
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2017 Bard Undergraduate Senior Projects

Spring 2017

Beyond Homographies: Exploration and Analysis of Image Beyond Homographies: Exploration and Analysis of Image

Warping for Projection in a Dome Warping for Projection in a Dome

Kai Joseph Malowany
Bard College, km3693@bard.edu

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2017

 Part of the Graphics and Human Computer Interfaces Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Malowany, Kai Joseph, "Beyond Homographies: Exploration and Analysis of Image Warping for Projection
in a Dome" (2017). Senior Projects Spring 2017. 315.
https://digitalcommons.bard.edu/senproj_s2017/315

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2017
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2017?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2017/315?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Beyond Homographies:
Exploration and Analysis of Image Warping for

Projection in a Dome

A Senior Project submitted to

The Division of Science, Mathematics, and Computing

of

Bard College

By

Kai Joseph Malowany

Annandale-on-Hudson, New York

May 2017

 i

 ii

Abstract

The goal of this project is to provide multiple approaches for warping a flat image to

fit the curvature of a geodesic dome, to be presented as an immersive, Augmented Reality

(AR) environment. This project looks to develop an algorithmic method of warping any

image to fit perspective distortion for a dome-like surface. Despite fairly common

usage in planetarium methods and other such shows, there is very little

documented method that would allow for the warping of images to fit a curved

projection surface. The methods will be explored include using Processing, OpenCV,

and fisheye image filters. In addition to the paper, this research will also produce an

online library of documents and resources for preforming these warps.

 iii

 iv

Contents

Abstract ………………………………………………………………………………….. ii

Dedication ………………………………………………………………………….….. viii

Acknowledgements …………………………………………………………………….... x

1: Introduction …………………………………………………………………………… 1

1.1 Background ………………………………………………………………….. 1

1.2 Previous Work ………………………………………………………………. 3

1.3 Motivation …………………………………………………………………… 3

1.4 Review of Literature ………………………………………………………… 4

2: Mathematical Concepts and Construction …………………………………………... 11

 2.1 Homogeneous Representation ……………………………………………... 11

 2.2 Transformations ……………………………………………………………. 13

 2.3 Homographies and Transformation Matrices ……………………………… 15

 2.3.1 Matrices and Matrix Multiplication ……………………………… 15

 2.3.2 Warping Matrices ………………………………………………… 16

 2.3.3 Homographies ……………………………………………………. 17

 2.4 Dome Construction ………………………………………………………… 19

Chapter 3: Software and Warping .……………………………………………………... 22

 3.1 Processing, OpenCV and Syntax …………………………………………... 22

 3.1.1 Processing ………………………………………………………... 22

 3.1.2 OpenCV ………………………………………………………….. 24

 3.2 Warping Strategies ………………………………………………………… 25

 3.2.1 Spherical Warping ……………………………………………….. 25

 3.2.2 Affine Triangle Warping ………………………………………… 26

 3.2.3 Source-to-Destination Warping ………………………………….. 27

 3.2.4 Backwards Warping ……………………………………………… 28

 3.2.5 OpenCV Warping ……………………………………………….. 28

 v

Chapter 4: Results ……………………………………………………………………… 30

 4.1 Image Selections and Projector Calibration ………………………………... 30

 4.1.1 Image Selection …………………………………………………... 30

 4.1.2 Projector Calibration ……………………………………………... 32

 4.2 Preliminary Results and Code ……………………………………………… 32

 4.2.1 Initial Affine Warping ……………………………………………. 33

 4.2.2 Initial Pixel Array Warping ……………………………………… 33

 4.2.3 OpenCV Implementation ………………………………………… 36

 4.2.4 Piecewise Affine Warping ……………………………………….. 38

4.3 Results and Final Projections ………………………………………………. 40

Chapter 5: Conclusions and Further Work …………………………………………….. 45

 5.1 Final Conclusions and Analysis ……………………………………………..45

5.2 Future Work ………………………………………………………………... 46

References ……………………………………………………………………………… 50

Appendix A …………………………………………………………………………….. 51

Appendix B …………………………………………………………………………….. 52

Appendix C …………………………………………………………………………….. 57

Project Summary and Information at

Malowanykai13.wixsite.com/seniorproject

 vi

List of Figures

1.1 Paul Bourke ………………………………………………..………………………… 9

2.1 Image Transformations …………………………………..………………………… 14

2.3.1 Demonstration of Matrix Multiplication Procedure ……………………………... 16

2.3.2 Homography Warping Transformation Example ………………………………... 18

2.4.1 Construction of the Dome ………………………………………………………... 19

2.4.2 Dome Interior Projector Set-up …………………………………………………... 20

3.1.1 Processing Pixel Array Deconstruction ………………………………………….. 22

3.1.2 Example of Processing Pixel Array Manipulating Color Values ………………... 23

3.2.1 Spherical Filter Warping …………………………………………………………. 26

3.2.2 Affine Triangle Warping …………………………………………………………. 27

3.2.3 Source to Destination Warping …………………………………………………... 27

3.2.4 Backwards Warping ……………………………………………………………… 28

3.2.5 OpenCV Mat Deconstruction ……………………………………………………. 29

4.1 Example of Blank Space from curve of Projection Surface ……………………….. 31

4.2 Analysis of Image Choice ………………………………………………………….. 32

4.3 Demonstration of Capturing Mouse Position Within Input Image ………………… 35

4.4 Example of Homogrpahy Based 2 Dimensional Warp Using Created Software ….. 37

4.5 Examples of Different Distortion Correction Generated Based on Point Selection .. 38

4.6 Initial Projection of Flat Grid Image onto the Projection Surface …………………. 40

4.7 Piecewise Affine Warping Test ……………………………………………………. 41

4.8 Final Rendering Comparison ………………………………………………………. 42

4.9 Final Construction and Projections ………………………………………………… 43

 vii

 viii

Dedication

I dedicate this work to my family, stepfamily, friends,

teachers, professors and pets, and to anyone and everyone

else who helped become the person I am today.

 ix

 x

Acknowledgements

Thank you, Professor Keith O’Hara, you supported me and coached me through choosing

this topic, fleshing it out, finalizing it, and picking up the pieces when nothing went as

planned. I would also like to thank the entire computer science department for providing

me with the foundation to create this work.

Thank you, Stef, Henry, Charlie, Ani, Phoebe, Cleo and Quinn who supported me and

stuck by my side through all 4 years at Bard (and of course Ethan for 3).

Thank you, Race, Bobby, Noah, Quincy, Darren and Ben S. for helping each other and

for helping me, and making me feel at home in a new department.

Thank you, Eva-Marie for making senior year by far my best year at Bard and for

pushing me to always be my best.

Thank you, Julie, Kristin and Dominique for making me feel at home in work and in

school.

Thank you, Ryan Depew for initially putting me on the path to choose computer science.

Lastly, thank you to my Family, for their unconditional love and support and for making

me the person I am today.

 xi

 1

1

Introduction

1.1 Background

The concept of virtual reality first appeared in Stanley G. Weinbaum’s short story

Pygmalion’s Spectacles in 1935 [7]. There it was described as a goggle based virtual

reality system with holographic recordings of fictional experiences including smell and

touch. In the short story Weinbaum writes “A movie that gives one sight and sound [...]

taste, smell, and touch. [...] You are in the story, you speak to the shadows (characters)

and they reply, and instead of being on a screen, the story is all about you, and you are in

it." This may be the first comprehensive model for virtual reality. In the 1950’s Morton

Hellig wrote of an “Experience Theater” that could involve the user in the experience

with all 5 senses, and built a prototype of his design, calling it “Sensorama”. In 1978 MIT

created a hypermedia [8] virtual reality system called the Aspen Movie Map, which was a

crude simulation of Aspen, Colorado in three modes: summer, winter, and polygons. The

first two were simply photographs of every possible movement through the town in both

 2

seasons, and the third was a basic graphical representation of the city constructed via

early 3D modeling software. Virtual reality continued to appear in popular and

mainstream media throughout the 1980’s in movies such as Brainstorm and The

Lawnmower Man. In 1991 Sega came out with the Sega VR [9] headset for arcade games

and the Mega Drive Console, which was the first of what we think of as virtual reality

today. VR continued to gain in popularity and accessibly through the video game

industry, first appearing in large arcade games and flight simulators, and more recently

being moved over to console and PC compatible third party brand VR goggles that can be

used at home.

