
Bard College Bard College 

Bard Digital Commons Bard Digital Commons 

Senior Projects Spring 2016 Bard Undergraduate Senior Projects 

Spring 2016 

Persistent Asset Mispricing: Variations on a Simultaneous Move Persistent Asset Mispricing: Variations on a Simultaneous Move 

Game Game 

Arjun Kavi Brara 
Bard College, ab5138@bard.edu 

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016 

 Part of the Behavioral Economics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Brara, Arjun Kavi, "Persistent Asset Mispricing: Variations on a Simultaneous Move Game" (2016). Senior 
Projects Spring 2016. 214. 
https://digitalcommons.bard.edu/senproj_s2016/214 

This Open Access work is protected by copyright and/or 
related rights. It has been provided to you by Bard 
College's Stevenson Library with permission from the 
rights-holder(s). You are free to use this work in any way 
that is permitted by the copyright and related rights. For 
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by 
a Creative Commons license in the record and/or on the 
work itself. For more information, please contact 
digitalcommons@bard.edu. 

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2016
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2016?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/341?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2016/214?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/


	
  

 
 

 

 

Persistent Asset Mispricing: Variations on a Simultaneous Move Game 

 

 

 

 

A Senior Project to be submitted to 

The Division of Social Sciences 

Of Bard College 

 

 

 

By 

Arjun Brara 

 

 

 

 

 

Annandale-On-Hudson, New York 

May 2016 



	
   	
  

Table of Contents 

Abstract ...................................................................................................................................... 1 

	
  

Chapter 1: Introduction .......................................................................................................... 1 

Introduction To The Model ................................................................................................ 1 

A Background On Asset Mispricing .................................................................................. 3 

The General Literature ....................................................................................................... 4	
  

The Core Literature ............................................................................................................ 8	
  

A Comparison Of Models ................................................................................................ 15	
  

	
  

Chapter 2: The Model .......................................................................................................... 17 

The General Model .......................................................................................................... 17 

The Base-Case Model (BCM) ......................................................................................... 21 

The Price-Case Model (PCM) ......................................................................................... 21 

The Action-Case Model (ACM) ...................................................................................... 22 

	
  

Chapter 3: BCM Results ...................................................................................................... 22 

Construction and Analysis ............................................................................................... 22 

BCM End Discussion ....................................................................................................... 28 

	
  

Chapter 4: PCM Results ....................................................................................................... 30 

Construction and Analysis ............................................................................................... 30 

PCM End Discussion ....................................................................................................... 38 

	
  



	
  

Chapter 5: ACM Results ...................................................................................................... 38 

Construction and Analysis ............................................................................................... 38 

ACM End Discussion ...................................................................................................... 47 

	
  

Chapter 6: Conclusion .......................................................................................................... 48 

Summary Of Results ........................................................................................................ 48 

Areas For Further Work ................................................................................................... 50 

	
  

Bibliography ............................................................................................................................ 52 

	
  

Appendix. ................................................................................................................................. 53

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1	
   	
  

Abstract 

 The purpose of this paper will be to demonstrate instances of persistent asset 

mispricing. By persistent we mean the existence and achievement of a stable equilibrium 

where market prices deviate from an underlying fundamental value. These equilibria will be 

demonstrated through three variations on a general model in which agents make investment 

decisions on an initial public offering (IPO), given imperfect information on a stock’s true, 

fundamental value. The first variation holds agents’ beliefs fixed, and trades are conducted 

“blindly” through a market maker who clears the market by adjusting the stock price. The 

model establishes a case for initial mispricing in the market, resulting from a sub-optimal 

quantity of outstanding shares. The second variation allows for agents to update beliefs on 

price movements, and ultimately identifies an unstable equilibrium where the asset is 

correctly priced. The third and final variation removes the “blind” game conditions, and 

allows for agents to update beliefs on public signals generated by other agents’ investment 

decisions. This latter most model successfully demonstrates persistent asset mispricing, given 

an initial mispricing in the market.  

[JEL A10, C62, C68, C73, G12] 

 

Chapter I: Introduction 

Introduction To The Model 

 This paper aims to demonstrate the existence, and achievement of, stable equilibria 

wherein a financial asset is mispriced1 in the market. A focus will be placed on demonstrating 

instances of overvaluations. Specifically, we model an initial public offering (IPO) of stock, 

and introduce a non-profit driven market maker through which a finite set of agents make 

trades. Three variations on this basic model are presented: 
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  The market price does not accurately reflect some true value determined by the underlying 
fundamentals.	
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1. Agents’ have heterogeneous beliefs on the fundamental value of the stock, which are 

assumed fixed for the duration of the game. Agents make trades though the market 

maker in a random, sequential order to buy or sell a single unit of stock. Agents are 

allowed to short sell. These trades are not public information, but private, and known 

only to the agent in question and the market maker. Thus, the game is essentially 

simultaneous is nature. The market maker adjusts the price after all agents have made 

a single trade, given the level of excess demand or supply. These price revisions are 

imperfect, and the quantity of stock is fixed. This is the Base-Case Model (BCM). 

2. The assumptions of the BCM hold with the exception that agents’ beliefs on the 

fundamental value are now updated in instances where price movements contradict 

initial, or prior, beliefs. The updating of beliefs occurs post price movements after a 

single round2 is completed. This is the Price-Case Model (PCM). 

3. The assumptions of the BCM hold with the exception that beliefs on the fundamental 

value are now updated on public signals3; trades are no longer private, but public, 

information. As in the PCM, beliefs are updated in instances where public signals 

contradict a private prior belief. This updating takes place within the round pre price 

adjustments. This game loses the simultaneous nature if the BCM and PCM. This is 

the Action-Case Model (ACM) 

The BCM model serves to develop a theoretical foundation for an initial mispricing of a 

stock unit, given fixed beliefs. The PCM and ACM focus on demonstrating stable equilibria 

where the stock is mispriced, given an initial mispricing in the market. The assumptions 

behind each model will be rigorously developed, and the equilibrium outcomes 

mathematically modeled and, for the ACM, simulated. We now progress to a brief 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 A round is completed once every agent has made a single trade through the market maker. 
3	
  Public signals are those informations on the private signals of other agents conveyed though 
a history of actions.	
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introduction on the background of asset mispricing. Note that the majority of literatures 

address a specific type of mispricing: asset bubbles. Thus, while the background and 

following literature reviews narrow in on explaining asset “booms and crashes”, the reader 

should maintain the broader perspective of considering mispricing generally. With this in 

mind, we continue onwards.  

 
A Background On Asset Mispricing 

Chamley (2004) nicely summarizes asset bubbles as a state where “an asset that yields 

no real dividend has a positive price”. The definition is specific to single asset with a zero 

fundamental value. The definition for mispricing can be generalized however to a state where 

the market price of an asset falls out of line with its true, or underlying, value as determined 

by the fundamentals. The classical argument against the existence of bubbles with rational 

agents, Chamley also describes well from a purely game theoretic perspective: that is that any 

price unsustainable at some time 𝑡∗ is, by backward induction, unsustainable at any and all 

times 𝑡 < 𝑡∗. The basis of neoclassical economics similarly rejects market mispricing; the 

efficient market hypothesis assumes prices to reflect all relevant information and accordingly 

all assets to be priced fairly – at their fundamental value in the long run. Yet the existence of 

extended mispricing, and market bubbles particularly, is unquestionable. The recent housing 

bubble of the 2000s is a prime example. Skidelsky (2009) cites U.S. housing prices having 

risen 124% between 1997 and 2006, later plummeting by 33% in 2007. The Dot-com bubble 

of the late 1990’s is another famous example, and is shown below by the NASDAQ 

Composite Index charted from 1989 to 2016. 

 
(See Figure 1.1 on the following page). 
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Figure 1.1: NASDAQ Composite Index, Dot-com Bubble 

 
 

The majority of models explaining mispricing resort to psychological explanations for 

irrational behavior, or alternatively to bounded rational agents4. We begin the literature 

review by briefing a number of texts that, while offering distinct interpretations on the causal 

mechanisms behind mispricing, do so largely without mathematical models. These will serve 

as a general introduction to the core literature behind this paper. To reiterate, these texts focus 

largely on asset bubbles rather than asset mispricing generally. However, given the game 

structures developed in this paper and the emphasis placed on demonstrating over valuations, 

the chosen literature is acceptable.  

 

The General Literature  

Papadimitriou and Wray (2010) explore a multitude of circumstances capable of 

generating market bubbles with rational agents. An initial model explains market bubbles 

as a result of limited efficiency of market arbitrage. An initial short-run undervaluation of 

an asset is assumed, leading agents to rush into purchase orders and consequently 

appreciating the market price above some fundamental value. Liquidity constraints on 

short selling however, result in medium-term continued asset overvaluations. In the long 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Rational agents bounded by imperfect information. 
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run, these constraints are overcome, agents sell, and the market price falls to realign with 

the fundamental value. Papadimitriou and Wray term this a rational bubble.  

 The text also covers the Minskyian explanation of market bubbles that, while 

similarly stressing the importance of structural inefficiencies, also emphasizes the 

importance of the bounded rational characteristics of economic agents. Minsky’s model 

begins with agents systematically underestimating risk5 and expecting an appreciation of 

market prices. As in the model of Papadimitriou and Wray (2010), agents consequently 

rush into assets, the market prices of which accordingly appreciate above associated 

production-cost prices – a proxy for fundamental values. These optimistic market 

conditions generate increased competition between firms, and corresponding capital 

expansion results in greater credit exposure. Minsky suggests that once industrial 

expansion exhausts, declining output induces illiquidity, which in turn creates insolvency. 

Assets are sold off and pessimistic markets ensue, characterized by agents exiting their 

market positions and falling market prices. While Minsky’s perspective is larger in scale 

than a simple stock bubble analysis, the structural layout is still applicable to the 

coevolution of a single company’s capital structure and stock price history during a market 

boom.    

Papadimitriou and Wray also consider how an open economy model might explain 

market bubbles. The chief example presented focuses on international money flows; a 

scenario is presented where a weakening in the economy of one Country A prompts 

capital flight to another Country B, wherein asset prices appreciate without any justifiable 

change in asset fundamentals. The case of the U.S. dollar during the onset of the 2007-8 

financial crisis is a prime example. Note that the scenario presented here can also be 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  The underestimation of risk can be thought to result from either imperfect information or 
some combination of rational calculation and sentiment. 	
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reduced to understanding a single stock price bubble, if we liken the two countries 

described by Papadimitriou and Wray to two competing companies within an industry6.  

Earl et al. (2007) propose an alternative explanation for market bubbles. Contrary to 

Minsky’s emphasis on structural inefficiencies with particular regard to imperfect 

information, Earl et al. argue that the availability of information today allows for markets 

to be approximated as perfectly efficient. Instead, market bubbles are accounted for by 

loosely categorizing agents into a spectrum with well informed and poorly informed 

investor extremes, and the introduction of decision-rule cascades. As described by Earl et 

al., decision-rule cascades occur when complex investment strategies created by well 

informed investors experience an entropic degradation as they are traded socially, largely 

due to opportunism tacit knowledge. These reductions in complexity correspondingly 

result in lower investor uncertainty. Earl et al. stress that the time lags present in decision-

rule cascades mean rules-of-thumb strategies adopted by investors are “less fit to the 

changing environment than when they were first employed” (Earl et al. 2007). When a 

market inevitably runs out of steam, they propose that experienced professionals can no 

longer beat the market, and that these rules of thumb are abandoned ensuing a market 

crash. Similarly to the Minskyian model then, a decision-rule cascade theory is reliant on a 

leveling out of production capacity. 

