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The evolution of the low-cost carriers (LCCs) model was marked by a 

transformation from a regional carrier (formerly known as Pacific Southwest 

Airlines) to a national U.S. LCC carrier, Southwest Airlines in the 1970s. From 

1978 to 2013, the air transportation market witnessed a plunge by 40% in airfares, 

which was attributed to the impact of LCCs’ pricing practice in the network 

(Airlines for America, 2014). Under “Southwest effect,” new LCC entrants 

entered the market with varying degrees of success but did not experience rapid 

growth until the late 1990s when LCCs’ flights appeared on the top 5,000 

domestic routes. LCC presence continued to be bold by an increase from 1,594 in 

1998 to 2,304 routes in 2003 (General Accounting Office, 2004), and to 7,915 

routes in 1Q2018 as reported from the data in this study.   

The cost structure is claimed to be the substantial difference between full-

service carriers (FSCs) and low-cost carriers (LCCs), which is a result of several 

strategic pursuits. Vasigh, Fleming, and Tacker (2016) stated that LCCs are 

gaining advantages through: (1) lower labor cost and higher labor productivity, 

(2) lower ticket distribution costs, (3) no-frills service, (4) common fleet type, (5) 

point-to-point service, (6) use of secondary airports, and (7) higher aircraft 

utilization. Similarly, Belobaba, Odoni, and Barnhart (2015) explained the 

achieved cost advantage as the result of the productivity of both employees and 

aircraft. Significant higher labor productivity of LCCs lies in much more flexible 

rules that allow cross-utilization for all employees except those who are safety-

licensed and -certified. In the meantime, the point to point flights can minimize 

aircraft ground times, which translates to higher aircraft utilization rates (high 

aircraft productivity).  

By maintaining low operating cost, many LCCs were able to aggressively 

expand their networks to capture market share, which in turn led to bankruptcies 

of four of six U.S. legacy carriers between 2001 and 2005 (Belobaba et al., 2015). 

Ben Abda, Belobaba, and Swelbar (2012) investigated LCCs entry and growth in 

relation to the evolution of origin-destination air traffic and fares in the U.S. 

domestic market at four snapshot years, 1990, 1995, 2005, and 2008. LCCs 

collective share on the U.S. domestic market grew over the decades, from 10.6% 

in 1990 to 23.6% in 2000, and to 33.6% in 2008. The study discovered that initial 

strategies of LCCs in planning new services were to focus on the busiest airports 

that serve as large pools of local traffic as opposed to those of connecting or 

mixed traffic. Eventually, LCCs encountered difficulties in entering first-tier 

airports because of gate constraints, higher congestion likelihood, and full-service 

carriers’ (FSC) reaction on aggressive fare matching. Secondary airports were 

then an ideal approach to the expansion; 18% aggregate LCC market share in 

2000 soared up to 30% in 2005 in routes to second-tier airports. 
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 Ben Abda et al. (2012) continued with the impact of LCC route 

penetration on the average fare and passenger volume. The average airfare 

decreased by 16.8% at 23 airports that experienced a substantial LCC growth in 

1990-1995, while passengers who traveled on routes with LCC absence witnessed 

increased average fares by 1.7% in the same period. The traffic rose 28.5% at 26 

airports associated with high LCC presence in 2000 and 2005; at the other airports 

associated with LCC absence, the reported increase was only 4.4%. The growth of 

LCCs manifested through its density—the coverage ratio of the number of LCCs 

per airport. The ratio rose steadily from 0.5 to 2.8 between 1990 and 2005, 

followed by a diminishing ratio due to the financial crisis, economic recession, 

and the saturation of the air travel market in 2007-2009. Additional difficulties in 

the rising price of jet fuel thereafter led to a wave of consolidation among players 

that consequently arrived at six major LCCs in April 2018. These six major LCCs 

were found to have a negative relationship to route entry and exit decisions of 

competing airlines (Nguyen & Nguyen, 2018). Bachwich and Wittman (2017) 

considered factors enabling the emergence of a new variant of the LCC model, 

ultra-low-cost carriers (ULCCs). The 2015 dataset indicated that the market fare 

was 21% lower in the presence of ULCCs and 8% lower in the presence of LCCs 

compared to the entire market average. Examining the trend over 2010-2015, after 

each one-year entry of a ULCC or LCC into any flight route, there was a 14% 

reduction in average fare.   

Airlines are now aware of the essence of restructuring their own network 

in attempts of maintaining the profitability under pressure of LCC presence. 

Understanding the past and existing patterns of the LCCs’ network structure and 

improving the predictability of the future presence of an LCC in the network 

becomes imperative for all airlines to sustain a competitive edge. Although the 

current literature was replete with similar studies, it is still necessary to have 

studies that stay current and timely to examine the presence of LCCs in the 

industry landscape, especially after socioeconomic volatilities and consolidations. 

In this study, besides examining factors reviewed in the previous paragraphs, we 

took advantage of data mining procedures by reconstructing the raw dataset and 

incorporating additional variables to the model.  

Statement of Purpose 

 The purpose of the study was to predict the presence or absence of low-

cost carriers (LCCs) in the U.S. domestic network structure. Only flight routes 

with origin and destination airports located within the United States were included 

in the study, and the timeframe ranged from Quarter 1, 2016 to Quarter 1, 2018. 

Operational definitions of the relevant variables in this study are summarized in 

Table 1 and fully discussed as follows:  
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Table 1 

 

Summary and Description of Independent and Dependent Variables 

Variables Description 

Dependent variable 
 

LCC presence vs. 

absence 

Categorical (dichotomous) variable represented whether having at 

least one LCC operation on a route. Dummy coding scheme with 1 

as LCC presence and 0 as LCC absence. 

Independent variables  

Average market fare Continuous variable represented the average airfare that all airlines 

offered in a route. 