Augmented Reality (AR) arose from VR more recently; AR is an environment

that is immersive and interactive but not confined to goggles or a projection device. AR

environments are based on the subject’s surroundings rather than existing completely in

virtual space. The only common example of AR in modern culture is a planetarium,

where the show is projected onto a specially designed dome ceiling, which is sometimes

with added spheres to act as planets and mobile devices that simulate orbits. AR has

existed only very recently in pop culture as well, being featured in the popular Netflix

show, Black Mirror.

Computer vision is an interdisciplinary field based in computer science. It deals

with artificial systems’ ability to extract information from digital images and process this

information; this lead to the ability to reconstruct images and even corrects for

perspective distortion when viewing the image. This project will specifically focus on the

area of computer visions the deal with image projection and projective geometry.

 3

1.2 Previous Work

We built our research on previous work done in the fields of image projection and

image warping. Software such as the one created for this project is used in planetariums

to warp images to fit the curvature of the domes onto which they are projected. The goal

of this project is to implement two previously used methods of warping images for

projection and use them in a new environment. Since there is a lack of work in the field

of warping live images fed to the program form a camera, the research for this project has

been based on several previous works in the fields of image warping and image

projection. Paul Borke [4] has written several papers on image warping for use in

projection on the inside of a dome and Codeanticode [10] sites his work in the

Planetarium code article. Other sources describe methods of warping images based on

matrix multiplication using homogeneous coordinates described in section 2.1.

1.3 Motivation

The inspiration for this project came out of melding two ideas. Professor Ben

Coonley, in the electronic arts department at Bard College designed and built a geodesic

dome intended for use as an immersive virtual reality environment (VRE). Images were

to be projected on the inside of the dome, warped so that the perspective gave the illusion

of a 3D environment surrounding the subject inside the dome. Initially Professor O’Hara

suggested designing an interactive experience or game of some variety for the dome.

However I was set on the idea of working with drones after taking a class on robotics the

previous semester. As we moved forward and developed our idea more the idea of using

the dome stuck. My initial idea was to use a drone to map and render images from its

 4

camera to then be transformed into virtual 3-dimensional maps of the landscape it flew

over, however, integration of this idea and the dome proved difficult. We finally decided

to push forward with the idea of using the dome for some variety of interactive

experience. The shape of the project then began to take more detailed form; we decided

to write an image-warping program to manipulate projections so that the perspective

inside of the dome was not distorted. There are many different approaches to this task, so

several different strategies would be explored. Most of the previous work in the field of

computer vision in regards to image distortion and image warping is done with the goal

in mind of correcting for distortion in images captured with fisheye lenses or other types

of lenses. There exists very little previous work in the field of warping images to a

particular distortion factor in order to be projected on a non-flat surface.

1.4 Review of Literature

3D projection and augmented reality (AR) software is used commonly today in a

variety of fields. The most common use for spherical projection warping is in planetarium

light shows [10]. Due to the spherical structure of the planetarium projection screen the

images must either be manipulated of projected form multiple different sources to appear

undistorted when viewed on the curved surface. In AR projection is less common, usually

AR software relies on a device or screen that the manipulated environment is viewed

through, such as games like Pokémon Go™ and other mobile apps. One of the only fields

in which projection AR is common is electronic and film art – in which abstract images

are rendered digitally and projected on the inside of a dome or room to be viewed in an

immersive environment. This review of literature will seek to create an overview of the

 5

existing work in the field of image warping and computer projection as well as analyze

existing strategies used to warp images for projection purposes. It will also discuss work

that has been done with AR systems implementing projective tools and establish a stable

foundation of technical knowledge on which we will discuss the approaches and concepts

used in this project.

AR is a relatively new concept in the field of computer vision and human/technology

interaction, and only very recently has begun to be used for entertainment. In 1997

Ronald T Azuma conducted a survey of the existing augmented reality technology and

applications for the MIT press Journal Presence: Teleoperators & Virtual Environments

[1]. The survey first seeks to define what AR is and how it is to be distinguished from

VR and other interactive technologies; the qualifications given are that something that is

considered to be AR must:

1. Combine both real and virtual aspects that are related.

2. Be interactive in real time.

3. Be registered and act in 3 dimensions.

Building on this definition the survey looks at why AR is interesting and what we can use

AR technology for; AR enhances the users perception, it creates an interactive

environment that is not confined to a virtual space and has many, many real world

applications. In the medical field AR could be used to augment surgery, to super impose

CT or MRI scanned images on the patient to make surgery more efficient, as well as

provide real time imagery of surgery to aid in technical training. In the field of

manufacturing, schematics and repair manuals could be projected onto the project, giving

workers better information on how to fix and build products. In every day life AR could

 6

allow for annotation of the world around us, providing useful quantitative information

immediately. Azuma goes on to discuss the applications of AR in entertainment, which is

where this project falls. In entertainment Azuma discusses several projects employing AR

tactics, including a 1995 performance exhibition using real life actors and digital project

environments, and the ALIVE project by MIT where virtual intelligent creatures populate

the environment around the user and interact with them.

In the field of computer vision the idea of correcting images based on perspective

distortion is not only common, but also very crucial for many applications. J.K. Aggerwal

and Shishir Shah discuss the applications of calibration and correction of a fish eye

distortion model in regard to computer vision in their 1996 paper Intrinsic Parameter

Calibration Procedure for a (high-distortion) Fish-eye Lens Camera With Distortion

Model and Accuracy Estimation [2]. Their approach was to establish a camera calibration

model for removing the distortion from images captured with a fish-eye lens. This

procedure is essential for many computer vision applications including robot navigation,

stereovision, AR and VR, and robot vision. Using a basic grid pattern they present a

calibration method for high distortion cameras based on the effective focal length of the

lens, the optical center, one-pixel width on the image plane, and the distortion

coefficients present in the transformation matrix. This approach is similar to the one we

took in our research in process but the goal is different. Where Aggerwal and Shah seek

to correct for the distortion present in an image captured with a distortion heavy lens, we

look to implement a perspective distortion warp to images in order for them to be

projected in a dome and appear undistorted. They also implement a more physical

method of acquiring data on image distortion, using a perforated piece of paper as the

 7

grid in order to more easily obtain the optical center, where most of the methods and

image manipulation we conduct are only based on digital parameters.

Next we will look at what algorithms and resources exist in the field of computer

vision (CV) in terms of projection and projective transformations (Homographies).

Andrea Vadaldi and Brian Fulkerson detail many of these resources in their work on

VLFeat –VLFeat – An Open and Portable Library of Computer Vision Algorithms [3].

Vadaldi and Fulkerson discuss what resources are available to computer vision

researchers and students through VLFeat as well as what format they are in and what

specific CV algorithms are available. VLFeat is important to acknowledge for this project

as it gives us a definite sense of what resources exist and what aspect of CV have been

well documented. VLFeat is similar to OpenCV in its nature as a library of algorithms.

OpenCV is one of the main resources we rely on for this project. VLFeat, like openCV,

contains numerous easily accessed and easily implementable algorithms for computer

vision that have been streamlined into a standard format for simple access (MATLAB for

VLFeat, C++/C/Java/python for OpenCV).

One example of a different application of image warping in the field of projection

and projective geometry is work done by Paul Bourke. Most of the examples are used to

correct for distortion already present in the images so they can be viewed in a natural

100-degree field of view (FoV) on a flat surface. This study done by Paul Bourke in 2004

entitled Converting a Fisheye Image into a Panoramic, Spherical or Perspective

Projection [4] discusses how to correct for the distortion present in a photo taken with a

fisheye lens with the intent to project to photo as a flat panorama. This differs from

previously discussed study, Aggerwal and Shah, as Aggerwal and Shah simply designed

 8

a calibration scheme to correct for perspective distortion in images captured with a

fisheye camera. Bourke takes fisheye images and creates a 3D grid pattern based on the

perspective of the image, thus making it possible to view different parts of the image with

the correct perspective. This allows for a different distortion to be present on different

parts of the image (such as is needed to unwarp a panoramic photo captured with a

fisheye lens). Bourke details that most flat images are viewed with a 100-dgree FoV, this

causes complications when dealing with fisheye images that are panoramic in nature and

contain more than a 100-degree FoV, if the image grid is warped to fit a flat surface it

will still appear to be distorted. Bourke’s solution is to treat the camera’s position not as a

viewpoint but as a point in space and warp each section of the image based on relation to

the camera’s position in 3D space. See figure from Bourke’s paper below.

