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ABSTRACT 

 

 

The Effects of Increasing Running Speed on vGRF and Asymmetry 

 

 

 

 

by 

 

Kaela M. Hierholzer  

 

 

Biomechanical and physiological parameters related to running performance are usually studied 

separately. However, evaluating both aspects together could be beneficial in improving athletic 

performance. The purpose of this study was to observe the change in peak vGRF and asymmetry 

as speed increases, while observing physiological responses during a V̇O2max test. Data from 

athlete monitoring of 12 cross-country and triathlon athletes were analyzed. The athlete 

monitoring protocol included three unweighted countermovement jumps and a V̇O2max test 

performed by the athletes. The athletes had an average V̇O2max of 53.4 ± 7.7 mL/kg/min, while 

their average vGRF asymmetry throughout the V̇O2max test was 1.38 ± 0.68%. A strong, positive 

correlation was found between average vGRF and average blood lactate (r=0.93), indicating that 

as vGRF increased so did blood lactate. It was concluded that physiological and biomechanical 

parameters are related in athletic performance. Therefore, athlete monitoring should include 

analysis of both physiological and biomechanical parameters in order to form a more well-

rounded analysis of athlete performance. 
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CHAPTER 1 

INTRODUCTION 

 

Researchers studying biomechanical and physiological parameters related to running 

performance usually do so separately. An example of a study that focuses on biomechanical 

parameters of running is an article by Keller, Weisberger, Ray, Hasan, Shiavi, and Spengler 

(1996), the authors of, “Relationship between vertical ground reaction force and speed during 

walking, slow jogging, and running”. Allen, Seals, Hurley, Ehsani, and Hagberg (1985), the 

authors of, “Lactate threshold and distance-running performance in young and older endurance 

athletes”, focused more on the physiological parameters related to running.  

The aim of the current study was to examine selected biomechanical and physiological 

variables together in order to provide a more well-rounded analysis of the subject’s performance 

and to capture an overall image of how those two parameters are associated with each other at 

various speeds of distance running. This study was a further analysis of biomechanical and 

physiological parameters from athlete monitoring data performed by East Tennessee State 

University’s women’s cross-country and triathlon teams. Due to the amount of distance these 

athletes run; as well as the fact that they often need the ability to sprint at the end of the race, 

they cover a wide range of paces throughout a competitive race. Furlong and Egginton (2018), 

noted athletes may be forced to run at speeds faster or slower than they prefer due to the 

competition.  

Kinetic asymmetry in running biomechanics increases the risk of musculoskeletal injury. 

Specifically, asymmetry was assessed for vertical ground reaction force (vGRF) and the 

difference between right and left foot vGRF (Zifchock, Davis, & Hamill, 2006). Injuries 
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typically occur when the athlete’s running speed increases, this may occur due to the likelihood 

of an increase in asymmetry (Clark & Weyand, 2014). We researched GRF characteristics 

including: 1) left and right vGRF symmetry consistency by using symmetry index (%), 2) impact 

force consistency by percent change from speed to speed, 3) the percent increase of vGRF 

relative to speed increase, and 4) percent increase in stride length with increasing running speeds. 

In regards to the physiological responses, this study was an examination the subject’s; 1) volume 

of oxygen (V̇O2) with GRF consistency, 2) blood lactate concentration levels with vGRF 

consistency, and 3) if the subject’s ratings of perceived exertion (RPE) matches with all 

responses both biomechanical and physiological parameters.  

This study is important to sport science because when most athletes or coaches are 

developing a training program, they may refer to sources that are based on distance development 

or physiological parameters such as lactate threshold and maximum volume of oxygen (V̇O2max) 

tests. Therefore, there may be a lack of education when it comes to programming and training 

athletes. Biomechanical parameters, especially when integrated with physiological variables, 

would be a powerful tool in the training process. For example, performance and injury are due to 

leg length discrepancies, high impact force, high loading rate, and high active (propulsive) 

factors (Hreljac, 2004). There is a need to explore the relationship of biomechanical factors with 

the physiological parameters. This study could help coaches and athletes not only develop proper 

training programs to improve performance, but also help reduce the risk of injury. Therefore, the 

purpose of this study is to observe the change in vGRF characteristics with increasing speeds 

while matching physiological responses during a V̇O2max test. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Biomechanical Parameters 

 

Running Mechanics 

Running is a cyclic motion that allows an individual to propel themselves forward 

(Figure 2.1). It requires movement of the lower body beginning with the foot making the initial 

impact with the running surface until that same foot comes back into contact at the end of the 

cycle (Nicola & Jewison, 2012). Running can be classified based upon speed. Jogging or a 

submaximal running speed is a velocity from 8 kilometers per hour (km/h) to 16 km/h (Dugan & 

Bhat, 2005). During running, there is an increase in joint range of motion and muscle activity, as 

well as reaction forces (Chan & Rudins, 1994). The running cycle differs from walking; as 

running has both a stance and swing phase, as well as a float phase (Nicola & Jewison, 2012). 

When speed increases from a walk, run, and sprint; the time spent in the stance phase will 

decrease while the swing and float phases increase (Chan & Rudins, 1994). Dugan and Bhat 

(2005), a sprint is any velocity greater than 16 km/h. 



 13 

 

Figure 2.1 Running gait (Kintec, 2016) 

 

 The first phase of running would be initial contact and occurs from the instant of foot 

strike to when the foot is flat on the running surface. During this phase, the foot contacts the 

surface in a slightly supinated position and as the heel strike occurs the foot begins to dorsiflex 

(Dugan & Bhat, 2005). The muscles, tendons, bones, and joints of the lower limb must absorb 

the forces of the impact from distal to proximal (Nicola & Jewison, 2012). These forces are 

distributed via a closed kinetic chain necessitating a dorsiflexed ankle and a flexed knee (Nicola 

& Jewison, 2012). Proper force absorption may decrease the likelihood of a risk of injury. 

 The next phase is termed mid stance and occurs from foot flat to heel-off of the running 

surface. While this is occurring, the foot remains in contact with the ground and the ankle begins 

to dorsiflex and the foot pronate due to the forward motion of running (Dugan & Bhat, 2005). 

The tibialis posterior and gastrocnemius-soleus complex are eccentrically contracted at this point 

to provide control of motion (Dugan & Bhat, 2005). Contraction of the quadriceps and hamstring 

are used as a stabilization mechanism for the knee joint at this point in the running cycle (Dugan 

& Bhat, 2005). As the opposite limbs begins to swing forward, the foot in contact with the 
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running surface begins to supinate as the foot moves into heel-off, ending this phase (Dugan & 

Bhat, 2005). 

 Next is propulsion which occurs from heel-off to toe-off is the next phase in the cyclic 

motion. Here, the limb swinging forward continues to do so as the opposite limb begins 

propulsion (Dugan & Bhat, 2005). To propel, the foot goes into plantarflexion and supination 

from the gastrocnemius and soleus contracting, all while the opposite limb is preparing for 

ground contact (Dugan & Bhat, 2005). At toe-off, muscles such as the rectus femoris and 

anterior tibialis are active and max vGRF is reached (Nicola & Jewison, 2012). 

 Following toe-off and as the opposite limb is in the swing phase just before it contacts the 

ground, the first float phase occurs (Dugan & Bhat, 2005). During the float phase, the pelvis is 

rotating forward and flexion of the hip allows this (Nicola & Jewison, 2012). Then, the opposite 

limb prepares for ground contact at the end of the swing phase where the posterior calf muscles 

eccentrically contract for stabilization (Chan & Rudins, 1994). Once the opposite limb comes in 

contact with the ground, the running cyclic continues (Dugan & Bhat, 2005). 

As the velocity of running increases, a decrease in the amount of contact time and an increase in 

flight phase will occur. With increasing velocities, an increase in stride frequency, stride length, 

and GRF is experienced (Weyand, Sternlight, Bellizzi, & Wright, 2000). 

 

Ground Reaction Force 

 Ground reaction force is the action of an equal and opposite force between the foot and 

the ground (Novacheck, 1997). Grabowski and Kram (2008), there is an increase in vGRF when 

running velocity increases. When there is a greater application of force, the athlete’s vertical 

velocity will increase at takeoff; therefore, there will be an increase in flight time and distance 
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traveled between strides (Weyand, et al., 2000). Previous research has reported that at slow 

velocities (2 m/s), peak vGRF can reach about 1.5 times the athlete’s body weight, whereas at a 

faster velocity (7 m/s), peak vGRF can reach 3.0 times the athlete’s body weight (Grabowski & 

Kram, 2008). Dugan and Bhat (2005), noted the athlete’s vGRF could reach up to 2.2 times the 

athlete’s body weight after heel contact occurs during running compared to walking. In addition 

to increased vGRF, asymmetry in gait, has also been linked to increased risk of injury (Hreljiac, 

2004; Zifchock et al., 2006). 

 

Running Injuries 

 It has been estimated that recreational and competitive runners have almost a 70% chance 

of injury from overuse within a 1-year period (Hreljiac, 2004). Injuries of the lower extremities 

are especially common in runners (Shi, Li, Lui, & Yu, 2019). When the velocity of running 

increases, an increase in the amount of vGRF at impact is observed; leading to greater tissue 

stress (Hreljiac, 2004). Nicola and Jewison (2012), increasing running velocity increases the 

GRF, which can cause an increase stress on the lower body and therefore raise the risk of injury. 

Specifically, greater vertical loading rates were found to contribute to running related injuries 

(Dudley, Pamukoff, Lynn, Kersey, & Noffal, 2017). 

Another issue that may occur and increase the risk of injury is kinetic asymmetry during 

running. Asymmetry is often described as the difference between limbs in regards to either 

kinetic or kinematic parameters (Zifchock et al., 2006). It has been found that when there is 

asymmetry of 15% or more, there is an increased risk of injury on the lower extremity for female 

collegiate athletes (Knapik, Bauman, Jones, Harris, & Vaughan, 1991). Clark and Weyand 
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(2014), asymmetry in GRF seems to be greatest at faster speeds. This rise in asymmetry has been 

found to increase the risk and occurrence of injury (Zifchock et al., 2006).  

 

Physiological Parameters 

 

V̇O2max Test 

A V̇O2max test is a graded exercise test used to assess aerobic power and ability to use 

oxygen (O2) (Brooks, Fahey, & Baldwin, 2005).  Yoon, Kravitz, and Robergs (2007), a V̇O2max 

test is a very common measure for physiological parameters. Due to the fact that O2 consumption 

is proportional to the intensity of exercise, their V̇O2max will increase as the intensity increases 

(Brooks et al., 2005). Many factors can affect an athlete’s V̇O2max value such as:  age, 

conditioning status, and sex (Arena et al., 2007). Brooks et al. (2005), an individual’s V̇O2max is a 

good indicator of endurance performance in a heterogenous sample, including successful 

distance running (Yoon et al., 2007). 

There are various protocols that can be used when administering a V̇O2max test. The 

differences in protocols can vary from their stage duration, stage increment, total test duration, as 

well as the modality (Yoon et al. 2007). It has been found that a total V̇O2max test duration time 

lasting between 8 and 17 minutes had higher values than other durations (Yoon et al., 2007). For 

women between the ages of 20 and 29 years old, a V̇O2max value of 49.6 mL/kg/min and higher is 

classified as superior and anything under 32.3 mL/kg/min and lower is classified as very poor 

(ACSM’s Guidelines for Exercise Testing and Prescription, 2014). For males ages 20-29, a 

V̇O2max value 55.5 mL/kg/min and higher ranks them as superior and a value of 36.7 mL/kg/min 

and lower ranks them as very poor (ACSM’s Guidelines for Exercise Testing and Prescription, 
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2014). A study by Hutchinson, Cureton, Outz, and Wilson (1991) in which their subjects 

completed a V̇O2max test, the male subjects had an average V̇O2max of 57.5 ± 5.2 mL/kg/min while 

the females reached an average of 52.2 ± 5.1 mL/kg/min. Another study in which active male 

and female subjects completed a V̇O2max test reports reported slightly lower values. The male 

subjects reached an average value of 50.4 ± 4.5 mL/kg/min and the females reached 41.5 ± 6.0 

mL/kg/min (Robertson, Moyna, Sward, Millich, Goss, & Thompson, 2000). 

 

Blood Lactate 

 Blood lactate has been found to relate to endurance performance (Allen et al., 1985). 

Lactic acid dissociates to lactate; therefore, increasing the blood lactate levels increasing the 

acidosis which can cause diminished athletic performance (Theofilidis, Bogdanis, Koutedakis, & 

Karatzaferi, 2018). Brooks et al. (2005), indicate lactate formation increases as intensity 

increases and an increase in blood lactate levels will be experienced when the rate of clearance 

cannot keep up with rate of production. In a study by Maldonado-Martin, Mujika, and Padilla 

(2004), their subjects of male and female highly trained runners displayed max blood lactate 

levels of 10.4 ± 3.2 mmol/L for females and 11.7 ± 3.0 mmol/L for males during a V̇O2max test. 

Another study in which a V̇O2max test was performed on well-trained middle and long-distance 

runners, researchers reported a max average blood lactate level of only 9.2 ± 2.1 mmol/L (Grant, 

Craig, Wilson & Aitchison, 1997). 