Average connection yield  Continuous variable represented the ratio of average fare of 

connecting flights on average miles flown of these flights. 

Destination airport Categorical variable represented the last destination airport in a 

route. Unweighted effects coding scheme used for five groups: 

large, medium, small, non-hub, and non-primary airports. 

Largest share proportion Continuous variable represented the percentage of the largest 

market share for which an airline accounted over the total market in 

a route. 

Number of carriers Continuous variable represented the number of carriers operating in 

a route. 

Number of connecting 

passengers 

Continuous variable represented aggregated passengers in 

connecting flights in a route. 

Number of total 

passengers 

Continuous variable represented aggregated passengers carried by 

all airlines in a route. 

Origin airport Categorical variable represented the first departing airport in a 

route. Unweighted effects coding scheme used for five groups: 

large, medium, small, non-hub, and non-primary airports. 

Route length Continuous variable represented the geographic distance in miles 

between origin and destination airports. 

Route type Categorical (dichotomous) variable represented whether or not 

having at least one nonstop flight in a route. Dummy coding 

scheme with 1 as nonstop market and 0 as connection market (the 

reference group). 

 

The average market fare was defined as the averaged commercial airfare 

of passenger transportation service that all airlines offered on a given route. 

Average connection yield was defined as the ratio of the average airfare of 

connecting flights over the average miles flown of these connecting flights. 

Largest share proportion was defined as the percentage of the largest 

market share for which an airline accounted in a given route based on the number 
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of transported passengers. For example, in the route MCO-DFW of 1Q2018 

dataset, the largest share airline transported 6,480 passengers on both nonstop and 

connecting flights over the total of 9,846 passengers, and thus the largest share 

proportion was 65.81% (6,480 / 9,846). 

The number of carriers was defined as the number of all incumbent 

carriers operating on a given route. 

The number of total passengers was defined as an aggregated number of 

passengers transported by all airlines in a given route regardless of nonstop or 

connecting flights. In the meantime, the number of connecting passengers was 

defined as an aggregated number of passengers transported by all airlines only on 

connecting flights. 

Route length was defined as the geographic distance in miles between 

origin and destination airports regardless of nonstop or connecting flights.  

  Route type was defined as the characteristic of the route market, nonstop 

market and connection market. It is commonly accepted in the literature that in a 

specific route, there is at least one nonstop flight on operations, the route is 

considered a nonstop market; it is considered a connecting market otherwise 

(Coldren, 2005; Coldren, Koppelman, Kasturirangan, & Mukherjee, 2003; 

Garrow, 2010). ABE-ATW in the 1Q2018 dataset was a connecting market 

because of no nonstop flight being operated across airlines.  

Origin and destination airports were defined as the first and the last 

airports in a given itinerary. For example, in the itinerary of MCO-ATL-SEA, 

MCO is the origin airport while SEA is the destination airport. Federal Aviation 

Administration (2016a) categorized commercial service airports into primary and 

non-primary commercial service airports. Non-primary commercial service 

airports accommodate at least 2,500 and no more than 10,000 passengers. Primary 

commercial service airports are partitioned into subcategories based on 

percentage of annual enplanement, including large hub with 1% or more, medium 

hub with at least 0.25% but less than 1%, small hub with at least 0.05% but less 

than 0.25%, and non-hub with more than 10,000 but less than 0.05%.  

The presence of low-cost carriers was defined as having at least one 

operation of a low-cost carrier on a given route. In the study period, a total of 36 

commercial airlines reported under the name of ticketing carriers in datasets, and 

7 of them corresponded to the business model of a low-cost carrier. Included in 

the study were Allegiant Air (G4), Frontier Airlines (F9), JetBlue (B6), Spirit 

Airlines (NK), Southwest Airlines (WN), Sun Country Airlines (SY), and Virgin 

America (VX). Virgin America was jointly reported under the name of Alaska 

Airlines as of 2Q2018 due to the consolidation.  
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Research Questions 

Research question 1: When examined from a stepwise model for logistic 

regression, what is the relationship between the targeted variables and the 

dichotomous response variable that distinguishes between the presence and 

absence of the U.S. LCCs in the domestic routes?  

Research question 2: When examined the variable importance of the 

decision tree model, what are the most important factors that predict the presence 

or absence of the U.S. LCCs in the domestic routes? 

Research question 3: In the model comparison platform, between logistic 

regression and decision tree, which model performs more accurately in predicting 

the presence or absence of the U.S. LCCs in the domestic routes?  

Methodology 

Research Design 

The research methodology was ex post facto or causal-comparative, and 

its corresponding design was cause-type. This methodology was appropriate 

because the research question involved modeling the relationship of the group 

memberships of the U.S. LCC presence versus absence with multiple factors. The 

study was data-driven in nature by using a data mining approach as opposed to a 

theory-driven study in which theories were grounded to guide and partially 

answer research questions along with the support of traditional statistical analysis. 

Linoff and Berry (2011) defined data mining as a business process for 

exploring a large amount of data to discover meaningful patterns and rules. 

Although statistics and data mining share numerous similar tools, they are 

distinguished based on the objectives and process of each discipline. In statistics-

oriented studies, the objectives are well defined and driven by theories and 

theoretical models. The process is to make inferences to the population based on 

the selected sample, which is also known as inferential statistics. By contrast, in 

data mining-oriented studies, in many cases, the data are the entire population or a 

significantly large data set, and thus the inferential process is not a concern. 

However, the objectives of data mining studies are ill-defined and ill-directed, 

instead the data usually are integrated and aggregated from different sources and 

must be cleaned and useful variables extracted.  