 9

Figure 1. Taken from Paul Bourke's paper [4] showing the different capacities in which the un-

warped fisheye image can be viewed

The figure demonstrates the original fisheye image (top left), the un-warped 100-degree

FoV image (top right), a view or the bottom right corner adjusted based on the cameras

positioning in space (bottom left), and a rotated view with a larger than 100-degree FoV

(bottom right). There are several key elements to these transformations, the first is that

from the original state the main goal of the distortion correction is to create parallel lines

 10

in the image as can be seen in all but the top left. Once all the lines are straight and

parallel other transformations can be performed and the perspective can be changed to

any 100-degree FoV segment of the image. The discrepancy between the fisheye image

and a regular 100-dgree FoV image on flat surface is important to note as it presents an

issue for our goal in the project, namely that any image that looks normal when viewed

on a flat surface at 100-degrees FoV will not entirely fit to a spherical warp. This leaves

us two options, either warp what we have of a normal image and correct for any

discrepancies that arise (Figure 4.1), or use images that are panoramic in nature so that

there is a natural wrap around the viewer (Section 4.1).

2

Mathematical Concepts and Construction

This section will discuss some of the basic mathematical concepts that make up this

project, as well as some more advanced projective geometry concepts and models that

will be used in image warping. It will also describe the basic dome construction and the

projector set up that was used throughout the project.

2.1 Homogeneous Representation

Homogeneous coordinates were fist introduced by August Ferdinand Möbius, and

would become a powerful tool in the field of computer vision and projective geometry.

The homogeneous approach is an alternative to the standard Euclidian, or inhomogeneous

approach that is faced with some limitations. One of the limitations of the Euclidian

system is that it allows for only linear transformations that fix the origin. Another

limitation is that it does not have a finite representation for a point or line at infinity. The

homogeneous method solves this issue by using an extra dimension. This extra dimension

allows for representation of points and lines at infinity. The homogeneous method also

allows for the representation of projective transformations as matrices, which is how we

 12

will refer to them in the rest of this paper. This offers an easy and convenient way to

preform such transformations.

Definition 2.1.1 Let P be a finite point, and (x, y) be its representation in Cartesian

coordinates. A homogeneous representation of point P is any point (x, y, w) w ≠ 0. The

last coordinate w is called the homogenous coordinate. A homogeneous representation of

a finite point has a non-zero homogeneous coordinate, and a point at infinity has a

homogeneous coordinate of zero.

Example 2.1.2. Let P1 be a two dimensional point with Cartesian coordinates (x, y). A

possible homogeneous representation of P1 is (x, y, w), or, more generally, (wx, wy, w)

for any w ≠ 0. Let P2 be another point in two dimensions with homogeneous

representation (x, y, w). P2 can be represented in Cartesian coordinates as (
𝑥

𝑤
.

𝑦

𝑤
).

Definition 2.1.3. Let l be a straight line in two dimensions defined by the equation 𝑎𝑥 +

 𝑏𝑦 + 𝑐 = 0. Then (a, b, c) is the homogeneous representation of line l.

Again the homogeneity in this representation comes from the fact that (va, vb, vc)

represents the line vax + vby + vc = 0, which is the same as line ax + by + c = 0

represented by (a, b, c), for any v ≠ 0.

Definition 2.1.4. The degrees of freedom of a system are the number of independent

parameters that define the system and are free to vary.

 13

Example 2.1.5. For any Cartesian point in two dimensions the parameters are the x and

the y coordinates. Thus any 2D point has exactly 2 degrees of freedom. Now, recall that

any line in defined by some equation of the form ax + by = c (ax + by + c = 0). Where a

and b are coefficients to the variables x and y and c is a constant coefficient. However,

even though the line’s equation has 3 variables there are only 2 unique parameters that

the line varies by, which are the slope and the Y intercepts commonly represented as m

and b in the equation y = mx + b.

2.2 Transformations

This section of the paper deals with graphical transformations on 2D images. In

the field of computer vision, transformations are functions of pixels, represented by x y

coordinates that return new coordinates for each given pixel of input. Some simple types

for transformations that can be preformed on pixels include translation, rotation, affine,

and scaling (See figure 2.2.1) These transformation functions form a basis for more

complicated transformations that can be preformed as a set of these simple functions,

including projective transformations (homography). The process of applying any of the

transformative functions to some image is called warping.

 14

Figure 2. Shows a physical representation of each of the listed transformations on a Cartesian

coordinate plane

Next we will discuss some of the fundamental transformations of two-

dimensional images listed above and in figure 2.2.1. For each transformation listed we

provide a definition and a matrix notation that offers a convenient way to apply them to

any given 2D image. Since the transformations discussed in this section do not preserve

the origin point (the pixel at (0 ,0)), matrix notation of them is only possible when we use

homogeneous coordinates as discussed in the previous section.

Definition 2.2.1.1 Translation is a transformation that shifts any given input image by a

vector to another point in the 2 dimensional Cartesian plane.

Definition 2.2.1.2 Rotation is a transformation that rotates any given input image around

the centermost point of the image.

Definition 2.2.1.3 Scaling is a transformation that affects the size of any given input

image by a constant factor for all the image pixels.

 15

Definition 2.2.1.4 Affine is any transformation on any given input image that preserves

parallel lines and distance ratios between points on a straight line in the source image.

Translation, rotation, and scaling are all examples of affine warps.

2.3 Homographies and Transformation Matrices

2.3.1 Matrices and Matrix Multiplication

Definition 2.3.1 A matrix is a rectangular array of number, variable, symbols,

expressions or equations arranged in rows and columns. The dimensions of a matrix are

denoted with the number of rows first then the number of columns like (rows x columns).

Vectors are (3x1) matrices. The elements of the matrix define operations that can be

preformed.

Definition 2.3.2 Matrix multiplication, or matrix product, is a binary operation that

produces one matrix form two by multiplying together the components of each. Let M be

and n x m matrix that is being multiplied together with matrix N, which must be m x p,

where p is arbitrary. The product of M and N, L will be a n x p matrix. Note that it is only

possible to multiply N and M together if they share the value m, which must be the

number of columns for N and the number of rows for M. see figure 2.3.1 for a more

detailed example of how to obtain each value in the product matrix.

 16

2.3.2 Warping Matrices

Matrices and matrix multiplication can also be used to represent transformations

of images in virtual space for projection. Typically transformations are represented as

matrices for ease of multiplying the x and y coordinates of each pixel in an image by the

contents of the matrix. The following matrices matrix can be used to represent each of the

above transformations form section 2.2 assuming that the images coordinates are in

homogeneous representation:

Translation can be represented by a 2x3 or 3x3 matrix taking the form

T = [
1 0 ∆𝑥
0 1 ∆𝑦

]

T = [
1 0 ∆𝑥
0 1 ∆𝑦
0 0 1

]

For some change in the x position ∆x, and some change in y position ∆y.

 17

The result of the matrix multiplication on a Cartesian coordinate point is

(
𝑥 + ∆𝑥
𝑦 + ∆𝑦

) And (
𝑥 + ∆𝑥
𝑦 + ∆𝑦

1
)

Rotation is typically represented by a 2x2 matrix but can also be shifted to a 3x3 matrix if

the points are in homogeneous representation.

R = [
cos θ − sin θ
sin θ cos θ

]

R = [
cos θ −sin θ 0
sin θ cos θ 0

0 0 1
]

Scaling transformations take the form of a single integer scaling-factor and are not

effected by what type of coordinate system is used.

These transformations can be combined to affect the image in other ways too, usually

done by combing the transformation matrices. An example is the following matrix that

represents a scaling and rotational transformation.