Earl et al. (2007) briefly propose another explanation for market bubbles towards the 

end of their paper. Taking a more behavioral approach, they describe an instance where 

some psychological threshold is met, as nervous investors recognize that in order to fully 

realize capital gains, they must be among the first to exit the market. However, we should 

question where this threshold comes from. When and why is it met? How is it overcome? 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 A critique to this parallel is that a fall in one of two competing company’s performance may 
lead to an expected improvement in the fundamentals of the other company as a result of 
lower competition.  
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Tuckett and Taffler help resolve these lingering questions, lending further insight into a 

purely psychological explanation for bubbles.  

Tuckett and Taffler (2008) begin by making the argument that all expectations are 

inherently uncertain and that there is much room for sentiment in the market. In this 

regard, their perspective is closely aligned with the Keynesian conception of animal 

spirits. The paper likens innovations, specifically financial assets, to phantastic objects 

generative of excitement and a feeling of omnipotence among investors. The innovation 

makes earlier rules, whether theoretical or regulatory in nature, seem breakable. The hype, 

or irrational exuberance as coined by Schiller (2000), boosts demand for the new asset 

class whose expected appreciation is overestimated due to both the adoption of vague or 

new age valuation techniques and wishful thinking. Increases in market prices only serve 

to justify earlier expectations, which are self-fulfilling, and according to Schiller, a 

“naturally occurring Ponzi process” (Schiller 2000). As market prices deviate further 

from their “true value”, Tuckett and Taffler suggest that an anxiety builds within the 

investor. They further propose that the unconscious rids of this anxiety by “splitting off 

from awareness”, allowing for the agent to continue living in the phantasy. Ultimately, the 

paper acknowledges that “bubbles form when reality-oriented thought, including the 

capacity to be anxious about potential losses in risky situations, is overridden” (Tuckett 

2008). 

Their paper also addresses why professional investors, thought to act rationally, 

behave similarly with respect to their investment decisions. Tuckett and Taffler suggest 

that institutional pressures such as reputation and compensation-based herding play a part. 

So do widespread notions that “markets do not lie” and that positions in the market can be 

ideally timed to maximize capital gains. Their explanations for professional investor 
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behavior fits neatly with Shleifer and Vishny (1997) who propose that betting against 

sentimental investors can be both risky and costly.  

Baker and Wurgler (2007) lay out a similar reasoning for asset mispricing. Namely, 

they point to changes in sentiment among irrational investors and limitations to arbitrage 

among rational investors, the latter of which had been seen in the models of Papadimitriou 

and Wray (2010). Their contributions worth noting are two-fold. Firstly, Baker and 

Wurgler suggest that harder to value stocks will be more subject to shifts in sentiment – 

consistent with the works of Tuckett and Taffler (2008). Specifically, they point to small-

cap stocks, lower in trading volume and with less publically available information, as 

prime candidates for price bubbles. They back this hypothesis with empirical data. 

Secondly, the paper develops a sentiment seesaw model illustrating the point that in times 

of high sentiment assets that are more speculative in nature generally see valuations that 

exceed some fundamental value, while less speculative assets see valuations below said 

fundamental value. The reverse is true during times of low sentiment. Baker and Wurgler 

similarly support this model with empirical evidence. Importantly, these findings generally 

support the rationale behind the supposed correlation between high sentiment and high 

demand.  

This concludes our introduction to the general literature on mispricing. With this 

background, we progress into a more rigorous discussion of the core contributing texts to 

this paper and the general model it develops.  

   

The Core Literature 

We begin with Chamley (2004), who in his last chapter on financial frenzies 

develops a rather simple model explaining booms and crashes. The model introduces an 

asset on which some initial good news is received. The asset’s market price and 
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fundamental value grow at the same rate until some time 𝜃, after which the market price 

growth rate exceeds that of the fundamental value. Time 𝜃 is treated as a random, 

Gaussian (normally distributed) variable. For all times 𝑡 > 𝜃 agents receive private 

signals7 on the value of 𝜃. The variance of prior beliefs on 𝜃 allow for the market price to 

increase above the fundamental value. At some time 𝜃 + 𝜎 all agents become aware of 𝜃, 

however a lack of common knowledge sets the stage for a continued disparity between the 

market price and fundamental value, as agents believe they can ride the bubble a little 

longer. The model offers two explanations for a crash. The first is an exogenously set 

multiple of the fundamental value which the market price can not exceed; if the market 

price rises above the multiple there is a crash and the price falls to the fundamental value 

with a probability one. The second is endogenous, where some critical number of sales is 

reached as agents’ expected capital gains fall below expected losses. Again, the result is a 

collapse in market prices to the fundamental value.  

Chamley introduces the model of Caplin and Leahy (1993). As described by 

Chamley, the model introduces a finite (or countably infinite) set of agents, each of whom 

receive a Gaussian private signal on the state of nature that is a binary good or bad, with 

regards to some investment. Agents convey their private signals through their actions that 

take on a similarly binary one-zero value, depending on whether the agent does or does 

not invest, respectively. The history of actions is known to all agents but imperfectly 

represents the aggregate belief with some degree of noise8, also represented by a random 

Gaussian variable. Agents base investment decisions on the relative likelihoods of each 

state of nature given private signals and public signals. Caplin and Leahy estimate the 

aggregate investment level with a manipulation of the cumulative distribution of private 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 These are identical signals that are not public information.  
8	
  The noise results from the introduction of noise traders, necessary to prevent a no-trade 
result, briefed in greater detail shortly (see CARA-Gauss Model, pg.7). 
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beliefs on the state of nature. We borrow this method with some alteration to derive the 

demand and supply curves in our model. 

 Caplin and Leahy describe a scenario where the true state of nature is bad, but 

optimism allows for agents to perceive the likelihood of a good state as higher than that of 

a bad state. Gradual social learning allows for agents’ beliefs to converge on the true state 

of nature. A crash occurs when the aggregate of public signals overcome the noise, and the 

shift in public beliefs evolves quickly due to the “nonlinearity information content of 

individual actions” (Chamley 2004). The model nicely captures the gradual boom and 

sudden crash typical of market bubbles.  

Chamley also introduces the CARA-Gauss setting, which as in the model of Caplin 

and Leahy (1993) has random Gaussian variables, but further specifies agents to have a 

constant absolute risk aversion (CARA). Chamley builds several variations on a standard 

CARA-Gauss model that features a large number of agents each with a net demand and an 

auctioneer clearing the market with an equilibrium price9. Agents are categorized into 

three groups, similar to what we have seen in other models: informed agents with private 

signals, uninformed agents relying solely on public signals, and noise traders that buy or 

sell randomly for a private (non-profit) motives. Note that the introduction of noise traders 

in the CARA-Gauss model serves a similar function as the introduction a random 

Gaussian noise variable in model of Caplin and Leahy; noise traders serve to prevent a no-

trade result, a characteristic outcome of zero-sum games with perfect information, 

assuming all agents completely rational. Chamley focuses largely on evaluating rates of 

social learning under variations on this basic structure, specifically for varying elasticities 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  “In a CARA-Gauss setting, the demand for the asset is similar to the demand for investment 
in a quadratic model, with the important difference that the cost is endogenous to information 
revealed by others” (Chamley, 330). 
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of demand10 and market vs. limit orders. His detailed discussions on rates of social 

learning have been sacrificed here for a fuller discussion on the structures of the models 

presented here, key to the development of our the model presented in this paper. 

The model of Genotte and Leland (1990) is then presented. Genotte and Leland build 

from the CARA-Gauss model, giving all informed agents identical private signals on the 

fundamental value of the asset but incorporating agents that rely on alternative price-based 

strategies11 lending a net upwards-sloping demand curve. The model demonstrates that a 

net demand curve with a positive slope is conducive to generating multiple market 

equilibria with a similarly positively sloped supply curve; demand and supply curves are 

non-linear. Genotte and Leland argue that a shift in the fundamentals of the asset, and 

therefore a shift in the net demand curve, can eliminate an existing equilibrium and 

thereby cause large, sudden price fluctuations: crashes and booms.  

Chamley (2004) develops another model that – similarly to the model of Genotte and 

Leland (1990) – explains asset bubbles through multiple equilibria of the demand and 

supply curves. Chamley establishes two sets of agents, informed and noise agents. An 

asset pricing equation is presented that is a linear function of the mass of agents, a random 

Gaussian variable whose variance is known. Agents estimate the mass of agents with the 

known equilibrium price. Estimates are distorted however by the relative number of noise 

to informed agents. The smaller the share of noise agents, the lower the variance on the 

mass of agents, which if significant, results in a higher demand and market price. A higher 

share of noise agents increase the variance on the mass of agents and an uncertainty of the 

demand keeps prices low. These are the two equilibria established by the model.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10	
  Chamley demonstrates that, ceteris paribus, the net demand and supply curves for some 
asset are downwards and upwards sloping respectively (Chamley (2004), pp. 342, 352). 
11	
  Incorporating the complexity of portfolio insurance strategies that recommend selling or 
purchasing assets when prices fall or rise, respectively (Chamley (2004), pp. 350).	
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We now brief the models of Glosten and Milgrom (1985) and Avery and Zemsky 

(1998), as told by Chamley, the latter of which is variation on the former incorporating 

herding effects and generative of an asset “boom and crash”. The model of Glosten and 

Milgrom begins with a financial asset whose value is to be realized in a later period after 

all agents have made their respective investment decisions. A risk-neutral broker is 

introduced in a competitive setting so that expected profit from the sale and purchase of 

the financial assets from agents is zero. Similar to other models discussed thus far, agents 

are categorized as informed or noise agents. Informed agents base their decisions on 

distinct private signals and noise agents purchase, hold or sell the asset with equal 

probabilities. In each period a single agent meets with the broker and buys or sells a single 

unit of the asset. The model demonstrates that the bid and ask prices set by the market 

maker under a zero-profit condition leads to the convergence of the public beliefs on the 

true value of the state of nature in the limit. It is also shown that noise agents do not 

significantly slow the rate of social learning. The structure behind our Base-Case Model is 

largely taken from that of Glosten and Milgrom. 

Avery and Zemsky adapt the model of Glosten and Milgrom with a specific structure 

of private signals, which they denote nonmonotone. Briefly, the nonmonotone structure 

assumes there to be a normal state of nature 𝜃 = !
!
 and two possible alternative states 

𝜃 = {0,1} that have experienced a negative or positive shock, respectively. Agents are 

categorized as highly informed, poorly informed, or noise traders. All informed agents 

know exactly when a shock has occurred, receiving some private signal. The precision of 

the signal with respect to the type of shock is imperfect however, and lower for poorly 

informed agents. The model further specifies a low proportion of highly informed agents 

and a market maker who not only assumes a high proportion of highly informed investors, 

but whose expectations of a shock are incredibly low. An exogenous sequence of agents is 
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set with several buy orders taking place within the first few periods by informed agents 

whose private signals suggest a positive shock, or by noise agents or some combination. 

These initial purchases cause poorly informed agents to raise their expectations of a 

positive shock, and consequently make purchase orders.  

