
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2016 Bard Undergraduate Senior Projects

Spring 2016

Algorithmic Music Composition and Accompaniment Using Algorithmic Music Composition and Accompaniment Using

Neural Networks Neural Networks

Daniel Wilton Risdon
Bard College, dr7650@bard.edu

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016

 Part of the Artificial Intelligence and Robotics Commons, Composition Commons, Other Computer

Sciences Commons, Other Music Commons, and the Software Engineering Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Risdon, Daniel Wilton, "Algorithmic Music Composition and Accompaniment Using Neural Networks"
(2016). Senior Projects Spring 2016. 352.
https://digitalcommons.bard.edu/senproj_s2016/352

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2016
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2016?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/519?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/524?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2016/352?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Algorithmic Music Composition and
Accompaniment Using Neural Networks

A Senior Project submitted to

The Division of Science, Mathematics, and Computing

of

Bard College

by

Daniel Risdon

Annandale-on-Hudson, New York

May, 2016

Abstract

The goal of this project was to use neural networks as a tool for live music perfor-
mance. Specifically, the intention was to adapt a preexisting neural network code
library to work in Max, a visual programming language commonly used to create
instruments and effects for electronic music and audio processing. This was done
using ConvNetJS, a JavaScript library created by Andrej Karpathy.

Several neural network models were trained using a range of different training
data, including music from various genres. The resulting neural network-based in-
struments were used to play brief pieces of music, which they used as input to create
unique musical output.

Max, while useful for live performance and audio processing, proved to be some-
what impractical for this project. Implementing too complex of a network caused
performance issues and even crashing. Because of this, smaller networks, which are
less robust in their prediction abilities had to be used, producing very simplistic
musical patterns.

2

Contents

Abstract 1

Dedication 5

Acknowledgments 7

1 Introduction 9
1.1 Background . 9
1.2 Music Software . 13
1.3 Max . 15
1.4 Neural Networks . 17
1.5 ConvNetJS . 19

2 Related Work 21

3 Implementation 27
3.1 Development Process . 27
3.2 Final Max Patch . 28

3.2.1 Overview . 28
3.2.2 MIDI Processing . 29
3.2.3 Training Mode . 31
3.2.4 Performance Mode . 32

3.3 JavaScript Implementation . 34
3.4 Network Configuration . 36

4 Results 39

4 Contents

4.1 Concert Performance . 39
4.2 Testing & Results . 42

5 Conclusion 49

Bibliography 53

Dedication

For Kirby.

6

Acknowledgments

I wish to express my sincere thanks to Keith O’Hara, my advisor in computer science,
and Bob Bielecki, my advisor in music, for all of their help on this project. Without
their insight and guidance, none of this would have been possible.

I would also like to thank Sven Anderson for answering my many questions and
for all of his assistance.

Thank you as well to all of the friends who helped to make the performance
portion of this project a reality, particularly Marcel Rudin, John Carroll, and Pippa
Kelmenson, my ensemble, as well as Eileen Goodrich and Andrew Feyer for their
technical support.

Finally, I would like to thank my parents, Ron and Jane, my siblings, Matt and
Caroline, and my dogs, Kirby and Casper, for all of their love and support.

8

1
Introduction

1.1 Background

Many varieties of music either include or even completely revolve around the concept

of using a learned repertoire of skills and knowledge to create unique sounds right

there on the spot. This has been an important part of my own music, whether that

be jazz, experimental electronic music, or heavy metal. When I compose music, I

leave space for improvisation. That improvisation may take the form of a guitar solo,

a brand new electronic piece composed on the spot, or even a new riff simultaneously

improvised by an entire band.

All of this comes back to a learned set of rhythms and melodies and sounds

that a musician can call on to instantly create something new. This is, although a

musical skill that takes time to learn, something that can be recreated with machine

learning. Sequencers are not a new thing to the world of music. While in many cases,

the parameters from which they create sequences of notes are already predefined,

they still to some extent represent this idea of an easily called-upon catalogue of

10 1. INTRODUCTION

patterns that can be used to create music right as it is being performed. This is in

some way where the idea for this project came from.

I have previously worked on other projects involving music software. One such

project was a chord sequencer built in Max, a graphical programming language

commonly used for audio and MIDI processing. It had the option to always start a

measure with the first scale degree, allowed for the selection of the root note and

quality of the key, and would always finish off a phrase with a cadence of some kind.

This was not a project based in machine learning, but it still created new, albeit

very simplistic, music on the spot from a set of known parameters. The only thing

missing was the program actually learning these parameters itself instead of having

them hard-coded in.

Machine learning is not completely new to electronic music. Neural networks

have been used in the past to compose music, among many other things. Even on a

more basic level, most digital audio workspaces (DAW) have some sort of sampling

ability, which in a way learns a new sound, and is then able to apply it over an

entire keyboard, allowing it to be played at a range of different pitches. What is

less common is the use of machine learning for live performance, more specifically

simultaneously with a human musician.

The goal of this project is to create a digital instrument capable of learning

patterns of improvisation from a selected range of musical input, and then using

that new knowledge to play itself live, based on the playing of a human musician.

This is an important concept because improvisation requires listening just as much

as it requires playing. This must be a program that not only learns patterns of

playing, but also uses them to accompany another player without fighting for room.

There have been many different examples of algorithmic music, both learning-

based and otherwise in the past. Music has been automated long before computers

1.1. BACKGROUND 11

were conceived. Among the earliest examples is the player piano, which uses piano

roll, which is in essence, a long sheet of paper with holes punched in it representing an

ordering of notes to be played. This bears a very strong similarity to the modern day

MIDI, which will be explored at length later on. This was essentially an early model

of what is now called a sequencer. A sequencer, as its name suggests, primarily

serves to repeat a sequence of notes. These notes are not typically learned, but

given directly to the sequencer to repeat until told otherwise. While some electronic

keyboards have built-in digital sequencers, the sequencing important to us is that

done by software.