Two common and well-documented processes in data mining studies are 

SEMMA and CRISP-DM (Grayson et al., 2015; Sarma, 2013; Tufféry, 2011); the 

former stands for Sample, Explore, Modify, Model, and Assess, and the latter 

stands for Cross Industry Standard Process for Data Mining. The shared point of 

view was that both approaches “define a set of sequential steps that pretends to 
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guide the implementation of data mining applications” (Azevedo & Santos, 2008, 

p. 1). SEMMA schematic can be considered a general process for developing a 

statistical model, while CRISP-DM phases, which enumerate as business 

understanding, data understanding, data preparation, modeling, evaluation, and 

deployment, are designed to not tie to any specific tool or application and to be 

able to use in any industry (Chapman et al., 2000). In the current study, SEMMA 

was chosen as a primary and systematic approach to build the predictive model of 

LCC presence in the U.S. domestic network.  

Data Preparation 

Target and Accessible Population 

 The target population of the study was all domestic passenger flight routes 

that have origin and destination airports located within the United States. The 

accessible population of the study was 10% random census of the target 

population. In effect, the U.S. Department of Transportation (DOT) randomly 

selects 10% of all domestic recorded flights for free public access at the Bureau of 

Transportation Statistics (BTS) website (bts.gov). The primary database used in 

the study was Origin and Destination Data Bank 1B (DB1B). Quarterly datasets 

of 2016 and 2017 were used for developing and validating the predictive models, 

while the dataset of 1Q2018 was used for testing the models. All datasets were 

directly imported into JMP Pro 13 software to screen and reconstruct the data 

before sampling and building models.  

Data Reconstruction 

Before reconstructing, the dataset was screened for the issues of missing 

data. In the dataset, flights recorded under the ticketing carrier as “--” or 99 were 

considered missing data (i.e., no airline designator as 99 for U.S. airlines). The 

missing proportion was as much as 3% of all quarterly recorded flights, and thus 

we decided to use a list-wise deletion method for handling random missing data. 

Additionally, flights with bulk fares also were removed out of the datasets 

because bulk fares reflect airlines’ promotion programs such as flyer frequent 

programs (Abdelghany & Abdelghany, 2009).  

 Following Nguyen's and Nguyen's (2018) guideline, we reconstructed the 

raw datasets by sorting all information based on pairs of origin and destination 

airports. The purpose of reconstructing the datasets was to aggregate both nonstop 

and connecting flights in a specific route instead of displaying hundreds of flights 

in the same origin and destination airports in the raw datasets. For instance, the 

original 1Q2018 dataset recorded repeatedly 27 different flights (i.e., all were 

connecting flights) with the same ABE as origin and ATW as a destination; the 

reconstructed dataset now exhibited uniquely the route ABE-ATW with 27 
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connecting flights served by two airlines. It is noted that the route ABE-ATW 

characterized as a connecting market because all 27 different flights were 

connecting. After reconstruction, eight quarters of 2016 and 2017 were 

aggregated into a dataset with 498,263 routes, whereas the Quarter 1 of 2018 

generated 61,024 routes. 

Sampling  

 One of the drawbacks of using “big data” or analyzing data collected from 

the data warehouse is that too large sample sizes might lead to incorrect 

conclusions of significance (Paczkowski, 2018). To remedy the problem, 

sampling in SEMMA paradigm is necessary to this study. Tufféry (2011, p. 306) 

advised a critical minimum size of the training set (a) at greater than 1,000 

observations, and (b) having at least 300-500 observations in each group (level) of 

the categorical response. To satisfy the two conditions, we randomly selected 

5,000 routes from the 2016-2017 dataset for modeling and 1,250 routes from the 

1Q2018 dataset for testing purposes.    

 The goal of building the model is to be able to make accurate predictions 

in the future for any value of predictors. It is necessary to check the models if they 

are overfitting the data. Overfitting occurs when the model becomes too complex 

such that not only the underlying model but also the random errors are explained 

and thus become fit with the dataset. The former might persist into future 

predictions, but the latter will differently deviate in the future. To detect 

overfitting issue in models, the cross-validation process is commonly used by data 

miners to determine the necessary model complexity. Figure 1 illustrated the 

model errors in both training and validation subsets drop down until a certain 

iteration n. Training model error continued to be minimized to fit the data points 

while the validation model error started raising, which indicates overfitting.   

Holdout cross-validation method was employed in this study because of its 

advantage of simplification over k-fold cross-validation. In holdout cross-

validation, training, validating, and testing subsets are usually generated. The 

function of the training subset is to fit the statistical underlying models and to 

estimate the models’ coefficients. The function of the validation subset is to 

determine how much complexity is needed in the established models. More 

importantly, the predictive performance and model fit measures (e.g., R2, ROC, 

Lift Chart) of competing models are assessed on the validation subset to choose 

the best one (Klimberg & McCullough, 2016; Linoff & Berry, 2011). Sarma 

(2013) recommended the testing subset is the external and independent one that 

has no influence on the estimations and model complexity. In the current study, 

the 2016-2017 dataset, after a random sampling, was further partitioned into the 

training and validation subsets at the ratio 75:25 equivalent to 3,750:1,250 routes 
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in a total of 5,000 routes, while 1,250 routes in the dataset of 1Q2018 were set 

aside as the testing subset. 

 

Figure 1. Model error curves of training and validation sets by the number of iterations (Klimberg 

& McCullough, 2016). 

       

Descriptive Statistics 

 Table 2 summarizes statistics of continuous and nominal-coded predictors 

relative to the dichotomous response, LCCs presence and absence, in the 2016-

2017 dataset. Considering airfare-based factors, LCCs lowered the average 

market airfare in the domestic network by roughly $85 from $330 at routes having 

no LCCs operations to $245 at those having more than one LCC flight. The same 

pattern was found in connecting routes such that the average connection yield was 

0.19 dollar per mile if LCCs exist compared to 0.28 dollar per mile if any LCC 

was not seen.  