 

Blood Glucose 

 Glucose is a valuable source of fuel during rest and exercise (Goodwin, 2010). Blood 

glucose concentration at rest is about 100 mg/dL, and homeostatic mechanisms attempt to 
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maintain this level during exercise (Brooks et al., 2005). At the beginning of long-term exercise, 

a spike in blood glucose, likely due to catecholamine release, can occur, then it will begin to fall 

and remain within 10% of normal values (Brooks et al., 2005). When blood glucose levels get 

too low, fatigue develops, leading to the cessation of exercise (Brooks et al., 2005). However, for 

short periods blood glucose can also increase with exercise intensity due to catecholamine 

accumulation and catecholamine’s ability to stimulate hepatic glycogenolysis (Brooks et al., 

2005). At greater intensities, carbohydrates are needed because they become the primary source 

of fuel (Brooks et al., 2005). Therefore, additional glucose is produced by activating pathways in 

addition to glycogenolysis, such as gluconeogenesis (Feo et al., 2003). Feo et al. (2003) found 

that there was an increase in blood glucose levels as their subjects reached higher percentages of 

their V̇O2max. Dohm, Beeker, Israel, and Tapscott (1986), it was found that their subjects were 

able to maintain homeostasis while running at 70% of their V̇O2max in a fasted state; likely 

resulting from gluconeogenesis. 

 

Ratings of Perceived Exertion 

 Ratings of perceived exertion (RPE) are a way for an individual to express how they are 

feeling during exercise (Demello, Cureton, Boineau, & Singh, 1987). RPE is a subjective 

measure that quantifies an athlete’s perception of exercise (Ritchie, 2012). During a test, such as 

a V̇O2max, RPE is an estimate of the intensity of (Demello et al., 1987).  Hall, Ekkekakis, and 

Petruzzello (2005), reported their subjects had an average RPE of 15.47 ± 2.15 after running on a 

treadmill for 15 minutes. Robertson et al. (2000), found their subjects progressively reached 

increased RPE and reached an average max RPE of 19.7 ± 0.48 (females) and 19.6 ± 0.53 

(males) for a V̇O2max test, indicating this type of exercise has a high intensity based on both 



 19 

physiological and psychological values. The most common RPE scale is the “Borg Scale” that 

ranges from 6 (no exertion) to 20 (maximal exertion) (Ritchie, 2012). 

Demello et al. (1987), RPE is more affected by the lactate threshold and amount of blood 

lactate than the percent of V̇O2 at which they are performing. However, there are other factors 

that could be associated with RPE. One other factor that was found to be closely related to RPE 

values was heart rate (Scherr et al., 2013). Scherr et al. (2013), the Borg RPE Scale has a very 

strong relationship with heart rate and blood lactate. 

 Previous research has reported that increasing speed, typically increases vGRF and 

asymmetry; which can lead to an increased injury risk (Clark & Weyand, 2014). Similar results 

have been found with physiological parameters. As intensity increases, so do the responses of 

variables such as V̇O2, blood lactate, and RPE; however, blood glucose levels typically remain 

the same with only slight variation due to the drive to maintain homeostasis. In regards to 

previous research, it can be shown that varying responses of these variables can have an effect on 

athletic performance. In splitting the information between biomechanical and physiological 

parameters only, there may be a gap in the information that can be provided to coaches and 

athletes. Therefore, it is important to consider the effect of both parameters on athletic 

performance in order to develop a more well-rounded analysis rather than just one or the other. 
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Profiling collegiate cross-country and triathlon athletes 

 Abstract 

Research has been conducted on varying levels of runners. However, most research 

looks at biomechanical parameters or physiological parameters of the athletes. The 

purpose of this study is to profile physical characteristics of collegiate cross-

country and triathlon athletes via athlete demographics, biomechanical 

characteristics, and physiological characteristics during a V̇O2max test. Twelve 

athletes (8 females, 4 males) were profiled based on their normal athlete monitoring 

protocol. Average and standard deviation were calculated for all variables. The 

average demographics for all athletes was 19.92 ± 1.56 years old, 167.55 ± 7.23 cm 

tall, and they weighed 65.7 0± 9.85 kg. The athletes average vGRF throughout the 

V̇O2max test was 2.69 ± 0.19 BW with an average asymmetry of 1.38 ± 0.68 %. The 

average V̇O2max for all athletes was 53.37 ± 7.70 mL/kg/min. Overall, the male 

athletes were larger in size than the females, with corresponding variables (i.e., 

ventilation, heart rate, and V̇O2) following this trend. Our findings provide evidence 

that collegiate cross-country and triathlon athletes maintain relatively low kinetic 

asymmetry, while ranking above the 95th percentile according to the American 

College of Sports Medicine guidelines for V̇O2max values. 

 

Keywords: demographics, cross-country, triathlon 

 

Introduction 

To gain better knowledge of results regarding biomechanical or physiological parameters, it is 

valuable to establish the calibre of athlete performing the testing. Previous research briefly 

describes the demographics of their subjects, however, typically there is not an in-depth profile 

of athletes at the collegiate level who perform biomechanical and physiological testing. 
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 This current study examines the physical characteristics of collegiate cross-country and 

triathlon athletes during a V̇O2max, while including biomechanical and physiological 

characteristics from athlete monitoring. The goal of this study was to further analyze and profile 

typical college cross-country and triathlon athletes’ characteristics in order to better understand 

future performance research. Based on the distance these athletes run in competition, there is a 

necessity for them to be able to maintain a steady pace while having the capability of sprinting 

when needed. Furlong and Eggington (2018) reported athletes need to be able to perform a range 

of speeds and paces during a competitive race in order to have the best finish possible. When 

comparing males to females, it has been reported males were taller and weighed more than the 

females (Fuster, Jerez, & Ortega, 2014). Therefore, typically males would experience larger 

values than females in variables such as ventilation (V̇E), heart rate (HR), vertical ground 

reaction force (vGRF), and loading rate. 

 The importance of this study to sport science is to provide information concerning 

collegiate cross-country and triathlon athlete’s demographics, biomechanical characteristics, and 

physiological characteristics. This information can then be applied to future studies in order to 

better analyse performance measures, which can be directly applied to improve training. 

Therefore, the purpose of this study is to profile the physical characteristics of collegiate cross-

country and triathlon athletes via athlete demographics, biomechanical characteristics, and 

physiological characteristics during a V̇O2max test. 

 

Methods 

Athletes 

The athletes were 12 trained male and female collegiate cross-country and triathlon athletes, 

ranging from age 18 to 25 years old. Tests were part of an ongoing athlete monitoring program. 
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Athletes must have had clearance to perform a maximal exertion exercise by the university’s 

medical staff in order to take part in the monitoring program.  

 

Procedures 

Each athlete’s age, body mass, and height were recorded prior to jump testing. Before starting 

the V̇O2max test, the athletes performed 3 unweighted countermovement jumps on PASCO Force 

Plates (Roseville, CA) that were analyzed using ForceDecks Software (Vald Performance, 

London, England). A study established that the PASCO portable force plates are a reliable tool 

for collecting jump data (Silveira, Stergiou, Carpes, Castro, Katz, & Stefanyshyn, 2017).The 

athlete then performed a V̇O2max test, until volitional fatigue, using a Parvo Medics TrueOne 

2400 Metabolic Cart (Sandy, UT) for gas exchange analysis. The V̇O2max protocol being used 

was a protocol and previous monitoring set in place by the strength and conditioning coach and 

the sport coach of the triathlon team and cross-country team in order to be able maintain 

consistency (Beltz, Gibson, Janot, Kravitz, Mermier, Dalleck, 2016). Prior to starting the test, 

each athlete’s baseline measurements were recorded. The protocol used in this study was not 

typical compared to other studies. The majority of V̇O2max tests follow the Balke or Bruce 

protocol (Beltz et al., 2016). Both these protocols not only increase in speed, but also grade with 

each stage (Beltz et al., 2016). However, the protocol consisted of each athlete starting at a speed 

of 10.1 km/h. The speed increased by 1.28 km/h every 2 minutes until the subject reached an 

RER of 1.00. Then, the speed increased 1.2 km/h every 1 minute until cessation of the test. This 

was performed in an attempt to achieve a true V̇O2max test and max lactate concentration, while 

keeping the total test time as close to 12 minutes as possible, which is the preferred duration 

(Arena et al., 2007). Throughout the V̇O2max test, a grade of 0% was maintained in order to 
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properly collect and compare vGRF data from the force plates. During the V̇O2max test, the 

athlete’s blood lactate (2 measurements each time) was measured using a Nova Medical Lactate 

Plus analyzer (Waltham, MA). The Lactate Plus device reported good reliability and accuracy 

when being compared to an in-laboratory based blood lactate analyzer (Tanner, Fuller, & Ross, 

2010). Blood glucose (2 measurements each time) was measured using an Accu-Chek Aviva 

Plus meter (Roche, Indianapolis, IN), and when portable blood glucometers were compared to an 

in-laboratory analyzer it was reported that 82% of the readings met the International 

Organization of Standardization’s criteria for clinical accuracy (Salacinski, Alford, Drevets, 

Hart, & Hunt, 2014). RPE was also collected at the end of each stage. To collect this data, the 

athlete stepped off the belt and onto the treadmill’s running board. Then athlete returned to the 

treadmill belt for the next stage of the test. All athletes were equipped with a Garmin heart rate 

monitor chest strap (Olathe, KS) to monitor changes in heart rate throughout the test. Garmin 

was chosen to maintain consistency with what the athletes use during training. While the athlete 

was running, their vGRF was being recorded using four load cells (Rice Lake, WI) collecting at 

1,000 hertz (Hz) placed beneath the Tuff Tread treadmill belt (Conroe, TX) and the LabView 

2018 software (National Instruments, Austin, TX) for the entirety of the V̇O2max test. All testing 

ceased when the athlete ended the V̇O2max test by stepping off the treadmill belt and onto the side 

platform on their own. See study design in Figure 3.1. 
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Figure 3.1 Study design. 
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Statistical Analysis 

Data from the athlete’s physical characteristics were analysed using Microsoft Excel (Microsoft 

Corporation, Redmond, WA, version 16.25) by calculating average and standard deviation. 

Intraclass correlation (ICC) and coefficient of variation (CV) were used to analyse reliability of 

the treadmill load cell data using Microsoft Excel and a spreadsheet developed for analysis of 

reliability (Hopkins, 2015). 

 

Results 

Physical Characteristics 

Table 3.1 highlights the demographics of the athletes. All athletes were trained college triathlon 

and cross-country runners, ranging from 18 to 23 years old. The athletes consisted of 8 females 

and 4 males. When separating the athletes into males and females, on average the females (20.29 

± 1.60 years) were older than the males (19.40 ± 1.52 years). However, the males were taller 

(169.62 ± 10.12 cm) and had a higher body mass (70.02 ± 12.28 kg) than the females (166.07 ± 

4.64 cm; 62.61 ± 7.13 kg). Out of all the athletes, 9 wore shoes that were considered to be for 

neutral feet, meaning there is no excessive pronation or supination, for daily use (3 females; 6 

males) (Donatelli, 1985). There were 2 athletes that wore competition shoes for neutral feet (1 

female; 1 male), while 1 female wore a shoe for stability for daily use. These shoe parameters 

were developed by coach-based evaluation of the athlete’s foot anatomy and athlete feedback. 

Table 3.1. Athlete demographics. 

  

Variable All Athletes (n=12) Females (n=8) Males (n=4) 

Age (years) 19.92 ± 1.56 20.29 ± 1.60 19.40 ± 1.52 

Height (cm) 167.55 ± 7.23 166.07 ± 4.64 169.62 ± 10.12 

Weight (kg) 65.7 0± 9.85 62.61 ± 7.13 70.02 ± 12.28 
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Biomechanical Characteristics 

Table 3.2 displays the biomechanical characteristics of the athletes. Average peak vGRF 

during the treadmill run for all athletes across all speeds was 2.69 ± 0.19 BW. Males elicited 

higher average vGRF (2.82 ± 0.22 BW) than female (2.50 ± 0.14 BW). The males also had a 

greater kinetic asymmetry between left and right vGRF (1.43 ± 0.04 %) than the female athletes 

(1.33 ± 0.03 %), while the average for all athletes was (1.38 ± 0.68 %). Females produced a 

lower average loading rate (0.02 ± 0.003 BW/ms) than males (0.03 ± 0.006 BW/ms), whereas the 

average of all the athletes was (0.03 ± 0.007 BW/ms). Males had a shorter average contact time 

(201.14 ± 27.69 ms) than females (217.36 ± 24.59 ms), while combined all athletes had an 

average of 202.96 ± 28.73 ms.  

The average jump height for all athletes was 22.83 ± 8.44 cm, with the male athletes 

jumping much higher than the female athletes (males: 31.93 ± 4.67cm, females: 18.28 ± 5.63 

cm). The average jumping peak landing force asymmetry for all athletes was 1.38 ± 15.69%, 

favoring the right limb. Separating the athletes by sex V̇O2, females had higher asymmetry (3.05 

± 14.97 % (Right)) than males (1.98 ± 20.96 % (Left)). However, the males had a higher 

asymmetry for average jumping takeoff peak force (9.68 ± 16.51 % (Left)) than the females 

(1.33 ± 7.82 % (Right)), with the average of all athletes being 2.34 ± 11.34 % favoring the left 

limb. 
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Table 3.2. Average biomechanical characteristics. 

