles into one draw-able 

PImage, PGraphics or a master PImage. PGraphics gives us the option of working from 

an array of unnamed PImages that are simply created from one image being manipulated 

each time the alphaTriangle() method is called. This however then presents the issues of 

more pointers and more memory required to process large images with many pieces. 

Creating a master PImage allows us to use the pixel array and transfer all of the pixels 

that are solved for based on the vertices of each triangle to the master PImage.  

 

After fine-tuning the method for identifying the triangles and their 

correspondences the final result of the project can be seen in figure 4.9 below. Note that 

there are slight discrepancies in the area of the triangles and gaps between in the final 

rendered image. These discrepancies are due to translating the pieces to the maser 

PImage only based on independent pixel arrays instead of implementing some method 

that would base the triangles position on the other triangles existing already in the master 
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PImage – thus making it so there would only be a need to anchor the first triangle 

translated into the master PImage.  

The final change made to the piecewise affine warping program was to implement 

getAffineTransform() instead of the previous use of getPerspectiveTransform() in order to 

have the method take an input of 3 points (each of the three vertices of each triangle) to 

eliminate variation based on estimating the center point of the triangle as a fourth point.  

 

                           
 

The original source image we used for the final warping and projection – chosen because 

it has a significant number of straight and parallel lines.  
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Above are two examples of a final render of the cityscape image after being run through 

the Piecewise affine warping software. There is a bit of distortion and inconsistency in 

selecting the exact vertices of each triangle that causes the black gaps to appear between 

each piece, at this point in the development of our software this is unavoidable except by 

precise clicking.  
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Above is the final projection (first an unmodified cityscape for comparison) using the 

cityscape image, some corrections still need to be made for tighter structure of the final 

rendered image as well as more exact alignment of the dome projection surface in 

relation to the projector face. However, it is noticeable that the perspective of the 

cityscape and the line are correct for each of the triangles – proving that the warping 

works. The shortcoming of the software occurs in the gaps in rendering.  
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5  

Conclusions and Future Work  

 

 

 

 

 

 

5.1 Final Conclusions and analysis  

We have presented 5 potential strategies for warping images to fit the distortion of 

a projection surface; spherical filters, piecewise affine warping, forward and backward 

pixel array-based warping, and warping using OpenCV algorithms. Each presents its own 

strengths and weaknesses, as discussed in detail earlier. For this project the most 

successful strategy for warping to fit the distortion of a flat, or 2D projection surface was 

the basic OpenCV warping. As for the dome and other 3D projection surfaces there are a 

few options. As discussed before spherical or fisheye filters are easy to implement but 

difficult to change if the projection surface is not a perfect sphere with the center of the 

projection on the center axis of the sphere. Forward and backward pixel array warping 

proved to have the same short comings, since the transformation had to be uniform across 

all pixels – based usually on distance form the center most pixel, it caused a perfect 

circular warp around which ever pixel is selected to be the root. The OpenCV strategies 
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proved to be the best for both 2D and 3D projection surfaces, using the basic algorithms 

in OpenCV we were able to easily correct for any 2D distortion. And using the initially 

proposed piecewise affine warping, implemented with OpenCV we were able to create 

software specifically tailored to our dome.  

 

5.2 Future Work  

The obvious next step after the work done in this project would be to alter the 

software we made for 3D warping to fit any given projection surface, such as one not 

constructed of triangles. Continuing this project we could also build software that would 

calculate the accuracy of potential different warping strategies as well as detect the edges 

and vertices of the image or piecewise triangles automatically.  

To correct some of the errors in this project as it is, future research could build on 

our piecewise warping function and find a way of more accurately calculating the 

positioning of the triangles using either a 3D model of the dome with precise spatial 

measurements or by anchoring the projected triangles to the vertices of other triangles. 

There may also be a case to be made for redoing some of the research outlined here with 

more precise technology – a camera with a better FoV to capture more of the domes 

projection surface for example.  

Research could be conducted with multiple projections and multiple projections 

building on work such as [11] using a two-view method for more accurate representation 

of the images in 3D spaces.  
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This project may also serve as a basis for other work surrounding projective 

transformation on images, with potential additions such as interaction with the projected 

environment, real time tracking that would shift the warp of the projected image based on 

the viewer’s position, or converting the warping algorithm into a filter that could be 

applies to videos frame by frame for real time feed back to the dome. On the more 

technical side of this project, more work could be done on calculating the specific 

position of the camera in relation to the projection plane and the image plane when 

viewed on a computer screen as some of Paul Bourke’s work details.  