With respect to market concentration factors, LCCs were found on routes 

more competitive with three or four players on average, and the largest share 

occupied by a carrier on LCC-present routes was 62% compared to LCC-absent 

routes with 85%. Demand factors showed that routes having LCC flights were 

markedly higher traffic with 1,187 passengers in total and 245 connecting 

passengers. However, the standard deviations of total traffic and connection for 

both LCC presence and absence were all scattered, and their ranges were large, 

which was an indicator for outliers that were checked in the next section. The 

reflection of LCC operations through route characteristics was not much different 

in both route length and route type.   
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Table 2 

 

Descriptive Statistics of Continuous Predictors in 2016-2017 Dataset  

Variables 

LCC Presence  LCC Absence 

Mean SD Range  Mean SD Range 

Average market fare 244.92 71.02 

5 – 

647.07  329.94 165.67 

0 – 

3548.67 

Average connection 

yield  0.19 0.10 0 – 0.84   0.28 0.20 0 – 3.85 

Largest share 

proportion 0.62 0.21 0.27 – 1   0.85 0.19 0.30 – 1  

Number of carriers 3.81 1.46 1 – 9   1.63 0.82 1 – 5 

Number of connecting 

passengers 245.07 303.05 0 – 2,137   21.18 47.92 0 – 883  

Number of total 

passengers 1,187 2,422.46 

1 – 

23,756  38.71 159.74 1 – 3,941  

Route length 1,301.41 677.21 

177 – 

5,095  1,484.52 1,067.68 

59 – 

9,431 

Route typea 0.60 0.49 0 – 1   0.04 0.20 0 – 1  

Note. N = 5,000.  

 

aRoute type was a nominal variable coded by dummy coding scheme with the nonstop market as 1 and the 

connecting market as 0. 

 

Table 3 showed statistics of five subgroups of origin and destination 

airports relative to LCC presence and absence. LCC flights covered the domestic 

network with nearly 14% (684 over 5,000 routes). Given origin airports, routes 

having LCC flights with departures from then large, medium, and small hub was 

equally prevalent and approximated at 30% each in comparison with nearly 8% of 

the combined group of non-hub and non-primary airports. The same pattern was 

observed in destination airports for both LCC presence and absence. It is noted 

that origin and destination airports were coded by unweighted effects coding 

strategy for the stepwise logistic regression model. 
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Table 3 

 

Descriptive Statistics of Airport Subgroups in 2016-2017 Dataset  

Subgroups 

LCC Presence  LCC Absence 

N %  N % 

Origin airport 684 13.68  4,316 86.32 

 Large hub 209 30.56  544 12.60 

 Medium hub 205 29.97  492 11.40 

 Small hub 215 31.43  1,045 24.21 

 Non-hub 52 7.60  2,106 48.80 

 Non-primary 3 0.44  129 2.99 

Destination airport 684 13.68  4,316 86.32 

 Large hub 193 28.22  541 12.54 

 Medium hub 197 28.80  476 11.03 

 Small hub 241 35.23  1,100 25.49 

 Non-hub 50 7.31  2,101 48.68 

 Non-primary 3 0.44  98 2.26 

Note. N = 5,000.  

Outliers and Multicollinearity 

 Regarding the outlier issue mentioned earlier, the number of flagged cases 

were 559 out of 5,000 (11.18%) in the 2016-2017 dataset and 156 out of 1,250 

(12.48%) in the 1Q2018 testing dataset. Random examination of these flagged 

cases unveiled that several flights on such routes were most likely a charter rather 

than commercially scheduled flights, therefore we decided to remove these 

flagged cases. The sample size of the training set, N Training = 3,330 routes, N 

Validation = 1,111 routes, and N Testing = 1,094 routes as shown in Table 4. 

Multicollinearity is an issue if two or more predictors in a model are highly 

correlated with one another. When severe multicollinearity issue occurs, it is 

difficult to determine which of the correlated predictors are most important, and it 

could lead to inflation in coefficients and standard errors, or even make the signs 

of the coefficients meaningless (Cohen, Cohen, West, & Aiken, 2003; Grayson et 
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al., 2015). No evidence of serious multicollinearity was found through the 

correlation matrix in the datasets  

Table 4 

 

Statistics Summary of Datasets after the Preliminary Analyses 

 Removed 

routes 
Overall 

LCC presence  LCC absence 

 N %  N % 

Training Set 420 3,330 303 9.10 
 

3,027 90.90 

Validation 

Set 139 1,111 89 8.01 

 

1,022 91.99 

Testing Set 156 1,094 83 7.59 
 

1,011 92.41 

 

Data Analysis 

Stepwise Logistic Regression 

 Logistic regression is also commonly known as the linear probability 

model (LPM) because it is a specialized form of linear regression using to handle  

discrete or categorical dependent variables (Klimberg & McCullough, 2016). This 

was the case for the current study as the dependent variable was binary 

responses—the U.S. LCCs presence versus absence. Stepwise estimation was 

used as the primary method of selecting variables for inclusion in the logistic 

regression model. In the stepwise model, the variable entry order is determined 

based on the objective of maximizing R2 with the fewest predictors (Hair, Black, 

Babin, & Rolph, 2010). The model starts with selecting the best predictor that has 

the largest explanatory power (semi-partial correlation squared sr2). One at a time, 

an additional predictor is selected given the incremental explanatory power it can 

contribute to the regression model. This procedure is continued as long as their 

increments are statistically significant, and thus formally known as forwarding 

addition approach (Cohen et al., 2003). Table 5 specified the entry order of 

predictors for the study’s forward addition stepwise model with the stopping rule 

of the maximum validation R2.  