Variable All Athletes (n=12) Females (n=8) Males (n=4) 

Peak vGRF (BW) 2.69 ± 0.19 2.50 ± 0.14 2.82 ± 0.22 

Difference 

(Asymmetry) (%) 
1.38 ± 0.68 1.33 ± 0.03 1.43 ± 0.04 

Loading Rate 

(BW/ms) 
0.030 ± 0.007 0.024 ± 0.003 0.032 ± 0.006 

Contact Time (ms) 202.96 ± 28.73 217.36 ± 24.59 201.14 ± 27.69 

Jump Height (cm) 22.83 ± 8.44 18.28 ± 5.63 31.93 ± 4.67 

Jumping Peak 

Landing Force 

Asymmetry (%) 

1.38 ± 15.69 (Right) 3.05 ± 14.97 (Right) 1.98 ± 20.96 (Left) 

Jumping Takeoff 

Peak Force 

Asymmetry (%) 

2.34 ± 11.34 (Left) 1.33 ± 7.82 (Right) 9.68 ± 16.51 (Left) 

 

Physiological Characteristics 

Table 3.3 shows physiological characteristics from the results of the V̇O2max test. The 

average V̇O2max for all athlete’s average 53.37 ± 7.70 mL/kg/min, however, when separated 

between sexes the males had higher V̇O2max values (61.23 ± 7.19 mL/kg/min) than the females 

(50.71 ± 5.51 mL/kg/min). All athletes had an average of 121.00 ± 12.72 mg/dL for blood 

glucose and 13.48 ± 3.51 mmol/L for blood lactate. However, when comparing the sexes, males 

had higher blood glucose levels (128.50 ± 8.27 mg/dL) and blood lactate levels (15.93 ± 0.50 

mmol/L) compared to the female athletes (119.78 ± 14.57 mg/dL; 12.72 ± 3.78 mmol/L). The 

average max V̇E for all athletes was 117.25 ± 33.47 L/min, but when comparing male and 

females; the male athletes had higher V̇E values (159.15 ± 7.13 L/min) than the female athletes 

(96.29 ± 15.27 L/min). The female athletes displayed lower max HR values (192.67 ± 7.55 bpm) 

than the all subject average (193.08 ± 6.84 bpm) and the male athletes (193.25 ± 4.72 bpm). Max 

RER for all athletes was 1.08 ± 0.10; and the male athletes reached a higher max RER (1.13 ± 
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0.11) than the female athletes (1.08 ± 0.10). The female athletes also had lower max RPE (16.00 

± 2.55) when compare the all athletes (16.50 ± 2.61), as well as the male athletes (17.25 ± 2.63). 

Table 3.3. Average physiological characteristics. 
  

Variable All Athletes (n=12) Females (n=8) Males (n=4) 

𝐕̇O2max (mL/kg/min) 53.37 ± 7.70 50.71 ± 5.51 61.23 ± 7.19 

Max Blood Glucose 

(mg/dL) 
121.00 ± 12.72 119.78 ± 14.57 128.50 ± 8.27 

Max Blood Lactate 

(mmol/L) 
13.48 ± 3.51 12.72 ± 3.78 15.93 ± 0.50 

Max 𝐕̇E (L/min) 117.25 ± 33.47 96.29 ± 15.27 159.15 ± 7.13 

Max HR (bpm) 193.08 ± 6.84 192.67 ± 7.55 193.25 ± 4.72 

Max RER (VCO2/𝐕̇O2) 1.08 ± 0.10 1.05 ± 0.09 1.13 ± 0.11 

Max RPE 16.50 ± 2.61 16.00 ± 2.55 17.25 ± 2.63 

 

 Table 3.4 displays the results from intraclass correlation and coefficient of variation 

statistics for the treadmill load cell peak force data. The results indicate a change in both ICC and 

CV as the speed increases. The highest ICC occurred at 20.4 km/h and 21.7 km/h (1.00). The 

highest CV occurred at 17.8 km/h (22.59%), while the lowest occurred at 20.4 km/h and 21.7 

km/h (7.58%). 
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Table 3.4. Intraclass correlation and coefficient of variation for treadmill load cell data. 

Speed 

(km/h) 
10.1 11.4 12.7 14.0 15.2 16.5 17.8 19.1 20.4 21.7 

Intraclass 

Correlation 

(ICC) 

0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 1.00 1.00 

Lower 

Confidence 

Limit 

0.97 0.97 0.97 0.96 0.96 0.96 0.98 0.97 1.32 1.30 

Upper 

Confidence 

Limit 

0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.01 1.01 

Coefficient 

of 

Variation 

(CV) (%) 

18.43% 19.11% 20.03% 20.33% 19.92% 20.32% 22.59% 21.29% 7.58% 7.81% 

 

Discussion 

Physical Characteristics 

The demographics of the athletes in this study showed all athletes were similar in age due 

to the fact that they are all college-aged athletes. Based on averages, the males were taller than 

the female athletes by 3.55 cm and the males also had more body mass than the females by 7.41 

kg. This was to be expected based on the size differences that exist between males and females. 

Fuster et al. (2014), reported their male subjects were taller and they weighed more than the 

females. In that study, the average of males was 12.74 cm taller and weighed 16.21 kg more than 

the average of females; reporting similar results to our study (Fuster et al., 2014). Millet and 

Bentley (2004), also reported their male subjects who were junior triathletes were taller and had 

a greater body mass than the female triathletes. 

In addition to differences in physical characteristics between sexes, there were also 

physiological differences that were noted. Males, compared to females, showed higher V̇O2max 

values and max V̇E values. This finding is supported by studies in which incremental max test on 
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the treadmill found that the males typically showed a greater absolute increase in V̇O2 compared 

to females (Kang, Hoffman, Chaloupka, Ratamess, & Weiser, 2006). Due to the fact that all 

subjects were of similar age and fitness level, the researchers believed this was mainly due to 

differences in body size between the sexes (Kang et al., 2006). 

 

Biomechanical Characteristics 

 The male athletes exhibited a greater average vGRF (2.82 ± 0.22 body weight (BW)) than 

the female athletes (2.50 ± 0.14 BW), however they also had greater average asymmetry (1.43 ± 

0.04%) than the females (1.33 ± 0.03%). Munro, Miller, and Fuglevand (1987), found their 

subjects reached an average vGRF of 2.3 BW when the speed was near 17.8 km/h for active 

peaks. Another study that examined active peaks, reported their subjects reached average vGRF 

values of 2.5-2.8 BW (Cavanagh & Lafortune, 1980). Other previous research observed the 

change in vGRF with increasing speeds and reported that their subjects increased vGRF as 

speeds increased; which is the same results experienced in the current study (Brughelli, Cronin, 

& Chaouachi, 2011; Kluitenberg, Bredeweg, Zijlstra, Zijlastra, & Buist, 2012). 

Even though the females had lower average vGRF, they had a higher average contact 

time (217.36 ± 24.59 ms) than the males (201.14 ± 27.69 ms). Contact time had been previously 

found that midfoot runners have an average ground contact time of 0.228 ± 0.009 s (228 ms) (Di 

Michele & Merni, 2014). Average ground contact time in middle distance runners has been 

reported to be 180 ± 14 ms (females) and 173 ± 16 ms (males) (Hayes & Caplan, 2012). 

However, this study was performed using specific distances on a track and not during a V̇O2max 

test. Other research testing the change in contact time with increasing speeds and found that their 

subjects experienced a decrease in contact time as speeds increased; which is what was found in 
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the current study as well (Brughelli et al., 2011; De Witt, Hagan, & Cromwell, 2008; Kluitenberg 

et al., 2012). However, these studies did not use exactly the same methodology as the current 

study; however, the data is still useful for comparisons. 

Females had a lower body mass and a lower average loading rate (0.024 ± 0.003 BW/ms) 

than the male athletes (0.032 ± 0.006 BW/ms). This was to be expected due to the fact that the 

females had a lower average vGRF as well as a higher average contact time. Loading rate was 

collected in a study by Nordin, Dufek, and Mercer (2017), where they reported average loading 

rates of 0.04 ± 0.03 BW/s. In comparison, athletes in this study had lower loading rates, 

however, Nordin et al. (2017) only studied males. De Witt et al. (2008), found that their subjects 

reported and average loading rate during running of 46.39 ± 9.52 BW/s (0.046 ± 0.01 BW/ms) 

with zero added inertia. Even though a direct comparison cannot be made to these studies due to 

a difference in methodology, our athletes displayed lower contact times which could be related to 

better running economy.  

 The jump testing performed by the athletes showed the females averaged an asymmetry 

of 3.05 ± 14.97% in favor of the right limb for the peak landing force and an asymmetry of 1.33 

± 7.82% favoring the right limb for takeoff peak force. However, the males favored the left limb 

for both variables of the jumps. For peak landing force, the males had an average of 1.98 ± 

20.96% asymmetry and an average of 9.68 ± 16.51% asymmetry for takeoff landing peak force. 

The large standard deviations indicate this these variables vary greatly for each athlete. The 

males jumped higher than the females, which was to be expected due to strength differences 

between genders. Jump testing was conducted to see if asymmetry in jump performance could be 

an indication of asymmetry in running. The results of this study, when comparing all athletes, 

demonstrated similar results of asymmetry. 
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 While a comparison to previous research is unavailable due to the differences in 

methodology, there are valuable findings to be reported. Bailey, Sato, Alexander, Chiang, and 

Stone (2013), found that asymmetry within force production could have a negative effect on 

bilateral vertical jumping performance for collegiate athletes. Additionally, kinetic asymmetry 

could lead to an undesirable displacement during jump, which could have a negative influence 

on performance for division 1 baseball players (Bailey, Sato, Burnett, & Stone, 2015). A study 

by Pappas & Carpes (2012) reported female subjects experienced more asymmetry when landing 

a jump than the male subjects; leading to the assumption this could lead to greater risk of injury.  

In a study that reported the results of examining two-legged countermovement jumps for 28 

males and 30 females (not highly trained) found that three males and four females favored the 

right leg at impulse and two men and three females who favored the left leg at impulse 

(Benjanuvatra, Lay, Alderson, & Blanksby, 2013). 

 

Physiological Characteristics 

Athletes of both sexes had relatively similar V̇O2max values, indicating this group was 

homogenous with their aerobic capability. Females had an average V̇O2max of 50.71 ± 5.51 

mL/kg/min, classifying them as superior and in the 95th percentile for their age (ACSM’s 

Guidelines for Exercise Testing and Prescription, 2014). The males had an average of 61.23 ± 

7.19 mL/kg/min, which places them in the 99th percentile and classifies them as superior for their 

age (ACSM’s Guidelines for Exercise Testing and Prescription, 2014). Males were expected to 

have higher V̇O2max because they typically have higher hemoglobin concentration and greater 

oxygen transport, as well as greater max stroke volume and max cardiac output than females, all 

of which play a role in V̇O2max values (Brooks, Fahey, & Baldwin, 2005).  
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Hutchinson, Cureton, Outz, and Wilson (1991), reported their male subjects as having an 

average V̇O2max of 57.5 ± 5.2 mL/kg/min and their female subjects reaching an average of 52.2 ± 

5.1 mL/kg/min, a difference of 5.3 mL/kg/min. Another study reported their endurance trained 

subjects had an average V̇O2max of 59.5 ± 3.3 mL/kg/min (Aguiar, Santos, Cruz, Turnes, Pereira, 

& Caputo, 2015). Similar to these studies, the difference in our athletes was 10.52 mL/kg/min. In 

addition to differences in V̇O2max values being related to size differences between sexes; The 

male athletes had a higher average max V̇E than the females by 62.86 L/min. This is to be 

expected due to the greater lung capacity males have compared to females (Harms, 2006). It is 

also important to mention the contribution of genetics and training differences that could 

contribute to the variation of results. 

While the males had a higher average max blood glucose (128.50 ± 8.27 mg/dL) than the 

females (119.78 ± 14.57 mg/dL), both results were expected. Brooks et al. (2005), there can be 

an increase in blood glucose levels because an increase in exercise intensity can cause 

stimulation of hepatic glycogenolysis due to catecholamine accumulation. Similar results were 

found in an article by Feo et al. (2003), in which they found blood glucose at a percent of V̇O2max 

increased during an incremental V̇O2max test. Additionally, blood glucose in male and female 

runners at exhaustion, the subjects average a blood glucose levels were greater than 5 mmol/L 

(>90 mg/dL) (Tokmakidis & Karamanolis, 2008). However, a direct comparison cannot be made 

to the current study due to a difference in methodology and procedures. 

Average max blood lactate varied between sexes (males: 15.93 ± 0.50 mmol/L; females: 

12.72 ± 3.78 mmol/L), however, both exhibited responses that were to be expected based on the 

testing they performed. Blood lactate increases as the intensity of the exercise increases, 

especially when the rate of production exceeds the rate of clearance (Brooks et al., 2005). All 
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athletes reached the blood lactate requirement of greater than 8 mmol/L for that specific criterion 

for achieving a true V̇O2max (ACSM’s Guidelines for Exercise Testing and Prescription, 2014).  