Lastly this project could be the starting point of building a media viewing 

application with different image filters and distortions based on the projection surface – it 

does not seem possible to render a video frame-by-frame to be projected into the dome, 

but it is possible that a video playing application could be built that would contain the 

warp designated by software like ours as a filter for the video to be played trough.  
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Appendix A 

Processing Object Documentation [14] 
 

PImage: Data type for storing images. Processing can display .gif, .jpg, .tga, and .png images. Images may be 

displayed in 2D and 3D space. Before an image is used, it must be loaded with the loadImage() function. 

The PImage class contains fields for the width and height of the image, as well as an array called pixels[] that 

contains the values for every pixel in the image. The methods described below allow easy access to the image's 

pixels and alpha channel and simplify the process of compositing. 

 

Before using the pixels[] array, be sure to use the loadPixels() method on the image to make sure that the pixel data 

is properly loaded. 

 

To create a new image, use the createImage() function. Do not use the syntax new PImage(). 

 

PVector: A class to describe a two or three dimensional vector, specifically a Euclidean (also known as 

geometric) vector. A vector is an entity that has both magnitude and direction. The datatype, however, stores the 

components of the vector (x,y for 2D, and x,y,z for 3D). The magnitude and direction can be accessed via the 

methods mag() and heading(). 

 

In many of the Processing examples, you will see PVector used to describe a position, velocity, or acceleration. 

For example, if you consider a rectangle moving across the screen, at any given instant it has a position (a vector 

that points from the origin to its location), a velocity (the rate at which the object's position changes per time unit, 

expressed as a vector), and acceleration (the rate at which the object's velocity changes per time unit, expressed 

as a vector). Since vectors represent groupings of values, we cannot simply use traditional 

addition/multiplication/etc. Instead, we'll need to do some "vector" math, which is made easy by the methods 

inside the PVector class. 

 

Pgraphics: Main graphics and rendering context, as well as the base API implementation for processing 

"core". Use this class if you need to draw into an off-screen graphics buffer. A PGraphics object can be 

constructed with the createGraphics() function. The beginDraw() and endDraw() methods (see above example) are 

necessary to set up the buffer and to finalize it. The fields and methods for this class are extensive. For a 

complete list, visit the developer's reference. 

 

To create a new graphics context, use the createGraphics() function. Do not use the syntax new PGraphics(). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://processing.github.io/processing-javadocs/core/
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Appendix B 

Java Code 
 

 
1. OpenCV_Warp 
2.   
3. import gab.opencv.*; 
4. import org.opencv.imgproc.Imgproc; 
5. import org.opencv.core.MatOfPoint2f; 
6. import org.opencv.core.Point; 
7. import org.opencv.core.Size; 
8.   
9. import org.opencv.core.Mat; 
10. import org.opencv.core.CvType; 
11.   
12. import Jama.*; 
13. import processing.video.*; 
14.   
15. //create the two opencv objects we will use for the images 
16. OpenCV opencvSrc, opencvWarp; 
17. // create the PImage used to assign to the Opencv objects and for the final render 
18. PImage src, warp, dest; 
19.   
20. //set parameters of how many points we need to close the arrays 
21. int np1 = 0; 
22. int np2 = 0; 
23. int imgNum = 0; 
24.   
25. //create the arrays that will be given to getTransformation as input 
26. ArrayList<PVector> srcArray = new ArrayList<PVector>(); 
27. ArrayList<PVector> dstArray = new ArrayList<PVector>(); 
28.   
29. //define our Mat object 
30. Mat warpMat; 
31.   
32. void setup() { 
33.   src = loadImage("Grid.jpg"); //unwarped grid 
34.   size(src.width * 2, src.height); 
35.   //establish src as an opencv object 
36.   opencvSrc = new OpenCV(this, src); 
37.   opencvSrc.blur(1); 
38.   opencvSrc.threshold(120); 
39.   
40.   warp = loadImage("warpedgrid.jpg"); //distorted grid that we want to find the 

