Positive Solutions for a Derivative Dependent p-Laplacian
 Equation with Riemann-Stieltjes Integral Boundary Conditions

Jaffar Ali Shahul-Hameed ${ }^{1}$
Department of Mathematics
Florida Gulf Coast University, Fort Myers, FL 333965.
e-mail: jashahulhameed@fgcu.edu

Abstract

In this talk, we will discuss the existence of two non-trivial positive solutions to a class of boundary value problems (BVP), involving a p-Laplacian, of the form: $$
\begin{aligned} \left(\Phi_{p}\left(x^{\prime}\right)\right)^{\prime}+g(t) f\left(t, x, x^{\prime}\right) & =0, \quad t \in(0,1), \\ x(0)-a x^{\prime}(0) & =\alpha[x], \\ x(1)+b x^{\prime}(1) & =\beta[x], \end{aligned}
$$ where $\Phi_{p}(x)=|x|^{p-2} x$ is a one dimensional p-Laplacian operator with $p>$ $1, a, b$ are real constants. Here α, β are given by Riemann-Stieltjes integrals $$
\alpha[x]=\int_{0}^{1} x(t) d A(t), \quad \beta[x]=\int_{0}^{1} x(t) d B(t),
$$ where A and B are functions of bounded variations. We will use the fixed point index theory to establish our results.

[^0]
[^0]: ${ }^{1}$ Joint work with S. Padhi