Modern music software has numerous examples of sequencing. It is a common fea-

ture in many DAW’s and also exists in the form of many different plugins for those

DAW’s. Software sequencing commonly uses MIDI (musical instrument digital inter-

face). MIDI messages carry with them specific pieces of data, ranging from pitch and

velocity to more complicated parameters such as pitch bending. Being represented

by simple integers makes processing MIDI considerably easier. For example, middle

C has a MIDI pitch of 60. Velocity corresponds to the force with which a note is

struck. A value of 0 signifies the note being turned off. Similarly to the way piano

roll doesn’t do anything without the player piano, MIDI needs a digital instrument

to function. MIDI files and real time streams of MIDI messages are just a series of

notes to then be played by whatever instrument is processing them.

This has its advantages and disadvantages. The numbers are easy to work with

and the files don’t take up much space, but the limits of having primarily a simple

note on and note off system means the audio being produced lacks the natural

articulation of a real musician’s hand. This isn’t as much of an issue when used

for synthesizer music, but MIDI instruments meant to sound like string or horn

12 1. INTRODUCTION

instruments often sound particularly mechanical, due to the inability to imitate

inflections such as vibrato and sliding.

Sequencing has its specific applications, but it should not be mistaken for real

composition. Algorithmic composition is something more complicated. It requires

algorithms capable of determining what notes come next depending one various

parameters such as key, meter, position in the measure, musical style, and more.

This is where machine learning comes into play. Neural networks have been used for

analyzing and creating music as far back as the 1980s [1]. These earlier applications

of neural networks to algorithmic composition consisted of, at their simplest forms,

prediction of a note based on the note preceding it. Networks using this model, while

producing strings of notes that made sense together, generally lacked an overall

understanding of musical structure [7]. This is due to the fact that music consists

of quite a bit more than just notes following other notes. A good piece of music has

some kind of progression and structure over the course of its duration, made up of

various elements such as key changes, melodic themes, and dynamics.

Despite the disadvantages of this note-by-note system, it is actually the system I

choose to employ, due to the nature of this instrument as an accompaniment, not a

solo composer. Those vital parameters will be determined during the performance

by the musician in charge. Ultimately, the goal of this project is to create a machine

learning-based software sequencer capable of being trained quickly with varying

data based on desired use. This ideally means a compact, simple neural network

model that can be trained with small datasets (even a single song) for specialized

performance uses.

1.2. MUSIC SOFTWARE 13

1.2 Music Software

There are two very different options for audio input and output that have been

previously used for neural network-based composition. The first and more complex

option is raw audio. Through some form of pitch detection, or analysis of the au-

dio waveforms themselves, the training data for the network could be obtained.

The simpler option is MIDI, due to the fact that the parameters MIDI signals are

represented by integers.

In addition to the different input and output options, there were also many pos-

sible software environments in which this project could be implemented. The two

primary options for implementation were either a VST plugin for Ableton Live, or

a patch made in Max. VST is the standard format for audio plugins for most music

software. Ableton Live is a DAW (digital audio workstation) commonly used for live

performance due to its unique layout. A VST plugin could be anything from a delay

effect to a completely new digital instrument. The idea with this project would be

to make a plugin instrument that created its own MIDI signals in addition to those

being sent by the musician.

The first advantage of using Ableton Live is that it is already my primary tool in

composing and performing electronic music. Live is set up in such a way that makes

composing and performing using the same software, and even the same file, rather

easy. This is because of its arrangement and session interfaces. The arrangement

view is more like your standard DAW. It has audio and MIDI tracks represented on

the y-axis over time on the x-axis. These tracks play in the order they are placed

on the arrangement.

The session view is what is unique about Live. It allows the user to represent tracks

on a grid that does not notate time. Columns can represent a single MIDI instrument

14 1. INTRODUCTION

Figure 1.2.1. The Ableton Live Arrangement Window

or synth, with each item within it representing a clip, as well as a collection of various

audio clips. These can be mapped to either the computer keyboard or whatever MIDI

controller is currently connected. This allows for both the playing of a synth or MIDI

instrument, or the triggering of MIDI and audio clips, which is very useful in a live

setting, and makes it easily possible to control an electronic component of a piece

of music while also playing a live instrument.

Due to all of this, building the software as a plugin for Ableton Live was an

ideal option. This VST plugin would be an instrument completely integrated into

the software I already use for composition and performance. Unfortunately, a VST

plugin would need to be built using a complicated and sparsely documented SDK,

in order to be compatible with a DAW.

VSTs are written in C++, and while handling MIDI numbers through this library

turned out to be fairly doable, the first major hurdle came in the form of the real-

ization that Ableton Live would not allow MIDI signals to be created by the plugin

1.3. MAX 15

Figure 1.2.2. The Ableton Live Session Window

and then sent to another instrument. A synthesizer would have to be built into the

plugin. This would have greatly increased the development time of this project.

1.3 Max

Max is a visual programming language, very commonly used for audio and MIDI

processing. Max is created by a company called Cycling ’74, and was originally writ-

ten in the mid-1980’s by Miller Puckette [10]. It is unique in its flexibility for audio

and video processing. While dedicated synth programs might be more computation-

ally efficient, they provide a more limited range of sounds and functions, specific

to their chosen purpose. Max, however, allows a user (after somewhat of a learning

curve) to create completely unique software instruments and other programs.