As reported in Table 5, the stepwise logistic regression model was 

statistically significant, χ2(12) = 1,144.82, p <.0001. The full model provided a 

predictive gain of 56.39% over the null model, R2 = .5639, df = 12. The logistic 

constant in the null model that assumes the absence of information provided by 

the predictors was B Constant = -2.335, and the corresponding odd of LCC presence 
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in the network was e -2.335 = 0.097. When applied the mathematical expression, e -

2.335 / (1+ e -2.335) = 0.088, it indicated that 8.8% of the routes had the presence of 

LCCs in the calendar year of 2016-2017.  

The positive sign of the logit coefficient for the number of carriers, B 

NCarriers = 1.708, p < .0001, indicated a positive relationship between the LCC 

presence and average market fare. The average marginal effect, ME = 0.137, 

revealed that for one additional competitor commencing flights in a route, there 

was nearly 14% more likely to have at least one LCC exited in the route. Route 

type had indeed a positive relationship with LCC presence, B RType = 1.311, p 

<.0001, and ME = 0.105. If a nonstop market, the route was 10.5% more likely to 

have at least one LCC operation than the one under the condition of a connecting 

market. Regarding airfare-related predictors, as average market fare declined by 

$100 in a flight route, there was 8% more likely to have at least one LCC 

operation in that route, B MFare = -0.010, p <.0001, and ME = -8e-4. Meanwhile, 

average connection yield also had a negative relationship, B AYield = -2.361, p = 

.0065, and ME = -0.189, such that every decrease of 1 dollar per miles flown on 

connection routes, there was closely 19% more likely to have flights operated by 

LCCs. With respect to airport hubs, regardless of origin or destination, on routes 

with either departure from or arrivals to large, medium, and small hub, there was 

6.5% and 5.7% more likely to have at least one LCC operation, respectively. 

These positive relationships were statistically significant, B Origin (L&M&S – Nh&Np) = 

0.812, p <.0001, and ME = 0.065; B Dest (L&M&S – Nh&Np) = 0.716, p <.0001, and ME 

= 0.057. Taking three types of hub (large, medium, and small) into consideration, 

there was 2.2% more likely to have LCC presence on routes with origin as 

medium hubs, B Origin (M – L&S) = 0.268, p = .0145, and ME = 0.022. The same case 

happened for destination as medium hub at a slightly higher preset α = .06, B Dest 

(M – L&S) = 0.232, p = .0547, and ME = 0.019. Noticing that JMP by default utilizes 

unweighted effect coding for categorical variables such that the group mean of 

interest was interpreted by comparing to the unweighted average mean across all 

groups—the grand mean (Cohen et al., 2003).  
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Table 5 

 

Summary of Stepwise Logistic Regression for the Model of LCC Presence vs. Absence 

 Bi χ2 p 

Average 

Marginal Effectsb 

Null Model     

Constant -2.335 1,948.6 < .0001***  

Stepwise Modela     

Constant -5.113 34.81 <.0001***  

Number of connecting passengers 0.002 1.56 .2121 1.6e-4 

Number of carriers 1.709 104.04 <.0001*** 0.137 

Route type 1.311 21.96 <.0001*** 0.105 

Average market fare -0.010 52.20 <.0001*** -8e-4 

Origin airport (L&M&S – Nh&Np)  0.812 28.44 <.0001*** 0.065 

Destination airport (L&M&S – 

Nh&Np)  0.716 24.48 <.0001*** 0.057 

Average connection yield  -2.361 7.41 .0065** -0.189 

Origin airport (M – L&S) 0.268 5.98 .0145* 0.022 

Destination airport (M – L&S) 0.232 3.69 .0547 0.019 

Largest share proportion 1.155 2.78 .0954 0.093 

Origin airport (L – S) -0.226 2.31 .1287 -0.018 

Destination airport (L – S) 0.180 1.35 .2455 0.014 

-Log Likelihood in Null Model 1,015.07 

-Log Likelihood in Full Model 442.66 

Difference 572.41 

χ2(12) 1,144.82*** 

 

Note. N Training = 3,330. N Validation = 1,111. R2 Training = .5639. R2 Validation = .4337. 
 

aThe predictors of stepwise model are listed in the entry order. L = Large hub, M = Medium hub, S = Small 

hub, Nh = Non-hub, and Np = Non-primary airport. bJMP provided the average predicted probability of LCC 
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presence Pr (Y = 1 | X) = 0.088 and LCC absence Pr (Y = 0 | X) = 0.912. Average marginal effects = Pr (Y = 

1 | X) x Pr (Y = 0 | X) x Logistic Coefficients.  

*p < .05. **p < .01. ***p < .001 

 

Decision Tree 

 A decision tree is a hierarchical structure of variables in which the dataset 

is broken up into smaller groups (child nodes) from the initial root node (parent 

node) based on the criterion variable (dependent variable) in logical-based rules. 

As illustrated in Figure 2, the percentage of groups (levels) of the categorical 

response in each node is represented by the gray and white shades. For example, 

the gray represented the percentage of LCC-present routes and the white 

represented the percentage of LCC-absent routes. Each node is split into either 

two or more than two branches, which Neville and Ville (2013) referred to binary 

partitions and multiple-way partitions. Common splitting criteria for each node 

include Chi-square, Gini, and Entropy. By default, JMP Pro 13 use binary 

partition and Chi-square to build the decision tree. Chi-square statistic and its 

associated p-value were used to measure the dissimilarity in the proportions 

between the two split groups, LCC presence and absence. The lower the p-value, 

the bigger the difference between the groups. JMP adjusts the p-value to account 

for the number of splits by transforming to a log scale using the formula -

log10(adjusted p-value), which is called the Log Worth; the bigger the Log Worth 

value, the better the split is (Grayson et al., 2015). Chi-square and Log Worth are 

used to rank the predictors based on their importance in explaining the categorical 

response.  

