
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2017 Bard Undergraduate Senior Projects

Spring 2017

Mouse vs. Machine: The Game Mouse vs. Machine: The Game

Cafferty Aiko Frattarelli
Bard College, cf4707@bard.edu

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2017

 Part of the Artificial Intelligence and Robotics Commons, Digital Humanities Commons, and the

Graphics and Human Computer Interfaces Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Recommended Citation Recommended Citation
Frattarelli, Cafferty Aiko, "Mouse vs. Machine: The Game" (2017). Senior Projects Spring 2017. 150.
https://digitalcommons.bard.edu/senproj_s2017/150

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bard College

https://core.ac.uk/display/232615247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2017
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2017?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1286?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://digitalcommons.bard.edu/senproj_s2017/150?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Mouse Versus Machine: the Game

Senior Project submitted to

The Division of Science, Mathematics, and Computing

of Bard College

by

 Cafferty Aiko Frattarelli

AnnandaleonHudson, New York

May 2017

Acknowledgements

I would like to thank my senior project advisor, Khondaker Salehin, for his help making this

project a reality, and my academic advisor, Keith O’Hara for his help and encouragement

throughout my school career.

Particular thanks to Benjamin Newman, who provided many useful tools and another set of eyes

for my code, and William Flack, who let me use his dorm as a spare room to work in, and for the

lunches we all spent together getting much needed relaxation.

And to my friends who I worked alongside to get our projects done, Nicolas Engst Matthews,

who I must also thank for proofreading my writing, Hannah Livant, Haley GossHolmes, and

Hayden Zahn. I am terrifically grateful for your company.

And to all my friends throughout college, making these years to remember.

And to my family, without whom I wouldn’t be here at all.

Abstract

Many modern video games built by big name companies are coded by a group of people

together using, and possibly modifying, an already designed game engine. These games usually

have another group of people creating the artwork. In this project, I coded and designed a video

game from scratch, as well as created all the artwork used in the game. The player controls a

mouse character who fights a variety of monsters. In order to create the complexity of the game, I

implement basic neural networks as the enemy artificial intelligence, i.e. the decision making

process of the enemy. It uses this to learn how to combat a player from the player’s actions,

including movement and attacking. Movement is implemented through changing the player’s

position on the screen, and attacking creates an image which causes damage to other characters.

The program is coded in Python, using the Pygame library for displaying graphics. It is currently

an alpha version, with the code built and all the gameplay elements in place. With the existing

foundation, this game, “Mouse versus Machine”, can be extended into a fullfledged game in the

future.

Table of Contents
Acknowledgements ……………………………………………………………..…....……. i

Abstract …………………………...…………………………………………..……....….. iii

Table of Contents ……………………………………………………………..….……….. v

1 Introduction ……………………………………………………………...…………….. 1

2 An Overview of the Code ……………………………………………………………... 3

2.1 Sprite class ……………………………………………………….………….. 4

2.2 Character class ………………………………………………………………. 6

2.3 Enemy class …………………………………………………………………. 8

2.4 Inanimate class …………………………………………………….……….. 10

2.5 Attack class ……………………………………………………………….... 10

2.6 Door class ………………………………………………………………….. 11

2.7 Words class ……………………………………………………………….... 12

2.8 Main function 12

3 Neural Networks ……………………………………………………………………... 15

3.1 The Basics …………………………………………………………………. 15

3.2 The Code …………………………………………………………………… 16

3.2.1 The Variables …………………………………………………….. 17

3.2.2 The Functions ……………………………………………………. 18

4 Art Design and Progression ………………………………………………………….. 21

5 The Process …………………………………………………………………………… 27

5.1 The Coding …………………………………………………………………. 27

5.2 The Bugs (and other technical difficulties) ……………………………..… 29

6 Conclusion ……………………………………………………………………………. 31

7 Appendix …………………………...……………………………………………….... 33

7.1 Main Code …………………………………………………………………. 33

7.2 Test Functions ……………………………………………………………… 51

7.3 Survey ………………………………………………………………………. 54

8 Bibliography ………………………………………………………………………….. 55

1

1
Introduction

This project started with the concept of building a game from scratch. The goal was to

learn about the building blocks of video games and how those can be expanded upon, as well as

using these building blocks as a venue for a decision-making artificial intelligence (A.I.). The

process involved research into game design and A.I. development. I wanted to use minimal

outside libraries aside from one for graphics to display the game. I also wanted to incorporate

different aspects of my college experience, including my computer science experiences,

particularly in Object Oriented Programming, and Intelligence and Perception in Robotics, as

well as my art based experiences - mainly Cybergraphics - though with a basis in the various

other art classes I have taken, as well as my job on campus as a poster designer.

Game design is a complex subject involving many facets of computer programming, as

well as art and design. Since I am only one person, I could not hope to rival the works of major

video game companies and various designers using video game production as their sole form of

2

employment. This limitation caused me to focus on creating the building blocks of the game and

making my own program that I could work with and continue building into a completed game.

This would also allow me to have a strong understanding of what was and was not possible with

the game, and why. The goal was to have complete control over the game design and structure,

as well as working to optimize the game processes for minimum lag overall.

The game design was influenced by many sources, including my own experience with

video games, reading various articles about video games, and discussing video game design and

game mechanics with my peers. I ended up going with a relatively common overall structure,

with a top-down viewpoint of a dungeon where the player controls one character and progresses

through a series of rooms, fighting different enemies along the way. Some games that are

comparable to this are the old Legend of Zelda games for the GameBoy, and the game Binding

of Isaac, a more recent game for the PC. These are both variations of top-down two-dimensional

games. Two-dimensional games are generally either top-down or side-scrolling. Viewpoints, and

graphics in general, get more complicated and computer intensive once it gets to

three-dimensional representations, so I kept this game two-dimensional.

The main goals behind using a neural network for the A.I. in this game was to have an

amount of unpredictability and reactability in the enemy characters’ actions. The goal was not to

have a perfect A.I., because that does not lead to particularly entertaining gameplay. Since this

neural network starts with random weights and gathers data as the game progresses, it fulfills

both of the criteria of being unpredictable and reactive.

3

2
An Overview of the Code

This game was coded in Python 2.7.11, implementing the Pygame and NumPy modules.

Pygame is a Python library used for building video games. In this project it was used for its

graphics and game time functions. The NumPy module was used for all the mathematical

functions that weren’t basic arithmetic, including basic trigonometric math to calculate in game

distances, as well as array multiplication for the neural network, and random number generation

for both the neural network and determining how the enemy characters walk whcn they are not

aimed towards a specific location in the game.

Classes

Since this game was programmed using object-oriented programming, it is made up of

several class objects, which are listed and described below, along with their initial variables and

4

functions; not including the basic functions that only set different variables. The code is listed in

the appendix for reference. Notice the NeuralNetworkAI class is not assessed here. This is

because it is more complex and will be covered thoroughly in the next section.

2.1 The Sprite class

This class is the basic class used to display any sort of image that may need to be

interacted with or moved. It is the parent class of every class in the program other than

the NeuralNetworkAI, since every other class represents some in-game object..

Variables:

“position” a tuple holding the x and y coordinates of the Sprite

“size” a tuple holding the width and height of the Sprite

“image” loads and stores the image for the Sprite

“sprite” stores the Sprite’s display image, which can be changed, for when multiple

images are possible

“interactable” a Boolean that says whether a Sprite can be interacted with (i.e. there is a

response if the player presses the interact key while their character

is looking at the Sprite)

“text” a tuple of strings that display when the object is interacted with

“substantial” Boolean that determines whether an object can be walked through or not

“flammable” Boolean that determines if an object is hurt by the player’s attack

“enemy” Boolean that determines if the object is an enemy character

5

“direction” an integer value between -3 and 4 that determines which direction the Sprite

is facing

The Main Functions:

Place takes a position and a surface and uses Pygame’s blit function to display the

object on the surface

DoesOverlap checks if the current object overlaps with another object, provide to the

function, by comparing the two objects’ position and size, used in

various collision detections

OutOfBounds checks if object goes off the screen

CanInteract takes another object and sees if the current object (usually the player

character) can interact with the other object, taking into account if

the other object is “interactable” and the distance between the

current object and the other object. It tests this by seeing if the

player’s sprite would overlap, using the DoesOverlap function,

with the object if moved forward by half of the Sprite’s size.

SetText sets the text to the given tuple of strings and sets the Sprite’s “interactable”

variable to the given Boolean, “interact”, defaulting to True, since

generally if the text is set, the object can be interacted with to at

least provide a text response. Will be set to False if removing the

text.

Delta converts a given direction and distance into change in x and y, returned as a

tuple

6

DistanceTo finds the distance from approximately the edge of one object to the edge of

the other, using the size of the object to find the center as well as

finding the approximate distance from the center to the edge

SetDirection sets “direction” to the given direction. If given an integer outside of integer

values between -3 and 4, the function converts it to inside the

range. SetDirection also changes the sprite displayed to reflect the

set direction.

2.2 The Character class

The Character class is a child class of the Sprite class. It is the base class for all

characters, mainly the player character and the enemy monsters.