Programming in Max consists mostly of placing objects that perform particular

functions, and sending data between them by connecting wires, similarly to other

visual languages such as Simulink and Reaktor. The ports on the top of an object are

the inputs, and those on the bottom are the outputs. A simple example would be two

16 1. INTRODUCTION

integer objects having their outputs fed into an object that performs some arithmetic

on them and then prints the output to a message box (fig. 1.3.1). Max includes a

massive library of objects, ranging from simple data types and operations to more

complex functions such as splitting raw MIDI input into its separate components.

A program made in Max is typically referred to as a “patch” or a “patcher”. I will

be using the term “patch” in this paper.

Figure 1.3.1. A Simple Example of Max Programming

Due to the unique nature of Max, it is possible and fairly simple to run multiple

processes at the same time. For example, MIDI input from a controller or keyboard

can be sent into two separate wires, one straight into a MIDI output object, and one

into some sort of effect, before also being sent to an output. This is an important

feature for this project, as it allows a musician to play notes in real time, and

simultaneously send them to the neural network object to be processed there.

Max also allows for the creation of new objects. This can be done either by

creating a sub-patch, which is essentially just another Max file contained within

an object, or by using JavaScript. JavaScript files can be directly loaded into and

compiled by Max’s js object. Once loaded and compiled, the files, or functions

within, can be called using message objects. It is through this functionality that

1.4. NEURAL NETWORKS 17

this project is made possible. While neural networks and other forms of machine

learning have been implemented in Max before, the JavaScript functionality allows

for more advance neural network libraries to be placed directly into a Max patch

with some amount of modification. This implementation of neural networks into

software more predisposed to live performance is at the center of this project.

Max patches can be run in two different modes. The first is patching mode, which

displays all objects and wires in the patch, either for editing, or simply because user-

friendly operation isn’t the goal. The second mode, presentation mode, displays only

the objects one wishes a user to see. This allows for fairly easy creation of a GUI. This

project does not currently have a presentation mode, but as the patch is improved

upon, one may be added.

1.4 Neural Networks

Neural networks are powerful machine learning tools which, once trained on large

datasets, can predict patterns in subsequent data inputs. This can potentially have

many different applications in solving many different problems, or even creating art.

A neural network consists of an arrangement of nodes, or neurons, each of which

performs a weighted sum of a set of inputs and then squashes the result between

0 and 1 using an activation function and adds a constant bias value. These nodes

are arranged into layers, with nodes within a certain layer taking the output of the

previous layer as their input. Each layer shares the same input among all of its nodes,

but the nodes within will have different weights and biases. The layers performing

theses weighted sums are called hidden layers, and are sandwiched between input

and output layers.

The input layer determines the size of the input to the network, and simply takes

it and sends it on to the hidden layers. The output layer can take different forms

18 1. INTRODUCTION

Figure 1.4.1. An Example of a Neural Network for Binary Classification

depending on the intended application of the network. Using regression, the network

can predict real number output values. In this project however, a classification layer

has been used. With a classification-based output layer, the network determines the

probability of a predetermined number of classes. The classes in this case are the

128 possible MIDI notes. These are represented by 128 nodes in the output layer,

each with their own biases and weights. On top of these differences, there is also the

distinction between feedforward and recurrent neural networks.

The type of network used in this project is a feedforward network. This takes the

inputs and sends it through each layer linearly, not saving outputs between training

steps. A recurrent network carries the output of each layer over to the next step

as an additional input, allowing for a stronger understanding of patterns in time

1.5. CONVNETJS 19

[9]. Time is not as much of a factor in this application, so a feedforward network is

enough to choose a note based on the recent notes played by the musician.

In order for a neural network to effectively make these predictions, it must first

be trained. This involves giving it very large input sets and updating the weights of

each neuron after a given number of steps. This process is called backpropagation.

With each step, a cost is calculated, which in this case would be related to the

probability of the correct note being predicted. This cost is used to calculate a

gradient for each neuron. An optimization function is then used to adjust each

neuron’s weights in order to reduce this weight. The optimization function used for

this project is stochastic gradient descent (SGD), which performs weight adjustment

after a designated number of training steps, called the batch size (in this case a batch

of 10). This is done over the course of thousands of potential inputs and expected

outputs, resulting in more and more accurate data prediction as the training goes

along.

Several other parameters in the network model also determine the effectiveness of

training. Learning rate, which is chosen manually in an SGD model, determines how

large the adjustments to the network’s weights will be each training step. Several

other optimization functions choose the learning rate dynamically during training. A

dropout probability can also be applied, which gives each neuron’s output a chance

to be set to 0 at each training step, for the sake of regularizing the outputs of the

network to avoid overfitting more common patterns in the training data.

1.5 ConvNetJS

Part of the goal of this project was to streamline the process of implementing neural

networks into live performance by taking advantage of Max’s compatibility with

JavaScript, and implementing an already existing neural net library. This library

20 1. INTRODUCTION

is ConvNetJS, a JavaScript neural network library created by Andrej Karpathy, a

PhD student at Stanford [11]. This library is intended for browser use or use with

node.js, so implementing it into Max requires some slight modifications.

Within ConvNetJS, it is fairly simple to set up and train various neural network

configurations (example in listing 1.1), and the documentation available provides

information that makes this functionality accessible to those with little knowledge

of neural networks or machine learning. For those with some knowledge of how neural

networks function, it is fairly simple to configure a network. Individual layers are

defined, starting with input, then hidden layers, then output, and then pushed into

a list from which the network will be initialized. When defining a layer, depending

on the type, one can set the parameters, such as input size, number of neurons in a

hidden layer, and output size/type.