 

Figure 2. Decision tree (Tufféry, 2011, p. 314). 
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Figure 3. The training R2 (blue) and validation R2 (red) with number of splits. 

Figure 3 showed the training R2 = .651 and the validation R2 = .424 with 

number of splits = 20. Table 6 reported the measures of how much a variable 

contributed to the decision tree model. One measure is the accumulated split 

statistic, χ2, and another measure is the portion of each predictor contributing to 

the explained variance of the dependent variable. With two times of splits and the 

accumulated χ2 = 673.28, the number of total passengers became the most 

important predictor in the model when accounting for 50.87% of the explained 

variance of LCC presence and absence. The number of carriers contributed the 

second largest portion after four splits and the accumulated χ2 = 361.96. Average 

connection yield, average market fare, route type, route length, and origin and 

destination airport added increments as least as 3% and as much as 5% to the 

explained variance of LCC presence and absence. Conversely, largest share 

proportion and number of the connecting passenger were the least important 

predictors in the model as they did not make any incremental contribution to the 

explained variance.  

Figure 4 showed the full graph of the tree growth for visualization after 20 

splits.  Combining with the leaf reports (Figure 5) that summarize separation 

conditions on each node, interpretations were represented. In view of the highest 

probability of LCC presence, 96.79% of time it was expected to have at least one 

LCC operation on routes that simultaneously required (a) the number of total 

passenger greater than or equal to 101 passengers, (b) the number of competing 

carriers fewer than 4, (c) the average market fare less than $263.97, (d) route type 

having the status of nonstop market, (e) destination airports being small or 

medium hubs, and (f) origin airports being none, small, or medium hubs. On the 

flipside, the highest probability of LCC absence was interpreted that 99.76% of 

time it was expected to have no LCC operation on routes that simultaneously 

required (a) the number of total passengers fewer than 101, (b) fewer 4 operating 
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carriers, (c) the number of total passengers fewer than 20, (d) origin airport 

functioning as GA or none hubs, and (e) fewer 3 operating carriers. In more 

simplified interpretation, if a route had fewer than 20 passengers in demand, 

fewer than 3 operating carriers, and arrivals from either GA or no hubs, 99.76% 

of time LCC operations were absent on that route.  

Table 6 

 

Summary of Variable Importance of the Decision Tree 

Term 
Number 

of Splits 
χ2  Portion 

Total passengers 2 673.280225  0.5087 

Number of carriers 4 361.964188  0.2735 

Average connection yield 3 62.5574332  0.0473 

Average market fare 2 60.7443507  0.0459 

Destination hub 3 45.236771  0.0342 

Route type 2 42.5253527  0.0321 

Route length 2 38.6484573  0.0292 

Origin hub 2 38.5024921  0.0291 

Largest share 0 0  0.0000 

Connecting passengers 0 0  0.0000 
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Figure 4. The decision tree view with the number of splits = 20. 

 

Figure 5. The leaf report of the decision tree. 

Model Comparison 

 Table 7 reported the measures of fit to assess two models in both training 

and validation datasets. For Entropy R2 and Generalized R2, values closer to 1 

indicate a better fit whereas for Mean -Log p, RMSE, Mean Absolute Deviation, 

and Misclassification Rate, smaller values indicate a better fit (SAS Institute Inc., 
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2016). Considering the prediction models for LCC presence and absence in the 

validation set, binary logistic regression generated a superior prediction 

performance over decision tree method across fitting measures.  

Table 7 

 

Summary of Fitting Measures of Data Mining Models 

Dataset 

Analysis 

Method N 

Entropy 

R2 Gen R2 

Mean 

-Log p RMSE 

Mean 

Abs 

Dev 

Miss 

Rate AUC 

Training 

Logistic 

Regression 3,330 0.5639 0.6373 0.1329 0.1862 0.0728 0.0381 0.9472 

Training Decision Tree 3,330 0.6508 0.7175 0.1064 0.1651 0.0553 0.0327 0.9597 

Validation 

Logistic 

Regression 1,111 0.4337 0.5026 0.158 0.2016 0.0775 0.0441 0.9108 

Validation Decision Tree 1,111 0.4241 0.4927 0.1607 0.1962 0.0691 0.0450 0.8851 

Note. Entropy R2 = McFadden Pseudo R2. Gen R2 = Generalized (Cox-Snell) R2. RMSE = Root mean square 

error. Mean Abs Dev = Mean absolute deviation. Miss rate = Misclassification rate. AUC = Area under the 

curve. 

 Apart from the model fitting measures, Receiver Operating Characteristics 

(ROC) curve and lift chart are reported for the classification study (i.e., the 

dependent variable is binary). ROC curve is comprised of sensitivity in the 

vertical axis and 1- specificity in the horizontal axis where:  

Sensitivity (Recall) = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒
=

 
𝑅𝑜𝑢𝑡𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝐿𝐶𝐶 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒

𝐴𝑙𝑙 𝑟𝑜𝑢𝑡𝑒𝑠 𝑜𝑓 𝐿𝐶𝐶 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
  

Specification = 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

 
𝑅𝑜𝑢𝑡𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑙𝑡𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝐿𝐶𝐶 𝑎𝑏𝑠𝑒𝑛𝑐𝑒

𝐴𝑙𝑙 𝑟𝑜𝑢𝑡𝑒𝑠 𝑜𝑓 𝐿𝐶𝐶 𝑎𝑏𝑠𝑒𝑛𝑐𝑒
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Figure 6. Receiver Operating Characteristics (ROC) curves of logistic 

regression (red) and decision tree (blue) on the validation set.  