Variables:

“attributes” a list with four elements, corresponding to the Character’s health, attack, defense,

and speed, in that order. Health determines how many hits a Character

can take before it dies. Attack determines how often a Character can

attack. Defense gives the odds of an attack hitting the Character. Speed

determines how far a Character can go each game tick.

“canAttack” if “canAttack” is zero, the Character can attack, otherwise “canAttack” is an

integer above zero that is manipulated by the IncrementAttack function

to reach zero in a time frame based on the Character’s attack attribute.

“level” an integer that determines the difficulty of the enemies the Character, applicable

to the player character.

7

“stepNum” an integer that keeps track of the number of ticks the Character has walked, so

the image can change depending on the number of steps and looks like

it’s walking.

“step1” stores the loaded and scaled image for the first part of the walking animation.

“step2” stores the loaded and scaled image for the second part of the walking animation.

“attack” creates and stores an Attack object with a default attack image.

The Main Functions:

GetHealth, GetAttack,

GetDefense, and

GetSpeed

returns the value of each respective attributes from the “attributes”

list

AdjustAttribute takes a string “Health”, “Attack”, “Defense”, or “Speed” and adds

the given change value to the attribute to adjust it. The

change value can be negative.

CanAttack returns True if “canAttack” is zero, and sets “canAttack” to a

higher integer based on the Character’s attack attribute,

otherwise it returns False.

IncrementAttack decrements the “canAttack” value by one each game tick until it

reaches zero.

Walk moves Character in the given direction based on the speed of the

Character by calling IncrementalWalk, as well as

updating the displayed image for the character based on

“stepNum”. Returns the value from IncrementalWalk.

8

IncrementalWalk tries to move the Character in a given direction and distance by

checking if the Character can be placed that distance and

direction from where it starts using DoesOverlap and

OutOfBounds. If it can be placed there, it is placed there,

otherwise it calls IncrementalWalk again with a lower

distance, until the distance reaches zero, in which case it

returns False. If a successful move is accomplished it

returns True.

Attack displays the Character’s attack sprite when necessary and if the

Character can attack, it checks if the attack sprite

overlaps with any object that can be damaged by the

attack, and if so it decreases the health of said object, and

if that object’s health reaches zero it removes the object

from the objects array given. Also changes the success

value of the NeuralNetworkAI.

2.3 The Enemy Class

The Enemy class is a child of the Character class, and by extension the Sprite class. It

holds the variables for several different Enemy monsters with the potential to add more

quite easily. It also has the functions that allow the Enemy to use the programmed A.I. to

make decisions and control its actions.

9

Variables:

“type” a string variable that determines what kind of monster the Enemy is.

Currently the options are “spider”, “lizard”, and “other”. Each

has a different image and different attributes.

“move” stores the move decided by the neural network A.I., an array of two

integers, zero or one.

“wander” this variable is an integer used to count how long the Enemy has been

using the Wander function and not changed direction.

“status” keeps track of whether the Enemy can make it’s next move yet. Used to

give a time where it has to keep using a single move so it cannot react

immediately and gives the player Character a chance to act.

“action” stores the current action the Enemy is performing or has just performed.

“lastAction” saves the last action the Enemy performed once the current action changes.

“previousHealth” saves the health the Enemy had last game tick.

“usingAI” determines if the Enemy is using the neural network A.I. or the simple

state-based A.I. It’s True if using the neural network and False otherwise.

The Main Functions:

Act calls ChooseAction and executes the provided “action” by name.

ChooseAction uses different procedures depending if the Enemy is using the neural network

A.I. or not. If it is, ChooseAction creates a new data point and evaluates it

with the neural network and returns the result as the action to perform.

Otherwise, ChooseAction uses the Enemy’s distance from the player and

10

direction towards the player to determine its next action.

Combat the “action” called from Act that calls Attack, defined in the Character class.

Flee the “action” called from Act that moves the Enemy the opposite direction

from the player.

Turn the “action” called from Act that moves the Enemy towards the player, and

attempts to go around obstacles.

Wander the “action” called from Act that has the Enemy Walk in a random direction.

2.4 The Inanimate Class

The Inanimate class is a child of the Sprite class. It is used to display inanimate objects

such as walls and rocks. It also suggests the structure for objects that can be broken.

Variables:

“sturdy” how much the Inanimate can take before being “broken”

“broken” if the Inanimate can be used

2.5 The Attack Class

The Attack class is a child of the Sprite class. It is used to display attacks.

Variables:

“hold” determines if the Attack image displays even if the Attack is not doing damage

“image1” and the image displayed for the Attack and the flipped image for animating the

11

“image2” Attack

“state” keeps track of how long part of the Attack animation has been showing so it

can switch back and forth to animate it.

The Main Functions:

Show displays and animates the Attack image

2.6 The Door Class

The Door class is a child of the Sprite class. If the player interacts with the Door, they

will be moved from one room to another, unless the Door is “locked.” The Door class

defaults to “interactable” being True.

Variables:

“nextRoom” the room, a collection of objects, to which the Door opens

“locked” determines whether the Door can be opened or not. If it is “locked” it cannot

be opened until otherwise determined. Defaults to being not “locked”. The

Door’s “text” is determined by “locked” as well.

“opensTo” the location the Door opens to, i.e. where the player is placed if they interact

with the Door and it is not “locked”.

The Main Functions:

Unlock sets “locked” to False

Open returns “nextRoom” and “opensTo” to be used to move the player Character to

the intended location through the Door

12

2.7 The Words Class

The Words class is a child of the Sprite class. It is used to display all text in the game.

Variables:

“size” overwrites the Sprite “size” variable to one to be used for font size

“text” stores the text to be displayed in a tuple of various lengths

“font” loads the font to be used for the text

The Main Functions:

Place overwrites Sprites’ Place function to render each line of the Word’s “text” in its

“position”, iterating through the “text” to put each line in the Word below the

previous line. Also slightly lightens the Word’s color with each line, so large

chunks of text get lighter towards the bottom.

SetText used to set the Word’s “text” variable so if a chunk of text is added to the Word it

goes to the top of the stack and excess lines are removed from the bottom. Mainly

used for the text display from interacting with objects in the game.

2.8 The Main Function

The main() function is the function outside of the classes that defines the game loop and

variables carried over from one game session to another. It brings together all the different

classes and functions defined above and runs the game.

13

It starts by initiating all the constants and objects with the desired parameters, including

the game clock, window for displaying images on, the player, monsters, and a variety of

inanimate objects. These objects are placed in the different room lists, which can be swapped

between being used in the current OBJECTS list, which determines which objects are being

displayed.

Then there is the game loop, which is a while loop that continue indefinitely until the

player exits the game. The game acts different if the player Character is alive or dead. If the

player is dead, meaning their health has reached zero, the game will display the death screen and

give the player the option to restart the game. If the player is not dead, the game loop continues

normally, logging the player’s keystrokes. The “w”, “a”, “s”, and “d” keys correspond to moving

the player Character up, left, down, and right respectively, while the left shift key has the player

Character try to interact with an object, and the space bar causes the player Character to attack.

After these are checked, the objects in the current room are assessed to see if they should do

anything, such as having enemies move and attack. Then the object images are redrawn in the

window. Finally, health and other statuses of the player Character are updated and one game tick

passes.

Below the main function several constants are defined, including the display size, and the

input and output arrays for initializing the neural network A.I., and the main function is called.

14

15

3

Neural Networks

3.1 The Basics

Neural networks are based on neurons and the networks they create. In the case of

computers, these neurons are an approximation: computational structures that take inputs and

return activation values. Each neuron has a weight, learned through a training dataset, that is

applied to the input, then run through a nonlinear function, such as sigmoid or hyperbolic tangent

to find the activation value. When these neurons are connected together to process the data

through hidden layers they can process a large variety of complex data sets.

16

Here is an example of a basic neural network with two inputs, one hidden layer with three

neutrons, and two outputs.

3.2 The Code

The neural network in this game is implemented through the class NeuralNetworkAI,

which collects and analyzes data from every Enemy when activated. Data collection is

accomplished by retrieving the values already stored in the Enemy class, or through calling a

function in the Enemy class. Analyzing the data is accomplished through forward propagation

and backpropagation. Forward propagation means to multiply the input through the network to

get an output. Backpropagation involves finding the amount of error between the predicted result

17

from forward propagation and the given result and using that to update the weights for more

accurate prediction.

3.2.1 The Variables

“totalData” the total number of sample data there is to use, calculated by the

length of the given “initialInputData”.

“dataLength” the number of inputs per each piece of data, plus one to accommodate

the bias, calculated using the length of one of the inputs

“weights1, 2, and 3” randomly generated sets of weights for each layer of the neural

network, to be changed to reflect the data through backpropagation

“inputData” previously generated input data to be analyzed

“outputData” previously generated output data corresponding to the input data to be

analyzed

“unclaimedData” a variable to store input data that is being collected but has yet to be

analyzed

“unclaimedResults” a variable to store output data that is being collected but has yet to be

analyzed, corresponds to “unclaimedData”

“currentSuccessValue

”

stores the current success value of the “unclaimedData” and

“unclaimedResults”, a calculation of the Enemy’s action’s success

“learningRate” the rate at which each update to weights affects the weights, useful

for keeping the weights from converging prematurely

18

3.2.2 The Functions

-trainNeuralNetwork

This function first adds an extra 1 to the end of each array of input data to be used for the

bias. Then it updates the weights the given number of times using backpropagation. This neural

networks has two hidden layers.