1

2 var layer_defs = []; // array of layers

3 layer_defs.push({type:’input’, out_sx:1, out_sy:1, out_depth :1}); // input layer -

1 input

4 layer_defs.push({type:’fc’, num_neurons :10, activation:’sigmoid ’}); // hidden

layer - 10 neurons , sigmoid activation

5 layer_defs.push({type:’softmax ’, num_classes :2}); // output layer - 2 possible

output classes

6 var net = new convnetjs.Net(); // empty network

7 net.makeLayers(layer_defs); // create layers within network

Listing 1.1. Initializing a Neural Network With ConvNetJS

Once a network has been initialized, a trainer can be created. The parameters

of this trainer class include the optimization method, followed by things like the

learning rate, batch size, and dropout (if any is desired). This trainer will then take

an input, forward the network, and update its weights based on loss. Once trained,

the network can be used for prediction. Saving the network is done using JSON

objects. These objects can be turned into strings and then saved manually for later

use.

2
Related Work

Neural networks have seen many previous applications in music composition. An

early example is Bharucha and Todd (1989). Their research revolved around the

idea of a separation of schematic and veridical expectancies. Expectancies refer to

how a person expects a piece of music to play out based on their own knowledge

of music and their own culture. Schematic expectancies have to do with cultural

understandings of musical style. Veridical expectancies are more context-specific,

and have to do with how a piece might progress through a certain sequence. The

agreements and conflicts between these two expectations play a prominent part in

the way any piece of music is listened to.

According to their research, it is fairly common for someone to have a strong

understanding of common musical ideas in their own culture, and even in those

lacking in formal music training, and understanding of the sensible progression of

a piece based on current context. These understandings are very much learned, as

people expect different things based on the tonal systems present in their cultures.

Western music has a very different system of tonality from that of India, for example.

22 2. RELATED WORK

Bharucha and Todd modeled these expectancies using a neural network they called

MUSACT. The resulting conclusion was that despite the environments used to train

the neural networks being largely based in veridical expectancies, schematic concepts

were still learned through passive exposure. This network, however, did not actually

create new music, just predict it based on these expectancies.

Mozer (1994) used neural nets to incorporate not only the probability of the next

note being played, but also an understanding of note duration and harmony. He did

this using recurrent neural networks as well as in-depth representations of chords

and key changes. The result was a network called CONCERT. This software had

a training mode and a composition mode. In composition mode, it would be first

seeded with a sequence of notes, from which it would be able to generate more

without any further external input, due to its recurrent nature.

CONCERT used 49 possible notes (four octaves), uniquely represented by a helix

(presented in the form of an activity vector). He calls this PHCCCF representation

(pitch class, chroma circle, circle of fifths). This is due to the fact that notes an

octave apart will be directly above or below one another in this helix, and notes

near each other in the circle of fifths, or simply chromatically, will have fairly similar

representations. This complex note representation is layered with representations

for chords and time as well, resulting in a robust recurrent network. It was able to

master a C major scale within about 30 training passes, as well as a training set of

28 different scales in about 55. It was even capable of recreating larger song forms

such as AABA.

Feiten and Günzel (1994) used a neural network to address the difficulty of finding

desired sounds in a database. Online databases of sounds are often unsorted, or

sorted by types that can be highly subjective, making it difficult to find what one

might be looking for. They did this using a fairly complex representation of sounds

23

in a 3-dimensional space, that the user can apply their own definitions to, to allow

for far greater subjectivity.

Their algorithm was thorough, but the computation time was very costly, and so

the practicality of the solution is questionable. On synthetic sounds, however, the

sound space is static, as there are a set number of parameters, which allowed for the

computation time to be largely ignored.

Eck and Schmidhuber (2002) looked at how previous uses of recurrent neural

networks had failed in learning larger musical forms, and built a long short-term

memory (LSTM) model to try to succeed where others had failed. An LSTM model

can remember certain values for longer periods of time than traditional recurrent

networks. They successfully trained this model to produce interesting blues melodies.

Eldridge (2006) did not exactly use neural networks, but still developed a machine

learning-based Max patch intended for algorithmic live performance in unison with a

live musician. This “self-karaoke” machine takes samples of what an instrumentalist

is playing and manipulates them in real time for interesting results, despite not

actually learning formal patterns of music. The general idea behind this software is

an important basis for my own: human performance accompanied in real time by

the software’s response.

The deeper details of Eldridge’s project involve a physics simulation describing the

motion of particles, and an implementation of what is called an Ashbian homeostat.

She did this using a system somewhat similar to a neural network, in which a series

of interconnected nodes have the weights connecting them adjusted whenever they

exceed a particular threshold. This system is then used to control the parameters of

a granular synthesizer.

Smith and Garnett (2012) used several variations on hierarchical neural networks

to generate algorithmic music with a greater understanding of long-term musical

24 2. RELATED WORK

Figure 2.0.1. Eldrige’s Self-Karaoke Machine Schematic

structure and key. Where simple neural networks, and to a lesser extent, recurrent

networks tend to create music with a lack of overall structure, their model was

able to compose pieces with some higher-level musical elements, including repeating

patterns and recognizable sections.

Their model operates over a 4 octave range, using the western 12-note system.

Instead of the note-by-note method used by many other systems, theirs looks at

the piece more as a whole, and considers chunks of music at a time in order to

determine what can be called a “novel” musical idea. This hierarchical model looked

at these small novel events, and then further abstracted them into higher and higher

concepts of musical structure. The main levels of structure displayed by their results

are pattern repetition and manipulation.

Nayebi and Vitelli (2015) compared two different types of recurrent networks and

their usefulness in generating algorithmic music: gated recurrent unit (GRU) and

long short-term memory (LSTM). These models took mono WAV audio files as input

and produced waveforms as output based on an initial seed. The results from the

GRU model were largely white noise, and thus not musically viable by the standards

they set, but the LSTM model was able to generate viable outputs. Due to time

25

constraints and the immense computation time required for processing WAV files,

they were unable to test on the wide range of genres they had initially planned.

