
Journal of Digital Forensics, Journal of Digital Forensics, 

Security and Law Security and Law 

Volume 14 Number 2 Article 4 

6-30-2019 

Enhancing Forensic-Tool Security with Rust: Development of a Enhancing Forensic-Tool Security with Rust: Development of a 

String Extraction Utility String Extraction Utility 

Jens Getreu 
Taltech,Tallinn University of Technology 

Olaf Maennel 
Taltech, Tallinn University of Technology 

Follow this and additional works at: https://commons.erau.edu/jdfsl 

 Part of the Computer Law Commons, and the Information Security Commons 

Recommended Citation Recommended Citation 
Getreu, Jens and Maennel, Olaf (2019) "Enhancing Forensic-Tool Security with Rust: Development of a 
String Extraction Utility," Journal of Digital Forensics, Security and Law: Vol. 14 : No. 2 , Article 4. 
Available at: https://commons.erau.edu/jdfsl/vol14/iss2/4 

This Article is brought to you for free and open access by 
the Journals at Scholarly Commons. It has been 
accepted for inclusion in Journal of Digital Forensics, 
Security and Law by an authorized administrator of 
Scholarly Commons. For more information, please 
contact commons@erau.edu. 

(c)ADFSL 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/232602725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol14
https://commons.erau.edu/jdfsl/vol14/iss2
https://commons.erau.edu/jdfsl/vol14/iss2/4
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/jdfsl/vol14/iss2/4?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/


ENHANCING FORENSIC-TOOL
SECURITY WITH RUST: DEVELOPMENT

OF A STRING EXTRACTION UTILITY
Jens Getreu, Olaf Maennel

Taltech, Tallinn University of Technology
Ehitajate tee 5

19086 Tallinn, Estonia

ABSTRACT

The paper evaluates the suitability of the Rust ecosystem for forensic tool development. As
a case study, a forensic tool named Stringsext is developed. Starting from analyzing the
specific requirements of forensic software in general and those of the present case study, all
stages of the software development life-cycle are executed and evaluated.Stringsext is a re-
implementation and enhancement of the GNU-strings tool, a widely used program in forensic
investigations. Stringsext recognizes Cyrillic, CJKV East Asian characters and other scripts
in all supported multi-byte-encodings while GNU-strings fails in finding these in UTF-16 and
other encodings. During the case study it has become apparent that the Rust ecosystem
provides good support for secure coding principles and unit testing. Furthermore, the bench-
marks showed a satisfactory performance of the resulting Stringsext binaries comparable to
the original C version.

Keywords: Forensic analysis, string search, multi-byte encoding, Rust language,
Stringsext-tool

1. INTRODUCTION

Human interaction with electronic devices
leaves traces in their electronic memory. In
the age of cloud computing most human in-
teraction triggers requests to distant servers
leaving traces not only in their log files, but
also in many intermediate network devices.
Due to the cross-linked nature of computer
systems the data that needs to be taken into
consideration when investigating a crime is
enormous. In this huge amount of informa-
tion the investigator has to find those spe-
cific bits of information constituting digital
evidences. In the domain of digital forensics

an electronic trace (observation) with a well-
known cause-effect-relationship between the
observation and the human action causing
it (activity), is a so called artefact. For
the sake of simplicity we present here a
rather simplistic view associating univocally
one trace (artefact/observation) with only
one possible cause/activity. In the physical
world, one trace might have several possi-
ble causes which cannot be excluded a pri-
ori. For this reason, modern forensics fa-
vors the Likelihood Ratio approach, in which
the degree of support of the observations
for the hypotheses is considered, providing a
strength of evidence (diagnostic value) that

46



JDFSL V14N2 Enhancing Forensic-Tool Security with Rust

is relative to the hypotheses tested. It em-
bodies any “item of interest that helps an in-
vestigation move forward.” (Harichandran,
Walnycky, Baggili, & Breitinger, 2016, p.
125)1.

Forensic examiners, the law enforcement
personnel who deal with digital evidence,
face inter alia two challenges: to collect and
to preserve the huge amount of data that
may be related to a crime and to search
and detect artifacts in the collected data.
The latter aspect implies the so called string
search which is useful when dealing with
unknown binary data. Most binary data
contain human readable character sequences
called strings. A very commonly used pro-
gram to extract strings from a binary data
is the so called GNU-strings program. Al-
though still widely used, GNU-strings has
only a very rudimentary support for multi-
byte encodings such as Unicode. Further-
more, it was subject several to memory
safety vulnerabilities which exclude the han-
dling of potentially harmful forensic data.
The software tool Stringsext, developed in
this present work, is made for same purpose.
The new development is designed to over-
come both shortcomings. Where possible, it
maintains GNU-strings’ user-interface.