Given the market maker’s low likelihood on a shock, (s)he does not update beliefs on 

the state of nature. After some large number of periods however, the beliefs of the market 

maker quickly adjust to account for number of purchases that contradict a prior belief on 

the normal state. Because the true proportion of informed agents is small, the increased 

price significantly reduces the number of trades made. This low trade volume again 

contradicts the market maker’s assumption of a positive shock that would otherwise have 

justified the increased price. Having realized the error, the market maker drops the price 

significantly. Chamley credits this model for its ability to aptly mimic the sudden price 

movements in the market. However, he points to the unrealistic assumptions about the 

sequence of agents and the probabilities on different states of nature as a significant 

limitation to the models applicability and practicality.  

Bikhchandani and Sharma (2000) similarly focus on a behavioral understanding of 

market bubbles, emphasizing the role of herd behavior amongst bounded-rational agents. 

As in many of the models presented by Chamley (2004), agents face an investment 

decision whose payoff is defined by the state of nature that can take on a binary one-zero 

value. Agents receive distinct private signals on the state of nature. Bikhchandani and 

Sharma present several reasons an agent may to abandon their own private signal, 

following public signals instead: the agent is aware that other players might know 

information that (s)he is not aware of12; the agent may have an “intrinsic preference for 

conformity” (Bikhchandani 2000); should the agent be an asset manager, there may be 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12	
  If we consider Keynes’s notion that all information is held with uncertainty, this 
explanation is all the more influential.	
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compensational benefits for following the herd. This latter most argument aligns with the 

works of Tuckett and Taffler (2008), and is further supported by Maug and Naik’s 

discussions, focusing on compensational structures where an asset manager’s performance 

is measured relative to a benchmark (Maug and Naik, 1996). Such structures are often put 

in place when moral hazards and adverse selection are risks. Scharfstein and Stein’s 

theories on reputation-based herding further bolster the point (Scharfstein and Stein, 

1990).  

Bikhchandani and Sharma model herding using symmetric public signals: all public 

signals are treated with equal weight regardless of when they occur. The model also 

specifies a binary action set {𝐵𝑢𝑦,𝑁𝑜𝑡  𝐵𝑢𝑦}. The game begins with Player 1 acting on his 

or her private signal that may or may not reflect the true state of nature. Following the 

Player 1 is Player 2, making an investment decision based on a private signal and the 

public signal generated by Player 1. Should the public signal support Player 2’s private 

information, Player 2 will follow the private signal, and so will a following Player 3 

regardless of his or her private information. Should the public signal contradict Player 2’s 

private information, Player 2 is rendered indifferent. Depending on whether Player 2 opts 

to buy or not buy, Player 3 will herd or follow a private signal, respectively. Note that if 

all agents abandon private for public signals, such that public signals no longer generate 

new information, an information cascade is said to have occurred.   

The model comes to several conclusions about a bubble’s nature. Chiefly, that 

bubbles are path dependent and idiosyncratic; the initial few players set the majority trend. 

According to Bikhchandani and Sharma, even if the public signal is “noisy”13 there 

remains a high probability of a cascade developing amongst the first few players. 

Accordingly, Bikhchandani and Sharma note that information cascades may lead to an 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13	
  The history of actions is not clearly dominated by one signal over another.	
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incorrect majority investment decision. They also remind the reader that because public 

signals need only be slightly more informative in order for agents to abandon private 

signals, cascades are sensitive to shocks. Intuitively then, bubbles are fragile, and can 

collapse quickly. Importantly, the authors suggest that the conclusions of the model are in 

fact robust to relaxing the assumptions of symmetric signals. Our Action-Case Model will 

borrow the use of symmetric signals for its simple structure and intuitive explanations for 

herding. 

Lastly, we take a brief moment to touch upon another model introduced by 

Bikhchandani and Sharma (2000). Their model just described assumed the costs of 

investment constant. However, this does not fit the cost structure associated with stock 

investments, where the cost of investment (the price of the asset itself) fluctuates 

depending on net marker orders. The authors make the argument that if markets are 

perfectly efficient, public signals will lead agents to be indifferent about an investment. 

Instead, players will rely to private signals, preventing the development of herds and 

consequentially stock bubbles. 

Here we conclude our discussion on the core contributing literature. The following 

section will serve to a.) restate specific contents borrowed from the core literature, and b.) 

highlight the distinctive features of our model.  

 

A Comparison of Models 

 Similar to other models, this paper will deal with bounded rational agents. Agents will 

be divided into informed and noise agents, the former receiving private signals and the latter 

making investment decisions randomly. Rather than private signals being informative on a 

binary state of nature, the signals in this model are informative on the fundamental value of 

an IPO stock unit, which is exogenously determined. These signals are distinct random 
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Gaussian variables as in the majority of models, and their joint distributed is assumed to be 

normally distributed around the fundamental value, should the mass of agents be sufficiently 

large.  

 The game structure closely mimics that of Glosten and Milgrom (1985), with agents 

meeting a risk-neutral market maker and limited to trading a single unit of a stock per round. 

A key distinction however is that our market maker is concerned only with clearing the 

market and not with any expected profit function. This will allow for a better focus on the 

behavior of agents and the firm within the game; an essential condition in the Price and 

Action-Case Models, where the updating of beliefs on price movements and public signals 

are explored in depth.  

The Gaussian distribution of beliefs around the fundamental value allow for the paper 

to borrow also from Caplin and Leahy (1994). Specifically, we take a similar approach to 

deriving aggregate demand functions from the cumulative distribution of beliefs, as did 

Caplin and Leahy in deriving an aggregate measure of investment level. The exact 

methodology differs however, and our use of an approximation function for the cumulative 

distribution not only allows for a simplification of our equilibria expressions, but also for a 

better representation of private beliefs that are unlikely to extend to negative infinity. The 

results are accordingly more intuitive.   

 The Action-Case Model, the second and final variation on the Base-Case Model, 

takes from Bikhchandani and Sharma (2000). Their use of symmetric signals in nicely 

demonstrating herd behavior will be used, almost without revision, to explain the updating of 

beliefs on public signals. The primary revision is the specification that only agents whose 

initial beliefs contradict public signals engage in the updating process. Within any round 

then, while information cascades are ruled out, herd behavior is prevalent.  
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 The chief contributions of the model presented here are four-fold: the Base-Case 

Model’s integration of investor and firm behavior in the determination of initial market 

mispricing; the unique sequence of game structures from the Base-Case through Action-Case 

Models; the endogenously determined sequencing of agents and the robustness of results to 

changes in these sequences; the simplicity and intuitive nature behind the assumptions and 

results of each model.  

We now advance to Chapter 2, which introduces the model.    

 

Chapter 2: The Model 

 This chapter will begin by addressing general model. By general model, we mean the 

assumptions that apply across the Base-Case, Price-Case and Action-Case Models. 

Assumptions specific to each model will then be addressed separately in respective sections. 

These sections will be brief. Following Chapter 2, the results of the BCM, PCM and ACM 

will be discussed in the order listed here. 

 

The General Model 

1. The Firm and Asset 

i. Firm 𝑗 launches an IPO. All stock units are homogenous and have the same market 

price 𝑃!, determined endogenously by a market maker, with the exception of 𝑃! 

denoting the starting IPO price that is set by Firm 𝑗, but similarly endogenous.    

ii. The fundamental value of each stock unit is denoted 𝐹. Let 𝐹 be the expected value of 

𝜃!(𝐹), a exogenously set Gaussian probability distribution, representing the total 

population of information on the fundamental value of a stock unit at time 𝑡 = 0. 

Thus the fundamental value 𝐹 is fixed for all times 𝑡 ≥ 0. 
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iii. Let 𝜃! = 𝑋! for all 𝑡 > 0, where 𝑋! is the joint distribution of agents’ prior beliefs14 in 

the game.  

iv. Firm 𝑗 samples 𝜃! ′𝑠′ times to estimate 𝐹 and 𝜎!!, the latter of which denotes the 

variance of 𝜃!. Any updated, or posterior, beliefs held by Firm 𝑗 are the result of 

changes in in 𝜃!.  

v. The number of outstanding shares, 𝑄!, is set by Firm 𝑗 and fixed for the duration of 

the game. Specifically, let 𝑄! ∝
!
!!

, given an expected downwards sloping demand 

function. 

vi. Firm 𝑗 incurs both fixed costs and variable costs in setting 𝑄!; the total cost is a 

function of 𝑄!.  

vii. The objective of Firm 𝑗 is to maximize equity gain from the IPO15.  

 

2. The Agents 

i. There exists some finite set of agents 𝐴 = {1,… ,𝑁}, where 𝑁 is fixed.  

ii. Let there be two subsets of 𝐴, 𝐴! and 𝐴!, that represent informed and noise agents, 

respectively. Noise agents are assumed a small share of the total mass of agents. 

iii. The fundamental value 𝐹 is unknown to all agents. Informed agents receive a distinct 

and imperfect private signal16 on the value of 𝐹 at time 𝑡 = 0, call it 𝑥!. Noise agents 

receive no such signal. 

iv. Let 𝑥! be the mean of a distinct sample drawn from 𝜃! by the 𝑖!! agent. Specifically, 

𝑥! = 𝐹 +   𝜖!, where 𝜖  ~  Ν  (0,𝜎!) denotes an unknown error.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14	
  See assumption ‘iii’ through ‘vi’ in the following subsection on agent assumptions.  
15	
  The end discussion of Chapter 3 briefly considers a case where, alternatively, Firm 𝑗 
attempts to price fairly. 	
  
16	
  This signal is synonymous with a prior belief. 
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v. By the central limit theorem, the distribution of sample means – and therefore the 

joint distribution of prior beliefs denoted 𝑋! – is approximately normal if the number 

of informed agents is sufficiently large, and roughly symmetrical around 𝐹. Thus, we 

can say 𝑋!  ~  Ν   𝐹,𝜎! , where 𝜎! is unknown to all agents. 

vi. Agents may, or may not, update their initial beliefs (𝑥!,𝑋!) depending on the specific 

model. For all models where agents do, posterior beliefs and their joint distribution 

are denoted 𝑥! and 𝑋!, respectively, where 𝑡 > 0. The distribution of 𝑋! is 

deterministic of the distribution of 𝜃!, such that 𝜃! = 𝑋!.  

vii. Informed agents are homogenous in all respects other than in their prior beliefs 𝑥!.  

viii. Agents face a single decision in all rounds, which are assumed to continue infinitely: 

to purchase, hold, sell or short-sell firm 𝑖’s stock. Noise agents choose amongst 

investment alternatives randomly, with equal probabilities. 

ix. All agents are restricted to holding or short-selling a single unit of the stock over the 

entirety of the game. This is the unit restriction condition (URC), tantamount to 

imposing homogenous wealth restrictions on all agents, so long as !!
!
< 𝑃! < 2𝑃! 

holds and stock units are indivisible.  

x. The URC synonymizes purchasing and holding decisions for all agents holding a 

stock unit, and the same for selling and short selling decisions for all agents with a 

short position.  

xi. Informed agents attempt to maximize a common profit function 𝜋! = 𝐸! 𝐹 − 𝑃! for 

the 𝑖!! agent, where 𝐸! 𝐹 = 𝑥!.  

xii. Let 𝜋! be the sole basis for all informed agents’ decision-making that is determined by 

a common decision rule 𝑅! =
1, 𝜋! > 0
0, 𝜋! = 0

−1, 𝜋! < 0
, where 1 and −1 reflect the decision to 

purchase (hold) or sell (short) respectively, and 0 an indifference between investment 
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alternatives. This decision rule is not assumed to be common knowledge in the 

strictest sense17. 