𝐴 = [
s cos θ −sin θ 0
sin θ s cos θ 0

0 0 𝑠 1
]

2.3.3 Homographies

Definition 2.3.3 A homography, also called a projective transformation or perspective

transformation, is a transformation of a two-dimensional source image I to another two-

dimensional image I’ in the same coordinate plane, such that all straight lines and

distance ratios between pixels in I are preserved in I’, it is represented by a 3x3 matrix

 18

Homographies are use to map an image on a plane, in this case a flat plane as you

would normally view on laptop or any other flat surface, to another image with a

perspective distortion, such as viewing a billboard image from an angle.

There are two distinct types of homography based warping: forward and backward

warping. Forward warping takes each pixel in the source image and maps it via the

homography matrix to a location in the transformed image. This presents potential

difficulties with large distortions because there can be gaps in the image since there is

nothing to prevent multiple pixels in the source image from being mapped to the same

location in the destination image. Backwards warping differs in that instead of iterating

through the pixels in the source image it iterates through the pixels in the destination

image and fills each one with color based on the corresponding pixel in the source-image.

This ensures that all of the pixels in the destination image are filled and no two source-

image pixels are mapped the same destination-image pixel, however it can also run into

difficulties when the distortion is large because pieces and detail form the source-image

can be lost.

 19

2.4 Dome Construction

This section will detail the construction of the dome on which the final, warped images

are to be projected.

The dome is constructed of 40 cardboard triangles clamped together and resting a

top a custom build wooden base. 15 of the triangles are 35”x35”x35” and 25 of them are

31”x31”x35” as detailed in figure 2.3.1.

 20

Inside the dome we set up a spherical mirror to bounce the projected image off of and to

save space within the dome another mirror that reflects the projected image up to the

spherical mirror, which in turn bounced the warped image up on to the inside of the dome

surface, as shown in figure 2.4.2.

This set up, while convenient does add a second layer of distortion to the image. Now we

have to compensate for the distortion of projecting a flat image onto a curved surface, as

well as a surface that is angled away from the projecting lens. As you can see in figure

 21

2.4.2 the dome surface angles away from the projector causing the top of any un-warped

image projected on the surface to be stretched out. Therefore our correction warp needs

to be two-fold both correcting for the domes curvature and the angel at which the image

hits the surface of the dome.

The dome was designed and built by professor Ben Coonley of Bard College’s

electronic arts department for an exhibit at the Whitney Museum of American Art title

Dreamlands: Cinema and Art 1905-2016 [15]. Refer to the website listen in the table of

contents for more information.

 22

3

Software and Warping

3.1 Processing, Open CV

3.1.1 Processing

In order to correctly implement the projection and graphics for this project we

decided to use and IDE called processing coding in Java. The main interface utilized for

the code aspect of the project is Processing Pixels. Processing Pixels is a package built

into the Processing IDE; it allows the user to manipulate the pixel of any image via a

pixel array (see figure 3.1.1).

 23

 The pixels array is a one-dimensional array, where each pixel’s position in the array is

denoted by the x value plus the y value multiplied by the width of the image. This sets it

up so that each row of pixels is in order one after the other with the right most pixel of the

previous row being adjacent the left most pixel of the current row. As you can see in

figure 3.1.1 pixel 5 (position 4) is directly adjacent to pixel 6 (position 5) in the array.

However in the actual source image pixel 5 and 6 are not adjacent. In order to manipulate

pixels in the destination image pixels array, the pixels within the array must have their

RGB (Red, Green, Blue) values shifted based on pixels from the source image. The

destination image’s pixel array is then updated and the destination image is drawn based

on the new pixel array. Figure 3.1.2 shows a very basic example of pixel manipulation

using the processing pixels array.

Figure 3.1.2. The result of the following code - using the pixel array to assigning colors based on

brightness values.

 24

3.1.2 OpenCV

OpenCV is a resource library used for computer vision and image manipulations.

OpenCV stands for Open Source Computer Vision. Using the OpenCV library allows us

to implement data types and other resources that are not otherwise available in

Processing. Although primarily designed and written in C++ there are versions that work

with Java (what we are using), Python and MATLAB.

 25

3.2 Warping Strategies

There are many different ways to go about warping an image for projection. In this

section we will discuss the methods of warping that were attempted and why some failed.

For more detailed analysis of some methods see section 4.2.

3.2.1 Spherical Warping

One method often employed in planetarium style projection is something we will

refer to as spherical warping. Spherical warping means taking any image as input and

warping it uniformly to the surface of a sphere. To do this we used a processing graphic

module called “planetarium” which rendered an environment four times from four

different perspectives, one form each side of the sphere in order to create the illusion of a

3D sphere in the image. The idea was to use the same math and multi-rendering process

to warp an input image to fit the curvature of a sphere. Two problems were encountered

with this strategy, firstly that, as discussed before, the dome is not a perfect sphere and

the projection surface is angled in relation to the projector, this angle creates a vertical

stretch distortion that a basic spherical warp would not correct for. Second was the fact

that the domes surface is not oriented exactly inline with the camera. So the apex of the

dome is not the center of the projected image, which presented an issue for the spherical

warp because the environment generated by the multi-rendering approach required the

apex of the curvature to be in the center of the image.

 26

3.2.2 Affine Triangle Warping

As discussed in section 2.2.1 an affine transformation is any transformation of an

image that preserves parallel lines and distance ratios between pixels in straight rows or

columns in the source image. In order to implement this method successfully first we

would need to break the source image into triangles that would then be warped to fit the

perspective distortion of each section of the dome as depicted in figure 2.4.1. A grid

pattern would be projected onto the projection surface of the dome and the end points of

each of the triangles would be identified. Next the source image would be marked with

the end points of the triangles and each would be distorted via affine transformation to fit

the perspective distortion of the dome face. However the main problem this method

presented us was how to separate the source image in the appropriate triangles

corresponding to each triangle on the face of the dome. Since the end points on the

projected image would also be distorted there was no direct way to find the un-warped

end point locations on the source image. While simple in the practice of only using

affine warps, it is also inefficient, as multiple warps have to be preformed for each image

render.

 27

3.2.3 Forward Warping

A program would be written that would iterate through each pixel in the source

image and map it to a new location in the destination image. The main issue with a

forward approach is that there is no guarantee that the same pixel in the destination image

will not be filled by multiple from the source image. This also presents the potential of

gaps appearing in the destination image and leads us to the conclusion that the

destination-to-source warping strategy (3.2.4) is more advantageous.

 28

3.2.4 Backwards Warping

Backwards warping is the intuitive opposite of forwards warping. A loop iterates

through each pixel in an existing but empty destination image and fills each with RGB

values corresponding to a pixel in the source image. This strategy eliminated the potential

of gaps or pixels overlap in the destination image as every pixel is covered by the loop as

needed. The only significant draw back of the strategy is that sometimes pixels form the

source image can be ignored is they do not map to any pixel in the destination image, we

have found that this is almost always a non-significant effect to the image.

Both of these pixel array based warping strategies also run into the same trouble as the

spherical filter warping does, since any algorithm or equation would have to be based on

the x and y coordinates of each pixel. The warping factor would thus be based on the

distance form the center of the image for each pixel, so it would only be able to produce

spherical images as well.

3.2.5 OpenCV warping

The last method of image warping we will discuss uses the OpenCV library

available online. The OpenCV library in processing has built in objects called Mat

 29

(matrix) that allows us to simply give a method (getPerspectiveTransformation) an input

of PVectors in 2 arrays and it will output the matrix used to acquire the specific

perspective distortion between the two arrays of points. This matrix is then used in the

warpPerspetive method to apply that specific distortion to an image also given as input.

OpenCV allows for a much easier interface with the warping methods, however is does

present the challenge of acquiring a matrix-based transformation that is capable of

producing a spherical warp.

 30

4

Results

4.1 Image selection and Projector calibration

Before moving to the results of the image warping and projection there are several issues

and factors that need to be discussed.

One of the major issues that we encountered while setting up the projection was

choosing image that when warped would fit the shape of the dome projection surface.

Due to the limitation of the corrections that can be made on image in order for them to

not appear stretched or deformed even with correct perspective distortion image shape

and field of view (FoV) plays a significant role in how successful and projection is.