In the following section we analyze gen-
eral tool requirements in digital forensics.
Together with the shortcomings of the orig-
inal GNU-strings tool, it becomes obvious
that the C++ programming language does
not satisfy the indispensable security re-
quirements in the field of forensic software.
The remaining sections show how the Rust-

1Cf. Harichandran (Harichandran et al., 2016,

language mitigates them and what should be
observed during implementation.

2. TOOL

REQUIREMENTS IN

DIGITAL FORENSICS

2.1 Multi-byte character
encoding support

Like in other established forensic disciplines
the forensic soundness and reliability of dig-
ital evidence depend on the validity and cor-
rectness of the forensic software used in ex-
amination. In other words, to guarantee that
the digital evidence is forensically sound, all
tools used to collect, preserve and analyze
digital evidences must be validated. Tool
validation can also be formally required by
standards like the ISO 17025 Laboratory Ac-
creditation standard.

Validation is the confirmation by examina-
tion and the provision of objective ev-
idence that a tool, technique or proce-
dure functions correctly and as intended
(Craiger, Swauger, Marberry, & Hen-
dricks, 2006, p. 92).

One way of establishing a set of requirements
for a new forensic tool is to analyze how sim-
ilar existing tools are validated. Beckett and
Slay (Beckett & Slay, 2007) propose a func-
tionality oriented validation method called
Model of tool neutral testing. Instead of test-
ing if a software product meets all its re-
quirements, an independent set of forensic
functions is defined and later tested. The
digital forensic discipline can be broadly de-
fined in terms of the key functions Iden-
tification, Data Preservation, Data Analy-
sis and Presentation of Digital Evidence.
Each key function is further divided into
subcategories. For example Data Analysis

p. 131) who proposed a more formal definition: A 
Curated (digital) Forensic Artefact (CuFA) “must 
have evidentiary value in a legal proceeding, must be 
created by an external force/artificially, must have 
antecedent temporal relation/importance and must 
be exceptional (based on accident, rarity, or personal 
interest)[...]”.

Page 47 c© 2019 ADFSL



Enhancing Forensic-Tool Security with Rust JDFSL V14N2

breaks down into: Searching, File Render-
ing, Data Recovery, Decryption, Identifica-
tion, Processing, Temporal Data and Pro-
cess Automation. The first item searching
relates to finding and locating information
of interest in digital memories. Form a func-
tional point of view the searching falls into
the searching domain (where), the searching
mode (how) and the searching target (what).
This breakdown of forensic functions into de-
tailed categories allows to decouple the val-
idation procedure from the implementation
of the forensic tool itself. Based on this cat-
egorization, independent test environments
are set up for each specific function. For ex-
ample, a test may certify if the software is
able to run a fuzzy search for strings in the
unallocated disk space.

Beyond validation, the categorization of
forensic functions is also helpful to define
requirements for improvement existing tools
— in our case GNU strings. For exam-
ple, Searching can be further classified into
groups as shown in the Figure 1 (Beckett
& Slay, 2007, p. 17). The leaves in the
diagram list typical capabilities a Search-
ing-software can implement. For example
the subcategory “Character encoding” illus-
trates the main deficit of GNU-strings as it
supports only ASCII encoding. In a global
cyberspace, forensic tools must identify a
multitude of encodings. This leads us to the
main motivation and requirement of String-
sext : multibyte character encoding support.

The functionality oriented validation can
be classified as “black box testing” examin-
ing functionality without any knowledge of
the internal implementation, even without
having access to the source code. Its advan-
tage is, that it allows to reuse the test envi-
ronment thus reducing costs. Black box test-
ing is sometimes also referred as “behavioral
testing” as it feeds the tool with known test
case data and observes if the tool outputs
the expected results. In the context of this

work black box testing is used to assert that
the developed tool Stringsext deals correctly
with big real-world input data: Stringsext
has been designed to produce, as a special
case, bit-identical output to that of GNU-
strings. This way the comparison of the out-
put data of both tools allowed to confirm
that stringsext is working correctly when
dealing with big data.

In addition to the above black box test-
ing, Rust’s build in test harness (unit test) is
used in conjunction with the test driven de-
velopment in order to guarantee maximum
security and correctness of the developed
tool.