 

3. The Story and Structure 

i. At time 𝑡 = 0 Firm 𝑗 launches an IPO at a price 𝑃! and quantity 𝑄!, attempting to 

maximize equity given the expected demand. The number of agents 𝑁 is assumed to 

be known by Firm 𝑗. 

ii. Agents make trade sequentially and in a random order through a market maker. 

Depending on the specific model, these trades may or may not be public knowledge. 

iii. The spread charged by the market maker is allowed to fluctuate, but assumed to have 

an insignificant effect on the investment decision of any agent as determined by the 

common decision rule. The practicality of this assumption is questionable, but 

accepted here for simplifying the model.  

iv. The market maker’s sole responsibility is to clear the market by adjusting 𝑃! to 𝑃!!!. 

Price adjustments are made at the end of a round, after all agents have made a trade, 

given the level of excess demand or supply. To avoid ambiguity, by clearing the 

market we mean only that the number of stock for sale is equal to the number of stock 

demanded.  

v. The market maker is not aware of 𝐹, 𝜎! or any agent’s 𝑥!. However, (s)he 

understands that generally 𝑋!  ~Ν(𝐹,𝜎!). Because 𝜎! is unknown to the market 

maker, price adjustments are imperfect. 

vi. The manner in which agents update beliefs is specific to the model in question. 

 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 The assumption that the common utility function is not common knowledge is validated by 
the existence of noise traders that invest for private motives.	
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The BCM 

1. Agents’ trades are private information to the agent and the market maker; investment 

decisions are not public information. Thus, despite the sequential order of trades, the 

game is essentially simultaneous. 

2. Agents do not update beliefs. Because 𝑋! = 𝑋! for all 𝑡 ≥ 0, 𝜃! is similarly fixed at 

𝜃!. 

3. Firm 𝑗 does not update beliefs as 𝜃! is fixed. Accordingly, 𝑄! = 𝑄! for all 𝑡 ≥ 0. 

 

The PCM 

1. Agents’ trades are similarly private information to the agent and the market maker, as 

in the BCM. 

2. Agents update initial beliefs on price movements. Agents revising beliefs do so 

simultaneously and at the end of each round, after the market maker adjusts the price. 

Thus 𝑋! ≠ 𝑋! and 𝜃! ≠ 𝜃! for all 𝑡 > 0; 𝑋! and 𝜃! adjust simultaneously at the end of 

each round. 

3. Firm 𝑗 may or may not update beliefs, as 𝜃! is variable. However, for modeling 

purposes and practical considerations, we assume 𝑄! = 𝑄! for all 𝑡 ≥ 0, as in the 

BCM18.  

 

The ACM 

1. Agents’ trades are public information in a limited fashion. Specifically, agents are 

aware of trades made by those agents that precede them in a random sequencing of 

agents’ interactions with the market maker. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18	
  Our reasoning for holding shares outstanding fixed can be found in the opening of Chapter 
4, which begins the analysis and construction of the PCM. 
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2. Agents update initial beliefs on public signals generated by other (earlier) agents’ 

investment decisions. Agents revising beliefs do so within the round, before the 

market maker adjusts the price. Again, 𝑋! ≠ 𝑋! and 𝜃! ≠ 𝜃! for all 𝑡 > 0. 𝑋! and 𝜃! 

are perfectly flexible. 

3. As in the PCM, Firm 𝑗 may or may not update beliefs, as 𝜃! is variable. For modeling 

purposes and practical considerations however, we assume 𝑄! = 𝑄! for all 𝑡 ≥ 0. 

 

Chapter 3: BCM Results 

Construction and Analysis 

Note: As the distributions of 𝑋! and 𝜃! are fixed at 𝑋! and 𝜃! under the BCM, all time 

subscripts are neglected.  

Let us begin the construction of the BCM with a simple analysis of the decisions rule for 

any one informed agent 𝑖 with a private signal 𝑥!. We have shown under the assumptions of 

the BCM that the joint distribution 𝑋  ~  Ν  (𝐹,𝜎!). For purposes of modeling, let us take the 

“average” or expected agent 𝑖∗ whose 𝑥!∗ = 𝐹. It follows that if 𝑃! < 𝑥!∗ the agent will place 

a purchase order or hold, and analogously that if 𝑃! > 𝑥!∗, the agent will place a sell or short-

sell order. The decision rule for agent 𝑖∗, call it 𝑅!∗, is illustrated in Figure 3.1. Note that 𝑅!∗ 

can be transformed into the demand and supply functions of agent 𝑖∗, 𝐷!∗ and 𝑆!∗, shown in 

Figure 3.2.  

 

(See Figures 3.1 and 3.2 on the following page). 
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Figure 3.1: 𝑅! (𝑋!∗ = 𝐹 = 25)   Figure 3.2: 𝐷! (Bolded) and 𝑆! (𝑋!∗ = 𝐹 = 25) 
   
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

The aggregate demand and supply functions of all agents, 𝐷 and 𝑆, can be easily derived. 

By the assumptions of the model, informed agents with a 𝑥! > 𝑃! will each demand a single 

unit of Firm 𝑗’s stock. Informed agents with an 𝑥! < 𝑃! will each be willing19 to supply a 

single stock unit. Because 𝑋  ~  Ν  (𝐹,𝜎!), the probabilities of a randomly selected informed 

agent demanding and or supplying a stock unit can be written as: 

𝑃 𝑥! > 𝑃! = !
!√!!

𝑒!
!!!!
!

!
!!!!
!!!!!

                    (3.1) 

𝑃 𝑥! < 𝑃! = !
!√!!

𝑒!
!!!!
!

!
!!!!!
!!!!!

                    (3.2) 

Assuming a small share of noise agents that choose across investment alternatives with equal 

probability, the equations (3.1) and (3.2) roughly hold for all agents. The aggregate demand 

and supply functions are then derived by multiplying respective probabilities by the number 

of agents, 𝑁, which is assumed sufficiently large to justify 𝑋  ~  Ν  (𝐹,𝜎!).   

𝐷 = !
!√!!

𝑒!
!!!!
!

!
!!!!
!!!!!

                     (3.3) 

𝑆 = !
!√!!

𝑒!
!!!!
!

!
!!!!!
!!!!!

                     (3.4) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
19	
  Recall that the aggregate supply is fixed at 𝑄!; for some 𝑃!, 𝐷 = 𝑆 > 𝑄!, the market would 
not clear.  
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Despite a sufficiently large 𝑁, it is unlikely in practice and distortive in modeling for 

𝑋 = [−∞,∞]. We restate equations (3.3) and (3.4) using the Bowling et al. (2009) best-fit 

logistic approximation for cumulative normal distributions. 

𝐷 = 𝑁 1− !
!!!!!.!"#∗!

,                 (3.5) 

𝑆 = !
!!!!!.!"#∗!

                      (3.6) 

Where 𝑍 = !!!!
!

. The equilibrium market price 𝑃∗ can be determined by equating 𝐷 = 𝑄! 

and solving for 𝑃!.  

𝑁 1− !
!!!!!.!"#∗!

= 𝑄!   

ln !

!!!!!
− 1 = −1.702 ∗ 𝑍𝑙𝑛 𝑒        

ln 1 − ln !
!!
− 1 = −1.702 ∗ !!!!

!
  

𝑃∗ =
!"   !

!!
!! !

!.!"#
+ 𝐹                  (3.7) 

Note that 𝑃∗ need not equal 𝐹, and that for 𝑃∗ = 𝐹, ln !
!!
− 1 = 0 assuming 𝜎 > 0. Thus, 

we can identify some 𝑄∗ number of shares that results in the stock being correctly priced at 

its fundamental value 𝐹. 

ln !
!!
− 1 = 0  

!
!!
− 1 = 𝑒! = 1  

𝑄∗ = !
!
                       (3.8) 

The result is intuitive. Given 𝑋  ~  Ν  (𝐹,𝜎!) an equal number of buyers and potential 

sellers are expected if 𝑃∗ = 𝐹. By the URC, this is synonymous with an equal number of 

shares demanded as are supplied. It follows that if 𝑄! =
!
!
, exactly as many are being 
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demanded as are being sold. Equations (3.5) through (3.8) are illustrated in Figures 3.3 and 

3.4 below.   

 
Figure 3.3: 𝐷, 𝑆         Figure 3.4: 𝐷, 𝑆, 𝑃∗, 𝑄∗  
𝑁 = 50,𝐹 = 25,𝜎 = {1,3,5}             𝑁 = 50,𝐹 = 25,𝜎 = 3 
   
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 

As 𝑄! is considered fixed, the equilibrium price 𝑃∗ follows the path of the demand 

function 𝐷 for varying possible levels of 𝑄!. When 𝑄! < 𝑄∗ or 𝑄! > 𝑄∗ it will be the case 

that 𝑃∗ > 𝐹 or 𝑃∗ < 𝐹, respectively. Importantly, note that if 𝑄! = 𝑄∗, 𝑃∗ = 𝐹 for varying  𝜎. 

Again, 𝜎 is fixed in the BCM by the assumption that 𝜃 is fixed. 

Recall that Firm 𝑗 sets 𝑄! and 𝑃! to maximize equity gain, and suppose that while  𝐹 and 

𝜎 are unknown, Firm 𝑗 is aware that the distribution of 𝑋 is normal. Firm 𝑗 estimates 𝐹 and 𝜎 

from its sampling of 𝜃, 𝐸! 𝐹 = 𝑥! and 𝐸! 𝜎 = 𝜎! respectively. The inverse expected 

demand curve could be written as:  

𝑃∗ =
!"   !

!!
!! !!

!.!"#
+ 𝑥!                  (3.9) 

The equity gain 𝜋! from the IPO, assuming a fixed cost 𝐶 and variable cost 𝑐20, can be 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20	
  The dominant variable cost in an IPO is the underwriting discount ($/Share) that is often 
set to roughly 7% of the IPO price, or 𝑃!. 
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derived. The derivative, marginal equity gain 𝜋!′, is used to identify the equity maximizing 

quantity where 𝜋!! = 0.   

𝜋! =
!" !

!!
!! !!

!.!"#
+ 𝑥! 𝑄! − 𝐶 − 𝑐𝑄!                         (3.10) 

𝜋!′ =
!"!
!!!

=
!" !

!!
!! !!

!.!"#
+ 𝑋! 𝑄! − 𝐶 − 𝑐𝑄! 𝑑𝑄!                       (3.11) 

We graph the expected demand curve (3.9) and marginal equity gain (3.11) against the 

actual market demand curve (3.5) in Figures 3.5 and 3.6 below. The actual market supply 

curve has been removed as the equilibrium price is ultimately set where 𝐷 = 𝑄! rather than 

𝐷 = 𝑆.  

 
Figure 3.5: 𝐷, 𝐷!, 𝜋!′         Figure 3.6: 𝐷, 𝐷!, 𝜋!′, 𝑃∗, 𝑄∗, 𝑄! 
𝑁 = 50,𝑋! = 𝐹 = 25                        𝑁 = 50,𝑋! = 𝐹 = 25 
𝜎! = 𝜎 = 3, 𝑐 = {0, 𝑥, 2𝑄!}                               𝜎! = 𝜎 = 3, 𝑐 = 𝑄! 
   
