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ABSTRACT

This thesis is concerned with the analytical study of the thermal bending, buckling,
and post-buckling of unsymmetrically laminated composite beams with imperfection
under hygrothermal effects. Three different boundary conditions will be considered on
this study. The non-linear governing partial differential equations are derived by taking
into account the von-Karman geometrical nonlinearity for an imperfect unsymmetrical
laminated composite beam. Classical beam theory (CBT) as well as first order shear
deformation theory (FSDT) will be used. The effects of temperature, angle of orientation,
moisture variations, imperfection, and geometrical parameters, will be evaluated and
discussed. Two different laminated composite laminates will be considered:

unsymmetrical cross-ply and unsymmetrical angle-ply.



1. Introduction

Composite materials are widely used due to their high strength-to-weight ratio and the
controllability of their properties with the variation of the fiber angle. Because of their
applications in harsh environments, composite materials are often exposed to variation of
temperatures and changes in moisture. It is important to study the effects of moisture on
the thermal buckling behavior of laminated beams because even if they were designed to
be symmetric, a beam could deform if subjected to a critical thermal load.

It is well known that laminated composite materials are broadly used for aerospace
applications mainly because of their light weight yet strong and extremely stiff (Eslami,
2018). Usually, symmetrically laminated composite materials are more desirable since
they do not have bending-extension coupling (Pompei, 1994). However, in some cases,
such as for jet turbine fan blades with a pre-twist, the non-symmetric laminated
composites are desired to achieve the design requirements (Pompei, 1994). The main
characteristic of unsymmetrically laminated composites is that they have a bending-
extension coupling which complicates the analysis. Geometric imperfections are common
among composite structures due to manufacturing and environmental factors (Emam,
2009) and particularly unsymmetrically laminated composite structures. Additionally, no
structure can be perfectly flat and straight (Brush & Almroth, 1975). Therefore, even
symmetrically laminated composites can become unsymmetrical after manufacturing
processes. In the case of unsymmetrical laminates, geometric imperfections are more
common because of their bending-extension coupling.

Many aerospace structures, including turbine blades, can be exposed to very high and

drastic temperature changes as well as to environmental conditions like moisture, and that



is the motive to research the buckling behavior of unsymmetrical laminated composites
with temperatures and moisture effects. When composite structures are exposed to
hygrothermal environment conditions, structural failure can occur due to problems like
dimensional stability, residual stresses, material degradation, or delamination (Emam,
2016). Buckling is one common mode of failure when structures are exposed to
hygrothermal effects (Emam, 2016).

In the past decades, the study of the elastic stability (or buckling) of plate structures
has become very important because plates tend to buckle at very low applied stress,
causing large deformations. This behavior can be very dangerous for the structures.
Buckling can be defined as a sudden large deformation resulting when a structure is
critically loaded in compression. Thus, there is a critical load which causes a structure to
deform drastically and lose its ability to carry the load (Wang, Wang & Reddy, 2004).
For example, if a rod is subjected to an axially compressive force, it will contract slightly
at first, however, when it reaches a critical buckling load, it will bow out or buckle
(Wang, Wang & Reddy, 2004). The deflection path that occurs before reaching a critical
buckling load or bifurcation buckling is called the primary path. Additionally, the path
that exists after the bifurcation point is called the secondary path or post-buckling. The
post-buckling path can be symmetric or asymmetric depending on the structural
properties and its loading.

1.1. Literature Survey

Since the structure considered in this study is a beam, a literature survey on the

nonlinear behavior of beams was conducted. It should be noted that the literature survey

was conducted in three parts: bending, buckling, and post-buckling.