-newDataPoint

This function collects the current direction, distance and direction to the player, edited to

be a value between 0 and 1, from one Enemy and returns it to whichever function was looking

for that information.

-collectData

This function collects a data point from newDataPoint and places it into

“unclaimedData”, as well as collecting the current action from the Enemy and storing it in

“unclaimedResults”. It also takes a variable “Refresh”, which defaults to False, that determines if

collectData will attempt to see if the “currentSuccessValue” is high enough to add the unclaimed

data and results to “inputData”. When adding the new data to “inputData”, it must remain the

same length in order for the matrix multiplication works, so the function shuffles the new data

and the old data together and takes a random sample of the two so there are the same number of

19

inputs in the updated array. If it does add new data, it calls the trainNeuralNetwork function

again, with a slightly higher learning rate.

-extrapolate

This function takes the current state of the Enemy and uses forward propagation with the

current weights to choose the next action the Enemy takes.

-sigmoid

This function converts the outputs from each layer nonlinearly to a number between 0

and 1, as well as being able to be used to find the derivative. The derivative is used to find how

certain the predicted value was. If the derivative, and thus the slope, is high, then it is not a very

certain prediction, so the change in weight will be more drastic when the weights are updated.

20

21

4
Art Design and Progression

The art of the game and how it progressed through the game design

First sketches of possible characters for the player character. The mouse was eventually chosen

to keep the scale reasonable and the complexity down.

22

Sketches done of possible game scenarios and enemy designs. Several of these can be

implemented using the data structures and objects created.

23

Original digital main character mouse design, scrapped due to decision to have the game view

from the top down.

Second mouse design, scrapped due to the logistical difficulties caused by a rectangular sprite

design. Mainly the problems occurred in corners and near objects where it would either clip

through them or not fit in places where it fit before when it was sideways.

24

Final mouse design, showing differences in walking animation.

The sprite for the spider and the lizard-like enemy characters.

The sprite for the rock object, also used for the morph enemy as an enemy to catch the player

off-guard.

25

The attack sprites used by the player and the enemy characters respectively.

The wall and door sprites. They define the dimensions of the room and show the way out.

Initial mock-up of gameplay.

26

The final background image, with spaces for displaying health, level, and enemies killed, as well

as any in-game description or dialogue.

An example of a game scene where the player character is being attacked by a morph.

27

5
The Process

5.1 The Coding

Coding this game from the ground up, I started by figuring out which programming

language to use. I settled on Python because it was the language I was most familiar with,

particularly in regards to object oriented programming and in relation to artificial intelligence

similar to what was covered in the Intelligence and Perception in Robotics class. I decided to use

the Pygame module to supplement Python due to its graphics and timing library.

Next I started coding the rough building blocks of the game, fleshing out which classes

were and were not necessary. In this step there was a lot of writing and re-writing code for

efficiency, so the code did not work unnecessarily hard and cause the game to slow down. This

28

would cause frustration both on the player’s level and further down the line cause difficulties

with training the A.I., which would only serve to slow the program further.

Once the code was to a point where I could introduce graphics, I began to digitally draw

out the characters using my drawing tablet and the art program GIMP 2. Some of them had

already been designed on paper, as seen in the previous section. After several redesigns I found

what worked best for the game and drew up final versions.

Finally, I started implementing the A.I. At first the goal was to have the A.I. fully control

the Enemy characters, that, however, turned out not to be feasible for a number of reasons. First,

it slowed down the program a significant amount due to the number of relevant inputs, as well as

the number of test problems that would be necessary to give the A.I. accurate instruction.

Second, the problem with giving the A.I. full control of the Enemy characters was that the

computer has much quicker reactions than a human player does, so if it did work fully, it would

be incredibly difficult, if not impossible, to play the game and win, or even have fun. Thus, I

decided on a partially hybridized A.I., where the neural network chooses between a few different

actions with a time delay.

Implementing the neural network involved a variety of different tests, including ones to

generate a training data set, as well as finding the right balance of number of iterations and

learning rate for the neural network to produce accurate results.

29

5.2 The Bugs (and other technical difficulties)

There are always some bugs and other difficulties in any coding project, however these

were some that were particularly difficult or stood out in some way, and some which still persist.

The Stuck Mouse

This was the bug where the player Character, the mouse, could not move because it was

seeing itself as an obstacle to where it could walk. This was a result of a previous bug fix where

the Enemy characters could walk through the player Character due to not perceiving it as an

obstacle. This was eventually solved by reformatting the Walk function so it could check whether

the object it was trying to walk through was itself.

There was also a similar bug where, if the player Character was facing the wrong

direction, its attack could hit itself and burn it to death, which was also solved by making it

check whether the object it was attack was itself.

The Wall Approach Problem

This was a problem where any of the Characters did not always fully approach the wall

while walking due to the Character only being able to move its full distance or not at all. This

was solved by creating the function IncrementalWalk, which calls itself recursively until it’s

certain there’s no space to move into between the Character and the other object.

30

Beta testing

It was a goal to have some people beta test this game and fill out a survey based on their

experiences. However, sending the game to others proved challenging in the time left, and when

I did send it to some people. They proved to be unable to run the game on their computers due to

various factors, such as what software they had on their computer, and what kind of computer

they had. For example, one person had one version of Python downloaded that was not

compatible with my version of Python, Also, Mac computers were particularly troublesome

because of their differing file system. Thus I was unable to have the game beta tested as of this

report. Some more research into creating an executable file of the game will likely make it

possible in the future.

Diagonal Rotation

One problem that still remains in the code is the problem where rotating an image

diagonally makes said image larger, and thus slightly changes how the image interacts with

obstacles, sometimes causing the images to overlap. It is not a major issue, however it is still an

issue I will continue to investigate. It wouldn’t be as much of a problem if Pygame had an image

cropping function, however it does not so it requires a bit of a work around, and will most likely

involve rewriting how the Place function works.

31

6

Conclusion

This game is the alpha version of the game, which I intend to complete down the line by

adding more assets and features. Some features I will implement include other friendly

characters that the player can interact with, as well as more varied objects and new monsters to

fight in new rooms. Once these features are implement I can move onto expanding the game into

a full story, possibly with sound and dialogue.

On the more technical side of things, I intend to make building objects and storing the

training array for the neural network less cumbersome by reading it from a file instead of having

all the values directly in the code. I will also look into an improved training set for the neural

network, with a more sophisticated use of the success value that was implemented in this version

32

- possibly storing the success value of each input. This will involve some research into

effectively calculating success in the game scenario. Possible contributing factors I have

considered are taking less damage from the player, dealing more damage to the player, how long

the Enemy character survives, and a ratio of the damage done over time versus the damage taken.

The most complex aspects of figuring this out will be balancing the Enemy’s survival with

defeating the player character, as well as how to calculate these values and over what amount of

time.

Overall, however, this project was successful in what it set out to do, namely, creating

an program where the basics of the game were implemented and the actions of the Enemy

characters depended on the neural network, which I coded. I have come out of this project with a

much more solid understanding of how neural networks work, as well as a product that I am

proud of . Despite some errors and frustrations in the process, at the end the work I did over the

past year it came together into a successful program.

33

7

Appendices

7.1 Main Code

1. #Cafferty Frattarelli
2. #Mouse Vs. Machine: the Game
3. #Senior Project - May 2017
4.
5. import pygame, sys
6. from pygame.locals import *
7. import numpy
8.
9. #Sprite class - base class for all game objects
10. class Sprite:
11. def __init__(self, sprite, size = (100, 100)):
12. self.position = (0,0)
13. self.size = size
14. self.image = pygame.image.load(sprite)
15. self.image = pygame.transform.scale(self.image, (self.size[0],

self.size[1]))
16. self.sprite = self.image
17. self.interactable = False
18. self.text = " "
19. self.substantial = True
20. self.flammable = False
21. self.enemy = False
22. self.direction = -2
23. #Up=0, UpRight=-1, Right=-2, DownRight=-3, UpLeft=1, Left=2,

DownLeft=3, Down=4
24.
25. #Displays the sprite in assigned position (takes position tuple (x,y) and

surface to put it on)
26. def Place(self, position, surface):
27. surface.blit(self.sprite, position)
28. if self.GetPos()!= position:
29. self.SetPos(position)
30.
31. #Returns current position
32. def GetPos(self):
33. return self.position
34.
35. #Sets current position (takes a tuple with two values, x and y)
36. def SetPos(self,position):
37. self.position = position
38.
39. #Returns Sprite size (returns a tuple with two values, x and y)
40. def GetSize(self):
41. return self.size
42.