In a study by Maldonado-Martín, Mujika, and Padilla (2004), their subjects reached an 

average max blood lactate levels of 10.4 ± 3.2 mmol/L for females and 11.7 ± 3.0 mmol/L for 

males while running on a treadmill that progressed towards max each stage. Another study 

reported average max blood lactate levels of 8.0 ± 1.9 mmol/L for females and 8.8 ± 1.9 mmol/L 

for males when performing a V̇O2max test on a treadmill (Held & Marti, 1999). Therefore, our 

subjects reached higher values than in previous research; this could be due to differences in 

training status, the ability to efficiently clear lactate, or differences in test protocol.  

All athletes achieved very similar average max HR values (females: 192.67 ± 7.55 bpm; 

males: 193.25 ± 4.72 bpm). This was to be expected because all athletes were of similar age and 

experienced the same testing protocol. However, none of the averages reached the HR criteria of 

+/- 5 bpm of age-predicted HR max for achieving a true V̇O2max (ACSM’s Guidelines for 

Exercise Testing and Prescription, 2014). A study by Robertson et al. (2000), found that when 

their subjects achieved max on a treadmill, they had an average max HR of 194.4 ± 5.1 bpm 

(females) and 191.9 ± 7.8 bpm (males). Another study reported peak heart rate values of 195.2 

bpm (Steed, Gaesser, & Weltman, 1994). Similar to results found in this study where our female 

athletes averaged a max HR of 192.67 ± 7.55 bpm and our male athletes averaged a max HR of 

193.25 ± 4.72 bpm. 

Average Max RER was different when comparing sexes, however, there was only a 0.08 

difference reported. The male athletes average 1.13 ± 0.11, whereas the females averaged 1.05 ± 

0.09. While within each sex, there was very little deviation and only a small difference between 

sexes; this difference could be the difference between meeting the criterion of a true V̇O2max. In 
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order to achieve this, an RER of 1.10 or greater must be reached, meaning the males achieved it 

but the females did not (ACSM’s Guidelines for Exercise Testing and Prescription, 2014). 

In a study by Maldonado-Martín et al. (2004), found their female subjects reached an 

average max RER of 1.09 ± 0.02 and the males reached 1.08 ± 0.04. Another study reported their 

subjects reached a peak RER of 1.09 ± 0.04 (Millard-Stafford, Sparling, Rosskopf, & DiCarlo, 

1991). Comparable to what was found in this study, however, our females reached slightly lower 

values and our males reached a slightly higher average max RER. A study by Tokmakidis and 

Karamanolis (2008), found an average RER at exhaustion of 0.94 ± 0.01 for their male and 

female runners on a placebo compared to a glucose supplement. Comparing those results to this 

study, our athletes experienced higher max RER values. 

Even though RPE is a qualitative estimation for the athlete, it is a valuable indication of 

the “internal” intensity of the exercise the athlete is experiencing (Demello, Cureton, Boineau, & 

Singh, 1987). The female athletes only achieved an average max RPE of 16.00 ± 2.55, however, 

the males achieved an average of 17.25 ± 2.63. Therefore, only the male athletes achieved the 

criterion for a true V̇O2max in which they must reach an RPE greater than 17 (ACSM’s Guidelines 

for Exercise Testing and Prescription, 2014).  

These results make sense due to the fact that a strong link between RPE and V̇O2 have 

been found (Coquart, Garcin, Parfitt, Tourny-Chollet, Eston, 2014). Therefore, since the female 

athletes did not reach as high of a V̇O2max value, they would not reach as high of an RPE as their 

male counterparts. However, all athletes had a higher average max RPE reported than that found 

by Hall, Ekkekakis, and Petruzzello (2005). In that study, their subjects reported an average RPE 

of 15.47 ± 2.15 at the end of minute 15 at an intensity greater than their ventilatory threshold 

(Hall et al., 2005). Steed et al. (1994), reported their subjects reached a peak RPE 18.9 during an 
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incremental running. In a study by Robertson et al. (2000), showed that both their male and 

female subjects reached an average RPE of 19 for maximal exercise. Robertson et al. (2000), 

also showed an increase in RPE as intensity increased, which is the same we found. 

 

Conclusion 

Our study provides evidence as to what is required of a collegiate cross-country or triathlon 

athlete both biomechanically and physiologically. Asymmetry for all athletes throughout the 

V̇O2max test remained minimal, as did the asymmetry for all athletes during the jump testing. The 

similarity provides evidence that jump testing and running asymmetries may be related. Based on 

ACSM’s guidelines for V̇O2max value classification, our athletes ranked in the 95th percentile 

(females) and the 99th percentile (males). In conclusion, these athletes had a large aerobic power 

to perform in competition; while maintaining a low kinetic asymmetry which can help decrease 

the risk of injury. 
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Changes in biomechanical parameters with increasing speeds 

Abstract 

Previous research has reported biomechanical data on various speeds of running, especially 

sprinting; however, there is less information on collegiate 5k runners. The purpose of this study 

is to research the effects of increasing speeds on biomechanical parameters during an 

incremental V̇O2max test. This study tested 12 college cross-country and triathlon athletes (8 

females, 4 males). Statistical analysis such as average and percent change of variables were 

calculated, as well as a correlation matrix and regression analysis of biomechanical parameters 

(IV) and V̇O2 (DV). The largest increase in vGRF took place from 19.1 km/h to 20.4 km/h with 

an increase of 4.31%. The athletes experienced the largest asymmetry (2.95%) at 21.7 km/h, and 

the smallest asymmetry (0.62%) at 17.8 km/h. A correlation matrix showed that the highest 

correlation was between speed and contact time r(11)=-0.991 (p=0.000). Indicating that as speed 

increases, the amount of ground contact time decreases. In conclusion, our findings provide 

evidence that collegiate cross-country and triathlon athletes are more symmetrical at faster 

speeds, likely due to the wide range of speeds they cover in competition. 

 

Keywords: biomechanics, vGRF, V̇O2max test 

 

Introduction 

Collegiate cross-country and triathlon athletes need to be able to perform at a wide range of 

speeds during competition (Furlong & Eggington, 2018). Therefore, it is useful to investigate 

how increasing speeds and intensities effect biomechanical parameters for performance. The 
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purpose of this study is to research the effects of increasing speeds on biomechanical parameters 

during an incremental V̇O2max test. 

 Vertical ground reaction force (vGRF) has been reported among recreationally trained 

athletes, that females produced vGRF of 2.28 ± 0.32 BW and males produced 2.46 ± 0.33 BW 

(Keller, Weisberger, Ray, Hasan, Shiavi, & Spengler, 1996); indicating athletes undergo a large 

amount of stress during running. More importantly, is the degree to which asymmetry could take 

place during activity. Kinetic Asymmetry is believed to increase the risk of injury, therefore, the 

larger amount of kinetic asymmetry the higher the risk (Furlong & Eggington, 2018). Bailey, 

Sato, Burnett, and Stone (2015) reported that strength seems to play a large role in decreasing the 

amount of asymmetry between limbs. Therefore, asymmetry may be an indication of weak 

athletes. 

 The importance of this study is to provide detailed information on the effect of increasing 

speeds on the biomechanical parameters of college cross-country and triathlon athletes. The 

knowledge that could be found could directly help coaches and athletes provide an optimal 

strength and sport specific training program in order to increase an athlete’s performance. 

 

Methods 

Athletes 

The athletes were 12 trained male and female collegiate cross-country and triathlon, ranging 

from age 18 to 25 years old. Tests were part of an ongoing athlete monitoring program. Athletes 

must have had clearance to perform a maximal exertion exercise by the university’s medical staff 

in order to take part in the monitoring program.  
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Procedures 

Each athlete’s age, body mass, and height were recorded prior to jump testing. Before starting 

the V̇O2max test, the athletes performed 3 unweighted countermovement jumps on PASCO Force 

Plates (Roseville, CA) that were analyzed using ForceDecks Software (Vald Performance, 

London, England). A study established that the PASCO portable force plates are a reliable tool 

for collecting jump data (Silveira, Stergiou, Carpes, Castro, Katz, & Stefanyshyn, 2017).The 

athlete then performed a V̇O2max test, until volitional fatigue, using a Parvo Medics TrueOne 

2400 Metabolic Cart (Sandy, UT) for gas exchange analysis. The V̇O2max protocol being used 

was a protocol and previous monitoring set in place by the strength and conditioning coach and 

the sport coach of the triathlon team and cross-country team in order to be able maintain 

consistency (Beltz, Gibson, Janot, Kravitz, Mermier, Dalleck, 2016). Prior to starting the test, 

each athlete’s baseline measurements were recorded. The protocol used in this study was not 

typical compared to other studies. The majority of V̇O2max tests follow the Balke or Bruce 

protocol (Beltz et al., 2016). Both these protocols not only increase in speed, but also grade with 

each stage (Beltz et al., 2016). However, the protocol consisted of each athlete starting at a speed 

of 10.1 km/h. The speed increased by 1.28 km/h every 2 minutes until the subject reached an 

RER of 1.00. Then, the speed increased 1.28 km/h every 1 minute until cessation of the test. This 

was performed in an attempt to achieve a true V̇O2max test and max lactate concentration, while 

keeping the total test time as close to 12 minutes as possible, which is the preferred duration 

(Arena et al., 2007). Throughout the V̇O2max test, a grade of 0% was maintained in order to 

properly collect and compare vGRF data from the force plates. During the V̇O2max test, the 

athlete’s blood lactate (2 measurements each time) was measured using a Nova Medical Lactate 

Plus analyzer (Waltham, MA). The Lactate Plus device reported good reliability and accuracy 
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when being compared to an in-laboratory based blood lactate analyzer (Tanner, Fuller, & Ross, 

2010). Blood glucose (2 measurements each time) was measured using an Accu-Chek Aviva 

Plus meter (Roche, Indianapolis, IN), and when portable blood glucometers were compared to an 

in-laboratory analyzer it was reported that 82% of the readings met the International 

Organization of Standardization’s criteria for clinical accuracy (Salacinski, Alford, Drevets, 

Hart, & Hunt, 2014). RPE was also collected at the end of each stage. To collect this data, the 

athlete stepped off the belt and onto the treadmill’s running board. Then athlete returned to the 

treadmill belt for the next stage of the test. All athletes were equipped with a Garmin heart rate 

monitor chest strap (Olathe, KS) to monitor changes in heart rate throughout the test. Garmin 

was chosen to maintain consistency with what the athletes use during training. While the athlete 

was running, their vGRF was being recorded using four load cells (Rice Lake, WI) collecting at 

1,000 hertz (Hz) placed beneath the Tuff Tread treadmill belt (Conroe, TX) and the LabView 

2018 software (National Instruments, Austin, TX) for the entirety of the V̇O2max test. All testing 

ceased when the athlete ended the V̇O2max test by stepping off the treadmill belt and onto the side 

platform on their own. See study design in Figure 4.1. 
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Figure 4.1. Study design. 
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Statistical Analysis 

Data was analysed using Microsoft Excel (Microsoft Corporation, Redmond, WA, version 

16.25) by calculating average and percent change. SPSS (IBM Corporation, Armonk, NY) was 

used to perform a correlation matrix of the average values to establish relationships between 

variables. SPSS was also used to perform a regression analysis between biomechanical 

parameters (IV) and V̇O2 (DV). Intraclass correlation (ICC) and coefficient of variation (CV) 

were used to analyse reliability of the treadmill load cell data using Microsoft Excel and a 

spreadsheet developed for analysis of reliability (Hopkins, 2015). 

 

Results 

Biomechanical Parameters 

 Table 4.1 displays the percent change in each biomechanical parameter from speed to 

speed. The largest increase in vGRF for all athletes occurred from speed 19.1 km/h to 20.4 km/h 

(4.31%). Loading rate had the largest percent change from 19.1 km/h to 20.4 km/h with an 

increase of 15.28%. For contact time, the largest percent change was a decrease from 12.7 km/h 

to 14.0 km/h (-5.99%). 
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Table 4.1. Percent change from speed to speed for biomechanical parameters for all 

athletes. 

Speed 

(km/h) 

vGRF 

(BW) 

vGRF 

(% Change) 

Loading 

Rate 

(BW/ms) 

Loading 

Rate 

(% Change) 

Contact 

Time 

(ms) 

Contact 

Time 

(% Change) 

10.1 

(n=12) 
2.38 - 0.02 - 251.20 - 

11.4 

(n=12) 
2.49 4.27% 0.02 8.07% 237.98 -5.55% 

12.7 

(n=12) 
2.56 2.63% 0.02 5.40% 226.16 -5.23% 

14.0 

(n=12) 
2.62 2.34% 0.03 5.57% 213.39 -5.99% 

15.2 

(n=12) 
2.66 1.78% 0.03 5.13% 202.76 -5.24% 

16.5 

(n=11) 
2.69 1.11% 0.03 3.92% 194.86 -4.05% 

17.8 

(n=9) 
2.76 2.32% 0.03 8.26% 185.63 -4.97% 

19.1 

(n=7) 
2.83 2.63% 0.03 10.29% 179.23 -3.57% 

20.4 

(n=4) 
2.96 4.31% 0.04 15.28% 172.43 -3.95% 

21.7 

(n=4) 
2.92 -1.46% 0.04 2.73% 165.97 -3.89% 

 

Figure 4.2 shows the right and left leg vGRF at each speed for all athletes. The data 

indicates that as the speed increased during the V̇O2max test, the vGRF of both the left and right 

leg also increased until the final speed of 21.7 km/h where there is a slight decrease.  
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Figure 4.2. Right and left leg vGRF at each speed for all athletes. 

