Positive Solutions for a Derivative Dependent *p*-Laplacian Equation with Riemann-Stieltjes Integral Boundary Conditions

Jaffar Ali Shahul-Hameed¹ Department of Mathematics Florida Gulf Coast University, Fort Myers, FL 333965. e-mail: jashahulhameed@fgcu.edu

Abstract

In this talk, we will discuss the existence of two non-trivial positive solutions to a class of boundary value problems (BVP), involving a *p*-Laplacian, of the form:

$$(\Phi_p(x'))' + g(t)f(t, x, x') = 0, \quad t \in (0, 1),$$

 $x(0) - ax'(0) = \alpha[x],$
 $x(1) + bx'(1) = \beta[x],$

where $\Phi_p(x) = |x|^{p-2}x$ is a one dimensional *p*-Laplacian operator with p > 1, a, b are real constants. Here α, β are given by Riemann-Stieltjes integrals

$$\alpha[x] = \int_0^1 x(t) dA(t), \quad \beta[x] = \int_0^1 x(t) dB(t),$$

where A and B are functions of bounded variations. We will use the fixed point index theory to establish our results.

¹Joint work with S. Padhi