34

43. #Sets Sprite size (takes a tuple with two values, x and y)
44. def SetSize(self, size):
45. self.size = size
46. self.sprite = pygame.transform.scale(self.image, (self.size[0],

self.size[1]))
47.
48. #Returns if something can be walked through or not (returns True or False)
49. def GetSubstantial(self):
50. return self.substantial
51.
52. #Sets if something can be walked through or not (takes True or False)
53. def SetSubstantial(self, sub):
54. self.substantial = sub
55.
56. #Sees if current object overlaps other object, used for collision detection

(takes and Sprite object, returns True or False)
57. def DoesOverlap(self,other):
58. if other.GetSubstantial():
59. selfx = self.GetPos()[0]
60. selfx2 = selfx + self.GetSize()[0]
61. selfy = self.GetPos()[1]
62. selfy2 = selfy + self.GetSize()[1]
63.
64. otherx = other.GetPos()[0]
65. otherx2 = otherx + other.GetSize()[0]
66. othery = other.GetPos()[1]
67. othery2 = othery + other.GetSize()[1]
68.
69. if selfx >= otherx2 or selfy >= othery2 or selfx2 <= otherx or selfy2

<= othery:
70. return False
71. else:
72. return True
73. else:
74. return False
75.
76. #Used to make sure we haven't placed an object off screen (returns True or

False)
77. def OutOfBounds(self):
78. selfx = self.GetPos()[0]
79. selfx2 = selfx + self.GetSize()[0]
80. selfy = self.GetPos()[1]
81. selfy2 = selfy + self.GetSize()[1]
82. if selfx < 0 or selfy <0 or selfx2 > DISPLAY_X or selfy2 > DISPLAY_Y:
83. return True
84. else:
85. return False
86.
87. #Checks if something is interactable (returns True or False)
88. def Interactable(self):
89. return self.interactable
90.
91. #Sets if something is interactable (takes True or False)
92. def SetInteractable(self,interact):
93. self.interactable = interact
94.
95. #Checks if this object can interact with supplied object,
96. #given it can interact with something up to it's own size in front of it
97. #(takes another Sprite object, returns True or False)

35

98. def CanInteract(self,other):
99. direction = self.GetDirection()
100. delta = self.Delta(direction,self.GetSize()[0],self.GetSize()[1])
101. tempPos = self.GetPos()
102. self.SetPos((tempPos[0]+delta[0],tempPos[1]+delta[1]))
103. result = self.DoesOverlap(other)
104. self.SetPos(tempPos)
105. if other.Interactable() and self != other:
106. return result
107. else:
108. return False
109. #Sets text that displays when this object is interacted with, and sets the

object as interactable
110. #(takes a tuple of strings)
111. def SetText(self, text, interact = True):
112. self.text = text
113. self.interactable = interact
114.
115. #Returns interaction text (returns a tuple of strings)
116. def GetText(self):
117. return self.text
118.
119. #Converts direction to change in x and y (returns a tuple with two values,

x and y)
120. def Delta(self,direction,distance1,distance2=-1):
121. if distance2 == -1:
122. distance2 = distance1
123. delta = (distance1*numpy.cos(numpy.pi*direction/4),

distance2*numpy.sin(numpy.pi*direction/4))
124. return delta
125.
126. #Finds distance to another object from center minus half of size
127. def DistanceTo(self, other):
128. here = (self.GetPos()[0]+self.GetSize()[0]/2,

self.GetPos()[1]+self.GetSize()[1]/2)
129. there = (other.GetPos()[0]+other.GetSize()[0]/2,

other.GetPos()[1]+other.GetSize()[1]/2)
130. return

numpy.sqrt((there[0]-here[0])**2+(there[1]-here[1])**2)-(self.size[0]+self.size[1]+
other.size[0]+other.size[1])/4

131.
132. #Returns direction from this to other object (takes a Sprite object and

returns direction as defined in Sprite.__init__())
133. def DirectionTo(self,other):
134. xDiff = self.GetPos()[0]-other.GetPos()[0]
135. yDiff = self.GetPos()[1]-other.GetPos()[1]
136. direction = round(4 + numpy.arctan2(yDiff,xDiff)/numpy.pi * 4)
137. while direction > 4:
138. direction = direction - 8
139. while direction < -3:
140. direction = direction + 8
141. return direction
142.
143. #Returns direction (an integer)
144. def GetDirection(self):
145. return self.direction
146.
147. #Sets direction to an integer between -3 and 4 so it's useable by other

functions (takes an integer)

36

148. def SetDirection(self,direction):
149. if direction >= -3 and direction <= 4:
150. self.direction = direction
151. self.sprite = pygame.transform.rotate(self.image,

45*(-direction-2))
152. elif direction > 4:
153. self.SetDirection(direction-8)
154. elif direction < -3:
155. self.SetDirection(direction+8)
156.
157. #Character class - base class for all characters: monsters, player, ect.
158. class Character(Sprite):
159. def __init__ (self, img1, img2, size=(100,100)):
160. Sprite.__init__(self, img1,size)
161. self.attributes = [20,10,10,15]
162. # Health, Attack, Defense, Speed
163. self.flammable = True
164. self.canAttack = 0
165. self.level = 1
166. self.stepNum = 0
167. self.step1 = pygame.image.load(img1)
168. self.step1 = pygame.transform.scale(self.step1, (self.size[0],

self.size[1]))
169. self.step2 = pygame.image.load(img2)
170. self.step2 = pygame.transform.scale(self.step2, (self.size[0],

self.size[1]))
171. self.attack = Attack("../Art/Fire.png", True, (50,50))
172.
173. #returns character's current health (returns an integer)
174. def GetHealth(self):
175. return self.attributes[0]
176.
177. #returns character's current attack stat (returns an integer)
178. def GetAttack(self):
179. return self.attributes[1]
180.
181. #returns character's current defense stat (returns an integer)
182. def GetDefense(self):
183. return self.attributes[2]
184.
185. #returns character's current speed stat (returns an integer)
186. def GetSpeed(self):
187. return self.attributes[3]
188.
189. #takes a string with the attribute name and adds the change to the stat

(change can be negative)
190. def AdjustAttribute(self, att, change):
191. if (att == "Health"):
192. self.attributes[0] = self.attributes[0] + change
193. elif (att == "Attack"):
194. self.attributes[1] = self.attributes[1] + change
195. elif (att == "Defense"):
196. self.attributes[2] = self.attributes[2] + change
197. elif (att == "Speed"):
198. self.attributes[3] = self.attributes[3] + change
199. else:
200. print("Error: No such attribute")
201.
202. #returns boolean of True if the character can attack and False if it cannot

37

203. def CanAttack(self):
204. if self.canAttack == 0:
205. self.canAttack = 13 - self.GetAttack()
206. return True
207. else:
208. return False
209.
210. #counts down to when the character can attack again, based on the attack

stat
211. #(would more accurately be called attack speed, but is not for reasons

of clarity)
212. def IncrementAttack(self):
213. if self.canAttack > 0:
214. self.canAttack = self.canAttack - 1
215. elif self.canAttack <0:
216. self.canAttack = 0
217.
218. #Moves character in given direction if possible, using IncrementalWalk
219. def Walk(self, direction, objects):
220. self.stepNum +=1
221. speed = self.GetSpeed()
222. if self.stepNum >= 2*speed/10:
223. self.image = self.step1
224. self.stepNum = 0
225. elif self.stepNum >= speed/10:
226. self.image = self.step2
227.
228. return self.IncrementalWalk(direction, objects, speed)
229.
230. #Moves character based on direction and speed, gets as close to an obstacle

as possible, returns how far it went
231. def IncrementalWalk(self, direction, objects, distance):
232. self.SetDirection(direction)
233. tempPos = self.GetPos()
234. delta = self.Delta(direction, distance)
235. self.SetPos((tempPos[0]+delta[0], tempPos[1]+delta[1]))
236.
237. if distance <= 0:
238. self.SetPos(tempPos)
239. return False
240. if self.OutOfBounds():
241. self.SetPos(tempPos)
242. return self.IncrementalWalk(direction, objects, distance-1)
243. else:
244. for i in objects:
245. if self != i:
246. if self.DoesOverlap(i):
247. self.SetPos(tempPos)
248. return self.IncrementalWalk(direction, objects,

distance-1)
249. return True
250.
251. #Draws a sprite that damages any enemy it touches if the character can

attack
252. def Attack(self, objects, display, AI):
253.
254. if self.attack.hold:
255.

self.attack.Show(self.GetPos(),self.GetSize(),self.GetDirection(),display)

38

256.
257. if self.CanAttack():
258. if not self.attack.hold:
259.