 
 
 
 
 

 
 
 
 
 

 
 

 
 

 
 

In Figures 3.5 and 3.6 we have assumed that Firm 𝑗 correctly identifies the actual market 

demand curve, 𝐷! = 𝐷. Given a marginal cost 𝑐 = 𝑄!, we find that 𝑄! < 𝑄∗, and accordingly 

𝑃! > 𝐹. Because 𝐷! = 𝐷 and 𝑄! is fixed, this is a stable equilibrium where 𝑃∗ = 𝑃! > 𝐹. We 

now examine a case where Firm 𝑗 incorrectly assesses the market demand curve 𝐷; any 
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instance where 𝑥! ≠ 𝐹 or 𝜎! ≠ 𝜎. Figures 2.7 and 2.8 illustrate both possible error types, 

respectively for a marginal cost 𝑐 = 𝑄!.   

 

Figure 3.7: 𝐷, 𝐷!, 𝜋!′, 𝑃∗, 𝑄∗, 𝑄!        Figure 3.8: 𝐷, 𝐷!, 𝜋!′, 𝑃∗, 𝑄∗, 𝑄! 
𝑁 = 50,𝐹 = 25,𝑋! = 20                                𝑁 = 50,𝑋! = 𝐹 = 25 
𝜎! = 𝜎 = 3, 𝑐 = 𝑄!                                               𝜎 = 3,𝜎! = 7, 𝑐 = 𝑄! 
   
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 

Figure 2.7 holds 𝜎! = 𝜎 and deals with an instance where Firm 𝑗 underestimates 𝐹, 

𝑥! < 𝐹. It produces at 𝑄! and prices at 𝑃! where 𝑄! = 𝐷!. This is not a market equilibrium 

however, since at 𝑃!, 𝐷 > 𝐷!; there is excess demand. Because 𝑄! is fixed, the market maker 

will raise the price over successive rounds until the market clears at a price 𝑃∗ where 𝑄! = 𝐷. 

A stable equilibrium is reached where the stock is overvalued. Note however that if the 

marginal cost were such that 𝑄! = 𝑄∗, the equilibrium price 𝑃∗ = 𝐹 and the stock would be 

fairly priced.    

Figure 2.8 is similarly intuitive. Firm 𝑗 overestimates 𝜎, and as a result overprices at 

𝑄! = 𝐷!. This can be paralleled to simple neoclassical models where an increasingly inelastic 

demand function lends a firm higher pricing power. Continuing with the analysis, the market 

maker will lower prices until some 𝑃∗ is reached where 𝑄! = 𝐷. Importantly, understand that 
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unlike in Figure 2.7, an incorrect assessment of 𝜎 would allow for 𝑃! = 𝑃∗ assuming 

marginal costs are such that 𝑄! = 𝑄∗. The implications of this conclusion are intriguing: if 

Firm 𝑗 is reasonably certain that 𝑋! ≈ 𝐹, it would benefit the firm to underestimate 𝜎, 

assuming some marginal cost 𝑐 > 0.  

 

BCM End Discussion 

The examples shown thus far have illustrated the existence and achievement of stable 

equilibria where an asset is mispriced respective to its fundamental value. Specifically, this 

has been done for a fixed 𝜃 and 𝑋. Note also that by assuming 𝑄! – set by Firm 𝑗 – fixed, we 

have made any changes in the beliefs of the firm irrelevant as the market maker determines 

the price for all 𝑡 > 0. Before ending our discussion of the BCM, we pause briefly to address 

several points worth mentioning. 

Recall that the market maker, like Firm 𝑗, is unaware of 𝐹 and 𝜎. Thus, price adjustments 

are imperfect and are thought to be some function of the excess demand (supply) in the 

market. In our discussion, we arrived at our equilibrium 𝑃∗ smoothly, making two 

assumptions:  

1. The magnitude of price adjustments (say 𝛼) is smaller or equal to the precision of the 

price 𝑃! (say 𝛽). If we allow for 𝛼 > 𝛽, then lim!→! 𝑃! = 𝑃∗ ± (𝛼 − 𝛽). Generally 

the assumption that 𝛼 = 𝛽 is valid. However, we should carefully consider how the 

simultaneous nature of the game influences 𝛼. Might 𝛼 be smaller if prices were to 

adjust after each agent conducts a trade, rather than after all agents have done so?   

2. The demand and supply curves are continuous functions, allowing for excess demand 

to be a sufficiently fine signal for price adjustments, so that lim!→! 𝑃! = 𝑃∗ if 

𝑄! = 𝑄∗. The validity of assuming continuous rather than step functions depends on 

the number of agents, 𝑁, within the game. As 𝑁 → ∞, the assumption of continuous 
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functions increasingly represents the market demand and supply curves ceteris 

paribus. 

Thus far, there is little to suggest that lim!→! 𝑃∗ = 𝐹 unless 𝑄! = 𝑄∗. We have also found 

that it is unlikely for Firm 𝑗 to set 𝑄! = 𝑄∗; doing so could largely be attributed to chance 

under the assumptions of the BCM. Namely, the following three assumptions are responsible 

for these conclusions:  

1. Firm 𝑗 sets 𝑄! and 𝑃! attempting to maximize equity gain rather than to price fairly, 

𝑃! = 𝑋!. Assume instead that Firm 𝑗 attempts to price fairly and sets the quantity 𝑄! 

accordingly, with respect to its expected demand function 𝐷!. We consider four 

possible outcomes: 

a. The market demand function 𝐷 is correctly identified (see Figure 2.6), 𝐷! = 𝐷: 

Firm 𝑗 will set 𝑃! = 𝑃∗ and accordingly set 𝑄! = 𝑄∗ so that 𝑃∗ = 𝐹. Our 

assumption that 𝐷! = 𝐷 is rather unrealistic however. We relax this assumption in 

outcomes ‘b’, ‘c’ and ‘d’ that follow.  

b. The market demand function 𝐷 is incorrectly identified as a result of 

underestimating the fundamental value (see Figure 2.7), 𝑥! < 𝐹: Firm 𝑗 will price 

𝑃! < 𝑃∗, but sets 𝑄! = 𝑄∗. Thus the market maker will act to eliminate excess 

demand by raising prices to 𝑃∗ = 𝐹.  

c. The market demand function 𝐷 is incorrectly identified as a result of 

overestimating the variance of beliefs around 𝐹 (see Figure 2.8), 𝜎! > 𝜎: Firm 𝑗 

will set 𝑃! = 𝑃∗ and 𝑄! = 𝑄∗ so that 𝑃∗ = 𝐹.  

d. The market demand function 𝐷 is incorrectly identified as a result of 

underestimating the fundamental value and overestimating the variance of beliefs 

around 𝐹, 𝑥! < 𝐹 and 𝜎! > 𝜎; the outcome is identical to that of outcome ‘b’.  
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Interestingly, we find that regardless of any error in Firm 𝑗’s ability to assess the 

market demand, so long as the firm attempts to price fairly, 𝑄! = 𝑄∗ and lim!→! 𝑃∗ =

𝐹.   

2. The quantity of outstanding shares 𝑄! is fixed. This is not an unreasonable 

assumption in the short run, given the costs involved with issuing new shares or 

pursuing share buybacks. In the BCM, this assumption is supported by the duality of 

𝜃 being fixed, and Firm 𝑗 restricted from adjusting beliefs on price movements. The 

persistence of this assumption in the PCM and ACM is discussed in greater detail in 

the opening of the following chapter. 

3. The size of the market is correctly identified by Firm 𝑗. While there are a number of 

practicable methods by which firms can arrive at an estimate of the market size, non 

are guaranteed. Thus a critique on this particular assumption warranted, but limited by 

the accuracy of current market size approximation methods.  

Having briefed our results and questioned our assumptions, we here conclude our 

discussion on the BCM. The tendency towards an initial market mispricing, given an 

equity-maximizing firm, will take on an integral role in the development of the following 

two models. We now progress to Chapter 4 on the Price-Case Model (PCM).   

 

Chapter 4: PCM Results 

Construction and Analysis 

Note: As the distributions of 𝑋 and 𝜃 are variable under the PCM, all time subscripts are 

reintroduced.  

 In the BCM we assumed all agents’ beliefs to be fixed. Accordingly, the distributions 

of 𝑋! and 𝜃! applied for all 𝑡 ≥ 0, and Firm 𝑗 had no incentive to adjust 𝑄!. In the PCM, we 

allow for agents to update beliefs on price movements in the market. Agents that revise 
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beliefs do so simultaneously and, by assumption, after the market maker adjusts prices. 

Recall that for all times 𝑡 > 0, 𝜃! is determined by and equal to the joint distribution 𝑋!. 

Thus, 𝜃! is variable in the PCM. In an ideal scenario, Firm 𝑗 responds by re-sampling 𝜃!, 

updating its beliefs on market demand and adjusting 𝑄! to some 𝑄! ≠ 𝑄! where equity gain 

is maximized given 𝑋! ≠ 𝑋!. There are, however, a number of both practical (real-world) 

limitations and theoretical (modeling) dilemmas that arise when assuming perfect flexibility 

of outstanding shares: 

1. Shares outstanding have upper limits specific to each company, regulated by the SEC. 

These are referred to as authorized shares. Liquidity constraints may also impose 

lower limits on outstanding shares by restricting share buybacks.  

2. How outstanding shares are adjusted depends on a.) Firm 𝑗’s expected market demand 

𝐷!, which may differ from the true market demand, 𝑥! ≠ 𝐹 and 𝜎! ≠ 𝜎, b.) Firm 𝑗’s 

confidence in that accuracy of 𝐷!, and c.) Firm 𝑗’s perception of its own ability to 

affect market prices, partially determined by ‘b’.  

3. The process by which 𝜃! is updated on 𝑋! for all 𝑡 > 0 is likely subject to time lags; 

the total population of information of the fundamental value may not instantaneously 

reflect shifts in the joint distribution of beliefs on said fundamental value.   

4. Stable equilibria in the model that might otherwise exist were 𝑄! fixed at 𝑄! could be 

lost, as the distribution of 𝑋! in the PCM is similarly variable. 

5. We risk shifting the focus towards the behavior of Firm 𝑗, rather than focusing on the 

influence of agents’ behavior over price movements.  

For these reasons, while the assumptions of the model assume 𝜃! variable, we will consider 

𝑄! fixed at 𝑄! for all 𝑡 ≥ 0.   
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Before proceeding with the mathematics however, rules must be developed that are 

deterministic of how agents revise expectations. In the PCM, these rules can be summarized 

as follows: 

1. Agents update beliefs simultaneously at the end of a round, after prices adjustments 

are made by the market maker.  

2. Agents are concerned strictly with the direction of price movements. Accordingly, 

expectations are not affected by 𝑃!, e.g. Agents with an 𝑥! < 𝑃! will not revise 

expectations at time 𝑡 = 0 as they expect 𝑃! < 𝑃! and 𝑃∗ = 𝑥!. 

3. Agents update beliefs strictly when the direction of price movements contradicts their 

private 𝑥! for all 𝑡 ≥ 0, e.g. if 𝑃!!! > 𝑃! ≥ 𝑥!, agents will revise expectations. Price 

movements are used as an imperfect signal on the investment behavior of other 

agents. 