For cylindrical bending, the nonlinear governing equations for cross-ply laminates
simply-supported beam were reduced to linear differential equations with nonlinear
boundary conditions (Sun & Chin, 1998). As expected, Sun and Chin (1998) concluded
that the large deflection theory could not be neglected when studying asymmetric
composites. Park (2000) presented a nonlinear analysis of unsymmetrical long and
narrow laminated beams under cylindrical bending. In this paper, the researcher derived
the nonlinear equations of motion considering the classical theory and the first-order
shear deformation theory for angle ply laminates. Park (2000) also concluded that for
unsymmetrical composites, the nonlinearity could not be neglected even when subjected
to small loads. It was determined that the fiber angle is directly proportional to the
maximum deflection and inversely proportional to the in-plane load.

In the book by E. A. Thornton (1996), the author discusses thermally induced
deformations and stresses of isotropic beams and rods used in aerospace structures in
chapter 6. The author employed linear theory to derive the governing equations of a
beam, and later, the author also used this equation in chapter 10 to study the thermal
buckling behavior of isotropic beams under uniform temperature rise and linear
temperature variation. The same method developed by Thornton (1996) in chapter 10,
will be extended for angle-ply laminated composite beams in section 5 of this thesis.
Majeed (2005) presented a thesis that focuses on the response of flat unsymmetrical
laminated laminates subjected to in-plane compressive loading. The purpose of the study
was to determine if unsymmetrical laminated composites can undergo bifurcation
buckling. For antisymmetric angle-ply composites, the nonlinear theory predicted that

there would be a deflection once the load reaches the critical compressive load which is



called the postbuckling deflection.

Some authors have achieved a close-form solution for the post-buckling analysis of
composite beams. Gupta, Gunda, Janardhan, and Rao (2009) used the Rayleigh-Ritz
method to obtain simple expressions for the critical buckling load, and post-buckling
axial load of composite beams considering several types of boundary conditions like
hinged guided and conventional supports. Gunda and Rao (2013) continued the same
study performed by Gupta et al. (2009), and concluded that there is a slight deviation of
the previous results which is due to the assumed mode shape used in the study. Other
authors have researched the nonlinear vibration of unsymmetrically laminated composite
beams. Pompei (1994) studied the forced vibration of angle-ply and cross-ply laminated
beams, whereas Emam and Nayfeh (2009) studied the free vibration and post-buckling of
different ply configurations.

Khdeir (1999) presented a thermal buckling analysis of symmetric cross-ply beams
with different boundary conditions. The analysis was based on a three-degree-of-freedom
shear deformable beam theory and used a shape function to account for the continuity of
symmetrically laminated beams. Khdeir (1999) concluded that some cross-ply beams
buckle upon cooling instead of heating. Fu, Wang and Hu (2014) derived the governing
equations for thermal buckling and post-buckling of symmetric cross-ply laminated
beams using the von-Karman nonlinearity and the first-order shear deformation theory.
Three different methods of solution were performed to find the critical buckling and post-
buckling amplitudes of composite beams with general boundary conditions and mixed
boundary conditions (Fu et al., 2014). Aydogdu (2007) presented an analysis of the

thermal buckling of cross-ply laminates. The author used the energy method to derive the



governing equations and the Ritz method to develop a solution for the critical buckling
load and the critical buckling temperature. Thivend, Eslami and Zhao, (2008) analyzed
the thermal post-buckling of functionally graded materials, which are a sophisticated
form of asymmetric composites. Thivend et al. (2008) noted that the effective length of a
clamped-clamped beam in post-buckling would be affected by the temperature.

Emam and Eltaher (2016) conducted a buckling and post-buckling study of composite
beams with the effects of temperature and moisture. The classical beam theory and
higher-order shear deformation theory were applied to calculate the critical buckling load
and the post-buckling amplitude varying the temperature, moisture, and fiber volume.
Emam (2009) also presented a study on the static and dynamic behavior of geometrically
imperfect laminated composite beams with fixed supports at both ends. The amplitude of
the imperfection was a function of the material properties, which means that the critical
buckling could be enhanced by manipulating the imperfection amplitude. Also, the
imperfection was found to have a significant effect on the vibrations (Emam, 2009).