self.attack.Show(self.GetPos(),self.GetSize(),self.GetDirection(),display)
260. for i in objects:
261. if i.flammable:
262. if self.attack.DoesOverlap(i) and i != self:
263. i.AdjustAttribute("Health", -1)
264. i.sprite.fill((4,0,0), None, BLEND_RGBA_MULT)
265. if i.enemy:
266. AI.currentSuccessValue += - 1
267. else:
268. AI.currentSuccessValue += 2
269.
270. if i.GetHealth() == 0:
271. objects.remove(i)
272.
273. return(("Something", "burned.",""))
274. return False
275. else:
276. return False
277.
278. #The class the holds each enemy character's stats and actions
279. class Enemy(Character):
280. def __init__(self, type):
281. self.type = type
282. if self.type == "spider":
283. img1 = "../Art/Spider.png"
284. img2 = "../Art/Spider.png"
285. Character.__init__(self,img1,img2)
286. self.attributes = [10,10,10,18]
287. elif self.type == "lizard":
288. img1 = "../Art/AquaLizard.png"
289. img2 = "../Art/AquaLizard.png"
290. Character.__init__(self,img1,img2,(150,150))
291. self.attributes = [13,10,13,13]
292. else:
293. img1 = "../Art/Rock1.png"
294. img2 = "../Art/Rock1.png"
295. Character.__init__(self,img1,img2)
296. self.attributes = [20,5,15,5]
297. self.attack = Attack("../Art/Slash.png", False, (50,50))
298. self.move = 0
299. self.enemy = True
300. self.wander = 0
301. self.status = 0
302. self.action = ""
303. self.lastAction = ""
304. self.previousHealth = self.attributes[0]
305. self.maxHealth = self.attributes[0]
306.
307. #Whether this is using the neural network AI or using the basic AI
308. self.usingAI = True
309.
310. def Act(self, player, OBJECTS, AI, display):
311. #choose action and perform it
312. #Actions: attack, flee, turn towards and approach the player, and

wander

39

313. self.lastAction = self.action
314. self.action = self.ChooseAction(player, OBJECTS, AI)
315. if self.action == "combat":
316. self.Combat(player, OBJECTS, AI, display)
317. elif self.action == "flee":
318. self.Flee(player, OBJECTS)
319. elif self.action == "turn":
320. self.Turn(player, OBJECTS)
321. else:
322. self.Wander(OBJECTS)
323.
324. def ChooseAction(self, player, OBJECTS, AI):
325. #returns action to do
326. if self.usingAI:
327. if self.status == 0:
328. move = AI.extrapolate(AI.newDataPoint(self, player, OBJECTS))
329. if move[0] > .5:
330. self.status = 5
331. return "combat"
332. elif move[1] > .5:
333. self.status = 10
334. return "turn"
335. elif move[2] > .5:
336. self.status = 5
337. return "flee"
338. else:
339. self.status = 10
340. return ""
341. else:
342. self.status=self.status-1
343. return self.action
344.
345. else:
346. distance = self.DistanceTo(player)
347. if self.type == "rock":
348. if self.status == 0:
349. if distance >= 50 or

self.GetDirection()!=self.DirectionTo(player):
350. self.status = 10
351. return "turn"
352. else:
353. self.status = 10
354. return "combat"
355. else:
356. self.status += -1
357. return self.action
358. elif self.status == 0:
359. if distance <= 500:
360. if self.previousHealth > self.GetHealth():
361. self.status = 5
362. self.previousHealth = self.GetHealth()
363. return "flee"
364. elif distance >=50 or

self.GetDirection()!=self.DirectionTo(player):
365. self.status = 5
366. return "turn"
367. else:
368. self.status = 10
369. return "combat"

40

370. else:
371. self.status = 10
372. return ""
373. else:
374. self.status += -1
375. return self.action
376.
377. def Combat(self, player, OBJECTS, AI, display):
378. #attack player
379. self.Attack(OBJECTS, display, AI)
380.
381. def Flee(self, player, OBJECTS):
382. #move away from player
383. self.Walk(self.DirectionTo(player)+4, OBJECTS)
384.
385. def Turn(self, player, OBJECTS):
386. #changes angle and walks /towards player
387. if self.status == 0:
388. self.SetDirection(self.DirectionTo(player))
389. for i in range(7):
390. if not self.Walk(self.GetDirection(),OBJECTS) and not

self.CanInteract(player):
391. if i%2 == 1:
392. self.Walk(self.GetDirection()-i,OBJECTS)
393. else:
394. self.Walk(self.GetDirection()+i,OBJECTS)
395. else:
396. break
397.
398. def Wander(self,OBJECTS):
399. #move around randomly
400. self.move+=1
401. if self.move==10:
402. self.move=0
403. for i in OBJECTS:
404. if self.CanInteract(i):
405. self.move = 0
406. break
407. if self.move==0 or self.move==5:
408. self.wander = numpy.random.randint(-3,3)
409. if not self.Walk(self.wander,OBJECTS):
410. self.move = -1
411.
412. #Makes decisions for the enemy characters
413. class NeuralNetworkAI():
414. def __init__(self, initialInputData, initialOutputData, learningRate = .1):
415. self.totalData = len(initialInputData)
416. self.dataLength = len(initialInputData[0]) + 1
417.
418. numpy.random.seed(1)
419. self.weights1 =

2*numpy.random.random((self.dataLength,self.totalData)) - 1
420. self.weights2 =

2*numpy.random.random((self.totalData,self.totalData)) - 1
421. self.weights3 = 2*numpy.random.random((self.totalData,4)) - 1
422. #takes an array of weights, initially randomly generated, then

calculated in the game process
423. self.inputData = initialInputData
424. #takes an array of input data, changed to values between 0 and 1

41

425. #each array is length 3 in the form of:
426. #[current_direction, player_distance, player_direction]
427.
428. #How to calculate each input: current_direction =

(self.GetDirection()+4)/8
429. # player_distance =

self.DistanceTo(player)/1500
430. # player_direction =

(self.DirectionTo(player)+4)/8
431. self.outputData = initialOutputData
432. #takes an array of output data for each input point, of values 0 to

1
433. self.unclaimedData = numpy.array([[5]])
434. #will be used to store collected data with undetermined success

value
435. self.unclaimedResults = numpy.array([[5]])
436. self.currentSuccessValue = 0
437. self.learningRate = learningRate
438.
439. def trainNeuralNetwork(self, times):
440. l0 = []
441. for i in range(self.totalData):
442. if i==0:
443. l0 = numpy.array([numpy.append(self.inputData[0], 1)])
444. else:
445. l0 = numpy.append(l0, [numpy.append(self.inputData[i], [1],

0)], 0)
446.
447. for i in xrange(times):
448.
449. l1 = self.sigmoid(numpy.dot(l0, self.weights1))
450. l2 = self.sigmoid(numpy.dot(l1, self.weights2))
451. l3 = self.sigmoid(numpy.dot(l2, self.weights3))
452.
453. l3_error = self.outputData - l3
454. l3_delta = l3_error*self.sigmoid(l3,deriv=True)
455.
456. l2_error = l3_delta.dot(self.weights3.T)
457. l2_delta = l2_error*self.sigmoid(l2,deriv=True)
458.
459. l1_error = l2_delta.dot(self.weights2.T)
460. l1_delta = l1_error*self.sigmoid(l1,deriv=True)
461.
462. self.weights3 += l2.T.dot(self.learningRate*l3_delta)
463. self.weights2 += l1.T.dot(self.learningRate*l2_delta)
464. self.weights1 += l0.T.dot(self.learningRate*l1_delta)
465.
466.
467. def newDataPoint(self,char,player,OBJECTS):
468. current = numpy.array([(char.GetDirection()+4)/8])
469. current = numpy.append(current, [(char.DistanceTo(player))/1500,

(char.DirectionTo(player)+4)/8])
470.
471. return current
472.
473. def collectData(self, character, player, OBJECTS, Refresh=False):
474. if self.unclaimedData[0][0] == 5:
475. self.unclaimedData = numpy.array([self.newDataPoint(character,

player, OBJECTS)])

42

476. else:
477. self.unclaimedData = numpy.append(self.unclaimedData,

[self.newDataPoint(character, player, OBJECTS)], axis = 0)
478.
479. if character.action == "combat":
480. act = [1,0,0,0]
481. elif character.action == "turn":
482. act = [0,1,0,0]
483. elif character.action == "flee":
484. act = [0,0,1,0]
485. else:
486. act = [0,0,0,1]
487.
488. if self.unclaimedResults[0][0] == 5:
489. self.unclaimedResults = numpy.array([act])
490. else:
491. self.unclaimedResults = numpy.append(self.unclaimedResults, [act],

axis = 0)
492.
493. if Refresh:
494.
495. if self.currentSuccessValue < 0:
496. self.unclaimedData = numpy.array([[5]])
497. self.currentSuccessValue = 0
498. self.unclaimedResults = numpy.array([[5]])
499. else:
500. tempInputs = numpy.append(self.unclaimedData, self.inputData,

axis = 0)
501. tempOutputs = numpy.append(self.unclaimedResults,

self.outputData, axis = 0)
502.
503. tempOrg = numpy.random.choice(len(tempInputs), size =

self.totalData, replace = False)
504. self.inputData = numpy.array([[5]])
505. for i in range(self.totalData):
506. if self.inputData[0][0] == 5:
507. self.inputData = numpy.array([tempInputs[tempOrg[i]]])
508. self.outputData =

numpy.array([tempOutputs[tempOrg[i]]])
509. else:
510. self.inputData = numpy.append(self.inputData,

[tempInputs[tempOrg[i]]], axis = 0)
511. self.outputData = numpy.append(self.outputData,

[tempOutputs[tempOrg[i]]], axis = 0)
512.
513. self.unclaimedData = numpy.array([[5]])
514. self.unclaimedResults = numpy.array([[5]])
515.
516. self.trainNeuralNetwork(50)
517.
518. #forward propagation
519. def extrapolate(self,newInput):
520. l0 = numpy.append(newInput, 1)
521. l1 = self.sigmoid(numpy.dot(l0, self.weights1))
522. l2 = self.sigmoid(numpy.dot(l1, self.weights2))
523. l3 = self.sigmoid(numpy.dot(l2, self.weights3))
524.
525. return l3
526.