4. Updated, or posterior beliefs, are assumed equal to the market price that triggered the 

revision, e.g. if 𝑥! ≠ 𝑥!!! then 𝑥!!! = 𝑃!!!. This is justified by the following logic: 

no agent revising expectations should adjust their beliefs any more that what is 

suggested by the market price. Note that the PCM is robust to relaxing this 

assumption, such that all prior beliefs are updated by a common magnitude 𝑚 in the 

direction of 𝑃!!!.  

Rules 1-3 outlined above make explicit that the distribution of 𝑋! cannot be assumed normal 

throughout the game. We begin however by presenting a specific case in which 𝑋! retains its 

normal form for all 𝑡 ≥ 0.  

As seen in Chapter 3, there are a number of possible combinations of 𝑃! and 𝑄! set by 

Firm 𝑗, assuming its goal to maximize equity gain given an expected demand function. Here, 

we consider a case where Firm 𝑗 correctly identifies the market demand curve, 𝐷! = 𝐷, and 

marginal costs are such that 𝑄! = 𝑄∗ = !
!
. The result is that 𝑃! = 𝐹 = 𝑃∗. We know this 
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outcome to hold at time 𝑡 = 0, as 𝑋! is normally distributed. Because the IPO price and 

outstanding shares are such that the market is in equilibrium, the market price 𝑃! = 𝑃! holds 

for all 𝑡 ≥ 0. Furthermore, as 𝑃! = 𝐹, there will be an equal number of buyers and sellers for 

any time 𝑡 ≥ 0. The result is that all agents identified by 𝑥! < 𝑃! and by 𝑥! > 𝑃! update 

beliefs upwards and downwards, respectively. As agents update beliefs at the same rate, 

under Rules 1-3, the normality of 𝑋! is retained. The variance of 𝑋!, 𝜎!, decreases as the 

beliefs of agents converge upon the fundamental value 𝐹. We can express this process 

formally with several variations on the equilibrium price condition, equation (3.7), rewritten 

below.  

𝑃∗ =
!"   !

!!
!! !

!.!"#
+ 𝐹                                        (3.7) 

Recall that because 𝑄! had been fixed in our original analysis, the equilibrium price condition 

is no different than an inverse demand function. Equation (3.7) can be transformed for any 

𝑖!! agent as follows.  

𝑥! =
!"   !

!!
!! !!

!.!"#
+ 𝐹                             (4.1) 

Where 𝑄! and 𝜎! are the quantity demanded and the standard deviation of 𝑥! at any time 𝑡, 

particular to the 𝑖!! agent. The case discussed above, can then be expressed as equation (4.2).  

lim!!→! 𝑥! = 𝐹                               (4.2) 

We specify in the limit, rather than at 𝑥!, allowing for agents to adjust beliefs at rate 𝑚 per 

round. For the aggregate of all informed agents we can state: 

lim!!→! 𝑋! = 𝐹                               (4.3) 

Figures 4.1 and 4.2 below illustrate equations 4.1 through 4.3, with the limit result bolded in 

Figure 4.2. Note that the 𝜎 range used is different between graphs for better visual 

interpretation.  
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Figure 4.1: lim!!→! 𝑋! = 𝐹        Figure 4.2: 𝐷, 𝑆, 𝑃!, 𝑄! 
𝐹 = 25,𝜎 = {.25, .5, 1}         𝑁 = 50,𝐹 = 25,𝜎 = {.025, 2, 5} 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
  

Interestingly, we can note that if beliefs converge to 𝐹 within a single period, rather 

than over successive periods at a rate of 𝑚, allowing for a perfectly flexible 𝑄! has no effect 

on equilibrium price 𝑃∗. If 𝑋! = 𝐹, all agents are indifferent between investment options. 

Thus, the market maker can clear the market for any quantity of stock 𝑄! < 𝑁. Accordingly 

we expect Firm 𝑗 to increase 𝑄! =
!
!
 to 𝑄! = 𝑁. In cases where agents do not revise beliefs as 

depicted here, allowing for a perfectly flexible 𝑄! adds considerably greater complexity and 

is beyond the scope of this paper for reasons discussed in the opening of this chapter.  

 We now consider a case where 𝑋! loses its normal distribution for all 𝑡 > 0. 

Specifically, we begin with a scenario where 𝑄! = 𝑄∗ = !
!
, but 𝑃! < 𝐹; the stock is 

undervalued relative to its fundamental value. The market maker responds to excess demand 

in the market by raising 𝑃! to some 𝑃! > 𝑃!. Recall that 𝑃! does not necessarily clear the 

market, as the market maker has imperfect information on both 𝐹 and 𝜎!. Rather than all 

agents updating beliefs, only those agents characterized by 𝑥! < 𝑃! will revise their expected 

values of 𝐹. For simplicity, assume that all revised expectations equal 𝑃!, rather increasing at 

some common rate 𝑚.  While 𝑋! may no longer be normal, Rules 1-3 allow for partial use of 
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our market demand and supply functions determined in Chapter 3; these equations hold for 

all agents characterized by 𝑥! ≥ 𝑃!. Thus, we can construct our market demand curve and 

supply curves as piece wise functions.  

 Begin by considering the demand functions for agents 𝑥! > 𝑃! and 𝑥! < 𝑃!, 

represented by equations (4.4) and (4.5) respectively. Note that because all agents 

characterized by 𝑥! < 𝑃! share a common 𝑥! = 𝑃!, the demand function is similar to that of a 

single agent. 

 𝐷!!! = 𝑁 1− !
!!!!!.!"#∗!

, 𝑃! > 𝑃!, Where 𝑍 = !!!!
!

             (4.4) 

𝐷!!! =
!

!!!!!.!"#∗!
, 𝑃! < 𝑃!
0, 𝑃! > 𝑃!

, Where 𝑍 = !!!!
!

                         (4.5) 

Equations (4.6) and (4.7) below are the analogous supply functions. While these supply 

curves will not ultimately affect the equilibrium price – determined by 𝐷 = 𝑄!, they are 

shown here to better understand the behavior of agents.  

𝑆!!! =
!

!!!!!.!"#∗!
, 𝑃! > 𝑃!, Where 𝑍 = !!!!

!
                         (4.6) 

𝑆!!! =
!

!!!!!.!"#∗!
, 𝑃! > 𝑃!
0, 𝑃! < 𝑃!

, Where 𝑍 = !!!!
!

                         (4.7) 

We have yet to develop the aggregate demand and supply functions, however. Before 

aggregating, we consider Figure 4.3 below, illustrating equations (4.4) through (4.7). 

Equations (4.4) and (4.6) have been shown for all 𝑃! and (4.5) shifted to the right by 

𝑁 1− !
!!!!!.!"#∗!

 where 𝑍 = !!!!
!

, for interpretive ease.  

 

(See Figures 4.3 and 4.4 on the following page). 
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Figure 4.3: 𝐷!!!, 𝐷!!!, 𝑆!!! , 𝑆!!!        Figure 4.4: 𝐷_1, 𝑆_1 
𝑁 = 50,𝐹 = 25                                 𝑁 = 50,𝐹 = 25 
𝜎 = 3,𝑃! = 18,𝑃! = 22                               𝜎 = 3,𝑃! = 18,𝑃! = 22 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

From Figure 4.3, developing the aggregate demand and supply functions becomes a 

more intuitive process. Agent’s characterized by 𝑥! < 𝑃! that would not have previously 

demanded the asset for all 𝑃! < 𝑃!, now do. The same set of agents that would have sold for 

𝑃! will now not. The aggregate demand and supply functions, 𝐷! and 𝑆!, are then written as 

equations (4.8) and (4.9) below. Figure 4.4 above illustrates (4.8) and (4.9), and introduces 

𝑄! =
!
!
.  

𝐷! =
𝑁 1− !

!!!!!.!"#∗!!
, 𝑃! > 𝑃!

𝑁 1− !
!!!!!.!"#∗!!

+ !
!!!!!.!"#∗!!

, 𝑃! < 𝑃!
, Where 𝑍! =

!!!!
!

 and 𝑍! =
!!!!
!

      (4.8) 

 

𝑆! =
0, 𝑃! > 𝑃!

!
!!!!!.!"#∗!!

, 𝑃! > 𝑃!
, Where 𝑍! =

!!!!
!

               (4.9) 

As seen from Figure 4.4, excess demand persists in the market for 𝑃!, given 𝑄!. Accordingly, 

the market maker raises the price 𝑃! to some 𝑃! > 𝑃!. Figure 4.5 below illustrates a scenario 

where 𝑃! is set equal to 𝐹. 
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Figure 4.5: 𝐷!, 𝑆!          Figure 4.6: 𝐷!, 𝑆! 
𝑁 = 50,𝐹 = 25                                 𝑁 = 50,𝐹 = 25 
𝜎 = 3,𝑃! = 18,𝑃! = 25                                      𝜎 = 3,𝑃! = 18,𝑃! = 30 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Where 𝑃! = 𝐹 we find the market at equilibrium; excess demand is zero and the market 

maker holds the price constant. Because the price is stable, all agents characterized by 

𝑥! > 𝑃! will update beliefs downwards in following rounds so that lim!→! 𝑋! = 𝐹. 

Seemingly, a similar conclusion has been reached as in the first PCM scenario, where 𝑃! = 𝐹 

and the normality of 𝑋! was retained. Note however, a distinct feature of this latter case: there 

is a growing indifference between investment alternatives for all agents characterized by 

𝑥! < 𝑃! for any 𝑡 > 0. 

 Recall the end discussion of Chapter 3, which briefed our assumption that the 

magnitude of price adjustments is sufficiently fine, such that – in this particular case – 𝑃! 

never exceeds 𝐹 for any 𝑡 ≥ 0. Consider an instance in which the market maker raises the 

price from 𝑃! to some 𝑃! > 𝑃! = 𝐹. The majority share of agents is now indifferent, and the 

market clears for 𝑃! at 𝑄!, as illustrated by Figure 4.6. Thus, our market equilibrium where 

𝑃! = 𝐹 is only stable if assume sufficiently fine price adjustments. While these results can be 

mathematically demonstrated, a graphical depiction is sufficient here.  
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PCM End Discussion 

 Our brief end discussion will focus on Rule 3, which assumed all posterior beliefs 

equal to the going market price; the assumption is largely responsible for the results in this 

chapter. In practice however, Rule 3 is rather unrealistic with respect to how real-world 

agents may adjust their expectations. Two obvious disparities stand out: 

1. Agents likely update beliefs in the direction of the new market price at some rate 𝑚, 

which is not identical across investors. This weakens the applicability of the first case 

and second case results, the latter more so than the first where results proved robust 

against identical revisions towards the market price at a rate 𝑚.  

2. Agent’s beliefs are not perfectly flexible. There may be some price range within 

which agents are willing to adjust their expectations. If these assumptions had been 

introduced to the models of this chapter, we may find some upper limit of price 

equilibria above which agents would sell off Firm 𝑗’s stock.  

It should also be stated once more that the results found in this chapter rely not only on a 

fixed quantity of shares outstanding, but specifically a 𝑄! = 𝑄∗ = !
!
. Looking at Figure 4.5, it 

is relatively straightforward that if 𝑄! < 𝑄∗, the equilibrium price 𝑃∗ > 𝐹, and visa versa.  

With these points in mind, we progress to Chapter 5, which introduces the Action-Case 

Model (ACM).  