transformation of 
41.   opencvWarp = new OpenCV(this, warp); 
42.   opencvWarp.blur(1); 
43.   opencvWarp.threshold(120); 
44. } 
45.   
46. //using the mouse cursor, fill each of the PVector arrays with 4 cooresponding points 

from each image 
47. void mousePressed() { 
48.   int i = int(mouseX / (src.width)); 
49.   //check to see if the cursor is in the left image (src) 
50.   if (i == 0) { 
51.     //create a PVector of the mouse location in the form (mouseX, mouseY, 1) 
52.     srcArray.add(np1, new PVector(mouseX % (src.width), mouseY % (src.height), 1)); 
53.     np1++; 
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54.     //print out the loaction so we have conformation the array is being popualted 
55.     println("pic 1" + srcArray.get(np1-1)); 
56.     //check to see if cursor is in right image (warp) 
57.   } else if (i == 1) { 
58.     dstArray.add(np2, new PVector(mouseX % (src.width), mouseY % (src.height), 1)); 
59.     np2++; 
60.     println("pic 2" + dstArray.get(np2-1)); 
61.   } 
62.   //if each array is populated by at least 4 PVector points initiate the matrix 

estimation 
63.   if (np1 >=4 && np2 >= 4 && np1 == np2) { 
64.     warpMat = warpPerspective(srcArray, dstArray, src.width, src.height); 
65.   } 
66. } 
67.   
68. //using the populated PVector arrays and built in OpenCV finctions, to calculate the 

transformation 
69. //between the two images the points are sourced form 
70. Mat getTransform(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray) { 
71.   Point[] srcPoints = new Point[4]; 
72.   Point[] dstPoints = new Point[4]; 
73.   //convert each PVector ArrayList to an array of Points (a intrinsic prcessing object) 
74.   for (int i = 0; i <4; i++) { 
75.     srcPoints[i] = new Point(srcArray.get(i).x, srcArray.get(i).y); 
76.   } 
77.   
78.   for (int i = 0; i <4; i++) { 
79.     dstPoints[i] = new Point(dstArray.get(i).x, dstArray.get(i).y); 
80.   } 
81.   //create a MatOfPoint2f object from each of the point array 
82.   MatOfPoint2f srcMarker = new MatOfPoint2f(); 
83.   srcMarker.fromArray(srcPoints); 
84.   
85.   MatOfPoint2f dstMarker = new MatOfPoint2f(); 
86.   dstMarker.fromArray(dstPoints); 
87.   //using the Image Processing module in OpenCV build the Mat object using a built in 
88.   //function getPerspetiveTransform. 
89.   return Imgproc.getPerspectiveTransform(dstMarker, srcMarker); 
90. } 
91.   
92. //applies the transformation Mat calculated above to the Opencv object created for src 
93. Mat warpPerspective(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray, int w, int 

h) { 
94.   Mat transform = getTransform(srcArray, dstArray); 
95.   Mat unWarpedMarker = new Mat(w, h, CvType.CV_8UC1);     
96.   Imgproc.warpPerspective(opencvSrc.getColor(), unWarpedMarker, transform, new Size(w, 

h)); 
97.   return unWarpedMarker; 
98. } 
99.   
100. void draw() { 
101.   //if the PVector arrays are not yet full 
102.   if (np1 < 4 || np2 < 4) { 
103.     image(src, 0, 0); 
104.     noFill(); 
105.     stroke(0, 255, 0); 
106.     strokeWeight(4); 
107.     translate(src.width, 0); 
108.     image(warp, 0, 0); 
109.     //once arryas are full create a new PImgae and convert the Mat of src and   

the transfomration matrix to that PImage. 