1.2. Scope and Motivation

The purpose of this thesis is to perform an extensive analysis of the nonlinear
bending, buckling, and post-buckling of unsymmetrically laminated composite beams.
Even though previous authors have also conducted a nonlinear thermal analysis of
unsymmetrically composite beams, the present study takes into account different types of
temperature variations in conjunction with the effects of moisture and imperfections.
Indeed, based on the literature survey presented above and extensive research performed
by the author, in the case of the nonlinear bending, there are no published works that

consider a temperature variation through the thickness and the length of the beam.



Two types of asymmetric laminate configurations are considered in this study. The
primary purpose is to note the difference between the buckling behavior of angle-ply and
cross-ply laminates. It is expected that angle-ply laminates will present a behavior similar
to the bifurcation buckling when subjected to a constant temperature rise.

The nonlinear governing equations of motion will be derived applying both the
classical theory and the first-order shear deformation theory in conjunction with the von-
Karman geometric nonlinearity. A solution method is to be developed for different
boundary conditions: SS; CS; and CS. For simplicity, the solution methods will be
presented for the classical theory only since the same procedure will apply for the shear
theory. However, the effect of the shear will be shown in the numerical examples

presented in section 6.



2. Formulation of the Governing Equations of Motion

This section is concerned with the derivation of the nonlinear differential equations of
an unsymmetrically laminated beam under the effects of temperature, moisture, and
geometric imperfections. The beam considered in this thesis was undergoing large
deflections and subjected to a transverse load. First, the governing equations for a thick
beam will be derived by using the classical theory assumptions. For thick beams, the
effects of shear can be neglected. However, the effects of the shear are much significant
when the beam is thin. Therefore, the governing equations of motion will also be derived
by following the assumptions of the first-order shear deformation theory.

Figure 2.1 shows the dimension of the beam where:

Figure 2.1. Dimensions of the beam.
2.1. Classical Theory
The beam type considered here was a Bernoulli-Euler beam. Thus, the following

assumptions are considered to derive the governing equations of motion for a thick beam.

. The beam length is much larger than its width and thickness.

. The in-plane stresses ¢, &,, and y,., are small compared to unity.
. The effects of shear and rotary inertia are neglected.

. The problem is a plane stress type problem.

. The transverse deflection w is a function of [ only



Before Deformation After Deformation

Figure 2.2. Bernoulli-Euler cross-section undergoing bending.
Composite Beam Constitutive Equations

The governing equations for a composite beam can be derived from the constitutive
equations of a composite laminate. Consider an unsymmetrical laminate subjected to a

uniform in-plane to thermal loads with the effect of moisture:

{N}= A B {50}_ Ni? _ Ni7' (2.1)
M B D1k MiT. MH
j ij
where
A1 A Age
[A] = |A12 Azz Age (22.1)
A1 Aze Age
Bi1 Biz Big
[B] = B12 Bzz Bze (2'2'2)
Bie Bzs Bes
D11 D1z Dyg
[D] = D12 Dzz D26 (2'2'3)
Die D26 Des
o (e 2.3.1)
NL’I; = Zf (Qij)k(aij)kATdZ o
k=1 " Mk-1

nh
0 2.3.2
Mj; = ZJ (Qij)k(a’ij)kATzdz (23.2)
k=1 hg—1



LI (2.3.3)
= Zf (Qi),(Bij) ,AHdz
k=1"Nk-1
LI (2.3.4)
Ml = z f (@), (By), AHzdz
k=1"Me-1
where,
i,j =1,2,6.