2.2 Security

“Make it hard for them to find you and im-
possible for them to prove they found you”.
With this concise word Berinato (2007) char-
acterizes the relation between the criminal
and the forensic investigator. In digital
forensics this “hide-and-seek” game might
soon take a new dimension: Eggendorfer
(2016) stresses with good reasons that foren-
sic tools are software too and therefor vul-
nerable to attacks: A vulnerability found
in 2017 in a common forensic tool En-
Case Forensic Imager demonstrates exem-
plary the pertinence of the risk (Consult,
2017):

By writing a manipulated LVM2
partition (a hard disk format com-
monly used for Linux servers) on
a storage device, an attacker could
— if the device were ever to be an-
alyzed using EnCase Forensic Im-
ager — take over an investiga-
tor’s machine. When the inves-
tigator tries to read the device,
EnCase Forensic Imager crashes
— unbeknownst to the investigator,
however, a lot more is happening.
Through a buffer overflow security

c© 2019 ADFSL Page 48



JDFSL V14N2 Enhancing Forensic-Tool Security with Rust

Figure 1. The search target mapping, cf. (Beckett & Slay, 2007, p. 8)

flaw, EnCase Forensic Imager can
be tricked into executing data read
from the storage device. Afterwards
the code provided by the attacker
has full control of the investiga-
tor’s machine and can be used by
the suspect to manipulate evidence
(Consult, 2017).

its potential impact:

• The adversary may be warned about an
ongoing investigation.

• The adversary may gain control of the
investigator’s machine and alter evi-
dences.

TheStringsext-project addresses this risk by
choosing the programming language Rust.
Rust offers some outstanding security guar-
antees which are presented in Section 4.

2.3 Code efficiency

The searching domain in forensic investiga-
tions is often as large as the seized data-
carrier. Nowadays hard-disk images hold
several TiB of data. Memory images of
the RAM are smaller, but still some GiB in
size. In order to address so big search do-
mains, forensic software must operate very
efficiently. This is why forensic software

Confronted with this vulnerability report, 
the vendor downgraded the issue: “The ex-
ploit SEC Consult claims to have found is 
an extreme edge case, much like the theoret-
ical alerts they tried to promote in Novem-
ber. [...] We do not consider this claim to 
be serious and it will not impact the perfor-
mance of our products (Consult, 2017).” For 
the user it remains unclear if and when the 
vulnerability gets fixed. While such a reac-
tion would have been inconceivable in other 
software domains, the risk of forensic tool 
exploitation is still largely neglected despite

Page 49 c© 2019 ADFSL



Enhancing Forensic-Tool Security with Rust JDFSL V14N2

is often programmed in C or C++. But
not only the programming language matters:
Efficient code also requires carefully cho-
sen abstractions, efficient algorithms avoid-
ing unnecessary data-copies and program-
loops. Concerning the choice of the pro-
gramming language we define the following
requirements: The programming language
should:

• allow a fine control over pointers and
memory allocation,

• offer zero cost abstractions,

• have no or a minimal runtime system.

The above motivates the choice of develop-
ing Stringsext in Rust. Chapter 4 shows how
Rust meets the above requirements by its
memory safety guarantees and zero cost de-
sign goal.

3. GNU-STRINGS ’

SHORTCOMINGS IN

FORENSICS
This section first analyzes GNU-strings’
limitations concerning multi-byte-encodings
and international scripts. Based upon this
we derive a set of additional requirements
for Stringsext. Many forensic practitioners
use the GNU program strings, hereafter re-
ferred as GNU strings, to get a sense of the
functionality of an unknown program by ex-
tracting human readable strings from binary
data. Of special interest are for example
strings containing URLs to malicious sites,
often an indicator of malware activity. But
also, user prompts, error messages, and sta-
tus messages can give valuable hints.

3.1 International character
encodings

As discussed above the main motivation for
developing Stringsext is the missing multi-

byte character encoding semantics in GNU-
strings. GNU-strings encoding support con-
sists of a rudimentary filter accessed with the
option --encoding. Please consult the man-
ual page for more details. How well does
GNU-strings detect Unicode? The Figure
2 shows the content of a text file chosen
as test case. To find out how well GNU

Figure 2. Test case international character
encodings

Strings deals with different Unicode encod-
ings, the text-file is then is converted into
UTF-8, UTF-16LE, UTF-16BE, UTF-32LE and
UTF-32BE, each encoding in one file. In or-
der to observe GNU-strings Unicode detec-
tion capabilities, all the test-files are then
searched for valid graphic strings with the
command strings using all possible vari-
ation of its encoding filter. The Figure 3
shows exemplary GNU-strings output for a
UTF-16 little endian encoded input.

Figure 3. GNU-strings with UTF-16LE en-
coded input

Results: UTF-8 is the only encoding in
which GNU strings is able to find interna-
tional characters. The Figure 3, chosen as
an example, shows that with UTF-16 input,
GNU strings fails to recognize all non-ASCII
characters. The same holds true for UTF-32

and most other encodings: This limitation is

c© 2019 ADFSL Page 50



JDFSL V14N2 Enhancing Forensic-Tool Security with Rust

binutils 2.24 and earlier allows
remote attackers to cause a denial
of service (crash) and possibly
execute arbitrary code via crafted
section group headers in an ELF
file.