Johnson (2015) used a biaxial recurrent neural network model that used MIDI

as input and output. His model used a fairly complex vector to represent the MIDI

input which included notations of the integer MIDI value, its pitch class, vicinity to

the previous note, context of the current note in relation to the frequency of recent

notes, and position in a measure of 4/4 time. The output not only included the

probability of a certain note being played next, but also a probability of it being

articulated or held if it has already been played.

The model was trained on a large number of midi files obtained from an online

database of classical piano, taken in batches of 10 random 8-measure snippets. The

resulting compositions consist not only of single note melodies, but of chords and

more sophisticated rhythmic ideas. The melodies can sometimes linger on certain

notes for longer than desired, but otherwise sound much like real human-composed

classical piano pieces.

26 2. RELATED WORK

3
Implementation

3.1 Development Process

This project went through several iterations before reaching a finalized form, each

one incrementally adding the necessary functionality. The first of these was a simple

proof-of-concept, taking MIDI input from a keyboard and saving the last 20 notes

played to a list. It would then randomly select notes from this list to play each

time the keyboard was played. This was a simple test leading up to the actual

development of the complete Max patch.

The next step was to implement ConvNetJS into a js object. The primary mod-

ification needed was the removal of any code referring to Node.js. Node.js can

be made compatible with Max, but is not by default, and is unnecessary for the

purpose of this project. Due to JavaScript’s nature as a non-modular language, the

entire library of ConvNetJS must be copied into each js object in order for it to be

used. The first incarnation of the patch had just one js object, but for the sake of

modularity within the Max patch, this was increased to three.

28 3. IMPLEMENTATION

PATCH VERSION FEATURES
1 Basic MIDI keyboard support,

sequencing via list of last 20 notes
2 ConvNetJS implementation,

basic training using a single input set for testing
3 Training from MIDI keyboard,

very inefficient due to constantly saving and reloading network
4 Global network and trainer objects,

training from parsed array of notes, MIDI file support
Final Separation of training and performance modes

Table 3.1.1. Versions of the Patch

Each iteration of the patch leading up to the final version added some important

functionality. The first was MIDI input from a keyboard, followed by the porting

of ConvNetJS, then later MIDI file inputs, as well as improvements to training

efficiency and the ability to save and reload the parameters of the neural network.

Table 3.1.1 lists each iteration of the patch and the features it added.

3.2 Final Max Patch

3.2.1 Overview

The finalized version of this Max patch is intended to run in two different modes:

training and performance. Training mode takes MIDI files and parses them into a

simple list of integers, before training the neural network using that list. Performance

mode takes MIDI input from a controller of keyboard, and uses the most recently

played notes to forward the neural network, and output its predicted note. This is

done with Max’s gate object, which takes an input and sends it out of a chosen

output, essentially serving as a switch between the two modes so that the patch

need only rely on a single input source. This overall structure essentially consists of

a shared form of input, and a switch, deciding which part of the patch receives said

input.

3.2. FINAL MAX PATCH 29

Figure 3.2.1. Overview of the Patch’s Structure

3.2.2 MIDI Processing

The first important piece of this project is a basic framework for the input and

output of MIDI signals. Max’s midiin and midiparse objects are central to the

input side of this purpose. midiin takes raw midi signals from a designated input

and simply outputs them through a single port. midiparse then takes those raw

signals and separates them into several important parameters, including pitch and

velocity. This is necessary so that these signals can be formatted for output through

a synth instrument, rather than the computer’s default MIDI piano sound.

The audio output from this patch comes on the form of a VST plugin, as described

earlier. VST’s are a standard audio plugin format and are compatible with Max

30 3. IMPLEMENTATION

through the use of the vst object. This object allows a user to easily load up any

VST they have installed. For this project, having the ability to change the voice of

the instrument with ease is a useful feature. For testing I used a free synth plugin

called Scythe for some fairly straightforward sounds.

Figure 3.2.2. The midiin and midiparse objects

The other form of MIDI input (the training data) comes from MIDI song files that

can be loaded into an object called detonate. MIDI files can be one of 2 types: 0 or

1. Type 0 files have all tracks combined into one, although the channel information

is still present so it still has the effect of separate tracks. Type 1 files have each MIDI

channel as a separate track. detonate takes each midi message and separates it into

the important parameters such as pitch, velocity, and channel. This information can

then be sent wherever it is needed.

Once the MIDI messages are “detonated,” they are filtered by channel. Typically,

drums are on channel 10, and drums are undesirable for this patch, since they use

pitch numbers in a very different way, and could cause severe errors in training.

Channel 10 and several other channels are thus blocked, so that the main melody

of the piece can be used for training.

3.2. FINAL MAX PATCH 31

Figure 3.2.3. Generating midievent messages

3.2.3 Training Mode

The first step involved in training mode is to parse the MIDI song file into an array,

note by note. This array, while potentially containing thousands of indexes, is still

far more efficient for training than simply playing through the song repeatedly in

real time. This array implementation is a part of one of the three js objects used

in the patch. One of these js objects is for initializing the network, another is for

training the network, and the last is for performing using the trained network.

This note-by-note parsing of the song is done without regard to actual rhythm.

The song is played with each note being a set number of milliseconds apart (in

this case, 10). This allows the song to be parsed much more quickly, without any

detriment to the training data, since rhythm is not a factor to begin with. Note off

signals are also ignored, so that training simply includes series of pitch values. MIDI

files send a unique note message to indicate the end of the file, at which playback is

stopped.

32 3. IMPLEMENTATION

Once parsed, the array representation of the song is used as the training data.

The js object used for training, trainNet.js, takes this input, and iterates through

it, training on each note and the 7 preceding it, in order. The number of times the

training set is iterated through is chosen by the user. Figure 3.2.4 depicts the overall

structure of training mode.