 

Table 4.2 displays the vGRF asymmetry between the right and left legs at each speed that 

was depicted above in figure 4.1. It was noted that the largest asymmetry occurred at 21.7 km/h 

(2.95%); however, the smallest asymmetry occurred at 17.8 km/h (0.62%). 
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Table 4.2. vGRF asymmetry between right and left leg for all athletes at each speed. 

Speed (km/h) Right vGRF (BW) Left vGRF (BW) Asymmetry (%) 

10.1 

(n=12) 
2.402 2.361 1.69% 

11.4 

(n=12) 
2.498 2.477 0.85% 

12.7 

(n=12) 
2.580 2.530 1.93% 

14.0 

(n=12) 
2.629 2.604 0.96% 

15.2 

(n=12) 
2.678 2.649 1.09% 

16.5 

(n=11) 
2.710 2.678 1.18% 

17.8 

(n=9) 
2.766 2.749 0.62% 

19.1 

(n=7) 
2.847 2.817 1.06% 

20.4 

(n=4) 
2.983 2.937 1.52% 

21.7 

(n=4) 
2.961 2.874 2.95% 

 

 Figure 4.3 displays the change in vGRF from speed to speed for all athletes. The figure 

displays that the average vGRF increases as the speed increases. It is indicated that the largest 

increase occurred between 19.1 km/h and 20.4 km/h (4.31%), while the smallest increase 

occurred from 15.2 km/h to 16.5 km/h (1.11%). A decrease in vGRF occurred from 20.4 km/h to 

21.7 km/h by 1.46%. 
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Figure 4.3. Average vGRF at each speed for all athletes with percent change. 

 

A Pearson correlation was performed on all variables to estimate relationships. Table 4.3 

below displays the relationships between the biomechanical parameters of this study. The highest 

correlation was between speed and contact time with an r value of -0.991, indicating a strong, 

negative correlation. Other notable relationships are between speed and vGRF (r(11)=0.986, 

p=0.000), between loading rate and vGRF (r(11)=0.965, p=0.000), and between vGRF and 

contact time (r(11)=-0.982, p=0.000). However, asymmetry had weak correlations with all other 

variables. 
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Table 4.3. Biomechanical parameter correlation matrix. 

Variable Speed (km/h) vGRF (BW) 
Asymmetry 

(%) 

Loading 

Rate 

(BW/ms) 

Contact 

Time (ms) 

Speed (km/h) - 0.986* 0.291 0.965* -0.991* 

vGRF (BW) 0.986* - 0.242 0.965* -0.982* 

Asymmetry 

(%) 
0.291 0.242 - 0.430 0.201 

Loading Rate 

(BW/ms) 
0.965* 0.965* 0.430 - -0.927* 

Contact 

Time (ms) 
-0.991* -0.982* -0.201 -0.927* - 

Note: *denotes significant correlation, p<.05. 

Table 4.4 shows the results from a regression analysis was conducted using V̇O2 (L/min) 

as the dependent variable and all biomechanical variables as the independent variables. vGRF 

(p=0.012) and contact time (p=0.047) were statistically significant with V̇O2. However, there was 

no statistical significance with loading rate. 

Table 4.4. Regression analysis of biomechanical parameters with 𝐕̇O2. 

Variable P-Value 

vGRF (BW) 0.012* 

Loading Rate (BW/ms) 0.376  

Contact Time (ms) 0.047* 

Note: *denotes significant correlation, p<.05. 

 Table 4.5 displays the results from intraclass correlation and coefficient of variation 

statistics for the treadmill load cell peak force data. The results indicate a change in both ICC and 

CV as the speed increases. The highest ICC occurred at 20.4 km/h and 21.7 km/h (1.00). The 

highest CV occurred at 17.8 km/h (22.59%), while the lowest occurred at 20.4 km/h and 21.7 

km/h (7.58%). 
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Table 4.5. Intraclass correlation and coefficient of variation for treadmill load cell data. 

Speed 

(km/h) 
10.1 11.4 12.7 14.0 15.2 16.5 17.8 19.1 20.4 21.7 

Intraclass 

Correlation 

(ICC) 

0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 1.00 1.00 

Lower 

Confidence 

Limit 

0.97 0.97 0.97 0.96 0.96 0.96 0.98 0.97 1.32 1.30 

Upper 

Confidence 

Limit 

0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.01 1.01 

Coefficient 

of 

Variation 

(CV) (%) 

18.43% 19.11% 20.03% 20.33% 19.92% 20.32% 22.59% 21.29% 7.58% 7.81% 

 

Discussion 

The biomechanical parameters and how they changed as speed increased, specifically 

focusing on the vGRF as the speed increases, a clear trend can be observed. A correlation of 0.99 

was calculated between speed and vGRF, indicating a very strong, positive correlation. However, 

the correlation between speed and asymmetry was only 0.29, indicating a weak relationship 

between these two variables. 

The percent change in vGRF increased as the running speed increased from stage to 

stage. Starting at the beginning an increase of 4.27% was reported for average percent vGRF 

change from 10.1 km/h to 11.4 km/h. During this transition, the amount of asymmetry from 10.1 

km/h to 11.4 km/h decreased from 1.69% asymmetry to 0.85% asymmetry, respectively. Perhaps 

the first speed was too slow for the athletes, due to the training distance and speed to which they 

were accustomed, they were not as comfortable at slower speeds. Even though the athletes 

experienced an increase in vGRF from 16.5 km/h (2.69 BW) to 17.8 km/h (2.75 BW), they 

experienced the most symmetry at 17.8 km/h with only 0.62% asymmetry between left and right 
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vGRF. Due to the training level of the athlete’s in this study, perhaps they were most 

symmetrical at this speed because they are used to training at faster paces. As the speed 

increased, there was a decrease in vGRF for the athletes who reached 21.7 km/h. At this point, 

not only did they go from an average of 2.96 BW (20.4 km/h) to 2.91 BW (21.7 km/h), but they 

experienced an increase in asymmetry from 1.52% at 20.4 km/h to an asymmetry of 2.95% at 

21.7 km/h. At 21.7 km/h was also the speed the athletes experienced the greatest average 

asymmetry throughout the entire V̇O2max test. It is likely that the decrease in vGRF is due to the 

shortest amount of contact time experienced. 

Keller et al. (1996), reported vGRF in male and females who were recreational athletes 

found that at similar speed, females experienced vGRF of 2.28 ± 0.32 BW and the males 

experienced 2.46 ± 0.33 BW. Based on another study, female runners who were injury free 

found reached a max vGRF of 3.1 ± 2.5 BW (Zifchock, Davis, & Hamill, 2006). Other previous 

research has reported their subjects increased in vGRF as speed increased; as observed in the 

current study (Brughelli, Cronin, & Chaouachi, 2011; De Witt, Hagan, & Cromwell, 2008; 

Kluitenberg, Bredeweg, Zijlstra, Zijlstra, & Buist, 2012).Even though these research studies do 

not directly match with methodology in previous studies; the observations made in the current 

study match the results previously found in vGRF studies. Despite the greatest asymmetry 

experienced by the athletes in this study being 2.95%, previous research provides evidence that a 

smaller asymmetry may be less likely to cause a risk of injury. Furlong and Eggington (2018) 

state that asymmetry is thought to have a negative effect on injury risk; therefore, the less 

asymmetry the better. The asymmetry reported in this study may not be large enough to indicate 

an increased risk of injury. As expected, the vGRF did increase with speed increases indicating a 

need for strength training programs for college cross-country and triathlon teams. Bailey et al. 
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(2015) reported that bilateral strength training may help decrease the amount of asymmetry 

experienced. 

It is important to further examine the vGRF asymmetry found in this current study. For 

example, the most asymmetrical speed of 21.7 km/h where the difference in left and right leg 

was 2.95% or 0.087 BW. Even though this seems like a minimal difference, it could cause 

greater stress on an individual athlete. For example, if an athlete weighed 60 kg, this would be 

the difference of 5.23 kg per step. A runner typically takes an average of about 150-190 steps per 

minute (Lenhart, Thelen, Wille, Chumanov, & Heiderscheit, 2014). Therefore, if the athletes run 

a 5k in 18 minutes and takes 150 steps per minute, that is a total of 2,700 steps throughout the 

race. This means they are experiencing a total of 14,121 kg of stress on a specific limb which 

could be detrimental to performance and the risk of injury.  

 At each increase in speed, the average loading rate for all athletes increased. A 

correlation between speed and loading rate was calculated at 0.965, indicating a strong, positive 

relationship. This was to be expected due to the fact that speed and vGRF had a strong positive 

correlation. The largest increase being from 19.1 km/h (0.034 BW/ms) to 20.4 km/h (0.040 

BW/ms) with a 15.28% increase. Due to the fact that loading rate is BW/ms, this large increase 

in loading rate is most likely due to the increase on vGRF by 4.31%, as well as the decrease in 

contact time by -3.95%. The smallest change in loading rate occurred from 15.2 km/h (0.027 

BW/ms) to 16.5 km/h (0.028 BW/ms), which is where there was only a small increase in vGRF 

of 1.11% and a relatively small decrease in contact time of -4.05%. 

 Observation of loading rate in male and females recreational athletes showed that at 

similar speeds producing the largest loading rate in the current study; the female subjects had a 

loading rate 22.3 ± 4.61 BW/s (0.0223 BW/ms) and the male subjects had a loading rates of 22.8 
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± 4.51 BW/s (0.0228 BW/ms) (Keller, et al, 1996). In addition to that, data indicates that injury 

free female runners showed an average loading rate of 23.3 ± 17.4 BW/s (0.0233 BW/ms) 

(Zifchock et al., 2006). De Witt et al. (2008), reported their subjects had higher loading rates 

while running, compared to running with zero added inertia. Therefore, comparing our current 

findings to previous research, at the fastest speeds (19.1, 20.4, and 21.7 km/h), our loading rates 

were slightly higher than previous research. It has been found that higher loading rates could 

cause an increase in injury risk (Dudley, Pamukoff, Lynn, Kersey, & Noffal, 2017). However, 

the majority of loading rate values and general trend reported during the V̇O2max test agrees with 

previous findings, despite differences in methodologies. 

 Contact time decreased as speed increased throughout the max test as speeds increased. 

There was a correlation of -0.991, indicating a strong, negative relationship. It was expected 

there would be a negative relationship because previous research exhibits that as speed increases, 

a decrease in contact time should be experienced (Hayes & Caplan, 2012). The largest decrease 

in contact time occurred from 12.7 km/h to 14.0 km/h when contact time went from 226.16 ms to 

213.38 ms, a decrease of -5.99%. Interestingly, the athletes experienced a decrease in asymmetry 

from 1.93% (12.7 km/h) to 0.96% (14.0 km/h) leading to the assumption the athletes felt more 

comfortable at 14.0 km/h compared to 12.7 km/h of their efficiency was greater at that pace. The 

smallest change in contact time took place from 17.8 km/h (185.63 ms) to 19.1 km/h (179.23 

ms), a decrease of -3.57%. 

 Research with male and female high-calibre runners found average ground contact times 

of 180 ± 14 ms (females) and 173 ± 16 ms (males) during a 1500 m run (Hayes & Caplan, 2012). 

That study also found shorter ground contact times could translate into faster race speeds within 

their subjects (Hayes & Caplan, 2012). Investigation of sub-elite male distance runners found 
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that during a 400 m run on a track, they had an average contact time of 0.228 seconds (228 ms) 

(Di Michele & Merni, 2014). Other previous work has reported that as the running speed 

increased, contact times decreased for their subjects (Brughelli et al., 2011; De Witt et al., 2008; 

Kluitenberg et al., 2012). Therefore, our research findings agree with that found in previous 

research despite a difference in methodology. With shorter ground contact times at the faster 

speeds, the importance of rate of force development (RFD) increases. When the athletes near the 

end of a race, they may need to increase their running speed to have a better performance. As 

pace increases contact time shortens, thus maintaining high vertical forces resulting from an 

increase in RFD is necessary. Because of the need to produce high RFD, it may be advantageous 

to emphasize RFD development in the weight room as well as running training (Martinez-

Valencia, Romero-Arenas, Elvira, Gonzalez-Rave, Navarro-Valdivielso, & Alcaraz, 2015). 