 

 In the ROC graph, the vertical axis portrayed the proportion of LCC-

present routes that were correctly identified, and the horizontal axis portrayed the 

proportion of LCC-absent routes that were misidentified as LCC-present ones. It 

is noticing that the coordinates (0, 1) represented a perfect classification as it 

always correctly identifies LCC presence routes, contradictorily the coordinate (1, 

0) represented a flawed classification as it always misclassified LCC-absent 

routes as LCC-present routes. The dotted diagonal line represents a random 

guessing line, which is equivalent to flipping a fair coin to determine LCC-present 

and-absent routes. As such, the region beneath the dotted diagonal line is worse 

than random guessing while the closer to the coordinates (0, 1) the better it is. 

Figure 6 showed ROC graphs for the validation set, the curve of logistic 

regression in red was closer to the coordinate (0, 1) and thus better than that of the 

decision tree in blue.  

 The area under the curve (AUC) is another indicator for comparing ROC 

curves. As mentioned, the perfect classification curve passes through the 

coordinates (0, 1) such that AUC region equals 1. AUC for the diagonal line 

(random guessing line) is 0.5. Hence, a ROC with higher AUC is preferable to the 

one with a lower AUC. Table 7 and Figure 6 reported AUC for both models; 

AUC for logistic regression was 0.9108 and AUC for decision tree was 0.8851. 

The Chi-square test for the difference between the two AUC values. Table 8 

summarized the test results showing the AUC for logistic regression was 
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statistically significantly higher than AUC for the decision tree, χ2(1) = 4.17, p < 

.0412.  

Table 8 

 

Summary of Chi-square test for AUCs of logistic regression and decision tree in the 

validation set 

AUC Difference SE Lower 95% Upper 95% df χ2 p 

0.0257 0.0126 0.0010 0.0504 1 4.1697 0.0412* 

Note. AUC = Area under the curve. SE = Standard Error. AUC for 

logistic regression = 0.9108. AUC for decision tree = 0.8851. 

*p < .05 

Lift curve is another plot to display the predictive ability of a classification 

study. It plots the lift value in the vertical axis against the portion of the 

observations in the horizontal axis. Each portion represents a decile (10-

percentile) of the observations. The underlying idea is that each route was 

computed the predicted probability (posterior probability) of LCC presence and 

then sorted in descending order before being broken down to deciles. The lift 

value in the vertical axis was computed by the ratio of LCC-present routes only in 

that decile over the overall LCC-present routes. To interpret the lift curve in 

Figure 7, at the first decile (the coordinates (0.10, 6.5)), the expected number of 

routes having LCC presence was 6.5 over 100 routes. Similarly, at the second 

decile (the coordinates (0.20, 4)), for every 100 routes it was expected to have 4 

routes having at least one LCC operation. Such ratios were identical in both 

models, logistic regression and decision tree as both lift curves virtually coincided 

and converged.   
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Figure 7. Lift curves of logistic regression (red) and decision tree (blue) on 

validation set. 

 

Model Deployment 

 The Assess phase in SEMMA scheme returned the result in favor of 

logistic regression over the decision tree method for modeling the LCC presence 

in the U.S. domestic route. For the testing purpose, the logistic regression model 

was thus chosen to proceed with the testing dataset 1Q2018. Eight variables 

significant in the Model phase entered simultaneously into a logistic regression to 

examine the relationship. As Table 9 reported, the whole testing model was 

statistically significant, χ2(8) = 274.28, p <.0001. Fitting measures of the testing 

model were virtually identical to those of the training model. Furthermore, seven 

variables significant at the preset α = 0.5 in the training model, including number 

of carriers, route type, average market fare, origin airport (L&M&S – Nh&Np), 

destination airport (L&M&S – Nh&Np), average connection yield, and origin 

airport (M – L&S), were found to be significant again with the same direction 

sign of logistic coefficients. The variable significant at the preset α = 0.6 in the 

training model—destination airport (M – L&S)—was found nonsignificant at this 

stage.  
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Table 9 

 

Summary of Simultaneous Logistic Regression Estimates for 1Q2018 Model Testing 

of LCC Presence vs. Absence 

Simultaneous Modela Bi χ2 p 

Constant -2.21 14.30 .0002*** 

Number of carriers 0.903 25.78 <.0001*** 

Route type 1.307 8.52 0.0035** 

Average market fare -0.010 22.21 <.0001*** 

Origin airport (L&M&S – Nh&Np)  1.080 24.55 <.0001*** 

Destination airport (L&M&S – Nh&Np)  1.018 19.05 <.0001*** 

Average connection yield  -4.095 6.57 .0104* 

Origin airport (M – L&S) 0.389 4.63 .0314* 

Destination airport (M – L&S) 0.079 0.13 .7200 

-Log Likelihood in Null Model 293.80 

-Log Likelihood in Full Model 156.66 

Difference 137.14 

χ2(8) 274.28*** 

Note. N Testing = 1,094. Entropy R2 = .4668. Generalized R2 = .5336. Mean -Log p = .1432. 

RMSE = .1990. Mean Abs Deviation = .0803. Misclassification rate = .0521. 

 

aSeven variables significant at the preset α = 0.5 and one variable (Destination airport (M – 

L&S)) significant at the preset α = 0.6 in the stepwise logistic regression model were selected 

for the simultaneous model for testing. L = Large hub, M = Medium hub, S = Small hub, Nh = 

Non-hub, and Np = Non-primary airport. 

*p < .05. **p < .01. ***p < .001 

Discussion 

With respect to research question 1, the stepwise logistic regression 

yielded seven significant predictors in relation to LCCs presence and absence in 

the U.S. domestic routes. For every additional carrier commencing flights in a 

route, there was nearly 14% more likely to have at least one LCC present in that 

route. This finding might be rooted in LCCs’ cost advantage such that they tend to 

aggressively join head-to-head competitions to capture market share. It is noted 

that the respected competition might be affected by accommodating all 30 carriers 
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reported in the database, which in turn contained regional airlines that are feeding 

passengers to major airlines from spoke cities to hubs.  