Zalewski headlined his bug report “Don’t
run strings on untrusted files.” Needless to
say that this advice can not be followed in
the context of a forensic investigation. In
the meantime the bug was fixed but users
remain confused and bewildered.

Of particular importance is that the above
bugs are part of a vulnerability class related
to memory safety problems. GNU strings
is written in C, a language whose abstrac-
tions can not guarantee memory safety. In
order to exclude potential vulnerabilities of
the same kind from the outset, Stringsext
was developed in the Rust programming lan-
guage.

4. THE RUST

PROGRAMMING

LANGUAGE

In the Section 2 we showed that the re-
quirements code efficiency and security are
of paramount importance. This section il-
lustrates how Rust supports these require-
ments with its zero cost abstractions and its
guaranteed memory safety (The-Rust-Team,
2019) motivating the choice of implementing
Stringsext in Rust.

4.1 Memory safety

All memory-related problems in C and C++
come from the fact that C programs can
unrestrainedly manipulate pointer to vari-
ables and objects outside of their memory
location and their lifetime. The Table 1
shows a selection of most common memory
safety related vulnerabilities (Corporation,

of particular importance in forensic investi-
gations: The Microsoft-Windows operating 
system handles Unicode characters in mem-
ory as 2 byte UTF-16 words. As a result 
when dealing with Microsoft-Windows mem-
ory images, GNU-strings is not able to de-
tect any international characters! It should 
not be forgotten that GNU-strings is not de-
signed to analyze multi-byte encodings in 
general. This is why other very common 
encodings e.g. big5 or koi8-r are not sup-
ported at all even though they are widely 
used. The above-outlined limitations leads 
to Stringsext ’s main requirement: character 
encoding support.

3.2 Secure coding

In the narrow sense, “secure coding” is 
rather a design goal than a functional re-
quirement. Secure coding denotes the prac-
tice of developing computer software by re-
ducing the accidental introduction of secu-
rity vulnerabilities by preventing coding er-
rors or discovering and eliminating security 
flaws during implementation and testing. 
From the secure coding point of view the re-
quirement character encoding support is the 
most critical: The NIST National Vulnera-
bility Database lists under the heading “char-
acter encoding” 22 vulnerabilities. Not only 
new complex forensic software is affected by 
vulnerabilities. It also concerns other well-
established products: The tool GNU-strings, 
part of the GNU binutils collection, became 
publicly available in 1999 (Cygnus-Solutions, 
1999). Today it has reached the notable age 
of 17 years. GNU-strings is a comparatively 
small program with 724 lines of code only. It 
is all the more surprising that in 2014 the se-
curity researcher Zalewski (2014) discovered 
a serious security vulnerability CVE-2014-
8485 :

The setup group function in 
bfd/elf.c in libbfd in GNU

Page 51 c© 2019 ADFSL



Enhancing Forensic-Tool Security with Rust JDFSL V14N2

2016). Memory safe languages like Java
do not give programmers direct and uncon-
trolled access to pointers. For example, in
Java memory safety is guaranteed through
a resource costly runtime and a garbage col-
lector. The related additional costs in terms
of runtime resources exclude programming
language like Java for most forensic tool de-
velopment.

For many years program efficiency and
memory safety seemed to be an insurmount-
able discrepancy. Now, after 10 years of
development, a new programming language
called Rust promises to cope with this bal-
ancing act. Rust ’s main innovation is the
introduction of semantics defining data own-
ership. This new programming paradigm
allows the compiler to guarantee memory
safety at compile-time. Thus, no resource
costly runtime is needed for that purpose.
In Rust most of the weaknesses listed in Ta-
ble 1 are already detected at compile time.
Moreover, the Rust compiler guarantees that
none of these weaknesses can result in an un-
defined system state or provoke data leakage.

Rust ’s main innovation is the introduc-
tion of new semantics defining ownership
and borrowing. Put in simplified terms, they
translate to the following three rules which
Rust’s type system enforces at compile time:

1. All resource (everything that can be
bound to a variable, e.g. integers, vec-
tors, structures) has a unique owner.

2. Others can borrow from the owner
(technically borrowing means that an-
other scope sets a pointer to the owner’s
resource).