Figure 3.2.4. Training Mode

3.2.4 Performance Mode

In performance mode, MIDI input from a controller or keyboard is sent into a list-

processing object called zl, which in this context, is used to save a stream of the

last 7 notes played. This list is updated every time a new note is played. The js

object involved in performance mode, perform.js, uses this list as its input in order

to generate new notes. The main function of this object is called upon each click of

a metronome, running at a tempo chosen by the user. This is the basis of playing

music using this neural network-based instrument. The user choses a tempo before

3.2. FINAL MAX PATCH 33

playing, and then plays a series of notes, while the neural network generates an

accompanying melody in time with the metronome.

Because the patch ignores note off values in the input during performance, note

off signals must be generated, or else notes will be sustained indefinitely. This is

done by sending a bang through a ‘delay’ object, which 100 milliseconds later sends

a bang signal to a note off message which is then used to turn off the note. While

this is fairly simplistic, and does not allow for more interesting sustained notes of

varying durations, it allows training to be simplified down to simple progressions

of notes, which in turn allows the whole project to be distilled down to applying

machine learning to a live note sequencing environment. Figure 3.2.5 shows the flow

of data in performance mode, while 3.2.5 shows the Max implementation.

Figure 3.2.5. Performance Mode

34 3. IMPLEMENTATION

Figure 3.2.6. The Objects in Performance Mode

3.3 JavaScript Implementation

The JavaScript portion of the project has been described in general terms previously.

There are three objects containing JavaScript code, intended for initialization, train-

ing, and performance. Each of these objects also contains ConvNetJS in its entirety.

The functions within each file are called from message objects within the Max patch.

The first of these objects, for the purpose of initializing new networks and trainers,

as well as loading and saving trained networks, is defaultnet.js. The first function

within this file, makeDefaultNet() initializes the default network and a trainer.

saveNet() converts an existing network to a JSON object and then to a string,

which it outputs to a message object in the Max patch. loadNet(jsonstring)

takes whatever string is present in the message box and converts it back to a JSON

object to then be initialized into the global network object. This js object has a

single outlet, for sending the JSON string to the message box.

The next object is trainNet.js, which is used for parsing the training data

from a MIDI song file and then using it to train. The first function, emptyArray(),

initializes the array to be filled with the training data. addNote(x) is then called

3.3. JAVASCRIPT IMPLEMENTATION 35

every time the object receives a new note from a MIDI file or keyboard input, and

appends that note to the array. emptyArray() can then be called again to clear

everything from the training set. This functionality allows for training data to be

easily interchangeable, enabling different network configurations to be created for

different performance purposes.

The next important function is trainLoop(times), which trains the network on

the full array, step by step, a selected number of times. The notes in the training

set are first standardized by being scaled between -0.5 and 0.5 to increase training

efficiency and help prevent overfitting. This object also contains a few debugging

functions and a printSong() function for making sure the notes have been success-

fully parsed into the array.

The third js object contains perform.js, which is used in performance mode. It

contains the prediction functions for the network. There is a test prediction function

meant for simpler networks, but there is otherwise only one important function in

this object, perform(n1, n2, n3, n4, n5, n6, n7), which feeds the last 7 notes

played (which have been stored in the zl stream object in the patch) into the

network for prediction. It then will loop through the possible classes of the network

(0 - 127) and select the one with the highest probability to be played. It has some

extra variables in place to prevent overplaying of the same note, as well as a random

element to allow for the occasional decision to not play a certain note.

36 3. IMPLEMENTATION

1

2 function perform(n1, n2, n3, n4, n5 , n6 , n7) {

3 /* Take 7 notes and predict the next. stand(n) is the standardization function to

scale inputs between -0.5 and 0.5. chooseornot is either 0 or 1 and decides if

a note will be played , assuming its probability would permit it. lastnote is a

global object that maintains the last note played to prevent notes from being

repeated over and over again.

4 */

5 var x = new convnetjs.Vol([stand(n1),stand(n2),stand(n3),

6 stand(n4),stand(n5),stand(n6),stand(n7)]); // input set

7 var predicted_values = globalNet.net.forward(x); // forward the network

8 var note = 0; // note starts at 0

9 var note_prob = predicted_values.w[0]; // note probability

10 var chooseornot = 0;

11 for (var i = 0; i < 128; i++) { // loop through all output nodes , if prob is

higher than current , update

12 if (predicted_values.w[i] > note_prob && i != lastnote.note) {

13 chooseornot = Math.floor(Math.random () * (1 - 0 + 1)) + 0;

14 if (chooseornot == 1) { // play the note , otherwise continue

15 note = i;

16 note_prob = predicted_values.w[i];

17
18 }

19 }

20 }

21 lastnote.note = note; // maintain last note played

22 post("note: " + note + ". prob: " + note_prob + ". " + "\n"); // print note and

prob

23 outlet(0, note); // outlet note to max patch

24 }

Listing 3.1. JavaScript implementation of the peform function

3.4 Network Configuration

Several parameters are kept standard for the networks tested in this project. For

output, a softmax classification layer is used. This layer has 128 nodes representing

all possible MIDI outputs. During performance, each node has a probability of being

played, according to the input given. The softmax function squashes these proba-

bility scores to have a sum of 1. The note with the highest probability is played.

For hidden layers, sigmoid activation function is used. A fairly high learning rate

is used in training due to the relatively small training sets and desire for fast and

easy use, so rectified linear units (ReLU), which can be thrown off drastically by a

large gradient, are not ideal.