 31

4.1.1 Image Selection

As shown in figure 4.1 a regular image (1,200px X 675px as displayed on a computer

screen) used as an example of a pre-rendered warped image, when projected on the dome

surface with no other distortion shows large blank spaces on either side of the image.

These blank spaces are indicative of discrepancies in the field of view of the subject in

the dome, an image that would be better suited to correct for something like this would be

any image with a wider aspect ratio. However, if we use an image with wider aspect ratio

that is still intended for a flat surface we run into the issue of having an immersive

perspective in the dome when the original image was not immersive. The obvious

solution to this problem is to use panoramic images that are taken at a wider-than 100-

degree FoV. Using a panoramic image would allow for a more immersive experience in

the dome as well since a panoramic image is taken from a single point in space revolving

around the point in 100+ degrees. This effectively creates a circular plane around the

source point of the image that can be substituted with the dome surface, which is also

curved and then the other distortion present can be corrected via software.

 32

While simply using panoramic images sounds good in theory there are some

spatial limitations based on the physical set up of the dome and the projection surface’s

distance from the projector. The camera being used in this project for capturing images

projected on the dome surface is only equipped with a normal lens, in order to capture a

full panoramic image, we would need a wide angle or greater than 100-degree FoV

camera. Another spatial issue is the projector’s distance from the projection surface – due

to the close quarters inside of the dome only a portion of the computer screen can be

viewed on the projection surface. These factors lead to choosing a 900x600 pixel aspect

ratio for projection, so the entire image can be manipulated and viewed.

4.1.2 Projector Calibration

Due to the set up of the projector in the dome and the image being bounced of off

multiple mirrors there is a much larger distortion factor from minor shifts in the projector

placement. Before choosing the images to calibrate the warping matrix it was essential to

correct for any variation in projector placement, this includes lateral shifts and distance

 33

from the flat mirror. The issue of switching projectors midway through the project forced

us to deal in depth with projector positioning and the effect it can have on image

distortion. Due to technical difficulties that lead to the switching of projectors there was

also a 3-5 week period in which access to projecting images in the dome was not

possible, forcing the use of virtual simulations and only proof of concept test for the

software.

4.2 Initial projections and Code.

As described previously there are several different forms that the image-warping

piece of this experiment can take. While all revolve around images being projected on a

non-planar surface, namely the inside face of a dome, they each take different methods of

distorting the image to fit the projection surface. As described in section 3.2 the five basic

categories of warping that were considered are spherical warping, affine triangle warping,

forward pixel warping, backward pixel warping, and OpenCV based warping. In the

initial stages of set we were able to eliminate spherical warping, as we knew the dome

was not a perfect sphere and thus there would be far too much disparity between the

projected image and the projection surface.

4.2.1 Initial Affine Warping

Initially affine warping was also eliminated because there was no clear way to

separate the flat images into triangles corresponding to the dome’s structure. Due to the

distorted nature of our projection set up the image would have to be marked with the end

points of each triangle while being projected on the dome surface. While this part is

 34

entirely possible the next stage presents a problem that would initially double the

workload. First the image would have to be marked at the corresponding points on a flat

surface, or we would have to implement some method of unwarping the image captured

on the domes surface, once this image was flat we would be able to divide it into the

corresponding triangles and run each triangle through a perspective distortion to then be

recompiled and projected once again. However we still had to address not having a

method of unwarping the image, as all of the previous work done on distortion correction

in projected images relies on symmetry and the distortion coming from the lens with

which the image was captured.

4.2.2 Pixel Array Based Warping

Next we looked at the implementation of pixel array based warping. This would

include both forward and backward warping using the pixel array in the Processing IDE.

The base concept would be to create a method that calculates the distortion between a flat

grid image and the same grid image projected onto the dome. This distortion factor would

be calculated as a matrix.

We wrote a method taking 2 PVector arrays, each of length four, called

getTransform() (adhering to basic Java naming conventions). Each PVector array

contains 4 points from the flat image and the distorted image respectively. Then a

distortion factor is calculated in the form of a matrix. First each of the input arrays is

converted into a corresponding matrix representing the proportions of each image, ideally

the points chosen would be as close to each of the corners of each image as possible in

order to get the most accurate picture of the frame of each image. Next the eigenvalues

 35

are calculated and the final transposition matrix is created from the smallest eigenvectors.

This method produces a 3x3 homography initially but could, in theory, be scaled up to

create larger, more complicated matrices for non-homographic transformations. Next we

turned our attention to how to get the PVector arrays from each image and how to render

the transformed image form the transposition matrix. First we addressed the method used

to get the PVector points from each image, this is later used in the OpenCV warping

technique as well. Using the built-in void mousePressed() function in Java a method was

written to capture the mouse position as a PVector of x and y position wherever the

mouse was clicked.

This PVector is then automatically sorted into the appropriate array based on which

image it is in. Once each array size is equal to four the program call the getTransform()

method using the newly filled PVector arrays as input. Next, using the processing pixels

array defined in section 3.1.1 each pixel in the form of a homogeneous coordinate

PVector is fed though the matrix and its new x and x position is dictated based on the

matrix calculated by the getTransform() method. The code that was used to construct this

 36

software was based on a lab assignment form Professor O’Hara’s computer vision class

[Appendix C]. The problems we ran into with this method are centered around the

complexity of a non-affine warp being implemented on the image. As defined before an

affine wrap is any transformation of a grid that preserves straight lines in the image.

Since the Dome’s surface is curved the lines needed in the source image are distinctly not

straight and this presents a challenge when using a traditional matrix for warping the

image.

4.2.3 OpenCV Implementation

The shortcomings of the previous strategy lead us to the computer vision library

online, OpenCV. OpenCV has a structure called a Mat, which functions similarly to a

traditional matrix, but has an entry for every single grid value in an OpenCV image

object. Mat represents a n-dimensional dense numerical array, used to store values,

matrices and equations. The complexity of a Mat object in OpenCV allowed us to

achieve a much more accurate warp, having a data entry for each of the pixels from the

source image, dictated by passing the Mat generating function the size of the source

image as an argument, was a great advantage. This strategy worked very similarly to the

forward pixel based warping. Initially the images are declared and converted into

OpenCV objects so they will be able to manipulate them using the algorithms later. Next

we use the same method to acquire PVector coordinates from both a flat image and a

warped image as described above. The same PVector arrays are input into a method

called getTransform() as well. The PVector arrays are then converted into processing

 37

based Point objects, which are then converted into MatOfPoint2f objects one each for the

warped image and the source image. The MatOfPoint2f object is a type of Mat with the

image processing (imgproc) library of OpenCV, then a method called

imgproc.getPerspectiveTransform() taking each of the two MatOfPoint2f objects as

arguments, calculates the differences between the two Mat objects and outputs that

difference as a third Mat object. This is done by calculating a 3x3 matrix based on four

input points in each image and then formatting a Mat object based on the 3x3 matrix.

Once the Mat object is created it is simply run through a method the converts the Mat and

an input PImage to a new PImage with the perspective distortion represented by the Mat

object. This PImage can then be drawn by Processing’s Draw() function.

We had little success with this strategy as well since it was only able to create a Mat

based on a 3x3 matrix – which was not clearly documented, and, as before, only a

homographic transformation (see figure 4.4). Experiments were preformed with different

arrays of input points (see figure 4.5) and varying the matrix size in order to have more

 38

degrees of freedom, but we were only ever able to achieve a homographic transformation.

This then turned us back to the affine warping strategy.

4.2.4 Piecewise Affine Warping

It seemed possible that we could manipulate this OpenCV based warping method to

only warp certain parts of the source image, so once again if we could find a way to

divide an image into the correct triangles, each triangle could be warped to fit a

corresponding component of the dome. This was accomplished using the same

 39

getTransform() method as before. As well as a similar strategy for capturing the mouse’s

position in a PVector to be taken as input for this method. The basic process behind

piecewise affine warping here is

1. Split the image into corresponding triangles based on dome components, and on

image contents, not vertex location - being sure to preserve their X and Y

position.

2. Warp each triangle using a Mat derived from the triangle and a master warp

image.