3. The owner cannot free or mutate the re-
source while it is borrowed.

By enforcing the above rules Rust organizes
how resources are shared among different
scopes. Memory problems occur for instance

CWE ID Name

119 Improper Restriction of Operations
within the Bounds of a Memory
Buffer

120 Buffer Copy without Checking Size
of Input (’Classic Buffer Overflow’)

125 Out-of-bounds Read
126 Buffer Over-read (’Heartbleed bug’)
122 Heap-based Buffer Overflow
129 Improper Validation of Array Index
401 Improper Release of Memory Before

Removing Last Reference (’Memory
Leak’)

415 Double Free
416 Use After Free
591 Sensitive Data Storage in Improp-

erly Locked Memory
763 Release of Invalid Pointer or Refer-

ence

Table 1. Common weaknesses in C/C++
that affect memory

when a resource is referenced by multiple
pointers (aliasing) and when more than one
pointer writes to the same memory at the
same time (mutation). In contrast to other
languages, Rust ’s semantics allow the type
system to ensure at compile time that simul-
taneous aliasing and mutation mutually ex-
clude each other (cf. Table 2). As the check
is performed at compile-time, no run-time
code is necessary. Furthermore, Rust does
not need a garbage-collector: when owned
data goes out of scope it is immediately de-
stroyed.

The following code samples (The-Rust-
Project-Developers, 2017, Sec. 3.2) illus-
trate how the Rust compiler detects non-
obvious hidden memory safety issues. The
function as str returns a pointer to a stack
allocated resource s that is freed at the end
of the function: we find ourselves with a
“Use after free” condition. The compiler
aborts with the error message s does not

live long enough.

c© 2019 ADFSL Page 52



JDFSL V14N2 Enhancing Forensic-Tool Security with Rust

Resource
sharing

Alias-
ing

Muta-
tion

Example

move
owner-
ship

no yes let a=b

shared
borrow

yes no let a=&b

mutable
borrow

no yes let a=&mut b

Table 2. Resource sharing in Rust

fn as_str(data: &u32) -> &str {
let s = format!("{}", data);

return &s

}

Here the corrected memory safe code per-
forming a byte-copy at the end of the func-
tion.

fn as_str(data: &u32) -> String {
let s = format!("{}", data);

return s

Improper Validation of Array Index” (cf.
Table 3 (Corporation, 2016)).

CWE ID Name

119 Improper Restriction of Operations
within the Bounds of a Memory
Buffer

125 Out-of-bounds Read
129 Improper Validation of Array Index

Table 3. Common weaknesses in C/C++
affecting memory avoidable with iterators
(Corporation, 2016)

In addition to traditional imperative loop
control structures, Rust offers efficient iter-
ation with functional style iterators. Like
in Haskell iterators are lazy and avoid al-
locating memory for intermediate struc-
tures (you only allocate just when you call
.collect()). Iterators considerably en-
hance the robustness and safety of pro-
grams. They enable the programmer to iter-
ate through vectors without explicitly nam-
ing neither the index nor its bounds, thus
avoiding common mistakes. The Figure 4
shows an example.

fet p: Vec<u8> = s.into_bytes();//plaintext

let mut c: Vec<u8> = vec![]; //ciphertext

for (cypherb, keyb) in p.iter()

.zip(key.iter().cycle().take(p.len())){
c.push(*cypherb ^ *keyb as u8);

}

Figure 4. Vigenère cipher in Rust

4.3 Zero-Cost Abstractions

It is the language design goal Zero-Cost Ab-
stractions that makes the C/C++ language
so efficient and suitable for system program-
ming. It means that libraries implementing
abstractions, e.g. vectors and strings, must
be designed in a way that the compiled bi-
nary is as efficient as if the program had been

}

The push() method in line 3 of the next ex-
ample causes the backing storage of data to 
be reallocated. As a result we have a dan-
gling pointer vulnerability! Again, the Rust 
compiler detects the error and code does not 
compile.

let mut data = vec![1, 2, 3];
let x = &data[0];
data.push(4);

println!("{}", x);

Here the corrected memory safe version that 
compiles:

let mut data = vec![1, 2, 3]; 
data.push(4);

let x = &data[0];
println!("{}", x);

4.2 Iterators

A very common group of programming mis-
takes is related to improper handling of in-
dexes especially in loops, e.g. “CWE-129:

Page 53 c© 2019 ADFSL



Enhancing Forensic-Tool Security with Rust JDFSL V14N2

written in Assembly. This is best illustrated
with memory layouts: Figure 5 shows a vec-
tor in Rust. Its memory layout is very sim-
ilar is to a vector in C++. In contrast, the

Figure 5. Memory layout of a Rust vector

memory safe language Java enforces a uni-
form internal representation of data. In Java
a vector has 2 indirections instead of 1 com-
pared to Rust and C/C++ (cf. Fig. 6). As
the data could be represented in a more effi-
cient way in memory, we see that Java does
not prioritize Zero-Cost-Abstraction as pri-
mary objective.