3.4. NETWORK CONFIGURATION 37

The trainer also stays constant. The network is trained using momentum-based

stochastic gradient descent, meaning weight updates after every batch of 10 training

steps. A learning rate of 0.05 is used so that the relatively small dataset can be

learned quickly. An L2 decay of 0.005 works to regularize training. Training is done

by iterating through the song array 1 note at a time. This note is treated as the

desired output, while the seven preceding it are the inputs. This entire loop is

repeated however many times the user wishes.

Where the networks used in testing vary is in the number of neurons. Only a

single hidden layer was ever used due to the somewhat sub-par performance during

live playing. For early tests this single hidden layer contained 5 neurons. This was

later increased to 10.

Because of certain issues with overtraining and small training sets, a few

workarounds were added to performance mode. These included a flag for the last

note played to prevent overplaying of the same note, as well as a small chance to

completely ignore a note and play the next most probable pitch.

38 3. IMPLEMENTATION

4
Results

4.1 Concert Performance

The first test of this project was a live performance, that performance being a part

of my own senior project in music. This was done using an unfinished version of the

patch, but was an effective way to hit the ground running. The Max framework was

largely in place, but the configuration of the network had not been fully decided

upon. The network used for this performance consisted of a single hidden layer of 5

neurons, used ReLU activation, and did not have standardized inputs.

This more simplistic and untested network was initially tested with several dif-

ferent small training sets. These included Jimi Hendrix songs, some video game

themes, and Aha’s “Take On Me,” but ultimately, the song that produced the most

interesting data was Scott Joplin’s “The Entertainer.” The network was trained on

this song 2,000 times, which, with the additional limitations placed upon the play-

ing of consecutive notes, produced reasonably interesting note patterns. Without

those restrictions, however, the network exclusively produced middle C (60). The

exact piece was not saved, but short examples of music played and graphs showing

40 4. RESULTS

the frequency of certain notes during 2 minutes of playing with and without the

repetition workarounds are shown in figures 4.1.1-4.

Figure 4.1.1. 8 Bars Played With The Network Without Workarounds

Figure 4.1.2. 8 Bars Played With The Network With Workarounds

4.1. CONCERT PERFORMANCE 41

Figure 4.1.3. Notes Played By The Network Without Workarounds

Figure 4.1.4. Notes Played By The Network With Workarounds

42 4. RESULTS

Figure 4.1.5. The Performance Using the Patch

4.2 Testing & Results

After updating the network implementation to have standardized inputs and 10

neurons instead of 5, a simpler test was run to more thoroughly make sure the

network library was running properly. The input size was reduced to a single note,

and the output was reduced to be a consistent perfect fifth above the input note

(7 half steps). After some adjusting of the learning rate, as well as implementing a

way to indicate training cost, the network was trained on a randomly sorted array

of every possible note and its fifth. The network was trained on this list 5,000 times,

and then tested over an octave of possible notes (C4-C5) to see how accurately

it could find the fifth. The patch was not quite consistently able to play a fifth

4.2. TESTING & RESULTS 43

harmony, but the notes played each time were accurate within a few steps of the

desired notes.

Next, the same network was tested on a smaller training set. This set consisted of

only half of the possible notes and their fifths. The network was once again trained

5,000 times and then tested over an octave. The network was able to learn this data

much more quickly, and with less training error, but also became much more likely

to predict the wrong note. With fewer notes in the training data, there was less to

learn, but this left the network less capable of dealing with brand new inputs (the

other half of the notes). Figures 4.2.1-2 show the training error over time for both

tests, while tables 4.2.1-2 show the notes played, correct fifths, and notes predicted

by each network.

After completing this test, the original problem was returned to. The learning

rate was increased up to 0.05, and the new, larger number of neurons was main-

tained. While retrying training using “The Entertainer” produced slightly more

varied inputs, the minimal size and variance of the training data still did not al-

low for particularly diverse music generation. Instead, the network was trained on a

medley of several well-known themes from the Star Wars movies. The presence of

several pieces, in shortened form, in this new training data allowed the network to

be trained on much more varied input, even though the overall size of the dataset

was similar. This, as a result, produced much more varied output. However, this

new output was still not quite fully generalized, and was at times very dissonant.

Similarly to the network used in the live performance, this new network was tested

first by playing eight-measure musical segments and recording each note produced,

both with and without the workarounds used in the concert. It was then also tested

by playing for two minutes and recording the frequency with which each possible

note was played in that timespan. Figures 4.2.3-6 show the results of this testing.

44 4. RESULTS

Figure 4.2.1. Training Cost of The Network Being Trained With All Possible Fifths

Input Note Correct Note Predicted Note
60 (C) 67 (G) 66 (F#)

61 (C#) 68 (G#) 69 (A)
62 (D) 69 (A) 69 (A)

63 (D#) 70 (A#) 69 (A)
64 (E) 71 (B) 71 (B)
65 (F) 72 (C) 71 (B)

66 (F#) 73 (C#) 71 (B)
67 (G) 74 (D) 71 (B)

68 (G#) 75 (D#) 77 (F)
69 (A) 76 (E) 77 (F)

70 (A#) 77 (F) 78 (F#)
71 (B) 78 (F#) 78 (F#)
72 (C) 79 (G) 78 (F#)

Table 4.2.1. Results of Training Network With All Possible Fifths

4.2. TESTING & RESULTS 45

Figure 4.2.2. Training Cost of The Network Being Trained With Half of the Possible
Fifths

Input Note Correct Note Predicted Note
60 (C) 67 (G) 67 (G)

61 (C#) 68 (G#) 67 (G)
62 (D) 69 (A) 67 (G)

63 (D#) 70 (A#) 67 (G)
64 (E) 71 (B) 71 (B)
65 (F) 72 (C) 73 (C#)

66 (F#) 73 (C#) 75 (D#)
67 (G) 74 (D) 75 (D#)

68 (G#) 75 (D#) 75 (D#)
69 (A) 76 (E) 75 (D#)

70 (A#) 77 (F) 75 (D#)
71 (B) 78 (F#) 75 (D#)
72 (C) 79 (G) 75 (D#)

Table 4.2.2. Results of Training Network With Half of the Possible Fifths

46 4. RESULTS

Figure 4.2.3. 8 Bars Played With The Finalized Network Without Workarounds

Figure 4.2.4. 8 Bars Played With The Finalized Network With Workarounds

4.2. TESTING & RESULTS 47

Figure 4.2.5. Notes Played By The Finalized Network Without Workarounds

Figure 4.2.6. Notes Played By The Finalized Network With Workarounds

48 4. RESULTS

5
Conclusion

The tests run over the course of this project all point towards a similar conclusion.