On the nonstop market, the route was 10.5% more likely to have at least 

one LCC operation than the one under the condition of a connecting market. It 

makes sense that LCCs strategically launch point-to-point flights to connect cities, 

such itineraries are thus characterized as the nonstop market. Considering airfare-

related factors, for every decrease of average market fare by $100 in a flight route, 

there was 8% more likely to have at least one LCC operation in that route. If just 

taking connection routes into account, for every decrease of 1 dollar per miles 

flown, there was nearly a 19% greater likelihood to have at least one flight 

operated by LCC. Lower airfare is a clear clue as to the presence of LCCs in a 

route. The relationship is especially more intensive when observing unbundling 

pricing practices of ultra-LCCs (ULCCs) with bare fares in the market. 

On routes with either departure from or arrivals to large, medium, and 

small hub, there was 6.5% and 5.7% greater likelihood to have at least one LCC 

operation, respectively. It makes most sense when large, medium, and small hubs 

are designated to accommodate commercial scheduled flights with large 

transportation capability, while facilities in non-primary commercial service 

airports such as runway length and terminal capacity are primarily standardized 

for serving regional flights by small jets. When decomposing three types of hubs 

(large, medium, and small) for investigation, there was 2.2% and 1.9% greater 

likelihood to have LCC presence on routes with origin and destination airports as 

the function of medium hubs (significant at α = .06). This matches with 

“secondary airport” strategy of LCCs as they tend to move their operations to 

medium hubs for serving point-to-point flights as well as avoiding high fees, 

congestion in large hubs.   

With respect to research question 2, the decision tree model disclosed 

eight predictors contributing to the predictive model of LCC presence and 

absence in the U.S. domestic routes. More specifically, the number of total 

passengers was the most important predictor in the model when accounting for 

50.87% of the explained variance of LCC presence and absence. Followed by this 

was the number of carriers adding an incremental portion of 27.35% to the model. 

Airfare factors, route characteristics factors, and airport factors added increments 

from 3% to 5%.  

With respect to research question 3, both logistic regression and the 

decision tree consistently showed the significant relationships of the number of 

carriers, two airfare-related factors, route type, and two airport factors with LCC 

presence and absence in the U.S. domestic routes. On the validation set, model 

comparison tests unveiled a superior performance of logistic regression over the 
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decision tree in predicting the presence of LCCs in the network. The higher 

predictability of logistic regression was reflected in fitting measures, ROC curves, 

AUC comparison test, and Lift chart. Model testing was then deployed, showing 

stability and consistency of the logistic regression method.  

Conclusions 

In the aviation industry, predictive modeling has proven to be important 

and widely used in supporting decision-making. This study represented two data 

mining methods, logistic regression and decision tree to predict the presence of 

LCCs in the U.S. domestic network. Data in the period of 2016-2017 and 1Q2018 

from DB1B database revealed that market concentration was an important 

predictor positively related to LCC presence. This finding was somewhat 

contradictory to the conventional wisdom that a firm is more likely to do business 

in the monopolistic market with fewer competitors to leverage the bargaining 

power of suppliers. The study’s finding did not support Nguyen's and Nguyen's 

(2018, p. 112) finding saying that “on routes with at least one operations of a 

LCC, airlines were 6% less likely to make an entry decision.” Findings on both 

average market fare and average connection yield indicated the negative 

relationship with LCC presence. The findings were parallel with those in prior 

studies reporting that the market fare was lower in routes having the presence of 

LCCs than the average of the entire network (Bachwich & Wittman, 2017; Ben 

Abda et al., 2012). LCCs were more likely to appear on nonstop market by 

serving the nonstop flights connecting cities as opposed to flying to hubs. This 

finding concretely supported the “point-to-point” strategy aligning with the LCC 

business model (Belobaba et al., 2015; Vasigh et al., 2016). First finding on 

airport factor made the most sense when LCCs operations were more likely to be 

present in primary commercial airports (large, medium, and small hubs). Second 

finding on airport factor implied a shift of LCCs’ focus to medium hubs rather 

than maintaining their operations in large or small hubs. This finding was 

consistent with the secondary airport strategy of LCC business model (Ben Abda 

et al., 2012; Vasigh et al., 2016). The study’s findings have implications to 

activities in network planning of airlines and airports relative to understanding 

characteristics of the LCC operations. Enhancing the prediction on the presence of 

LCCs in a route could help airlines avoid head-to-head competition on airfare 

with LCCs. Airport personnel in an air service development department may gain 

insights about reallocating LCCs operations away from or to their airports.    

 The study had a limitation pertaining to the data integrity that we had no 

control over; that is, how the data were recorded and stored in the DB1B database. 

The delimitation of the study reflected on the data collection period of 2016-2017 

and 1Q2018, and thus similar studies conducted on different periods might not 

generate the same results. Other delimitations referred to our choices for number 
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of routes for sampling, handling data missing, removing outliers, coding 

techniques, and thus replicative studies using different techniques for data 

analysis might not get the same results.  

 Future studies should limit the dataset to major airlines truly involved in 

the competition. In certain routes, the competition level was somewhat distorted 

by counting operating carriers or regional carriers that are feeding passengers to 

hubs under the ticketing name of major airlines. This study failed to find the 

significant relationship of LCC presence with demand factors, which may be 

inconsistent with previous research. Future research before reconstructing the 

dataset should remove flight records in a route that have fewer than 90 passengers 

per quarter (Berry, 1990) or fewer than 260 passenger per quarter (Aguirregabiria 

& Ho, 2012),  as such traffic would be reflected more accurately in routes. 

Because of the sampling delimitation future research should expand the sampled 

population to include the full data set. 
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