Figure 6. Memory layout of a Java vector

5. USE CASE:

DEVELOPMENT OF

THE

STRINGSEXT -TOOL
In the Section 2 we have analyzed the spe-
cial requirements for tools in digital foren-
sics: code efficiency and security. The Sec-
tion 4 showed that Rust’s core properties
zero cost abstractions and memory safety in
theory meet well our requirements.

But how well is the Rust ecosystem suited
for forensic tool development? In order to
evaluate also the practical aspects of Rust,

the tool Stringsext (Getreu, 2018)(Getreu,
2017) was developed. The technical chal-
lenges such as concurrent batch processing of
multi-byte character streams revealed to be
sufficiently complex, thus allowing us to de-
duce general recommendations for forensic-
tool development.

5.1 Encoding support

The initial motivation for developing String-
sext were the various shortcomings of GNU-
strings especially when it comes to han-
dle international character encodings. Does
Stringsext support foreign scripts better? Is
it as fast?

To evaluate Stringsext ’s capabilities to
handle international scripts with Unicode,
we choose the same input text file (cf. Fig-
ure 2) we used with GNU-strings in the Sec-
tion, 3.1. Stringsext ’s output (cf. Figure
7) confirms that all international characters
are found correctly. Furthermore, Figure 8
illustrates how Stringsext ’s formats its out-
put when it operates in simultaneous multi-
encoding scanning mode.

Stringsext ’s unique Unicode range restric-
tion feature has shown itself to be of use in
practice: The Microsoft-Windows operating
system handles Unicode characters in mem-
ory as 2 byte UTF-16 words. Thus, search-
ing for UTF-16 encoded strings in memory
images is common practice in forensics. This
is more difficult as expected, as almost ev-
ery random byte combination is assigned to
a valid Unicode code point. Without further
measures such a search leads to many false
positives and unusable results. The offered
solution by Stringsext allows the user to re-
strict the Unicode-range: For example, the
Unicode-range U+400-U+7FF captures only
strings in Cyrillic, Armenian, Hebrew, Ara-
bic and Syriac. This feature is particularly
useful when dealing with UTF-16 in memory
images.

c© 2019 ADFSL Page 54



JDFSL V14N2 Enhancing Forensic-Tool Security with Rust

Figure 7. Stringsext’s output with UTF-16LE

encoded input

Figure 8. Stringsext’s output in multi-

Figure 9. Data processing and threads

5.3 Algorithm

Batch processing of multibyte character
streams turned out to be more difficult than
expected. As we want to keep the scan-
ning process as stateless as possible, we in-
troduced overlapping windows: This allows
reading beyond the memory page’s edge in
case a found string terminates in the next
memory page. However, strings can be so
long that you can’t but cut them somewhere.
In this case we need to make sure not to cut
in the middle of a multi-byte character which
can be up to 6 bytes long. As a result a scan-
ner is not completely stateless: between each
scanner run the position where the last run
stopped and a flag indicating the forced cut
of a string is passed.

The scanner decodes the input stream
in two phases: first it uses the Encod-
ing-crate library to identify valid code se-
quences and transcodes them into valid
UTF-8 strings. Such a valid string may con-
tain non-graphical and graphical characters.
As we are only interested in the latter, a sec-
ond filter extracts graphical substrings while
meeting additional criteria, e.g. minimum

encoding scanning mode

5.2 Concurrency

The Figure 9 shows the data flow in String-
sext. All scanner instances as well as 
the merger-printer are designed as threads. 
Rust uses OS-level threads and its type 
and ownership model guarantees the absence 
of data races. Rust supports by default 
two models of inter-thread communication: 
shared memory and message channels.

Stringsext first cuts the input stream into 
overlapping slices of shared read-only mem-
ory pages, which are then fed into the dif-
ferent scanner threads. Each scanner oper-
ates independently in batch. It runs through 
the input-slice, searches for valid string se-
quences, collects them in a list and finally 
sends the list to a merger-printer -thread 
though a dedicated message channel. This 
thread collects all lists from the different 
scanners and merges them into the final out-
put stream.

Page 55 c© 2019 ADFSL



Enhancing Forensic-Tool Security with Rust JDFSL V14N2

length or Unicode-range restriction rules.

6. DEVELOPMENT

PROCESS

EVALUATION
Besides the contribution of the new tool
Stringsext to the forensic community a more
general consideration is of scientific interest:
Seeing that Rust is a very young program-
ming language: how well is the Rust ecosys-
tem suited for forensic tool development?