 

Conclusion 

This study provides data to show that collegiate cross-country and triathlon athletes may 

biomechanically be affected by increasing speeds. With the steady increase in vGRF, loading 

rate, and decrease in contact time; it can be determined these variables are all effected by the 

incremental increase in speed. Interestingly, the degree of asymmetry did not follow a trend, 

leading to the assumption that our athletes are more efficient at certain speeds. In conclusion, our 

athletes were capable of maintaining a minimal amount of kinetic asymmetry throughout the 

V̇O2max test, therefore, keeping their injury risk minimal. 
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Correlation between biomechanical parameters and physiological parameters 

with increasing speeds 

 Abstract 

Previous research has typically investigated only biomechanical parameters or 

physiological parameters on runners during exercise. However, in order to produce 

a well-rounded analysis of an athlete; it is important to observe both parameters 

togethers. The purpose of this study the purpose of this study is to observe the 

change in vGRF characteristics with increasing speeds while matching 

physiological responses during a V̇O2max test. This study was conducted on 12 

college cross-country and triathlon athletes (8 females, 4 males). Statistical analysis 

of average and percent change were calculated, as well as a regression analysis 

between biomechanical parameters (IV) and V̇O2 (DV), and between difference in 

asymmetry (DV) and physiological parameters (IV). In addition, a correlation 

matrix between all variables was performed. Our research reported that all 

physiological parameters increased as speed increased. A strong, positive 

correlation of r(11)=0.977 (p=0.000) was found between vGRF and V̇O2. 

Additionally, vGRF and blood lactate also had a strong, positive correlation 

(r(11)=0.930, p=0.000). A regression analysis showed that there was an association 

between blood lactate and asymmetry (p=0.031). In conclusion, this study reported 

biomechanical parameters and physiological parameters to be highly correlated. 

Once the blood lactate appeared in the blood at an elevated rate, asymmetry 

experienced large increases; indicating blood lactate may affect the amount of 

asymmetry experience by the athlete. 
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Keywords: V̇O2max, vGRF, biomechanical, physiological 

 

Introduction 

Biomechanical parameters and physiological parameters typically researched separated for 

running, however, in order to establish a well-rounded analysis of an athlete; it is important to 

explore the correlation between them. The purpose of this study the purpose of this study was to 

observe the change in vGRF characteristics with increasing speeds while matching physiological 

responses during a V̇O2max test. 

 Asymmetry has been reported to increase with increasing speeds (Clark & Weyand, 

2014). More importantly, this increase has been linked to an increase in injury risk (Zifchock, 

Davis, & Hamill, 2006). Therefore, it is important to monitor vGRF and kinetic asymmetry for 

the athletes. However, there may be a correlation with physiological alterations and how these 

alterations affect biomechanical parameters.  

 During an incremental V̇O2max test, many variables change as the intensity increases. 

Blood lactate appearance and the ability to clear it has been linked to endurance performance 

(Allen, Seals, Hurley, Ehsani, & Hagberg, 1985). Maldonado-Martin, Mujika, and Padilla (2004) 

reported  max blood lactate levels of 10.4 ± 3.2 mmol/L for females and 11.7 ± 3.0 mmol/L for 

males during a V̇O2max test. Therefore, the subjects performing that study were most likely 

experiencing discomfort in their legs; which could affect one’s running form. Blood glucose is 

also a factor that could inhibit an athlete’s V̇O2max test. Glucose is an important source of fuel, 

especially during a max test, therefore, when blood glucose levels get too low fatigue develops 
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(Brooks, Fahey, & Baldwin, 2005). Once the athletes begin to experience fatigue, this could 

affect their gait and overall performance (Qu & Yeo, 2011). 

 The importance of this study to sport science is to investigate both biomechanical and 

physiological parameters and how they interact during an incremental max test. Evidence from 

this information could have large practical applications with coaches and athletes. This 

knowledge could help optimize training programs, leading to superior athletic performance. 

 

Methods 

Athletes 

The athletes were 12 trained male and female cross-country and triathlon athletes, ranging from 

age 18 to 25 years old. Tests were part of an ongoing athlete monitoring program. Athletes must 

have had clearance to perform a maximal exertion exercise by the university’s medical staff in 

order to take part in the monitoring program.  

 

Procedures 

Each athlete’s age, body mass, and height were recorded prior to jump testing. Before starting 

the V̇O2max test, the athletes performed 3 unweighted countermovement jumps on PASCO Force 

Plates (Roseville, CA) that were analyzed using ForceDecks Software (Vald Performance, 

London, England). A study established that the PASCO portable force plates are a reliable tool 

for collecting jump data (Silveira, Stergiou, Carpes, Castro, Katz, & Stefanyshyn, 2017).The 

athlete then performed a V̇O2max test, until volitional fatigue, using a Parvo Medics TrueOne 

2400 Metabolic Cart (Sandy, UT) for gas exchange analysis. The V̇O2max protocol being used 

was a protocol and previous monitoring set in place by the strength and conditioning coach and 
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the sport coach of the triathlon team and cross-country team in order to be able maintain 

consistency (Beltz, Gibson, Janot, Kravitz, Mermier, Dalleck, 2016). Prior to starting the test, 

each athlete’s baseline measurements were recorded. The protocol used in this study was not 

typical compared to other studies. The majority of V̇O2max tests follow the Balke or Bruce 

protocol (Beltz et al., 2016). Both these protocols not only increase in speed, but also grade with 

each stage (Beltz et al., 2016). However, the protocol consisted of each athlete starting at a speed 

of 10.1 km/h. The speed increased by 1.28 km/h every 2 minutes until the subject reached an 

RER of 1.00. Then, the speed increased 1.28 km/h every 1 minute until cessation of the test. This 

was performed in an attempt to achieve a true V̇O2max test and max lactate concentration, while 

keeping the total test time as close to 12 minutes as possible, which is the preferred duration 

(Arena et al., 2007). Throughout the V̇O2max test, a grade of 0% was maintained in order to 

properly collect and compare vGRF data from the force plates. During the V̇O2max test, the 

athlete’s blood lactate (2 measurements each time) was measured using a Nova Medical Lactate 

Plus analyzer (Waltham, MA). The Lactate Plus device reported good reliability and accuracy 

when being compared to an in-laboratory based blood lactate analyzer (Tanner, Fuller, & Ross, 

2010). Blood glucose (2 measurements each time) was measured using an Accu-Chek Aviva 

Plus meter (Roche, Indianapolis, IN), and when portable blood glucometers were compared to an 

in-laboratory analyzer it was reported that 82% of the readings met the International 

Organization of Standardization’s criteria for clinical accuracy (Salacinski, Alford, Drevets, 

Hart, & Hunt, 2014). RPE was also collected at the end of each stage. To collect this data, the 

athlete stepped off the belt and onto the treadmill’s running board. Then athlete returned to the 

treadmill belt for the next stage of the test. All athletes were equipped with a Garmin heart rate 

monitor chest strap (Olathe, KS) to monitor changes in heart rate throughout the test. Garmin 
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was chosen to maintain consistency with what the athletes use during training. While the athlete 

was running, their vGRF was being recorded using four load cells (Rice Lake, WI) collecting at 

1,000 hertz (Hz) placed beneath the Tuff Tread treadmill belt (Conroe, TX) and the LabView 

2018 software (National Instruments, Austin, TX) for the entirety of the V̇O2max test. All testing 

ceased when the athlete ended the V̇O2max test by stepping off the treadmill belt and onto the side 

platform on their own. See study design in Figure 5.1. 
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Figure 5.1. Study design. 

Athlete’s 

Age 

Height 

Weight 

 Collected 

V̇O2max Test 

Biomechanical 

Parameters 

Physiological 

Parameters 

 

Loading Rate 

 

Peak GRF 

 

vGRF Asymmetry 

 

Foot Contact Time 

Ventilation 

 

Respiratory Exchange 

Ratio (RER) 

 

Heart Rate 

 

V̇O2max 

 

V̇O2peak 

 

Blood Lactate 

 

Blood Glucose 

 

Ratings of Perceived 

Exertion (RPE) 

3 Countermovement 

Jumps 



 71 

Statistical Analysis 

Data was analysed using Microsoft Excel (Microsoft Corporation, Redmond, WA, version 

16.25) by calculating average and percent change. SPSS (IBM Corporation, Armonk, NY) was 

used to perform a correlation matrix of the average values to establish relationships between 

variables. SPSS was also used to perform a regression analysis between biomechanical 

parameters (IV) and V̇O2 (DV), as well as between difference in asymmetry (DV) and 

physiological parameters (IV). Intraclass correlation (ICC) and coefficient of variation (CV) 

were used to analyse reliability of the treadmill load cell data using Microsoft Excel and a 

spreadsheet developed for analysis of reliability (Hopkins, 2015). 

 

Results 

Biomechanical Parameters 

Table 5.1 displays the percent change in each biomechanical parameter from speed to speed. The 

largest increase in vGRF for all athletes occurred from speed 19.1 km/h to 20.4 km/h (4.31%). 

Loading rate had the largest percent change from 19.1 km/h to 20.4 km/h with an increase of 

15.28%. For contact time, the largest percent change was a decrease from 12.7 km/h to 14.0 

km/h (-5.99%). 
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Table 5.1. Percent change from speed to speed for biomechanical parameters for all 

athletes. 

Speed 

(km/h) 

vGRF 

(BW) 

vGRF 

(% Change) 

Loading 

Rate 

(BW/ms) 

Loading 

Rate 

(% Change) 

Contact 

Time 

(ms) 

Contact 

Time 

(% Change) 

10.1 

(n=12) 
2.38 - 0.02 - 251.20 - 

11.4 

(n=12) 
2.49 4.27% 0.02 8.07% 237.98 -5.55% 

12.7 

(n=12) 
2.56 2.63% 0.02 5.40% 226.16 -5.23% 

14.0 

(n=12) 
2.62 2.34% 0.03 5.57% 213.39 -5.99% 

15.2 

(n=12) 
2.66 1.78% 0.03 5.13% 202.76 -5.24% 

16.5 

(n=11) 
2.69 1.11% 0.03 3.92% 194.86 -4.05% 

17.8 

(n=9) 
2.76 2.32% 0.03 8.26% 185.63 -4.97% 

19.1 

(n=7) 
2.83 2.63% 0.03 10.29% 179.23 -3.57% 

20.4 

(n=4) 
2.96 4.31% 0.04 15.28% 172.43 -3.95% 

21.7 

(n=4) 
2.92 -1.46% 0.04 2.73% 165.97 -3.89% 

 

Figure 5.2 displays the right and left leg vGRF at each speed for all athletes. The data 

displays that as the speed increased during the V̇O2max test, the vGRF of both the left and right 

leg also increased until the final speed of 21.7 km/h where there is a slight decrease. 
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Figure 5.2. Right and left leg vGRF at each speed for all athletes. 

 

Table 5.2 displays the vGRF asymmetry between the right and left legs at each speed that 

was depicted above in figure 4.1. It was reported that the largest asymmetry occurred at 21.7 

km/h (2.95%); however, the smallest asymmetry occurred at 17.8 km/h (0.62%). 
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Table 5.2. vGRF asymmetry between right and left leg for all athletes at each speed. 

Speed (km/h) Right vGRF (BW) Left vGRF (BW) Asymmetry (%) 

10.1 

(n=12) 
2.402 2.361 1.69% 

11.4 

(n=12) 
2.498 2.477 0.85% 

12.7 

(n=12) 
2.580 2.530 1.93% 

14.0 

(n=12) 
2.629 2.604 0.96% 

15.2 

(n=12) 
2.678 2.649 1.09% 

16.5 

(n=11) 
2.710 2.678 1.18% 

17.8 

(n=9) 
2.766 2.749 0.62% 

19.1 

(n=7) 
2.847 2.817 1.06% 

20.4 

(n=4) 
2.983 2.937 1.52% 

21.7 

(n=4) 
2.961 2.874 2.95% 

 

 Figure 5.3 displays the change in vGRF from speed to speed for all athletes. The figure 

displays that the average vGRF increases as the speed increases. It is indicated the largest 

increase occurred between 19.1 km/h and 20.4 km/h (4.31%), while the smallest increase 

occurred from 15.2 km/h to 16.5 km/h (1.11%). A decrease in vGRF occurred from 20.4 km/h to 

21.7 km/h by 1.46%. 
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Figure 5.3. Average vGRF at each speed for all athletes with percent change. 

 

A Pearson correlation was performed on all variables to estimate the relationships. Table 

5.3 below shows the relationships between the biomechanical parameters of this study. The 

highest correlation was between speed and contact time with an r value of -0.991, indicating a 

strong, negative correlation. Other notable relationships are between speed and vGRF 

(r(11)=0.986, p=0.000), between loading rate and vGRF (r(11)=0.965, p=0.000), and between 

vGRF and contact time (r(11)=-0.982, p=0.000). However, asymmetry had weak correlations 

with all other variables. 
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Table 5.3. Biomechanical parameter correlation matrix. 

Variable Speed (km/h) vGRF (BW) 
Asymmetry 

(%) 

Loading 

Rate 

(BW/ms) 

Contact 

Time (ms) 

Speed (km/h) - 0.986* 0.291 0.965* -0.991* 

vGRF (BW) 0.986* - 0.242 0.965* -0.982* 

Asymmetry 

(%) 
0.291 0.242 - 0.430 0.201 

Loading Rate 

(BW/ms) 
0.965* 0.965* 0.430 - -0.927* 

Contact 

Time (ms) 
-0.991* -0.982* -0.201 -0.927* - 

Note: *denotes significant correlation, p<.05. 