The networks simple enough to run smoothly within this implementation do not

have the power to produce truly unique and varied musical output. Many other

implementations of neural network-based music generation use recurrent models

with hundreds of neurons, spread out over multiple layers. Attempting to implement

this large of a network caused serious performance issues, as well as occasional

crashing. Even with the noticeable improvements made to the network with the

addition of standardized inputs and a greater number of neurons, the network still

produced relatively simplistic, and sometimes dissonant music.

This was also partially due to the very small training sets used. Consisting of a

single song, or even short samples of several songs, these datasets did not provide

varied enough patterns to predict much beyond the most commonly appearing notes

in the pieces. With some training sets, this mean only a single note was ever pre-

dicted. The use of a more varied medley of songs improved the variation in notes

played, but at times created very dissonant music.

50 5. CONCLUSION

Perhaps the most successful and promising experiment was the harmonizer. While

unable to predict fifths with much accuracy, the resulting network produced some

interesting and unexpected harmonies in unison with the notes being played by the

user. Training a neural network to do something that can be done with a simple

equation, however, is a massive wast of processing power. Harmonizers very much

already exist, and do not require machine learning. However, if the intention were to

produce interesting harmonies instead of consistent ones, the use of a neural network

would be far more justifiable.

There are still some possibilities for improving the prediction ability of these very

simple neural networks. The first would be to abandon the idea of quick, small train-

ing sets, in favor of larger, more varied ones. These would take considerably longer

to train with, but would produce far more variance in note prediction, resulting

in more interesting musical output. Another improvement to the training process

would be to rethink the linear way in which the training data is iterated through.

Taking random segments of the training data each training step instead of iterating

through the song one note at a time might prevent the network from simply learning

which notes are most common.

Larger changes would have to be made for any more significant improvement.

The implementation of a library written in one language into software written in

another is not the most efficient way to do things. It is somewhat more simple

and quick to implement, as well as being fairly modular, but unfortunately takes

a lot of processing power to accomplish even the simple results produced here. A

Max machine learning library called ml-lib was developed in 2014, and is available

online, and while it would require modification for live musical performance, it might

produce results far more favorable than those produced by this project.

51

The harmonizer network could be expanded upon quite extensively. Providing

varied training including a range of harmonies that would sound consonant together

could improve its functionality considerably. Both the harmonizer and the larger

composition models could benefit greatly from a recurrent implementation. Taking

previous predictions into account could improve the overall progression of a piece of

music instead of the network predicting single notes, isolated from one another.

While this implementation of neural networks in a live music setting may not have

been entirely successful, the framework it was built upon could be vastly improved.

With such improvements as a recurrent model, larger training sets, and a full Max-

integrated machine learning library, this idea of an instrument with a mind of its

own could be much closer to reality. I am eager to continue this work and improve

upon this concept.

52 5. CONCLUSION

Bibliography

[1] Jamshed J. Bharucha and Peter M. Todd, Modeling the Perception of Tonal
Structure with Neural Nets, Computer Music Journal Vol. 13, No. 4 (1989),
44-53.

[2] Douglas Eck and Jürgen Schmidhuber, A First Look at Music Composition
using LSTM Recurrent Neural Networks, Technical report, IDSIA USI-SUPSI
Instituto Dalle Molle (2002).

[3] Alice Eldridge, Collaborating with the Behaving Machine: Simple
Adaptive Dynamical Systems for Generative and Interactive Music,
2007, http://www.ecila.org/ecila_files/content/papers/thesis/

behavingMachines_aliceEldridgeThesis_07.pdf.

[4] Bernhard Feiten and Stefan Günzel, Automatic Indexing of a Sound Database
Using Self-Organizing Neural Nets, Computer Music Journal Vol. 18, No. 3
(1993), 53-65.

[5] Daniel Johnson, Composing Music With Recurrent Neu-
ral Networks, 2015, http://www.hexahedria.com/2015/08/03/

composing-music-with-recurrent-neural-networks/.

[6] Andrej Karpathy, Hacker’s Guide to Neural Networks, http://karpathy.

github.io/neuralnets/.

[7] Michael C. Mozer, Neural network music composition by prediction: Exploring
the benefits of psychoacoustic constraints and multiscale processing, Connection
Science 6 (1994), 447-462.

[8] Aran Nayebi and Matt Vitelli, GRUV: Algorithmic Music Generation using
Recurrent Neural Networks, 2015, http://cs224d.stanford.edu/reports/

NayebiAran.pdf.

54 Bibliography

[9] Benjamin D. Smith and Guy E. Garnett, Improvising Musical Structure with
Hierarchical Neural Nets, Musical Metacreation: Papers from the 2012 AIIDE
Workshop (2012), 63-67.

[10] FAQ: Max 4, https://cycling74.com/support/faq_max4/#1.

[11] ConvNetJS, http://cs.stanford.edu/people/karpathy/convnetjs/index.
html.

	Algorithmic Music Composition and Accompaniment Using Neural Networks
	Recommended Citation

	tmp.1462388352.pdf.uWdOg