Forensic tools have to fulfill stringent re-
quirements concerning their quality: In gen-
eral, huge amount of data has to be pro-
cessed which leads to most demanding re-
quirements in terms code efficiency (cf. Sec-
tion 2.3). Furthermore, the data to be ana-
lyzed is potentially dangerous: it may con-
tain malicious payload targeting common
vulnerabilities (cf. Section 2.2). Finally,
in order to fulfill legal requirements forensic
tools must be extensively tested.

The present case study confirms our initial
hypothesis that Rust meets these require-
ments: Rust, as system programming lan-
guage, is designed for code efficiency. In ad-
dition Rust guarantees memory safety, the
cause for a common category of vulnerabil-
ities. It’s build in unit testing feature sup-
ports software verification as defined in the
Section 2.1.

Memory safety is checked at compile time
by Rust’s borrow checker: When a Rust
source code compiles, the resulting binary
is guaranteed to be memory safe. In conse-
quence, such a binary is immune to mem-
ory safety related attacks: e.g. out-of-
bounds read, buffer over-read, heap-based
buffer overflow, improper validation of array
index, improper release of memory before re-
moving last, double free, use after free. As
Stringsext and all its used libraries are solely
Rust components, Stringsext is memory safe.

We compared the code efficiency of GNU-
strings implemented in C and Stringsext
implemented in Rust: When Stringsext is
run in ASCII-only mode, both produce
bit-identical output. The field experiment
yielded that even though Stringsext’s 2.4
times slower, the speed is within the same
order of magnitude. However, Stringsext’s
design implies much more complex compu-
tations, hence the result is not surprising.

How about the efficiency of Rust’s ab-
stractions and its overall performance? A
good estimation is to compare benchmarks
of small and simple programs. Too com-
plex programs should be avoided for this
purpose because variations of the program-
mer’s skills may bias the result. Accord-
ing to the “Computer Language Bench-
mark Game” (Fulgham & Gouy, 2019) Rust
and C/C++ have similar benchmark results,
which confirms our above measurements.

Forensic tools have to operate on many
architectures. Here enters Rust’s cross-
compiling feature on scene. As Rust
uses the LLVM framework as back-end, it
is available for most platforms. rustc

--print target-list lists 80 compiler tar-
gets (rustc version 1.27).

As discussed above, Rust’s memory safety
guarantee is a huge improvement in terms
of security because a whole category of po-
tential vulnerabilities can be ruled out from
the outset. However, memory safety does
not necessarily mean there is no bug. Be-
side the security aspects discussed above,
the correctness of forensic software is crucial
(cf. Section 2.1). It is clear that the over-
all correctness of a program also depend on
the correctness of every library used. Hence,
the question arises whether the Rust ecosys-
tem is mature enough to meet the ambitious
requirements of forensic software. Indeed,
compared to C, Rust’s libraries are relatively
young. Here again extensive unit testing re-
vealed to be a helpful diagnostic method: for

c© 2019 ADFSL Page 56



JDFSL V14N2 Enhancing Forensic-Tool Security with Rust

no guaranty that the compiled code is mem-
ory safe. Not only that the lack of memory
safety is one of the principal causes for most
software vulnerabilities, forensic software is
particularly exposed to such risks as it pro-
cesses binary data of unknown origin con-
taining all kinds of malware. As an alterna-
tive to C and C++, the relatively new pro-
gramming language Rust offers guarantied
memory safety by design, while being as fast
as C. The match-making of general forensic
tool requirements and the theoretical prop-
erties of the Rust programming language
makes it an ideal alternative to the hitherto
dominant programming language C++. But
a general recommendation for a shift in pro-
gramming practises can not be deduced from
theoretical considerations alone: this is why
we developed the Stringsext-Software as use
case.

The use case “development of the String-
sext-tool” shows that Rust was a good choice
for the present project, even though batch
processing of multi-bytes character streams
revealed to be far more complex than ex-
pected. Additionally, concurrent program-
ming in Rust posed a hurdle at the begin-
ning. Fortunately, the friendly Rust com-
munity helped to overcome occasional tech-
nical obstacles quickly. In addition, for a
not so experienced Rust programmer it is
reassuring to know that when a complex
piece of code finally compiles, it is memory
safe. The same applies to common settings
when a programmer has to refactor existing
code. Rust clears away doubts like “Do I free
the memory at the right moment? Is this
pointer still valid?” Furthermore, Rust is
especially suitable for bigger projects where
several programmers contribute to the same
code. And this is particularly true when de-
veloping forensic software with its high qual-
ity standards.