 

 

Table 5.4 displays the results from a regression analysis that was conducted using V̇O2 

(L/min) as the dependent variable and all biomechanical variables as the independent variables. 

vGRF (p=0.012) and contact time (p=0.047) were statistically significant with V̇O2. However, 

there was no statistical significance with loading rate. 

Table 5.4. Regression analysis of biomechanical parameters with 𝐕̇O2. 

Variable P-Value 

vGRF (BW) 0.012* 

Loading Rate (BW/ms) 0.376  

Contact Time (ms) 0.047* 

Note: *denotes significant correlation, p<.05. 

 

 Table 5.5 displays the results from intraclass correlation and coefficient of variation 

statistics for the treadmill load cell peak force data. The results indicate a change in both ICC and 

CV as the speed increases. The highest ICC occurred at 20.4 km/h and 21.7 km/h (1.00). The 

highest CV occurred at 17.8 km/h (22.59%), while the lowest occurred at 20.4 km/h and 21.7 

km/h (7.58%). 
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Table 5.5. Intraclass correlation and coefficient of variation for treadmill load cell data. 

Speed 

(km/h) 
10.1 11.4 12.7 14.0 15.2 16.5 17.8 19.1 20.4 21.7 

Intraclass 

Correlation 

(ICC) 

0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 1.00 1.00 

Lower 

Confidence 

Limit 

0.97 0.97 0.97 0.96 0.96 0.96 0.98 0.97 1.32 1.30 

Upper 

Confidence 

Limit 

0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.01 1.01 

Coefficient 

of 

Variation 

(CV) (%) 

18.43% 19.11% 20.03% 20.33% 19.92% 20.32% 22.59% 21.29% 7.58% 7.81% 

 

Physiological Parameters 

Table 5.6 shows the percent change in the physiological parameters from speed to speed. 

Large changes were reported when the athletes transitioned from baseline to 10.1 km/h. The 

largest increase for V̇O2 for all athletes during the test was from 19.1 km/h to 20.4 km/h with an 

increase of 20.25%. Blood glucose decreased by 3.55% from 10.1 km/h to 11.4 km/h, however, 

later had the highest increase of 8.42% from 20.4 km/h to 21.7 km/h. Blood lactate, amongst all 

athletes, had the largest increase (28.31%) from 12.7 km/h to 14.0 km/h. RPE and heart rate had 

the largest increase from 11.4 km/h to 12.7 km/h (20.00%; 6.13%, respectively). The largest 

increase in RER was from 10.1 km/h to 11.4 km/h. As for V̇E, the largest increased occurred 

from 19.1 km/h to 20.4 km/h by 32.28%.  

 

 

 

 



 78 

Table 5.6. Percent change from speed to speed for physiological parameters for all 

athletes. 

Speed 

(km/h) 
𝐕̇O2 

(L/min) 

Blood 

Glucose 

(mg/dL) 

Blood 

Lactate 

(mmol/L) 

RPE  RER 
𝐕̇E 

(L/min) 

Heart 

Rate 

(bpm) 

10.1 

(n=12) 
- - - - - - - 

11.4 

(n=12) 
10.29% -3.55% 8.65% 10.23% 8.19% 18.48% 6.07% 

12.7 

(n=12) 
12.31% -2.16% -11.76% 20.00% 5.60% 14.99% 6.13% 

14.0 

(n=12) 
3.50% -1.40% 28.31% 12.00% 3.81% 6.62% 2.98% 

15.2 

(n=12) 
4.65% 5.23% 15.31% 12.59% 5.53% 11.85% 3.73% 

16.5 

(n=11) 
5.33% 5.67% 15.26% 9.60% 1.96% 8.25% 1.62% 

17.8 

(n=9) 
-1.24% 1.23% 1.71% 8.74% 1.98% 12.06% 1.50% 

19.1 

(n=7) 
8.26% 4.50% 25.19% 3.70% 1.64% 8.71% 0.32% 

20.4 

(n=4) 
20.25% -1.22% 16.28% -1.69% 1.30% 32.28% 0.54% 

21.7 

(n=4) 
-9.88% 8.42% 15.94% 10.61% 8.13% 1.81% 0.78% 

 

Figure 5.4 displays the relationship between V̇O2 and vGRF. Between these variables, a 

Pearson correlation was calculated at r(11)=0.977, p=0.000, indicating a strong, positive 

correlation. 
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Figure 5.4. vGRF and V̇O2 for all athletes at each speed. 

 

 Figure 5.5 depicts the relationship between vGRF and blood lactate for all athletes across 

all speeds. There is a strong, positive relationship between these variables (r(11)=0.930, 

p=0.000).  
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Figure 5.5. vGRF and blood lactate for all athletes at each speed.  

 

 Table 5.7 displays the relationship of all the physiological variables of this study. The 

highest correlation amongst the physiological parameters is between speed and RPE 

(r(11)=0.983, p=0.000). Other high correlations are between RPE and RER (r(11)=0.982, 

p=0.000), V̇E and blood lactate (r(11)=0.973, p=0.000), and V̇E and V̇O2 (r(11)=0.970, p=0.000); 

all indicating strong, positive correlations. 
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Table 5.7. Physiological parameter correlation matrix. 
   

Variable 
Speed 

(km/h) 
𝐕̇O2 

(L/min) 

Blood 

Glucose 

(mg/dL) 

Blood 

Lactate 

(mmol/L) 

RPE RER 
𝐕̇E 

(L/min) 

Heart 

Rate 

(bpm) 

Speed 

(km/h) 
- 0.946* 0.860* 0.953* 0.983* 0.977* 0.948* 0.931* 

𝐕̇O2 

(L/min) 
0.946* - 0.758* 0.922* 0.891* 0.902* 0.970* 0.866* 

Blood 

Glucose 

(mg/dL) 

0.860* 0.758* - 0.932* 0.817* 0.789* 0.859* 0.650* 

Blood 

Lactate 

(mmol/L) 

0.953* 0.922* 0.932* - 0.894* 0.906* 0.973* 0.788* 

RPE 0.983* 0.891* 0.817* 0.894* - 0.982* 0.879* 0.966* 

RER 0.977* 0.092* 0.789* 0.906* 0.982* - 0.898* 0.960* 

𝐕̇E 

(L/min) 
0.948* 0.970* 0.859* 0.973* 0.879* 0.898* - 0.802* 

Heart 

Rate 

(bpm) 

0.931* 0.866* 0.650* 0.788* 0.966* 0.960* 0.802* - 

Note: *denotes significant correlation, p<.05. 

 

 Table 5.8 shows the magnitude of relationship between the biomechanical and 

physiological parameters of this study. The highest correlation was between V̇E and loading rate 

with a strong, positive relationship (r(11)=0.994, p=0.000). Other positive, strong correlations 

were: vGRF and V̇O2 (r(11)=0.977, p=0.000), loading rate and blood lactate (r(11)=0.984, 

p=0.000), and loading rate and V̇O2 (r(11)=0.965, p=0.000). Other notable relationships were 

between contact time and RPE (r(11)=-0.993, p=0.000) and contact time and RER (r(11)=-0.984, 

p=0.000), both are a strong, negative relationship. 
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Table 5.8. Biomechanical and physiological correlation matrix. 

Variable 
𝐕̇O2 

(L/min) 

Blood 

Glucose 

(mg/dL) 

Blood 

Lactate 

(mmol/L) 

RPE RER 
𝐕̇E 

(L/min) 

Heart 

Rate 

(bpm) 

vGRF (BW) 0.977* 0.791* 0.930* 0.957* 0.955* 0.953* 0.930* 

Loading 

Rate 

(BW/ms) 

0.965* 0.881* 0.984* 0.902* 0.912* 0.994* 0.820* 

Contact 

Time (ms) 
-0.931* -0.797* -0.908* -0.993* -0.984* -0.908* -0.970* 

 

 Table 5.9 displays the results from a regression analysis using asymmetry as the 

dependent variable and all physiological parameters as the independent variables. Statistical 

significance existed with certain variables, such as:  V̇O2 (p=0.029), blood lactate (p=0.031), 

RER (p=0.019), V̇E (p=0.044), and heart rate (p=0.025). However, there was no statistical 

significance for blood glucose or RPE. 

Table 5.9. Regression analysis of physiological parameters with asymmetry. 

Variable P-Value 

𝐕̇O2 (L/min) 0.029* 

Blood Glucose (mg/dL) 0.418  

Blood Lactate (mmol/L) 0.031* 

RPE 0.052  

RER 0.019* 

𝐕̇E (L/min) 0.044* 

Heart Rate (bpm) 0.025* 

Note: *denotes significant correlation, p<.05. 
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Discussion 

Our research showed that our athletes all ranked in the 95th percentile or higher for their V̇O2max 

values according to ACSM Guidelines. We found several strong relationships between 

biomechanical parameters and physiological parameters. 

 The relationship between vGRF and V̇O2 showed a strong, positive correlation. As speed 

increased, both average vGRF and average V̇O2 increased until 21.7 km/h; at this point both 

decreased slightly. This was expected to happen due to the fact that the athletes were performing 

an incremental exercise and previous research has shown these variables to increase as intensity 

increases. One of the larger increases in average V̇O2 values occurred from 19.1 km/h to 20.4 

km/h. Interestingly, this is also where the largest increase in average vGRF occurred. This could 

be due to the fact that the speed had reached a point at which that athletes were experiencing a 

greater demand physiologically along with increased fatigue. It was also found that there was 

statistical significance between asymmetry and V̇O2, indicating that the changes reported for 

each variable did not follow the same pattern. This was to be expected because unlike V̇O2, 

asymmetry did not increase linearly for each speed increase increment. 

 There was also a strong, positive relationship between vGRF and blood lactate. This too 

was expected as previous research has shown these two variables increase with incremental 

exercise (Costill, 1970; Grabowski & Kram, 2008; Held & Marti, 1999). Blood lactate rose 

steadily until 17.8 km/h, after which there was a large increase in blood lactate. As previously 

stated, average vGRF increased the most from 19.1 km/h to 20.4 km/h. Average blood lactate 

values had two large increases, one from 12.7 km/h to 14.0 km/h and one from 17.8 km/h to 19.1 

km/h. It is possible that due to a large increase in blood lactate and accompanying biochemical 
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alterations and fatigue could be a reason for the large increase in average vGRF in following 

stage. 

Another variable that had the largest increase from 19.1 km/h to 20.4 km/h was V̇E, 

therefore, average vGRF, average loading rate, average V̇O2, and average V̇E all exhibited the 

largest increases at the same point in the V̇O2max test. During this period of the test, the athletes 

apparently experienced an increase in intensity which was indicated by an average RPE of 15. 

Increased intensity would then cause an increase in average V̇O2 which would coincide with an 

increase in average V̇E. Since previous research reports that vGRF increases with speed, it is 

expected that the average vGRF would be high at this speed and therefore increase average 

loading rate. From a practical standpoint this would not be the ideal zone for an athlete to 

perform during a long steady run. This is due to the level of intensity and fatigue that would 

accompany this response. This level of intensity would be better applied during high intensity 

interval training (HIIT) days or short tempo run days in which a higher physiological and 

biomechanical response is desired. 

Regarding vGRF and loading rate, it is possible these increases could have been affected 

by the large increase of blood lactate that occurred the stage before. This occurs because there is 

a lag in the appearance of blood lactate due to the shuttle system Goodwin, Harris, Hernandez, & 

Gladden, 2007). Therefore, the lag from the previous stage could greatly influence variables for 

the remainder of the test. In addition, it is possible that vGRF and loading rate may have an 

association with vertical oscillation in a practical sense. This likely occurs because if an athlete is 

feeling tired perhaps reflected by increased blood lactate, they are more likely to have and 

increase in vGRF and loading rate; increasing vertical oscillation. 
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When comparing asymmetry and physiological parameters, it is valuable to consider 

average blood lactate changes. From 17.8 km/h to 19.1 km/h there was an increase in average 

blood lactate of 25.19% followed by an increase of 16.28% from 19.1 km/h to 20.4 km/h, 

indicating 2 large increases. It is interesting to note that the most asymmetry occurred from 20.4 

km/h to 21.7 km/h. As previously stated, blood lactate has a delay affecting its accumulation in 

the blood. Even though the vGRF and asymmetry increased when the athletes hit the fastest 

speed, which is to be expected; the researchers also believe some of the asymmetry may be 

caused by fatigue due to increases in blood lactate levels accompanied with other biochemical 

alterations. 