3. Re-render the full image out of each now-warped triangular piece of the image.

The main change from the previous software is the addition of a method called

alphaTriangle(Point[], PImage). This is used to separate out the triangle that exists based

on the vertices of the triangle identified by mouseclicked. This is done by first

calculating an alpha map of the image based on the given vertices with the Jama.solve

method, which is passed a matrix of the three vertices in the form

𝐴 = [
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3
1 1 1

]

And a matrix created based on the x and y coordinates of each pixel in the returned

PImage

𝑏 = [
𝑖
𝑗
1

]

 A.solve(b) (an equation of the form Ax=b) is solved for x, which is then given as a 3x1

matrix

𝑥 = [
𝑎
𝑏
𝑐

]

 40

Next we check if a, b and c are all positive coefficients, if they are it means that the pixel

at (i, j) can be solved for using the vertices of our triangle and thus pixel (i, j) is inside of

our triangle. Looping through all the pixels in the given PImage, alpha values of pixels in

the triangle are set to 255 (completely opaque) and alpha values of pixels outside of the

triangle are set to 0 (completely transparent). Note that these alpha values are only

manipulated in the output PImage and nothing in the source image is actually modified.

The output PImage is warped with the same method before and is then added to global

list PImage[] imgs. The counters and arrays are then reset so the next triangle can be

identified. Once all of the triangles are warped and added to the array a PGraphics object

is rendered from each of the PImages in the array (each containing one warped triangle)

and the final sketch is rendered for projection in the draw() function. The other option

for rendering the image of combined triangles is to create one master PImage and or each

image consisting of a single triangle transfer all of the pixels with alpha values of 255 to

the master PImage and ignore all other pixels. Both options we explored (see figure 4.8).

4.3 Results and Final Projections

In order to calibrate our software to the specific distortions of the dome we

projected a standard grid pattern with vertices marked every 4 units on the to dome

surface. Then we marked where the field of view of the camera used to capture the

images ended, figure 4.6 shows this, as well as an estimation of each triangle visible in

the domes structure and an estimation of the borders of the projection surface visible

through the camera.

 41

Next we ran the un-warped grid image through the piecewise affine warping code,

making sure that each triangle was correctly marked with the points on the grid image

above. The marking of these triangles proved to be a difficult to control variable in the

consistency of the projections (see figure 4.7).

Another issue that arose in terms or projection consistency was the pros and cons of using

different rendering methods. As discussed at the end of section 4.2 there are a few

 42

different options when it comes to rendering each of the triangles into one draw-able

PImage, PGraphics or a master PImage. PGraphics gives us the option of working from

an array of unnamed PImages that are simply created from one image being manipulated

each time the alphaTriangle() method is called. This however then presents the issues of

more pointers and more memory required to process large images with many pieces.

Creating a master PImage allows us to use the pixel array and transfer all of the pixels

that are solved for based on the vertices of each triangle to the master PImage.

After fine-tuning the method for identifying the triangles and their

correspondences the final result of the project can be seen in figure 4.9 below. Note that

there are slight discrepancies in the area of the triangles and gaps between in the final

rendered image. These discrepancies are due to translating the pieces to the maser

PImage only based on independent pixel arrays instead of implementing some method

that would base the triangles position on the other triangles existing already in the master

 43

PImage – thus making it so there would only be a need to anchor the first triangle

translated into the master PImage.

The final change made to the piecewise affine warping program was to implement

getAffineTransform() instead of the previous use of getPerspectiveTransform() in order to

have the method take an input of 3 points (each of the three vertices of each triangle) to

eliminate variation based on estimating the center point of the triangle as a fourth point.

The original source image we used for the final warping and projection – chosen because

it has a significant number of straight and parallel lines.

 44

Above are two examples of a final render of the cityscape image after being run through

the Piecewise affine warping software. There is a bit of distortion and inconsistency in

selecting the exact vertices of each triangle that causes the black gaps to appear between

each piece, at this point in the development of our software this is unavoidable except by

precise clicking.

 45

 46

Above is the final projection (first an unmodified cityscape for comparison) using the

cityscape image, some corrections still need to be made for tighter structure of the final

rendered image as well as more exact alignment of the dome projection surface in

relation to the projector face. However, it is noticeable that the perspective of the

cityscape and the line are correct for each of the triangles – proving that the warping

works. The shortcoming of the software occurs in the gaps in rendering.

 47

5

Conclusions and Future Work

5.1 Final Conclusions and analysis

We have presented 5 potential strategies for warping images to fit the distortion of

a projection surface; spherical filters, piecewise affine warping, forward and backward

pixel array-based warping, and warping using OpenCV algorithms. Each presents its own

strengths and weaknesses, as discussed in detail earlier. For this project the most

successful strategy for warping to fit the distortion of a flat, or 2D projection surface was

the basic OpenCV warping. As for the dome and other 3D projection surfaces there are a

few options. As discussed before spherical or fisheye filters are easy to implement but

difficult to change if the projection surface is not a perfect sphere with the center of the

projection on the center axis of the sphere. Forward and backward pixel array warping

proved to have the same short comings, since the transformation had to be uniform across

all pixels – based usually on distance form the center most pixel, it caused a perfect

circular warp around which ever pixel is selected to be the root. The OpenCV strategies

 48

proved to be the best for both 2D and 3D projection surfaces, using the basic algorithms

in OpenCV we were able to easily correct for any 2D distortion. And using the initially

proposed piecewise affine warping, implemented with OpenCV we were able to create

software specifically tailored to our dome.

5.2 Future Work

The obvious next step after the work done in this project would be to alter the

software we made for 3D warping to fit any given projection surface, such as one not

constructed of triangles. Continuing this project we could also build software that would

calculate the accuracy of potential different warping strategies as well as detect the edges

and vertices of the image or piecewise triangles automatically.

To correct some of the errors in this project as it is, future research could build on

our piecewise warping function and find a way of more accurately calculating the

positioning of the triangles using either a 3D model of the dome with precise spatial

measurements or by anchoring the projected triangles to the vertices of other triangles.

There may also be a case to be made for redoing some of the research outlined here with

more precise technology – a camera with a better FoV to capture more of the domes

projection surface for example.

Research could be conducted with multiple projections and multiple projections

building on work such as [11] using a two-view method for more accurate representation

of the images in 3D spaces.

 49

This project may also serve as a basis for other work surrounding projective

transformation on images, with potential additions such as interaction with the projected

environment, real time tracking that would shift the warp of the projected image based on

the viewer’s position, or converting the warping algorithm into a filter that could be

applies to videos frame by frame for real time feed back to the dome. On the more

technical side of this project, more work could be done on calculating the specific

position of the camera in relation to the projection plane and the image plane when

viewed on a computer screen as some of Paul Bourke’s work details.

Lastly this project could be the starting point of building a media viewing

application with different image filters and distortions based on the projection surface – it

does not seem possible to render a video frame-by-frame to be projected into the dome,

but it is possible that a video playing application could be built that would contain the

warp designated by software like ours as a filter for the video to be played trough.

 50

References

[1] Azuma, Robert T. Survey of Augmented Reality, Presence: Teleoperators & Virtual

Environments, MIT Press Journal (1997)

[2] Aggerwal, J.K. & Shishir Shah. Intrinsic Parameter Calibration Procedure for a (high-

distortion) Fish-eye Lens Camera With Distortion Model and Accuracy Estimation,

Pattern Recognition Vol. 29 No. 11 pp. 1775-1788 (1996)

[3] Vadaldi, Andrea, Brian Fulkerson. VLFeat – An Open and Protable Library of

Computer Vision Algorithms, (2008)

[4] Bourke, Paul. Converting a Fisheye Image into a Panoramic, Spherical or Perspective

Projection, (November 2004)

[5] Hartley, Richard, Sing Bing Kang. Parameter-Free Radial Distortion Correction with

Center of Distortion Estimation, IEEE Transactions of Pattern Analysis and Machine

Intelligence, Vol. 29, No. 8 (August 2007)

[6] Borenstein, Greg. OpenCV for Processing 0.5.2,

https://github.com/atduskgreg/opencv-processing

[7] Weinbaum, Stanley Grauman, Pygmalion’s Spectacles, 1935

[8] Davenport ET. AL. Synergistic Storyscapes and Constructionist Cinematic Sharing,

IMB Systems Journal, Vol. 39 No’s 3&4, (2000)

[9] Horowitz, Ken. Sega VR: Great Idea or Wishful Thinking, Sega-16 Online Archive,

(December 2004)

[10] “Dome Projection.” Condeanticode. Codeanticode, 07 September 2007,

<https://codeanticode.wordpress.com/2013/09/06/dome-projection/>.