It has to be noted though that the Rust
ecosystem is still very young and bugs in

example one of the first versions 0.4.16 of the 
kmerge function, part of the itertools li-
brary used in Stringsext, reversed under rare 
conditions the first and second finding. Unit 
testing revealed a bug in itertools. The 
programmer responded quickly. It took only 
some days after its appearance that the bug 
was fixed with pull request #135. So far this 
was the only time we encountered a bug in 
the used libraries. One conclusion we draw 
from this experience is, that young libraries 
are more likely to have bugs than estab-
lished ones. It cannot be emphasised enough 
that diligent unit testing helps to find most 
bugs at early state. However, unit testing 
do not help against memory safety related 
vulnerabilities, which are typical for C and 
C++ programs and which can persist in soft-
ware for decades. Taking into account these 
benefits and drawbacks we largely prefer ac-
cepting the greater likelihood of manageable 
bugs related to young Rust libraries, than 
the uncertainty of hidden memory safety re-
lated vulnerabilities typical for C and C++. 

Finally, we recognize the benefits of unit 
testing throughout this work. For this reason 
we chose for this project the test driven de-
velopment method where unit testing is the 
key element. Contrary to other methods, in 
test driven development unit tests and the 
to be tested code is always programmed by 
the same person, which fitted well the set-
ting of this project. However, other methods 
may be as suitable depending on the organ-
isational structure of the programmer team.

7. CONCLUSION
We have shown that forensic tool develop-
ment is subject to special requirements in 
terms of memory safety and code efficiency. 
Both are inherent properties of the used pro-
gramming language and its ecosystem. Even 
though the language design of C and C++ 
allows generating very efficient code, there is

Page 57 c© 2019 ADFSL



Enhancing Forensic-Tool Security with Rust JDFSL V14N2

new libraries are nothing uncommon. Fortu-
nately, the library maintainers are very re-
sponsive and a bug is usually fixed within
days. Here again unit testing becomes
handy. It does not only find bugs in our
own code at early stage, it also helps to iden-
tity bugs in external libraries. Used together
with the test driven development method,
the test code and the to be tested code can
be validated in one go.

Stringsext is currently in production state
and can be used in forensic investigations
as a GNU strings replacement. It is espe-
cially useful where GNU-strings fails: it al-
lows finding UTF-16 multi-byte characters
in memory images and supports other multi-
byte encodings like big5 or koi8-r.

REFERENCES

Beckett, J., & Slay, J. (2007). Digital
forensics: Validation and verification
in a dynamic work environment. In
System Sciences, 2007. HICSS 2007.
40th Annual Hawaii International
Conference (p. 266a-266a). IEEE.

Berinato, S. (2007, June). The Rise of Anti
Forensics.
http://www.csoonline.com/ article/
2122329.

Consult, S. (2017, May). Chainsaw of
Custody: Manipulating forensic
evidence the easy way.

Corporation, M. (2016). CWE - Common
Weakness Enumeration, a
Community-Developed Dictionary of
Software Weakness Types.
https://cwe.mitre.org/.

Craiger, P., Swauger, J., Marberry, C., &
Hendricks, C. (2006). Validation of
digital forensics tools. Digital crime
and forensic science in cyberspace.
Hershey, PA: Idea Group Inc, 91-105.

Cygnus-Solutions. (1999, May). Log
message: Sourceware import.

https://sourceware.org/ ml/
binutils-cvs/ 1999-q2/
msg00000.html.

Eggendorfer, T. (2016, July). IT forensics.
Why post-mortem is dead. Cyber
Security Summer School 2016: Digital
Forensics, Technology and Law.
Tallinn University of Technology.

Fulgham, B., & Gouy, I. (2019, February).
Computer Language Benchmarks
Game: C++ versus Rust.
https://benchmarksgame-
team.pages.debian.net/
benchmarksgame/ faster/ rust.html.

Getreu, J. (2017). Forensic-Tool
Development with Rust (Unpublished
doctoral dissertation). Tallinn
University of Technology, Tallinn.

Getreu, J. (2018). Stringsext, a GNU
Strings Alternative with
Multi-Byte-Encoding Support. Tallinn.

Harichandran, V. S., Walnycky, D., Baggili,
I., & Breitinger, F. (2016). CuFA: A
more formal definition for digital
forensic artifacts. Digital
Investigation, 18 , S125-S137.

The-Rust-Project-Developers. (2017). The
Rustonomicon.

The-Rust-Team. (2019, January). Rust
Documentation.
https://doc.rust-lang.org/.

Zalewski, M. (2014, October). PSA: Don’t
run ’strings’ on untrusted files
(CVE-2014-8485).

c© 2019 ADFSL Page 58


	Enhancing Forensic-Tool Security with Rust: Development of a String Extraction Utility
	Recommended Citation

	Enhancing Forensic-Tool Security with Rust: Development of a String Extraction Utility