 

Chapter 5: ACM Results 

Construction and Analysis 

 In the PCM, we had agents update beliefs on price movements in the market and 

therefore post price adjustments. As in the BCM, agents’ investment decisions were private, 

rendering the sequential move game essentially simultaneous. In the ACM, agents no longer 

update beliefs on price movements. Rather, we allow for investment decisions to be public 
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knowledge; each trade conducted with the market maker acts as a public signal to all 

following investors. Agents’ use these signals to update their beliefs on the fundamental value 

of the asset. Note that while the game has lost its simultaneous nature, the market maker 

continues to adjust prices after all agents have made a single trade. 

 Let us begin with a detailed discussion on the public signals generated in the ACM. 

 Recall that under the URC, investment decisions for holding and buying, or selling 

and shorting are synonymized. Thus, the public signals generated from investment decisions 

are reduced to a binary {0, 1} signal. The limited vocabulary of social communications is 

prime for generating herd behavior, which will naturally be a feature of social learning in a 

behavioral model where asset mispricing is demonstrated. The exact learning rule used here 

to justify herding amongst agents will be Bikchandani and Sharma (2000)’s symmetric 

signals. The symmetry of signals implies that agents place equal weight on each public 

signal, as they do on their own private information21.  

Symmetric signals have an interesting implication: if in some sequential ordering of 

agents, the signals generated by the first two agents are identical, the third agent will herd 

regardless of his or her private information. More generally, we can say if by some time 𝑡 the 

number of ‘1’s in the history of actions exceeds the number ‘0’s by two, a buy herd will 

occur by 𝑡 + 1.  

Understanding the joint distribution of prior beliefs 𝑋! to be normal, we can 

determine the probability with which a buy or sell herd forms by the third agent, at time 

𝑡 = 0, represented by equations (5.1) and (5.2) respectively.   

 𝑝!"# = 1− !
!!!!!.!"#∗!

!
, where 𝑍 = !!!!

!
                           (5.1) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
21	
  A valid criticism is that in games where the existence of noise agents is common 
knowledge, symmetric signals are unlikely. However, we assume symmetric signals for their 
simplicity and interpretive ease. 
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 𝑝!"## =
!

!!!!!.!"#∗!

!
, where 𝑍 = !!!!

!
                           (5.2) 

 Equations (5.1) and (5.2) are restrictive however, in that they rule out instances where 

herding may occur by some fourth, or fifth (and so on) agent in the game. Equation (5.3), 

accounts for such instances. The equation for a sell herd by the 𝑛!! agent has an analogous 

form. 

𝑝′!"# = !
! 1− !

!!!!!.!"#∗!

! !
!!!!!.!"#∗!

!!!
!
! , Where 𝑘 = !!!

!
 and 𝑍 = !!!!

!
            (5.3) 

Note that 𝑛 represents the 𝑛!! agent by which a buy herd occurs. It is easily seen that the 

probability of some herd occurring depends on the difference between the fundamental value 

and the IPO price, given a normal 𝑋!.    

Figures 5.1 below, illustrates 𝐷! and 𝑆! with 𝑃!’s that equate equations (5.1) and (5.2) 

to .5. Also below is Figure 5.2, illustrating the derivative of equation (5.3) for varying 𝑃!.   

 
Figure 5.1: 𝐷!, 𝑆!         Figure 5.2: 𝑝′!"# ,𝑛 = 5 
𝑁 = 50,𝐹 = 25          𝐹 = 25,𝜎 = 3,𝑃! = 25,𝑃! = 22  
𝜎 = 3,𝑃! = 18,𝑃! = 25 
 
 
 
 
 

 
 
 

 
 
 
  
 
 
 
 

 

From Figure 5.2, we can see more clearly that the probability with which a herd occurs by 
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increases at a decreasing rate as 𝑛 → ∞. For 𝑃! = 𝐹, we can see that the probability of herd 

occurring by the third agent, at 2.5, is roughly .5 which is to be expected. To reiterate, the 

exact equations (5.1) through (5.3) and their results depicted in Figures 5.1 and 5.2, hold only 

if 𝑋! is normally distributed for all 𝑡 > 0. The general characteristics however, hold for any 

distribution of 𝑋! where the probabilities of a randomly selected agent purchasing or selling 

the asset can vary for a given 𝑃!. The ACM will exploit probability to determine when herds 

occur. If for a given 𝑛, 𝑃′!"# > .5, we assume a buy herd to occur, and the same for sell 

herds. For instances where 𝑃′!"# or 𝑃′!"## equal .5, we assume no herd to form. Relying on 

likelihood allows for our sequencing of agent to become irrelevant, and thus the results of the 

model are robust to any endogenous ordering of agents. 

 Having better understood public signals and their capacity to generate herd behavior 

in the ACM, we now examine more closely the process by which agents update believes. The 

updating rules in the ACM are similar to those laid out in the PCM, only more intuitive in a 

herding scenario. The rules are summarized as follows: 

1. Agents update beliefs sequentially within the round, before prices are adjusted by the 

market maker.  

2. Beliefs are updated when, and if, a buy or sell herd takes place that contradicts some 

prior belief 𝑥! for all 𝑡 > 0, e.g. if a buy herd occurs at time 𝑡, all agents characterized 

by 𝑥! ≤ 𝑃!, will revise expectations upwards.  

3. Agents’ posterior beliefs 𝑥!′ follow the form of equation (5.4), 

𝑥!! = 𝑃! ± 𝜀, where 𝜀 is any small positive real number.              (5.4) 

The value 𝜀, is added or subtracted respective to whether a buy or sell herd triggers 

the updating. The rule is justified by the following logic: if some agent characterized 

by 𝑥! ≤ 𝑃! observes a large majority of preceding agents placing purchase orders, 
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said agent must infer that the true fundamental value 𝐹 > 𝑃!, by the principle of 

symmetric signals.  

4. The value 𝜀 is minimized by all agents given some confidence interval each agent has 

on their respective 𝑥!. For purposes of modeling, we assume an identical 𝜀 across all 

posterior beliefs. 

As herding, in whichever direction, triggers select agents to update beliefs the distribution of 

𝑋! loses its normality for all 𝑡 > 0. Interestingly, note that because 𝜀 is minimized the 

distribution of 𝑋! is similar to that in the PCM. Thus for any 𝑡 > 0, the demand and supply 

functions of the PCM can be considered an approximation for those in the ACM. We 

emphasize once more that unlike the PCM, the demand and supply schedules in the ACM 

shift before price adjustments in the market. Regardless, three points can be inferred at this 

stage: 

1. As in the PCM, posterior beliefs 𝑥!′ likely converge to 𝑃! ± 𝜀 for all 𝑡 > 0.  

2. Considering 𝜀 as the degree to which agents update beliefs, the equilibrium price is 

sensitive to relative magnitudes of 𝜀 and 𝛼, the magnitude of price adjustments made 

by the market maker. We assume 𝛼 to be similarly constant across all adjustments. 

Alternatively, a model might assume 𝛼 to be correlated with the absolute value of 

either excess demand or supply.   

3. If we allow for 𝜀 to be sufficiently greater than 𝛼 so that herding is present by 𝑃! = 𝐹, 

an equilibrium price 𝑃∗ > 𝐹 is expected. 

With these points in mind, we progress onwards to the chief example of asset mispricing 

demonstrated by the ACM. Unlike in previous models, these results will be simulated rather 

than mathematically derived. This is necessitated by the complexity introduced by herding; to 

determine the net effect of 𝜀, 𝛼, 𝑃!, and 𝑋! on 𝑋!!!, 𝑝!"#′ given some 𝑛 and accordingly 𝑃!!! 
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mathematically, would be unnecessarily tedious. Before a discussion on the simulation results 

however, we specify the example laid out in this chapter.  

The game will begin almost identically to the PCM, where the quantity of outstanding 

shares 𝑄! = 𝑄∗ = !
!
, and 𝑃! < 𝐹. Additionally, we will assume that 𝐹 − 𝑃! is such that 

𝑝′!"# > .5, given 𝑛 = 5; we deem limiting the possibility of herding to the first two agents 

overly restrictive. The contextual updating rules for all agents characterized by 𝑥! ≤ 𝑃! is 

𝑥!! = 𝑃! + 𝜀, if 𝑝′!"# > .5. For all agents identified by 𝑥! ≥ 𝑃!, the specific updating rule is 

𝑥!! = 𝑃! − 𝜀, if 𝑝′!"## > .5.  The value of 𝜀 is assumed constant across agents and the 

magnitude 𝛼 of the marker maker’s price adjustments is similarly constant.  

The scenario described above has been simulated, and the results found in Table 5.1 

and Figure 5.5. Importantly, note that the simulations were conducted in Excel with an initial 

distribution of 𝑋!~𝑁(𝐹,𝜎), where 𝐹 = 25 and 𝜎 = 3, for 50 agents. The distribution was 

created using StatPlus, which allows for the generation of discrete random values following a 

specified distribution, mean and standard deviation. The exact distribution of 𝑋! and 

corresponding demand and supply curves can be seen below in Figures 5.3 and 5.4, 

respectively. 

 
Figure 5.3: 𝑋!      Figure 5.4: 𝐷!, 𝑆! 
𝑁 = 50,𝐹 = 25,𝜎 = 3     𝑁 = 50,𝐹 = 25,𝜎 = 3  
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The distribution of 𝑋! is evidently an approximation of a normal distribution, and the demand 

and supply curves generated follow almost identically the figures presented earlier in the 

Chapters 3 and 4. Figure 5.5 shown later will demonstrate the convergence of all 𝑥!′ to 𝑃! + 𝜀 

at some 𝑡 > 0; a flattening out of the lower half of the demand and supply curves that closely 

resembles Figures 4.4 and 4.5 from Chapter 4. The results from the simulation are now 

shown below. Specifically the relevant time 𝑡  data and a summary chart in Table 5.1 and 

Figure 5.6, respectively. 

   
Table 5.1: ACM Simulation Data 
(𝑁 = 50,𝐹 = 25,𝜎 = 3,𝑃! = 18,𝑛 = 5)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The simulation parameters are specified in the upper left-hand corner of Table 5.1. 

Note that “E” and “Alpha” correspond with 𝜀 and 𝛼, respectively. Furthermore, we state here 

that the probabilities for a randomly selected agent demanding or supply the asset were 

calculated by setting the number of agents whose 𝑥! > 𝑃! or 𝑥! < 𝑃! over the total number of 

agents, 𝑁. Thus, the accuracy of our probabilities is maintained despite the changing 

distribution of 𝑋!. The Excel computation codes can be found in the Appendix.  