 [11] Thi, Van Mai Nguyen. Development and Optimization of a Two-View Model for

Anamorphic Projection on Planar Surfaces, Bard College Division of Science,

Mathematics and Computing (May 2015)

[12] OpenCV Documentation, http://docs.opencv.org/2.4/index.html

[13] JAMA: A Java Matrix Package." JAMA: Java Matrix Package. N.p., n.d. Web. 29

Apr. 2017. <http://math.nist.gov/javanumerics/jama/>.

[14] Foundation, Processing. "Reference. Processing." Processing Reference. N.p., n.d.

Web. 29 Apr. 2017. <https://processing.org/reference/>.

[15] Coonley, Ben. Dreamlands: Immersive Cinema and Art 1905-2016. Whitney

Museum of American Art, New York, NY. http://bencoonley.com/

https://github.com/atduskgreg/opencv-processing
http://docs.opencv.org/2.4/index.html

 51

Appendix A

Processing Object Documentation [14]

PImage: Data type for storing images. Processing can display .gif, .jpg, .tga, and .png images. Images may be

displayed in 2D and 3D space. Before an image is used, it must be loaded with the loadImage() function.

The PImage class contains fields for the width and height of the image, as well as an array called pixels[] that

contains the values for every pixel in the image. The methods described below allow easy access to the image's

pixels and alpha channel and simplify the process of compositing.

Before using the pixels[] array, be sure to use the loadPixels() method on the image to make sure that the pixel data

is properly loaded.

To create a new image, use the createImage() function. Do not use the syntax new PImage().

PVector: A class to describe a two or three dimensional vector, specifically a Euclidean (also known as

geometric) vector. A vector is an entity that has both magnitude and direction. The datatype, however, stores the

components of the vector (x,y for 2D, and x,y,z for 3D). The magnitude and direction can be accessed via the

methods mag() and heading().

In many of the Processing examples, you will see PVector used to describe a position, velocity, or acceleration.

For example, if you consider a rectangle moving across the screen, at any given instant it has a position (a vector

that points from the origin to its location), a velocity (the rate at which the object's position changes per time unit,

expressed as a vector), and acceleration (the rate at which the object's velocity changes per time unit, expressed

as a vector). Since vectors represent groupings of values, we cannot simply use traditional

addition/multiplication/etc. Instead, we'll need to do some "vector" math, which is made easy by the methods

inside the PVector class.

Pgraphics: Main graphics and rendering context, as well as the base API implementation for processing

"core". Use this class if you need to draw into an off-screen graphics buffer. A PGraphics object can be

constructed with the createGraphics() function. The beginDraw() and endDraw() methods (see above example) are

necessary to set up the buffer and to finalize it. The fields and methods for this class are extensive. For a

complete list, visit the developer's reference.

To create a new graphics context, use the createGraphics() function. Do not use the syntax new PGraphics().

http://processing.github.io/processing-javadocs/core/

 52

Appendix B

Java Code

1. OpenCV_Warp
2.
3. import gab.opencv.*;
4. import org.opencv.imgproc.Imgproc;
5. import org.opencv.core.MatOfPoint2f;
6. import org.opencv.core.Point;
7. import org.opencv.core.Size;
8.
9. import org.opencv.core.Mat;
10. import org.opencv.core.CvType;
11.
12. import Jama.*;
13. import processing.video.*;
14.
15. //create the two opencv objects we will use for the images
16. OpenCV opencvSrc, opencvWarp;
17. // create the PImage used to assign to the Opencv objects and for the final render
18. PImage src, warp, dest;
19.
20. //set parameters of how many points we need to close the arrays
21. int np1 = 0;
22. int np2 = 0;
23. int imgNum = 0;
24.
25. //create the arrays that will be given to getTransformation as input
26. ArrayList<PVector> srcArray = new ArrayList<PVector>();
27. ArrayList<PVector> dstArray = new ArrayList<PVector>();
28.
29. //define our Mat object
30. Mat warpMat;
31.
32. void setup() {
33. src = loadImage("Grid.jpg"); //unwarped grid
34. size(src.width * 2, src.height);
35. //establish src as an opencv object
36. opencvSrc = new OpenCV(this, src);
37. opencvSrc.blur(1);
38. opencvSrc.threshold(120);
39.
40. warp = loadImage("warpedgrid.jpg"); //distorted grid that we want to find the

transformation of
41. opencvWarp = new OpenCV(this, warp);
42. opencvWarp.blur(1);
43. opencvWarp.threshold(120);
44. }
45.
46. //using the mouse cursor, fill each of the PVector arrays with 4 cooresponding points

from each image
47. void mousePressed() {
48. int i = int(mouseX / (src.width));
49. //check to see if the cursor is in the left image (src)
50. if (i == 0) {
51. //create a PVector of the mouse location in the form (mouseX, mouseY, 1)
52. srcArray.add(np1, new PVector(mouseX % (src.width), mouseY % (src.height), 1));
53. np1++;

 53

54. //print out the loaction so we have conformation the array is being popualted
55. println("pic 1" + srcArray.get(np1-1));
56. //check to see if cursor is in right image (warp)
57. } else if (i == 1) {
58. dstArray.add(np2, new PVector(mouseX % (src.width), mouseY % (src.height), 1));
59. np2++;
60. println("pic 2" + dstArray.get(np2-1));
61. }
62. //if each array is populated by at least 4 PVector points initiate the matrix

estimation
63. if (np1 >=4 && np2 >= 4 && np1 == np2) {
64. warpMat = warpPerspective(srcArray, dstArray, src.width, src.height);
65. }
66. }
67.
68. //using the populated PVector arrays and built in OpenCV finctions, to calculate the

transformation
69. //between the two images the points are sourced form
70. Mat getTransform(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray) {
71. Point[] srcPoints = new Point[4];
72. Point[] dstPoints = new Point[4];
73. //convert each PVector ArrayList to an array of Points (a intrinsic prcessing object)
74. for (int i = 0; i <4; i++) {
75. srcPoints[i] = new Point(srcArray.get(i).x, srcArray.get(i).y);
76. }
77.
78. for (int i = 0; i <4; i++) {
79. dstPoints[i] = new Point(dstArray.get(i).x, dstArray.get(i).y);
80. }
81. //create a MatOfPoint2f object from each of the point array
82. MatOfPoint2f srcMarker = new MatOfPoint2f();
83. srcMarker.fromArray(srcPoints);
84.
85. MatOfPoint2f dstMarker = new MatOfPoint2f();
86. dstMarker.fromArray(dstPoints);
87. //using the Image Processing module in OpenCV build the Mat object using a built in
88. //function getPerspetiveTransform.
89. return Imgproc.getPerspectiveTransform(dstMarker, srcMarker);
90. }
91.
92. //applies the transformation Mat calculated above to the Opencv object created for src
93. Mat warpPerspective(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray, int w, int

h) {
94. Mat transform = getTransform(srcArray, dstArray);
95. Mat unWarpedMarker = new Mat(w, h, CvType.CV_8UC1);
96. Imgproc.warpPerspective(opencvSrc.getColor(), unWarpedMarker, transform, new Size(w,

h));
97. return unWarpedMarker;
98. }
99.
100. void draw() {
101. //if the PVector arrays are not yet full
102. if (np1 < 4 || np2 < 4) {
103. image(src, 0, 0);
104. noFill();
105. stroke(0, 255, 0);
106. strokeWeight(4);
107. translate(src.width, 0);
108. image(warp, 0, 0);
109. //once arryas are full create a new PImgae and convert the Mat of src and

the transfomration matrix to that PImage.