43

527. #sigmoid function - converts the outputs from each layer non-linearly into
a number from 0-1

528. #if using the derivative, a high derivative indicates more uncertainty
529. def sigmoid(self, x, deriv=False):
530. if (deriv==True):
531. return x*(1-x)
532.
533. return 1/(1+numpy.exp(-x))
534.
535. #Inanimate Objects Class - class for things that won't move on their own -

rocks and trees and such.
536. #Might be able to break them.
537. class Inanimate(Sprite):
538. def __init__(self, img, sturdy, size = (150,150)):
539. Sprite.__init__(self, img, size)
540. self.sturdy = sturdy
541. self.broken = False
542.
543. #Attack Class - Used to display attacks
544. class Attack(Sprite):
545. def __init__(self,img,hold,size = (50,50)):
546. Sprite.__init__(self,img,size)
547. self.substantial = False
548. self.hold = hold
549. self.image1 = self.image
550. self.image2 = pygame.transform.scale(self.image1, (self.size[0],

self.size[1]))
551. self.image2 = pygame.transform.flip(self.image2, True, False)
552. self.state = 0
553.
554. def Show(self,source,sourceSize,direction,display):
555. self.SetDirection(direction)
556. delta =

self.Delta(direction,(sourceSize[0]+self.size[0])/2,(sourceSize[1]+self.size[1])/2)
557.

self.Place((source[0]+delta[0]+(sourceSize[0]-self.size[0])/2,source[1]+delta[1]+(s
ourceSize[1]-self.size[1])/2),display)

558. self.state += 1
559. if self.state >= 4:
560. self.image = self.image1
561. self.state = 0
562. elif self.state >= 2:
563. self.image = self.image2
564.
565. #Door Class - Interacting with one passes you to another room, unless a key is

required.
566. class Door(Sprite):
567. def __init__(self, img, nextRoom, opensTo, size = (50,150), locked =

False):
568. Sprite.__init__(self, img, size)
569. self.nextRoom = nextRoom
570. self.interactable = True
571. self.locked = locked
572. self.opensTo = opensTo
573. if self.locked:
574. self.text = ("Door is", "locked.","")
575. else:
576. self.text = ("Opening", "door...","")
577.

44

578. def IsLocked(self):
579. return self.locked
580.
581. def Unlock(self):
582. self.locked = False
583.
584. def Open(self):
585. return self.nextRoom, self.opensTo
586.
587. #Words class - Used to display text
588. class Words(Sprite):
589. def __init__(self, text, position, size):
590. Sprite.__init__(self, "../Art/Words.png", (size,size))
591. self.size = size
592. self.position = position
593. self.substantial = False
594. self.text = text #pass a tuple as text to look through it for each line
595. self.font = pygame.font.SysFont('bradleyhanditc', size, True)
596.
597. def Place(self, position, surface, color = (0,0,0)):
598. placement = 0
599. self.SetPos(position)
600. for i in self.text:
601. words = self.font.render(i, True, color)
602. surface.blit(words, (position[0],position[1]+placement))
603. placement += self.size+10
604. color = (color[0]+15, color[1]+15, color[2]+15)
605.
606. def SetText(self, text):
607. text = list(text)
608. text.reverse()
609. for i in text:
610. self.text = [i]+self.text
611. if len(self.text)> 11:
612. self.text.pop()
613.
614. def main(AI, refreshCount, passedLevel = 1, enemies_killed = 0):
615. pygame.init()
616.
617. FPS = 30
618. fpsClock = pygame.time.Clock()
619.
620.
621. DISPLAYSURF = pygame.display.set_mode((DISPLAY_X, DISPLAY_Y), 0, 16)
622.
623. pygame.display.set_caption("Mouse Vs. Machine")
624.
625. BGCOLOR = (100,100,100)
626.
627. bg = pygame.image.load('../Art/Background1.png')
628.
629. player = Character('../Art/MouseStep1.png', '../Art/MouseStep2.png')
630. player.Place((50,50), DISPLAYSURF)
631. player.AdjustAttribute('Speed', 20)
632. player.SetText(("How did you","get here?", ""))
633.
634. rock1 = Inanimate('../Art/Rock1.png', 10, (100,100))
635. rock1.SetInteractable(True)
636. rock1.SetText(("It's a rock",""))

45

637. rock1.Place((300,300), DISPLAYSURF)
638.
639. rock2 = Inanimate('../Art/Rock1.png', 10, (150,150))
640. rock2.SetInteractable(True)
641. rock2.SetText(("It's a ", "large rock",""))
642. rock2.Place((400,400), DISPLAYSURF)
643.
644. rock3 = Inanimate('../Art/Rock1.png', 10, (50,50))
645. rock3.SetInteractable(True)
646. rock3.SetText(("It's a", "small rock",""))
647. rock3.SetDirection(-3)
648. rock3.Place((1100,150), DISPLAYSURF)
649.
650. wall1 = Inanimate('../Art/Wall1.png', 100, (1250,50))
651. wall1.Place((0,0), DISPLAYSURF)
652.
653. wall2 = Inanimate('../Art/Wall1.png', 100, (1250,50))
654. wall2.Place((0, DISPLAY_Y - 50), DISPLAYSURF)
655.
656. wall3 = Inanimate('../Art/Wall2.png', 100, (50,1000))
657. wall3.Place((0, 0), DISPLAYSURF)
658.
659. wall4 = Inanimate('../Art/Wall2.png', 100, (50,1000))
660. wall4.Place((DISPLAY_X - 300, 0), DISPLAYSURF)
661.
662. wall5 = Inanimate('../Art/Wall2.png', 100, (50, 700))
663. wall5.Place((900,0), DISPLAYSURF)
664.
665. spider = Enemy("spider")
666. spider.SetInteractable(True)
667. spider.SetText(("AAAAAA","AAAAAA,", "SPIDER",""))
668. spider.Place((700,500), DISPLAYSURF)
669.
670. spider2 = Enemy("spider")
671. spider2.SetInteractable(True)
672. spider2.SetText(("AAAAAA,","it's another", "spider",""))
673. spider2.Place((500,700), DISPLAYSURF)
674.
675. spider3 = Enemy("spider")
676. spider3.SetInteractable(True)
677. spider3.SetText(("AAAAAA,","it's another", "spider",""))
678. spider3.Place((400,800), DISPLAYSURF)
679.
680. morph = Enemy("rock")
681. morph.SetInteractable(True)
682. morph.SetText(("It's a rock", "... or", "is it?",""))
683. morph.Place((700,500), DISPLAYSURF)
684.
685. lizard = Enemy("lizard")
686. lizard.SetText(("Uh... It's", "a lizard...","... maybe...", ""))
687. lizard.Place((600,500), DISPLAYSURF)
688.
689. intro = Words(['Use W A S D keys to move', 'Press LEFT SHIFT to interact',

'Press SPACE to attack'], (250,100), 40)
690.
691. room1 = [intro, morph, rock1, rock3, wall1, wall2, wall3, wall4]
692. room2 = [spider, rock1, rock2, wall1, wall2, wall3, wall4, wall5]
693. room3 = [lizard, rock2, rock3, wall1, wall2, wall3, wall4]
694. room4 = [spider2, spider3, rock3, wall1, wall2, wall3, wall4]

46

695.
696. door1 = Door('../Art/DoorVertical.png', room2, (50, DISPLAY_Y/3))
697. door1.Place((DISPLAY_X - 300, DISPLAY_Y/3), DISPLAYSURF)
698. room1.append(door1)
699. room1.append(player)
700.
701. door2 = Door('../Art/DoorVertical.png', room1, (DISPLAY_X - 400,

DISPLAY_Y/3))
702. door2.Place((0, DISPLAY_Y/3), DISPLAYSURF)
703. room2.append(door2)
704. room2.append(player)
705.
706. door3 = Door('../Art/DoorVertical.png', room3, (50, 2*DISPLAY_Y/3))
707. door3.Place((DISPLAY_X - 300, 2*DISPLAY_Y/3), DISPLAYSURF)
708. room2.append(door3)
709.
710. door4 = Door('../Art/DoorVertical.png', room2, (DISPLAY_X - 400,

2*DISPLAY_Y/3))
711. door4.Place((0, 2*DISPLAY_Y/3), DISPLAYSURF)
712. room3.append(door4)
713.
714. door5 = Door('../Art/DoorHorizontal.png', room4, (DISPLAY_X/3, 50),