 The data fits neatly with our expected results, outlined briefly above. At time 𝑡 = 0, 

𝑃! = 18 such that the probability of a buy herd “P(Buy)” – by the fifth agent – is greater than 

N 50 Time D_t S_t, Q_0 P(Buy) P(Sell) P_t
F 25 0 50 0 25 1 0 18
E 2 1 50 0 25 1 0 19

Alpha 1 2 50 0 25 0.99804768 0.00041568 20
3 50 0 25 0.99237888 0.00172288 21
4 50 0 25 0.97099008 0.00734208 22
5 50 0 25 0.93795328 0.01744128 23
6 50 0 25 0.87089248 0.04196448 24
7 50 0 25 0.72741888 0.11001088 25
8 50 0 25 0.63109728 0.16748128 26
9 50 0 25 0.46814208 0.28900608 27
10 28 22 25 0.01744128 0.93795328 28
11 1 49 25 0.375 0.375 27
12 25 25 25 0.375 0.375 27
13 25 25 25 0.375 0.375 27
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.5. In this particular case the probability is 1, as the minimum 𝑥! is roughly 20 (see Figure 

5.3). This is also evidenced by 𝐷! = 𝑁. Thus while a herd may have occurred, no agents 

update beliefs. The excess demand relative to 𝑄! calls for the market maker to raise prices by 

𝛼, or 1, at 𝑡 = 1.  By time 𝑡 = 2, an updating of beliefs begins. Despite the updating process, 

we see the probability of a buy herd diminish. This is specific to instances where 𝜀 does not 

exceed 𝛼 significantly. In a trial case where 𝜀 = 3, holding 𝛼 constant, the probability of a 

buy herd remained stable at 1 for all 𝑡 > 0 and the price 𝑃! rose linearly without restraint. A 

high 𝜀 however is unlikely, as agents would generally allow only for some small positive 𝜀. It 

is less clear whether 𝜀 > 𝛼; if we assume price revisions per round to be a fine signal, the 

value of 𝛼 must be sufficiently small. In a trial case where 𝜀 = 𝛼 = 1, the probability of 

herding diminished to less than .5 by 𝑃! = 𝐹 = 25, and according 𝑃∗ = 25.  

   The sustained demand seen in Table 5.1 for all 𝑡 < 10 is a product of the updating 

of beliefs due to herding. We find that for time 𝑡 = 9, the probability with which agents herd 

falls below .5, where the price 𝑃! = 27. As the market demand continues to exceed the 

outstanding share quantity at time 𝑡 = 9, the market maker raises prices. Note that at 𝑡 = 10, 

the market demand falls drastically as agents no longer update their beliefs. Specifically, we 

can see that demand fell by roughly half, representative of agents whose 𝑥! < 𝐹. These 

agents all dispose of the stock simultaneously, as their updated beliefs converged to 𝑃! + 𝜀. 

Figure 5.5 (below) illustrates the corresponding “flattening out” of the lower half of the 

demand and supply schedules at time 𝑡 = 9. Interestingly, as the posterior beliefs of all 

agents characterized by 𝑥! < 𝐹 converged, prices do not see a similar precipitous fall; by 

lowering the price only slightly the market maker raises demand significantly enough to bring 

the market to equilibrium. Note that the equilibrium price 𝑃∗ = 27 > 𝐹 = 25. The model 

successfully demonstrates the existence and achievement of a stable equilibrium where the 

market price exceeds the fundamental value.  
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Along with Figure 5.5 below, we have Figure 5.6, a summary chart of Table 5.1. As 

with Table 5.1, the simulation parameters have been listed. The time period over which 

Figure 5.6 extends is greater than that in Table 5.1 to clearly illustrate the stability of the 

equilibrium market price achieved. Additionally, when looking at Figure 5.6, it is important 

to recall that the market is brought to equilibrium where 𝐷! = 𝑄! = 25. A line for 𝑄!, and 

the probabilities of buy and sell herds have been excluded from the summary chart so that the 

demand, supply and price movements can be clearly seen.   

 
Figure 5.5: 𝐷!, 𝑆!  (𝑁 = 50,𝐹 = 25,𝜎 = 3, 𝑡 = 9)       

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5.6: ACM Simulation Summary (𝑁 = 50,𝐹 = 25,𝜎 = 3,𝑃! = 18) 
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Here we conclude our construction and analysis of the ACM. We now progress the end 

discussion of the chapter. 

 

ACM End Discussion 

 As in the BCM and PCM, the ACM successfully demonstrates the existence and 

achievement of a stable equilibrium where an asset is mispriced relative to its fundamental 

value. However, as with our earlier models, several points worth mentioning remain. In 

particular, two assumptions must be discussed: 

1. Limiting the probability of herding to the fifth agent. To be sure, allowing only for 

herding by the third agent is restrictive. Because herding probabilities increase at a 

decreasing rate with 𝑛, for a given 𝑃! (see Figure 5.2), there is no clear reasoning for 

what exactly the upper limit on 𝑛 should be. In this model we set 𝑛 = 5, as it 

represents a relatively small share of the total number of agents. This is important, 

because we use the probability of herding to determine whether or not all [updating] 

agents should update – thus, we escape relying on any endogenous sequence of 

agents. Regardless, a critique of the assumption itself is warranted.  

2. Allowing for a constant 𝛼 across price adjustments by the market maker. As 

mentioned earlier, prices may alternatively adjust as function of the amount of excess 

demand or supply in the market. Seemingly, the chief issue is that in a model where 

the market maker adjusts prices at the end of the round, there is a lacking distinction 

between the magnitude and rate of price changes. This distinction is perhaps clearer in 

the practice.  

Lastly, we brief what may be a limitation or advantage to this chapter: simulating rather than 

mathematically deriving the existence of equilibria. The inherent risk is that some 

equilibrium, which may exist, is not identified. Furthermore, we lack the generality of results 
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seen in previous chapters, which may prove more useful in practical application. That said, 

the demonstration allowed the chapter to neatly handle a quantitatively tedious scenario and 

in doing so, support the models illustrated in previous figures. Here, we end our discussion, 

closing Chapter 5, and proceed to the conclusion.    

 

Chapter 6: Conclusion  

Summary Of Results 

 The intended purpose of this paper has been to demonstrate the existence and 

achievement of stable equilibria where an asset is mispriced relative to its fundamental value. 

A general model was developed, within which these equilibria were sought out. The model – 

or game – consists of a finite number of agents making investment decisions on an IPO, 

where the quantity of stock is assumed fixed. A market maker attempts to match demand 

with the number of outstanding shares (clearing the market) by adjusting the market price. 

Agents make trades through the market maker in a random, sequential order and price 

adjustments occur after all agents have made a single trade. Several variations on this general 

model were developed. 

 The Base-Case Model (BCM) assumes the beliefs of all agents on the fundamental 

value of the stock to be fixed, and further that all trades are private information. Accordingly, 

the game is essentially a simultaneous move one. The model demonstrates that a correct 

pricing of the asset depends, ceteris paribus, on an optimal quantity of stock in the market. 

Under assumptions of an equity-maximizing firm, the BCM model nicely demonstrates that 

the optimal quantity of stock is offered only by chance. The model established a base for 

initial mispricing of an asset in the market. 

 The Price-Case Model (PCM) begins assuming the optimal quantity of stock to 

prevail in the market place, and holds the assumptions of the BCM constant with the 
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exception of allowing for agents to update beliefs. Specifically, agents update beliefs 

simultaneously at the end of a round, based on price movements in the market should they 

contradict prior beliefs about the fundamental value. The PCM demonstrates that in instances 

where an asset is initially correctly priced, the equilibrium price is in the limit is the 

fundamental value itself. Allowing for an initial mispricing, as supported by the BCM, the 

PCM reveals the equilibrium price to be inline with the fundamental value only if price 

revisions are sufficiently fine. The convergence of beliefs in the model generally allows for 

any number of price levels to clear the market.  

 The Action-Case Model (ACM) holds the assumptions of the PCM, with the 

exception that agents do not update beliefs on price movements, but rather the actions of 

other agents; the assumption that trades are private information is abandoned. Specifically, 

agents update beliefs sequentially and within the round, before price movements. Investment 

decisions act as public signals to all following agents and the market maker continues to 

adjust the price at the end of the round. The model successfully demonstrates the 

achievement of an equilibrium price above the fundamental value, given a number of 

assumptions over the probabilities of herding and the relative magnitudes by which the prices 

and beliefs are updated.  

   All models seem effective in demonstrating potential persistent asset mispricing, the 

PCM perhaps less so than the BCM and ACM. The general game structure and underlying 

mathematics holds well across models and are all the more supported by the simulations 

conducted for the ACM. Accordingly, the efforts of the paper have been met with success. 

That said, and as briefed in the end discussions of each model, there are without doubt 

limitations to each model and valid critiques on the assumptions made throughout. The 

following section discusses areas for further work, beginning with a discussion on the 

practical application of the models generated in this paper.  
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Areas For Further Work 

 An analysis of the practical application of this paper lends itself well to generating a 

discussion on areas for further work. In considering the calculability of the general model, we 

find the underlying mathematics to be rooted in the classical assumptions of econometrics. 

Almost all measurements used throughout the model can be at the very least estimated, given 

a sufficiently large sample of estimates on the fundamental value of a stock. Two potential 

exceptions may be 𝜀 and 𝛼, the degree of updating and the magnitude of price adjustments 

respectively. While these values may not be grounded in econometrics per say, they may be 

estimated by other means. In this respect, we find room for further work: identifying real 

world estimators for the variables used throughout the models. 

 Theoretically, whether these models have any practical application is less certain. The 

general assumption of a fixed quantity of shares may or may not hold in the short run. 

Considerations must accommodate for instances where firms intentionally buybacks shares to 

create shareholder value. The assumption that firms attempt to maximize equity gain rather 

than price fairly is similarly questionable. A further exploration into IPO strategy could lend 

itself either to support or weaken this paper. Regardless, the area presents itself as a natural 

extension of this paper. 

 The game structures themselves for the PCM and ACM are likely weak with respect 

to practical applications. In real-world scenarios agents do not update beliefs perfectly with 

prices as in the PCM, nor do they have perfect information on the investment decisions of all 

agents. A related critique is that symmetric signals, while useful in modeling, are perhaps an 

overly simplified expression of reality. Two areas for further work are then identified. Firstly, 

the development of a game that draws both from the PCM and ACM, with agents’ 

information and beliefs bounded more so than in the models presented here. Secondly, the 

introduction of a more complex herding mechanism to the game just proposed. 
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As mentioned briefly in the results summary, a weakness of the ACM is its lack of 

mathematically derived equilibrium conditions due to quantitative complexities. Work in 

establishing these equilibria, and consequentially adding to the generality of the model, is 

another significant area for further works. That said, the importance of this extension is 

perhaps second to that of integrating the PCM and ACM. 

Lastly, any exploration into the theoretical application of these models to explaining 

asset bubbles may prove to be a fascinating extension of this work.  
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Appendix: Excel Code 
 
Raw Data Range: P2:BM50 (Only P2:BM22 was used in Table 5.1 and Figure 5.6 in Chapter 
5).  
 

1. Demand  
=COUNTIF(P2:BM2,">"&I2) 
 

2. Supply 
=COUNTIF(P2:BM2,"<"&I2) 

 
3. Probability For Buy Herd 

=((COUNTIF(P2:BM2,">"&I2)/B$1))^2+2*((COUNTIF(P2:BM2,">"&I2)/B$1))^3*
((COUNTIF(P2:BM2,"<"&I2)/B$1)) 

 
4. Probability For Sell Herd 

=((COUNTIF(P2:BM2,"<"&I2)/B$1))^2+2*((COUNTIF(P2:BM2,"<"&I2)/B$1))^3*
((COUNTIF(P2:BM2,">"&I2)/B$1 

 
5. Updating Beliefs (Herding) 

=IF($G2>0.5,IF(P2>$I2,P2,P2+$B$3),IF($H2>0.5,IF(P2<$I2,P2,P2-$B$3),P2)) 
 

6. Price Adjustments 
=IF(D3>F3,I2+$B$4,IF(D3=F3,I2,I2-$B$4)) 
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