 54

110. } else if (np1 >= 4 && np2 >= 4 && np1 == np2) {
111. dest = createImage(src.width, src.height, ARGB);
112. opencvSrc.toPImage(warpMat, dest);
113. image(dest, 0, 0);
114. }
115. }

1. //Triangle Warp
2.
3. import gab.opencv.*;
4. import org.opencv.imgproc.Imgproc;
5. import org.opencv.core.MatOfPoint2f;
6. import org.opencv.core.Point;
7. import org.opencv.core.Size;
8.
9. import org.opencv.core.Mat;
10. import org.opencv.core.CvType;
11.
12. import Jama.*;
13. import processing.video.*;
14.
15. OpenCV opencvSrc, opencvWarp, opencvTri;
16. PImage src, warp, tri, destTemp, dest, real;
17. int MAXIMGS = 13; //number of tirangles in projection surface
18.
19. PGraphics output; //another option for final render
20.
21. PImage[] imgs = new PImage[MAXIMGS];
22. int np1 = 0; //number of points in image 1
23. int np2 = 0; //number of points in image 2
24. int imgNum = 0; //number of warped pieces
25.
26. ArrayList<PVector> srcArray = new ArrayList<PVector>();
27. ArrayList<PVector> dstArray = new ArrayList<PVector>();
28.
29. Mat warpMat;
30.
31. Point[] srcPoints = new Point[3];
32. Point[] dstPoints = new Point[3];
33.
34. void setup() {
35. real = loadImage("real.jpg");
36.
37. src = loadImage("grid layer.jpg");
38. size(src.width * 2, src.height);
39. opencvSrc = new OpenCV(this, src);
40. opencvSrc.blur(1);
41. opencvSrc.threshold(120);
42.
43. warp = loadImage("realgrid.jpg");
44. opencvWarp = new OpenCV(this, warp);
45. opencvWarp.blur(1);
46. opencvWarp.threshold(120);
47.
48. output = createGraphics(src.width, src.height, JAVA2D);
49.
50. destTemp = createImage(src.width, src.height, RGB);
51. dest = createImage(src.width, src.height, RGB);
52. }
53.

 55

54. void mousePressed() {
55. int i = int(mouseX / (src.width));
56. if (i == 0) {
57. srcArray.add(np1, new PVector(mouseX % (src.width), mouseY % (src.height), 1));
58. np1++;
59. println("pic 1" + srcArray.get(np1-1));
60. } else if (i == 1) {
61. dstArray.add(np2, new PVector(mouseX % (src.width), mouseY % (src.height), 1));
62. np2++;
63. println("pic 2" + dstArray.get(np2-1));
64. }
65. if (np1 >=3 && np2 >= 3 && np1 == np2) {
66. toPointArray(srcArray, dstArray);
67. alphaTriangle(srcPoints, src);
68. warpMat = warpPerspective(srcArray, dstArray, src.width, src.height);
69. opencvTri.toPImage(warpMat, destTemp);
70. renderPixel(destTemp, dest);
71. imgs[imgNum] = dest;
72. imgNum++;
73. println(imgNum);
74. np1 = 0;
75. np2 = 0;
76. println("reset" + imgNum);
77. }
78. }
79.
80. void alphaTriangle(Point[] points, PImage img) {
81. /*loop through the pixels in our image and based upon the three
82. vertices selected for each triangle, calculate whether each pixel
83. exists in the triangle defined by three selected ponts, if so set alpha
84. value to max, if not set alpha value to 0. */
85.
86.
87. tri = createImage(img.width, img.width, ARGB);
88.
89. Matrix alphaMat;
90.
91. double[][] array = {
92. {
93. points[0].x, points[1].x, points[2].x
94. }
95. , {
96. points[0].y, points[1].y, points[2].y
97. }
98. , {
99. 1, 1, 1
100. }
101. };
102. Matrix pointMat = new Matrix(array);
103. pointMat.print(3, 3);
104.
105. img.loadPixels();
106. tri.loadPixels();
107.
108. for (int y = 0; y < img.height; y++) {
109. for (int x = 0; x < img.width; x++) {
110. int loc = x + y*img.width;
111.
112. double[] tempArray = {
113. x, y, 1
114. };

 56

115.
116. Matrix p = new Matrix(tempArray, 3);
117.
118. float r = red(real.pixels[loc]);
119. float g = green(real.pixels[loc]);
120. float b = blue(real.pixels[loc]);
121.
122. alphaMat = pointMat.solve(p);
123.
124. if (alphaMat.get(0, 0) >= 0 && alphaMat.get(1, 0) >= 0 && alphaMat.get(2,

0) >= 0) {
125. tri.pixels[loc] = color(r, g, b, 255);
126. } else {
127. tri.pixels[loc] = color(r, g, b, 0);
128. }
129. }
130. }
131. tri.updatePixels();
132. opencvTri = new OpenCV(this, tri);
133. }
134.
135. void toPointArray(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray) {
136. //converts the PVector arrays created by mousepressed to Point object arrays
137.
138.
139. for (int i = 0; i <3; i++) {
140. srcPoints[i] = new Point(srcArray.get(i).x, srcArray.get(i).y);
141. }
142.
143. for (int i = 0; i <3; i++) {
144. dstPoints[i] = new Point(dstArray.get(i).x, dstArray.get(i).y);
145. }
146. }
147.
148.
149. Mat getTransform(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray) {
150. //same as OpenCV_warp except uisng arrays of 3 Points and
151. //Affine transformation matrices instead
152.
153.
154. MatOfPoint2f srcMarker = new MatOfPoint2f();
155. srcMarker.fromArray(srcPoints);
156.
157. MatOfPoint2f dstMarker = new MatOfPoint2f();
158. dstMarker.fromArray(dstPoints);
159.
160. return Imgproc.getAffineTransform(dstMarker, srcMarker);
161. }
162.
163. Mat warpPerspective(ArrayList<PVector> srcArray, ArrayList<PVector> dstArray,

int w, int h) {
164. Mat transform = getTransform(srcArray, dstArray);
165. Mat unWarpedMarker = new Mat(w, h, CvType.CV_8UC1);
166. Imgproc.warpAffine(opencvTri.getColor(), unWarpedMarker, transform, new

Size(w, h));
167. return unWarpedMarker;
168. }
169. }

 57

Appendix C

Other Code Resources

imgProc: http://docs.opencv.org/2.4/modules/imgproc/doc/imgproc.html

OpenCV’s image processing package – includes functions: warpPerspective,

getPerspectiveTransform & warpAffine

JAMA: A basic linear algebra package for Java. It provides user-level classes for

constructing and manipulating real, dense matrices. It is meant to provide sufficient

functionality for routine problems, packaged in a way that is natural and understandable

to non-experts.

JAMA is comprised of six Java classes: Matrix, CholeskyDecomposition,

LUDecomposition, QRDecomposition, SingularValueDecomposition and

EigenvalueDecomposition.

The Matrix class provides the fundamental operations of numerical linear algebra.

Various constructors create Matrices from two dimensional arrays of double precision

floating point numbers. Various gets and sets provide access to submatrices and matrix

elements. The basic arithmetic operations include matrix addition and multiplication,

matrix norms and selected element-by-element array operations. A convenient matrix

print method is also included.

Five fundamental matrix decompositions, which consist of pairs or triples of matrices,

permutation vectors, and the like, produce results in five decomposition classes. These

decompositions are accessed by the Matrix class to compute solutions of simultaneous

linear equations, determinants, inverses and other matrix functions. The five

decompositions are

• Cholesky Decomposition of symmetric, positive definite matrices

• LU Decomposition (Gaussian elimination) of rectangular matrices

• QR Decomposition of rectangular matrices

• Eigenvalue Decomposition of both symmetric and nonsymmetric square matrices

• Singular Value Decomposition of rectangular matrices

The current JAMA deals only with real matrices. We expect that future versions will also

address complex matrices. This has been deferred since crucial design decisions cannot

be made until certain issues regarding the implementation of complex in the Java

language are resolved. [13]

Professor O’Hara’s Computer Vision Assignment - http://drablab.org/keithohara/cmsc-

317-2014f/assignments/cmsc317assignment6.html

http://docs.opencv.org/2.4/modules/imgproc/doc/imgproc.html

	Beyond Homographies: Exploration and Analysis of Image Warping for Projection in a Dome
	Recommended Citation

	tmp.1493761734.pdf.dN3Vh