 54 

110.   } else if (np1 >= 4 && np2 >= 4 && np1 == np2) { 
111.     dest = createImage(src.width, src.height, ARGB); 
112.     opencvSrc.toPImage(warpMat, dest); 
113.     image(dest, 0, 0); 
114.   } 
115. } 

 
1. //Triangle Warp 
2.   
3. import gab.opencv.*; 
4. import org.opencv.imgproc.Imgproc; 
5. import org.opencv.core.MatOfPoint2f; 
6. import org.opencv.core.Point; 
7. import org.opencv.core.Size; 
8.   
9. import org.opencv.core.Mat; 
10. import org.opencv.core.CvType; 
11.   
12. import Jama.*; 
13. import processing.video.*; 
14.   
15. OpenCV opencvSrc, opencvWarp, opencvTri; 
16. PImage src, warp, tri, destTemp, dest, real; 
17. int MAXIMGS = 13; //number of tirangles in projection surface 
18.   
19. PGraphics output; //another option for final render 
20.   
21. PImage[] imgs = new PImage[MAXIMGS]; 
22. int np1 = 0; //number of points in image 1 
23. int np2 = 0; //number of points in image 2 
24. int imgNum = 0; //number of warped pieces 
25.   
26. ArrayList<PVector> srcArray = new ArrayList<PVector>(); 
27. ArrayList<PVector> dstArray = new ArrayList<PVector>(); 
28.   
29. Mat warpMat; 
30.   
31. Point[] srcPoints = new Point[3]; 
32. Point[] dstPoints = new Point[3]; 
33.   
34. void setup() { 
35.   real = loadImage("real.jpg"); 
36.   
37.   src = loadImage("grid layer.jpg"); 
38.   size(src.width * 2, src.height); 
39.   opencvSrc = new OpenCV(this, src); 
40.   opencvSrc.blur(1); 
41.   opencvSrc.threshold(120); 
42.   
43.   warp = loadImage("realgrid.jpg"); 
44.   opencvWarp = new OpenCV(this, warp); 
45.   opencvWarp.blur(1); 
46.   opencvWarp.threshold(120); 
47.   
48.   output = createGraphics(src.width, src.height, JAVA2D); 
49.   
50.   destTemp = createImage(src.width, src.height, RGB); 
51.   dest = createImage(src.width, src.height, RGB); 
52. } 
53.   
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54. void mousePressed() { 
55.   int i = int(mouseX / (src.width)); 
56.   if (i == 0) { 
57.     srcArray.add(np1, new PVector(mouseX % (src.width), mouseY % (src.height), 1)); 
58.     np1++; 
59.     println("pic 1" + srcArray.get(np1-1)); 
60.   } else if (i == 1) { 
61.     dstArray.add(np2, new PVector(mouseX % (src.width), mouseY % (src.height), 1)); 
62.     np2++; 
63.     println("pic 2" + dstArray.get(np2-1)); 
64.   } 
65.   if (np1 >=3 && np2 >= 3 && np1 == np2) { 
66.     toPointArray(srcArray, dstArray); 
67.     alphaTriangle(srcPoints, src); 
68.     warpMat = warpPerspective(srcArray, dstArray, src.width, src.height); 
69.     opencvTri.toPImage(warpMat, destTemp); 
70.     renderPixel(destTemp, dest); 
71.     imgs[imgNum] = dest; 
72.     imgNum++; 
73.     println(imgNum); 
74.     np1 = 0; 
75.     np2 = 0; 
76.     println("reset" + imgNum); 
77.   } 
78. } 
79.   
80. void alphaTriangle(Point[] points, PImage img) { 
81.   /*loop through the pixels in our image and based upon the three 
82.    vertices selected for each triangle, calculate whether each pixel 
83.    exists in the triangle defined by three selected ponts, if so set alpha 
84.    value to max, if not set alpha value to 0. */ 
85.   
86.   
87.   tri = createImage(img.width, img.width, ARGB); 
88.   
89.   Matrix alphaMat; 
90.   
91.   double[][] array = { 
92.     { 
93.       points[0].x, points[1].x, points[2].x 
94.     } 
95.     , { 
96.       points[0].y, points[1].y, points[2].y 
97.     } 
98.     , { 
99.       1, 1, 1 
100.     } 
101.   }; 
102.   Matrix pointMat = new Matrix(array); 
103.   pointMat.print(3, 3); 
104.   
105.   img.loadPixels(); 
106.   tri.loadPixels(); 
107.   
108.   for (int y = 0; y < img.height; y++) { 
109.     for (int x = 0; x < img.width; x++) { 
110.       int loc = x + y*img.width; 
111.   
112.       double[] tempArray = { 
113.         x, y, 1 
114.       }; 
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115.   
116.       Matrix p = new Matrix(tempArray, 3); 
117.   
118.       float r = red(real.pixels[loc]); 
119.       float g = green(real.pixels[loc]); 
120.       float b = blue(real.pixels[loc]); 
121.   
122.       alphaMat = pointMat.solve(p); 
123.   
124.       if (alphaMat.get(0, 0) >= 0 && alphaMat.get(1, 0) >= 0 && alphaMat.get(2, 