(150,50))
715. door5.Place((DISPLAY_X/3, DISPLAY_Y-50), DISPLAYSURF)
716. room3.append(door5)
717. room3.append(player)
718.
719.
720. door6 = Door('../Art/DoorHorizontal.png', room3, (DISPLAY_X/3,

DISPLAY_Y-150), (150,50))
721. door6.Place((DISPLAY_X/3, 0), DISPLAYSURF)
722. room4.append(door6)
723. room4.append(player)
724.
725. OBJECTS = room1
726.
727. enemies = [morph, spider, lizard, spider2, spider3]
728. for i in enemies:
729. i.AdjustAttribute("Attack",1)
730.
731. player.level = passedLevel
732.
733. health = Words([str(player.GetHealth())], (1325, 95), 40)
734. level = Words([str(player.level)], (1325, 270), 40)
735. enemies_killed_str = Words([str(enemies_killed)], (1325, 425), 40)
736. text = Words([""], (1310, 560), 25)
737.
738. STATS = (health, level, enemies_killed_str, text)
739.
740. DISPLAYSURF.fill(BGCOLOR)
741.
742. dead = False
743. justdied = True
744.
745. while True: # game loop
746.
747. if dead:
748. DEATH_SCREEN = Words([' You have died',"Click anywhere to play

again."], (250,100), 50)

47

749. if justdied:
750. DISPLAYSURF.fill(BGCOLOR, None, BLEND_RGBA_ADD)
751. justdied = False
752. DEATH_SCREEN.Place(DEATH_SCREEN.GetPos(), DISPLAYSURF)
753. for event in pygame.event.get():
754. if event.type == QUIT:
755. pygame.quit()
756. sys.exit()
757. elif event.type == MOUSEBUTTONUP:
758. main(AI, refreshCount, player.level, enemies_killed)
759.
760. else:
761. mouseClicked = False
762. INTERACT = False
763. DISPLAYSURF.blit(bg, (0,0))
764.
765. for event in pygame.event.get():
766. if event.type == QUIT:
767. pygame.quit()
768. sys.exit()
769. elif event.type == MOUSEBUTTONUP:
770. mouseClicked = True
771. elif event.type == KEYDOWN:
772. if event.key == K_LSHIFT:
773. INTERACT = True
774.
775. if mouseClicked:
776. print(pygame.mouse.get_pos())
777.
778. keys = pygame.key.get_pressed()
779.
780. LEFT = keys [K_a]
781. RIGHT = keys [K_d]
782. UP = keys [K_w]
783. DOWN = keys [K_s]
784.
785. ATTACK = keys[K_SPACE]
786.
787. if UP:
788. if LEFT:
789. player.Walk(-3, OBJECTS)
790. elif RIGHT:
791. player.Walk(-1, OBJECTS)
792. else:
793. player.Walk(-2, OBJECTS)
794. elif DOWN:
795. if LEFT:
796. player.Walk(3, OBJECTS)
797. elif RIGHT:
798. player.Walk(1, OBJECTS)
799. else:
800. player.Walk(2, OBJECTS)
801. elif LEFT:
802. player.Walk(4, OBJECTS)
803. elif RIGHT:
804. player.Walk(0, OBJECTS)
805.
806. if INTERACT:
807. for i in OBJECTS:

48

808. if i.interactable:
809. if player.CanInteract(i):
810. text.SetText(i.GetText())
811. if isinstance(i, Door):
812. if not(i.IsLocked()):
813. OBJECTS = i.Open()[0]
814. player.SetPos(i.Open()[1])
815. break
816.
817. for i in OBJECTS:
818. if i.enemy == True:
819. i.Act(player, OBJECTS, AI, DISPLAYSURF)
820. i.IncrementAttack()
821. refreshCount += 1
822. if refreshCount >= 60:
823. AI.collectData(i, player, OBJECTS, True)
824. refreshCount = 0
825. elif refreshCount%10 == 0:
826. AI.collectData(i, player, OBJECTS)
827. i.Place(i.GetPos(), DISPLAYSURF)
828.
829. if ATTACK:
830. attack = player.Attack(OBJECTS, DISPLAYSURF, AI)
831. if attack != False:
832. text.SetText(attack)
833. enemies_killed += 1
834. enemies_killed_str.text= [str(enemies_killed)]
835. if enemies_killed % 5 == 0:
836. player.level += 1
837. level.text = [str(player.level)]
838. for i in enemies:
839. i.AdjustAttribute("Attack",1)
840. for i in enemies:
841. if i.GetHealth() > 0:
842. break
843. elif i == enemies[-1]:
844. print i
845. for j in enemies:
846. j.AdjustAttribute("Health", j.maxHealth)
847. room1.append(morph)
848. room2.append(spider)
849. room3.append(lizard)
850. room4.append(spider2)
851. room4.append(spider3)
852. text.SetText(('Enemies have respawned.',''))
853.
854. if player.GetHealth()<=0:
855. text.SetText(('You died.',""))
856. dead = True
857.
858. health.text = ((str(player.GetHealth()),""))
859.
860. for i in STATS:
861. i.Place(i.GetPos(),DISPLAYSURF)
862.
863. player.IncrementAttack()
864. pygame.display.update()
865. fpsClock.tick(FPS)
866.

49

867.DISPLAY_X = 1500
868.DISPLAY_Y = 1000
869.
870. #Initializing A.I. with tested parameters
871.
872.inputArray = numpy.random.random((100,3))
873.outputArray = numpy.random.choice(numpy.array([0,1]),(100,4))
874.
875.inputArray = numpy.array([[0.25, 0.155688448415, 0.75],
876. [0.0, 0.359467375886, 1.0],
877. [0.875, 0.205917339058, 0.875],
878. [0.375, 0.0244215663285, 0.375],
879. [0.25, 0.122981080927, 0.75],
880. [1.0, 0.0445640717722, 0.5],
881. [0.75, 0.00174918873308, 0.75],
882. [0.125, 0.40978027009, 0.125],
883. [0.25, 0.00162555084805, 0.25],
884. [0.125, 0.31369290117, 0.125],
885. [0.75, 0.0169856590862, 0.75],
886. [0.125, 0.250979347249, 0.125],
887. [1.0, 0.069356639673, 0.625],
888. [1.0, 0.0183547828482, 1.0],
889. [0.0, 0.442144584082, 0.125],
890. [1.0, 0.0283425991062, 1.0],
891. [0.0, 0.137838199269, 0.25],
892. [0.625, 0.0859784836301, 0.625],
893. [0.0, 0.442144584082, 0.125],
894. [0.125, 0.148542886138, 0.125],
895. [0.625, 0.023392154901, 0.625],
896. [0.0, 0.248126210978, 0.25],
897. [0.75, 0.0842253858378, 0.5],
898. [1.0, 0.18073343682, 1.0],
899. [0.0, 0.360933873884, 0.125],
900. [0.875, 0.010614069676, 0.875],
901. [0.0, 0.061383174512, 0.25],
902. [0.875, 0.0647056672056, 0.75],
903. [0.625, 0.0939244492384, 0.625],
904. [0.5, 0.0185975645382, 0.75],
905. [0.25, 0.0692665914232, 0.125],
906. [0.125, 0.435661582631, 0.125],
907. [0.5, 0.0044696169736, 0.5],
908. [0.5, 0.0044696169736, 0.5],
909. [0.125, 0.180053798161, 0.125],
910. [0.5, 0.136807806483, 0.625],
911. [0.125, 0.377559289827, 0.125],
912. [0.25, 0.255604542668, 0.75],
913. [0.375, 0.00162766355362, 0.5],
914. [0.125, 0.345515258608, 0.125],
915. [0.625, 0.109662788442, 0.5],
916. [0.75, 0.106793408048, 0.75],
917. [0.0, 0.377233098106, 0.25],
918. [0.75, 0.0449779700156, 0.625],
919. [0.75, 0.112535012735, 0.75],
920. [0.0, 0.167801257161, 0.125],
921. [0.0, 0.314401177048, 0.875],
922. [0.375, 0.0942999943698, 0.875],
923. [0.75, 0.000450780762508, 0.75],
924. [0.625, 0.0349267322222, 0.625],
925. [0.75, 0.0828922756579, 0.625],