 

Conclusion 

The results of this study provide evidence that biomechanical and physiological parameters 

can be highly correlated during a V̇O2max test for collegiate cross-country and triathlon 

athletes. Therefore, when monitoring athletes, it is valuable to monitor all aspects of their 

athletic performance. Evidence from this study shows that blood lactate levels could affect 

an athlete’s amount of asymmetry. This is valuable knowledge because if a training 

program was devised to increase blood lactate clearing abilities, that athlete may 

experience less asymmetry and then decrease their risk of injury. In conclusion, a complete 

analysis of an athlete’s current athletic performance should be collected and used to 

develop a training plan that can further optimize their athletic performance abilities. 
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CHAPTER 6 

CONCLUSION 

 

 In conclusion, athletes in this study were all trained cross country or triathlon athletes that 

matched with previous data for anthropometrics, physiological, as well as biomechanical 

responses when compared to similar studies. However, a primary difference between our results 

and previous research was in regards to kinetic asymmetry. This study indicated that our athletes 

had an average kinetic asymmetry throughout the  V̇O2max test of only 1.38 ± 0.68%. According 

to previous research, this is not a large enough asymmetry to lead to an increased rate of injury 

risk. Even though the athletes in this study may have enough strength to maintain symmetry, this 

is an indication of the importance a strength training has in a practical setting. According to our 

analysis, there was a strong, positive relationship between vGRF and blood lactate. The changes 

between stages showed large increases in average blood lactate could have influenced the large 

increases in average vGRF that occurred later in the test. The delayed appearance of blood 

lactate would then not have an effect until minutes later. Due to this, not only could the increase 

in average blood lactate have an effect on average vGRF, but it could have also effected average 

asymmetry. Therefore, it is suggested that cross country and triathlon athletes incorporate a 

strength training program in order to decreases asymmetry. It is also suggested that when 

monitoring athletic performance, the coaches and athletes investigate both physiological and 

biomechanical parameters in order to provide a well-rounded analysis of performance.  
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APPENDICES 

APPENDIX A 

Data Collection Sheets 

 

Height: Weight: 

Stage 

Number 

Speed 

(km/h) 

Stage 

Duration 

(min) 

Blood 

Glucose 1 

(mg/dL) 

Blood 

Glucose 2 

(mg/dL) 

Blood 

Lactate 1 

(mmol/L) 

Blood 

Lactate 2 

(mmol/L) 

RPE 

BASELINE 0.0 
      

1 10.1 
      

2 11.4 
      

3 12.7 
      

4 14.0 
      

5 15.2 
      

6 16.5 
      

7 17.8 
      

8 19.1 
      

9 20.4 
      

10 21.7 
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Height: Weight: 

Stage 

Number 

Speed 

(km/h) 

Stage 

Duration 

(min) 

VO2max 

(mL/kg/min) 
RER 𝐕̇E (L) 

Heart Rate 

(bpm) 

BASELINE 0.0 
    

 

1 10.1 
    

 

2 11.4 
    

 

3 12.7 
    

 

4 14.0 
    

 

5 15.2 
    

 

6 16.5 
    

 

7 17.8 
    

 

8 19.1 
    

 

9 20.4 
    

 

10 21.7 
    

 

  
    

 

 

 

 

 

 

 

 



 96 

Height: Weight: 

Stage 

Number 

Speed 

(km/h) 

Stage 

Duration 

(min) 

Right 

vGRF 

(N) 

Left 

vGRF 

(N) 

Right 

Loading 

Rate 

(N/ms) 

Left 

Loading 

Rate 

(N/ms) 

Right 

Contact 

Time 

(ms) 

Left 

Contact 

Time 

(ms) 

BASELINE 0.0        

1 10.1        

2 11.4        

3 12.7        

4 14.0        

5 15.2        

6 16.5        

7 17.8        

8 19.1        

9 20.4        

10 21.7        
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APPENDIX B 

Athlete Profiles 

 

Subject 1 Athlete Profile 

Variable Value 

Age (years) 19.00 

Height (cm) 171.50 

Weight (kg) 67.98 

Peak vGRF (BW) 2.58 

Average Difference (Asymmetry) (%) 2.42 

Average Loading Rate (BW/ms) 0.022 

Average Contact Time (ms) 216.74 

Average Jump Height (cm) 28.70 

Average Jumping Peak Landing Force 

Asymmetry (%) 
4.70 (R) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
8.00 (L) 

𝐕̇O2max (mL/kg/min) 54.60 

Max Blood Glucose (mg/dL) 96 

Max Blood Lactate (mmol/L) 11.60 

Max 𝐕̇E (L/min) 87.67 

Max HR (bpm) 199 

Max RER (VCO2/𝐕̇O2) 1.03 

Max RPE 19 
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Subject 2 Athlete Profile 

Variable Value 

Age (years) 19.00 

Height (cm) 170.18 

Weight (kg) 73.05 

Peak vGRF (BW) 2.88 

Average Difference (Asymmetry) (%) 1.12 

Average Loading Rate (BW/ms) 0.029 

Average Contact Time (ms) 201.68 

Average Jump Height (cm) 29.93 

Average Jumping Peak Landing Force 

Asymmetry (%) 
16.70 (R) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
14.50 (L) 

𝐕̇O2max (mL/kg/min) 65.0 

Max Blood Glucose (mg/dL) 140 

Max Blood Lactate (mmol/L) 16.4 

Max 𝐕̇E (L/min) 154.9 

Max HR (bpm) 189 

Max RER (VCO2/𝐕̇O2) 1.05 

Max RPE 15 
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Subject 3 Athlete Profile 

Variable Value 

Age (years) 120 

Height (cm) 165.1 

Weight (kg) 49.9 

Peak vGRF (BW) 2.75 

Average Difference (Asymmetry) (%) 3.56 

Average Loading Rate (BW/ms) 0.024 

Average Contact Time (ms) 218.20 

Average Jump Height (cm) 18.73 

Average Jumping Peak Landing Force 

Asymmetry (%) 
14.7 (R) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
7.7 (L) 

𝐕̇O2max (mL/kg/min) 54.1 

Max Blood Glucose (mg/dL) 115 

Max Blood Lactate (mmol/L) 6.6 

Max 𝐕̇E (L/min) 79.1 

Max HR (bpm) 194 

Max RER (VCO2/𝐕̇O2) 0.98 

Max RPE 17 
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Subject 4 Athlete Profile 

Variable Value 

Age (years) 121 

Height (cm) 163.1 

Weight (kg) 58.3 

Peak vGRF (BW) 2.72 

Average Difference (Asymmetry) (%) 2.77 

Average Loading Rate (BW/ms) 0.025 

Average Contact Time (ms) 208.42 

Average Jump Height (cm) 19.67 

Average Jumping Peak Landing Force 

Asymmetry (%) 
20.2 (L) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
14.2 (R) 

𝐕̇O2max (mL/kg/min) 52.3 

Max Blood Glucose (mg/dL) 134 

Max Blood Lactate (mmol/L) 13.5 

Max 𝐕̇E (L/min) 102.1 

Max HR (bpm) 193 

Max RER (VCO2/𝐕̇O2) 1.05 

Max RPE 16 
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Subject 5 Athlete Profile 

Variable Value 

Age (years) 19 

Height (cm) 169.4 

Weight (kg) 71.6 

Peak vGRF (BW) 3.17 

Average Difference (Asymmetry) (%) 6.26 

Average Loading Rate (BW/ms) 0.037 

Average Contact Time (ms) 191.93 

Average Jump Height (cm) 34.83 

Average Jumping Peak Landing Force 

Asymmetry (%) 
7.1 (R) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
18.4 (L) 

𝐕̇O2max (mL/kg/min) 61.3 

Max Blood Glucose (mg/dL) 123 

Max Blood Lactate (mmol/L) 16.3 

Max 𝐕̇E (L/min) 157.4 

Max HR (bpm) 189 

Max RER (VCO2/𝐕̇O2) 1.29 

Max RPE 19 
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Subject 6 Athlete Profile 

Variable Value 

Age (years) 20 

Height (cm) 159.2 

Weight (kg) 59.8 

Peak vGRF (BW) 2.56 

Average Difference (Asymmetry) (%) 1.02 

Average Loading Rate (BW/ms) 0.023 

Average Contact Time (ms) 222.36 

Average Jump Height (cm) 13.63 

Average Jumping Peak Landing Force 

Asymmetry (%) 
9.4 (R) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
3.8 (L) 

𝐕̇O2max (mL/kg/min) 46.0 

Max Blood Glucose (mg/dL) 118 

Max Blood Lactate (mmol/L) 10.7 

Max 𝐕̇E (L/min) 96.0 

Max HR (bpm) 195 

Max RER (VCO2/𝐕̇O2) 1.13 

Max RPE 16 

 

 

 

 



 103 

Subject 7 Athlete Profile 

Variable Value 

Age (years) 18 

Height (cm) 153.0 

Weight (kg) 48.8 

Peak vGRF (BW) 2.66 

Average Difference (Asymmetry) (%) 0.46 

Average Loading Rate (BW/ms) 0.025 

Average Contact Time (ms) 221.07 

Average Jump Height (cm) 12.30 

Average Jumping Peak Landing Force 

Asymmetry (%) 
7.2 (R) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
3.2 (L) 

𝐕̇O2max (mL/kg/min) 46.6 

Max Blood Glucose (mg/dL) 120 

Max Blood Lactate (mmol/L) 9.4 

Max 𝐕̇E (L/min) 89.3 

Max HR (bpm) 194 

Max RER (VCO2/𝐕̇O2) 1.11 

Max RPE 16 
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Subject 8 Athlete Profile 

Variable Value 

Age (years) 19 

Height (cm) 165.0 

Weight (kg) 65.1 

Peak vGRF (BW) 2.64 

Average Difference (Asymmetry) (%) 1.03 

Average Loading Rate (BW/ms) 0.024 

Average Contact Time (ms) 203.71 

Average Jump Height (cm) 20.77 

Average Jumping Peak Landing Force 

Asymmetry (%) 
20.5 (L) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
0.5 (R) 

𝐕̇O2max (mL/kg/min) 49.9 

Max Blood Glucose (mg/dL) 92 

Max Blood Lactate (mmol/L) 14.2 

Max 𝐕̇E (L/min) 3.15 

Max HR (bpm) 199 

Max RER (VCO2/𝐕̇O2) 0.96 

Max RPE 17 
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Subject 9 Athlete Profile 

Variable Value 

Age (years) 23 

Height (cm) 166.1 

Weight (kg) 71.0 

Peak vGRF (BW) 2.60 

Average Difference (Asymmetry) (%) 6.72 

Average Loading Rate (BW/ms) 0.021 

Average Contact Time (ms) 237.21 

Average Jump Height (cm) 11.80 

Average Jumping Peak Landing Force 

Asymmetry (%) 
17.1 (R) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
1.5 (R) 

𝐕̇O2max (mL/kg/min) 48.6 

Max Blood Glucose (mg/dL) 133 

Max Blood Lactate (mmol/L) 5.6 

Max 𝐕̇E (L/min) 105.8 

Max HR (bpm) 174 

Max RER (VCO2/𝐕̇O2) 0.93 

Max RPE 10 
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Subject 10 Athlete Profile 

Variable Value 

Age (years) 22 

Height (cm) 177.1 

Weight (kg) 79.7 

Peak vGRF (BW) 3.12 

Average Difference (Asymmetry) (%) 0.89 

Average Loading Rate (BW/ms) 0.032 

Average Contact Time (ms) 202.90 

Average Jump Height (cm) 26.33 

Average Jumping Peak Landing Force 

Asymmetry (%) 
0.0 (L) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
14.8 (R) 

𝐕̇O2max (mL/kg/min) 56.4 

Max Blood Glucose (mg/dL) 122 

Max Blood Lactate (mmol/L) 17.4 

Max 𝐕̇E (L/min) 160.7 

Max HR (bpm) 193 

Max RER (VCO2/𝐕̇O2) 1.11 

Max RPE 15 
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Subject 11 Athlete Profile 

Variable Value 

Age (years) 19 

Height (cm) 178.3 

Weight (kg) 76.9 

Peak vGRF (BW) 2.90 

Average Difference (Asymmetry) (%) 1.08 

Average Loading Rate (BW/ms) 0.030 

Average Contact Time (ms) 208.02 

Average Jump Height (cm) 36.60 

Average Jumping Peak Landing Force 

Asymmetry (%) 
31.7 (L) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
20.6 (L) 

𝐕̇O2max (mL/kg/min) 69.4 

Max Blood Glucose (mg/dL) 118 

Max Blood Lactate (mmol/L) 12.0 

Max 𝐕̇E (L/min) 153.2 

Max HR (bpm) 198 

Max RER (VCO2/𝐕̇O2) 1.03 

Max RPE 17 
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Subject 12 Athlete Profile 

Variable Value 

Age (years) 21 

Height (cm) 172.5 

Weight (kg) 66.0 

Peak vGRF (BW) 2.78 

Average Difference (Asymmetry) (%) 1.78 

Average Loading Rate (BW/ms) 0.028 

Average Contact Time (ms) 214.68 

Average Jump Height (cm) 20.60 

Average Jumping Peak Landing Force 

Asymmetry (%) 
12.0 (R) 

Average Jumping Takeoff Peak Force 

Asymmetry (%) 
9.5 (R) 

𝐕̇O2max (mL/kg/min) 42.4 

Max Blood Glucose (mg/dL) 117 

Max Blood Lactate (mmol/L) 13.0 

Max 𝐕̇E (L/min) 125.5 

Max HR (bpm) 196 

Max RER (VCO2/𝐕̇O2) 1.14 

Max RPE 18 
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