0) >= 0) { 
125.         tri.pixels[loc] = color(r, g, b, 255); 
126.       } else { 
127.         tri.pixels[loc] = color(r, g, b, 0); 
128.       } 
129.     } 
130.   } 
131.   tri.updatePixels(); 
132.   opencvTri = new  OpenCV(this, tri); 
133. } 
134.   
135. void toPointArray(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray) { 
136.   //converts the PVector arrays created by mousepressed to Point object arrays 
137.   
138.   
139.   for (int i = 0; i <3; i++) { 
140.     srcPoints[i] = new Point(srcArray.get(i).x, srcArray.get(i).y); 
141.   } 
142.   
143.   for (int i = 0; i <3; i++) { 
144.     dstPoints[i] = new Point(dstArray.get(i).x, dstArray.get(i).y); 
145.   } 
146. } 
147.   
148.   
149. Mat getTransform(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray) { 
150.   //same as OpenCV_warp except uisng arrays of 3 Points and 
151.   //Affine transformation matrices instead 
152.   
153.   
154.   MatOfPoint2f srcMarker = new MatOfPoint2f(); 
155.   srcMarker.fromArray(srcPoints); 
156.   
157.   MatOfPoint2f dstMarker = new MatOfPoint2f(); 
158.   dstMarker.fromArray(dstPoints); 
159.   
160.   return Imgproc.getAffineTransform(dstMarker, srcMarker); 
161. } 
162.   
163. Mat warpPerspective(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray, 

int w, int h) { 
164.   Mat transform = getTransform(srcArray, dstArray); 
165.   Mat unWarpedMarker = new Mat(w, h, CvType.CV_8UC1);     
166.   Imgproc.warpAffine(opencvTri.getColor(), unWarpedMarker, transform, new 

Size(w, h)); 
167.   return unWarpedMarker; 
168. } 
169. } 
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Appendix C 

Other Code Resources  
 

imgProc: http://docs.opencv.org/2.4/modules/imgproc/doc/imgproc.html 

OpenCV’s image processing package – includes functions: warpPerspective, 

getPerspectiveTransform & warpAffine 

 

JAMA: A basic linear algebra package for Java. It provides user-level classes for 

constructing and manipulating real, dense matrices. It is meant to provide sufficient 

functionality for routine problems, packaged in a way that is natural and understandable 

to non-experts. 

JAMA is comprised of six Java classes: Matrix, CholeskyDecomposition, 

LUDecomposition, QRDecomposition, SingularValueDecomposition and 

EigenvalueDecomposition. 

The Matrix class provides the fundamental operations of numerical linear algebra. 

Various constructors create Matrices from two dimensional arrays of double precision 

floating point numbers. Various gets and sets provide access to submatrices and matrix 

elements. The basic arithmetic operations include matrix addition and multiplication, 

matrix norms and selected element-by-element array operations. A convenient matrix 

print method is also included. 

Five fundamental matrix decompositions, which consist of pairs or triples of matrices, 

permutation vectors, and the like, produce results in five decomposition classes. These 

decompositions are accessed by the Matrix class to compute solutions of simultaneous 

linear equations, determinants, inverses and other matrix functions. The five 

decompositions are 

• Cholesky Decomposition of symmetric, positive definite matrices 

• LU Decomposition (Gaussian elimination) of rectangular matrices 

• QR Decomposition of rectangular matrices 

• Eigenvalue Decomposition of both symmetric and nonsymmetric square matrices 

• Singular Value Decomposition of rectangular matrices 

The current JAMA deals only with real matrices. We expect that future versions will also 

address complex matrices. This has been deferred since crucial design decisions cannot 

be made until certain issues regarding the implementation of complex in the Java 

language are resolved. [13] 

Professor O’Hara’s Computer Vision Assignment - http://drablab.org/keithohara/cmsc-

317-2014f/assignments/cmsc317assignment6.html 

http://docs.opencv.org/2.4/modules/imgproc/doc/imgproc.html
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