50

926. [0.0, 0.26769766435, 1.0],
927. [0.875, 0.113014916672, 0.875],
928. [0.625, 0.138438807039, 0.625],
929. [0.125, 0.28215289183, 0.125],
930. [0.25, 0.0713065461066, 0.375],
931. [0.375, 0.0244215663285, 0.375],
932. [0.0, 0.451074152234, 0.125],
933. [0.0, 0.347025310428, 1.0],
934. [0.0, 0.160463252102, 0.25],
935. [0.75, 0.162589285435, 0.875],
936. [0.375, 0.0201029300908, 0.875],
937. [0.0, 0.408786333698, 0.125],
938. [0.75, 0.00701060533436, 0.75],
939. [0.75, 0.00349146234724, 0.75],
940. [0.125, 0.311702641574, 0.125],
941. [0.125, 0.0612697932898, 0.125],
942. [0.75, 0.0945784306709, 0.625],
943. [0.25, 0.127738036617, 0.75],
944. [0.0, 0.279044327474, 0.875],
945. [0.5, 0.0594702950469, 0.625],
946. [0.625, 0.077533744631, 0.75],
947. [0.75, 0.0813965039013, 0.5],
948. [1.0, 0.127826580322, 1.0],
949. [0.25, 0.231612342578, 0.375],
950. [0.0, 0.323314276329, 1.0],
951. [0.875, 0.139011621748, 0.625],
952. [0.625, 0.165587331318, 0.625],
953. [0.75, 0.176877234685, 0.25],
954. [0.0, 0.296431289407, 0.25],
955. [0.5, 0.000702536573322, 0.5],
956. [0.75, 0.0011766863617, 0.75],
957. [0.625, 0.184832894578, 0.625],
958. [0.125, 0.108839791347, 0.625],
959. [0.875, 0.0471397508853, 0.875],
960. [0.875, 0.00746178804382, 0.875],
961. [0.625, 0.00482345524075, 0.625],
962. [0.25, 0.150248491452, 0.5],
963. [0.75, 0.000311347174161, 0.75],
964. [0.75, 0.00384111081162, 0.75],
965. [0.75, 0.0054213382633, 0.625],
966. [0.25, 0.000178748436944, 0.25],
967. [0.0, 0.100013551051, 0.375],
968. [0.75, 0.0236468897784, 0.5],
969. [0.0, 0.392372426319, 1.0],
970. [0.625, 0.00482345524075, 0.625],
971. [0.25, 0.0518126120541, 0.75],
972. [0.0, 0.23754116619, 0.875],
973. [0.625, 0.132427127748, 0.5],
974. [0.0, 0.321672246026, 0.25]])
975.
976.outputArray = numpy.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0,

0], [0, 1, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1,
0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [1,
0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0],
[0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0,
0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1,
0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [1,
0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0],
[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0,

51

0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1,
0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 1, 0, 0], [0,
0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0],
[0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0,
0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1,
0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0,
1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0],
[0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0,
0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]])

977.
978.AI = NeuralNetworkAI(inputArray, outputArray,.05)
979.AI.trainNeuralNetwork(10000)
980.refreshCount = 0
981.
982.main(AI, refreshCount)

7.2 Test Functions

Test Networks 1 and 2 - used for comparing the efficacy of different numbers of hidden layers

1. def testNetwork1(self):
2.
3. numpy.random.seed(1)
4.
5. testInitial = numpy.array([[0,.5,1,0],
6. [0,0,1,0],
7. [1,0,1,0],
8. [1,1,.5,0]])
9.
10. testResult = numpy.array([[.75],
11. [1],
12. [1],
13. [.83]])
14.
15. randomWeights1 = 2*numpy.random.random((4,4)) - 1
16. randomWeights2 = 2*numpy.random.random((4,1)) - 1
17.
18. for i in xrange(10000):
19. l0 = testInitial
20. l1 = self.sigmoid(numpy.dot(l0,randomWeights1))
21. l2 = self.sigmoid(numpy.dot(l1,randomWeights2))
22.
23. l2_error = testResult - l2
24.
25. if (i% 1000) == 0:
26. print "Error:" + str(numpy.mean(numpy.abs(l2_error)))
27.
28. l2_delta = l2_error*self.sigmoid(l2,deriv=True)
29.
30. l1_error = l2_delta.dot(randomWeights2.T)
31.
32. l1_delta = l1_error*self.sigmoid(l1,deriv=True)
33.
34. randomWeights2 += l1.T.dot(l2_delta)
35. randomWeights1 += l0.T.dot(l1_delta)

52

36.
37. print l2
38.
39. def testNetwork2(self):
40.
41. numpy.random.seed(1)
42.
43. testInitial = numpy.array([[0,.5,1,0],
44. [0,0,1,0],
45. [1,0,1,0],
46. [1,1,.5,0]])
47.
48. testResult = numpy.array([[.75],
49. [1],
50. [1],
51. [.83]])
52.
53. randomWeights1 = 2*numpy.random.random((4,4)) - 1
54. randomWeights2 = 2*numpy.random.random((4,4)) - 1
55. randomWeights3 = 2*numpy.random.random((4,1)) - 1
56.
57. for i in xrange(10000):
58. l0 = testInitial
59. l1 = self.sigmoid(numpy.dot(l0,randomWeights1))
60. l2 = self.sigmoid(numpy.dot(l1,randomWeights2))
61. l3 = self.sigmoid(numpy.dot(l2,randomWeights3))
62.
63. l3_error = testResult - l3
64.
65. if (i% 1000) == 0:
66. print "Error:" + str(numpy.mean(numpy.abs(l3_error)))
67.
68. l3_delta = l3_error*self.sigmoid(l3,deriv=True)
69.
70. l2_error = l3_delta.dot(randomWeights3.T)
71.
72. l2_delta = l2_error*self.sigmoid(l2,deriv=True)
73.
74. l1_error = l2_delta.dot(randomWeights2.T)
75.
76. l1_delta = l1_error*self.sigmoid(l1,deriv=True)
77.
78. randomWeights3 += l2.T.dot(l3_delta)
79. randomWeights2 += l1.T.dot(l2_delta)
80. randomWeights1 += l0.T.dot(l1_delta)
81.
82. print l3

Test Neural Network - used to compare different learning rates and network sizes

1. def testNN(inputArray,outputArray):
2. testing = NeuralNetworkAI(inputArray,outputArray,.05)
3.
4. testing.trainNeuralNetwork(5000)
5.
6. print "Extrapolated: " + str(testing.extrapolate(inputArray[0]))
7. print "Expected: " + str(outputArray[0])

53

8. print "Difference: " + str(outputArray[0] - testing.extrapolate(inputArray[0]))
+ "\n"

9.
10. print "Extrapolated: " + str(testing.extrapolate(inputArray[1]))
11. print "Expected: " + str(outputArray[1])
12. print "Difference: " + str(outputArray[1] -

testing.extrapolate(inputArray[1]))+ "\n"
13.
14. print "Extrapolated: " + str(testing.extrapolate(inputArray[6]))
15. print "Expected: " + str(outputArray[6])
16. print "Difference: " + str(outputArray[6] -

testing.extrapolate(inputArray[6]))+ "\n"
17.
18. print "Extrapolated: " + str(testing.extrapolate(inputArray[8]))
19. print "Expected: " + str(outputArray[8])
20. print "Difference: " + str(outputArray[8] -

testing.extrapolate(inputArray[8]))+ "\n"
21.
22. print "Extrapolated: " + str(testing.extrapolate(inputArray[93]))
23. print "Expected: " + str(outputArray[6])
24. print "Difference: " + str(outputArray[6] -

testing.extrapolate(inputArray[6]))+ "\n"
25.
26. print "Extrapolated: " + str(testing.extrapolate(inputArray[95]))
27. print "Expected: " + str(outputArray[8])
28. print "Difference: " + str(outputArray[8] -

testing.extrapolate(inputArray[8]))+ "\n"

54

7.3 Survey

1. How did you find fighting the enemies in the first version?

Too hard Somewhat hard Just right Somewhat easy Too easy

2. In the second version?

Too hard Somewhat hard Just right Somewhat easy Too easy

3. How long did you play the game for? ________________

4. How would you score the game play?

Poor 1 2 3 4 5 Excellent

5. How would you score the graphics design?

Poor 1 2 3 4 5 Excellent

6. Do you have any suggestions for future progression of this game or any other comments?

__

__

__

55

8

Bibliography

Barnson, Jay. "How To Build a Game In A Week From Scratch With No Budget." How To Build

a Game In A Week From Scratch With No Budget. GameDev.net, 06 July 2005. Web.

Fall 2016.

Bourg, David M., and Glenn Seemann. "Four Cool Ways to Use Neural Networks in

Games."ONLamp.com. O’Reilly Media, Inc, 30 Sept. 2004. Web. Apr. 2017.

Britz, Denny. "Implementing a Neural Network from Scratch in Python – An Introduction."

WildML. Wordpress, 10 Jan. 2016. Web. 20 Apr. 2017.

Brownlee, Jason. "How to Implement the Backpropagation Algorithm From Scratch In Python."

Machine Learning Mastery. Machine Learning Mastery, 02 Jan. 2017. Web. 20 Apr.

2017.

Graft, Kris. "When Artificial Intelligence in Video Games Becomes...artificially

Intelligent."Gamasutra: The Art & Business of Making Games. UBM Technology, 22

Sept. 2015. Web. Nov. 2016.

Iamtrask. "A Neural Network in 11 Lines of Python (Part 1)." A Neural Network in 11 Lines of

Python. N.p., 12 July 2015. Web. 03 Mar. 2017.

Sweigart, Al. Making Games with Python & Pygame: A Guide to Programming with Graphics,

Animation, and Sound. 1st ed. Charleston, SC: Creative Commons, 2012. Invent with

Python. Web. Oct. 2017.

	Mouse vs. Machine: The Game
	Recommended Citation

	tmp.1493840122.pdf.DuX20