For a composite beam with geometrical imperfections, the non-linear strain-
displacement and curvature-displacement can be expressed using von-Karman
nonlinearity as:

(Ou, ow\>  Ow aw™)
4 [FeG)
o ox 2 \ox Ax Ox
(=18 = (2.4)
&2 | 6170 I
O o )
2 2
Fex ow 9
{k} = {Ky } = _J0x?>  0x? (2.5)
Kxy 0
0
Therefore, the resultant in-plane loads and moments are defined as shown below:
N A du, N 1 (aW)Z N ow ow* o v, 5 92w N 92w*
T gy 2\ 0x ox Ox 16 9x 1l\ox2 "~ ox2 (2.6)
— NI — NH
Ny, = 4 6u0 1 ((’)W)Z N dw ow* A dv,
% ox ox dx 0x % 9x @7
0w N 0*w* '
6l ox2 = ox?
M. =B ou, 1 <0W)2 N ow ow* B v, b 22w N 2w*
* T T ax 2\ ox dx 0x 1o 9x \oxz2 " ax2 ) (2.8)
— Ml — Mt

From the equilibrium equations for a composite plate, ignoring inertial loads

In the x-direction,
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do, N 0Tyy N 0Ty (2.9)

In the y-direction,

0T,y N doy N 0Ty, _ 0 (2.10)
dx dy 0z

In the z-direction,

6( N 6w+ 6W)+6( N 6W+ 6W)
dx \Fxz T Ox g T Txy dy/) 0y vz Tty Gy T % dy

+6( N 6W+ GW)_O
9z\%2 T Taz gy TyZay B

(2.11)

Multiplying both sides of the equilibrium equations by dz and integrating:

" 9o, Mk 0Ty, he ot
f Edz+f_ 3y dz+J Fp dz=0

hi—1 hi—1

fhk aTxyalz+fhk %dz+Jhk aTyzdz =0
0x hys ay hys 0z

hg—1

Thus,

=0 (2.12)

xy y
—+—= 2.13
dx + dy 0 (2.13)

GE a2 2w 9Q, 0
a—;:+21v W, 00 90

N
x Yoxay Y dy? + ox  dy

+P=0 (2.14)

where,

P =g, (2.15)

hg—1

{gi} - f,:; o) az (2.16)
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Similarly, multiplying both sides of the equilibrium equations by zdz and integrating,

oM, OM,,
_ = 2.17
oM, oM,
7 _ = 2.1
ox + dy Oy =0 (2.18)

differentiating with respect to x and y respectively,

0Q; _ 0°My 92M,,

2.19
dx d0x? 0x0y (219)

0Q, 0*M,, 0*M,

= 2.20
dy 0x0y * dy? (2.20)

Substituting these last two equations in the equation (2.14).

0*M, _0°My, 0°M, 92w 0w %w
2 N 2N N P=0 2.21
a2 0xdy + 0y? TNz T el 6x6y+ Y 0y? * (2.21)

Since the length of the beam is larger than its cross-sectional area, the dy terms in
equations (2.12), (2.13) and (2.21) are neglected. Thus, the equilibrium equations for a

composite beam will be as shown below.

WN: _ 2.22)
ox
Ny,
=0 (2.23)
%M, 0w
55z TNegzta=0 (2.24)

To obtain the governing equations for a composite beam, equations (2.6), (2.7)

and (2.8) are substituted in the equilibrium equations found above.

4 0%u, 4 0%v, 63W+63W* 4 92w ow
1 9x2 16 9x2 lox3 ~ ox3 1 9x2 9x (2.25)
02w ow* a’w*ow ON; ONJ 0 '

— 1A - _
1 5x2 9x +An 0x2 0x Ox Ox
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0%u, 0%v, 3w  a3w* 0w ow
A 9x2 + Age 9x2  C16 <6_x3+m>+ 16522 9% (2.26)
0%w ow* 0*w* ow '
19527 ox T 19557 ax
otw  otw*
~Du (6_x4+ ax4>
By, d3u, N <62w)2 63W6_w+63_w6w*
0x3 0x? 0x3 0x  0x3 0x (2.27)

dw*ow  0*waw* 23v, , 0°w
+a—x36_x+za_x267]+ 1693 TN g7
0*MI  o9*mH
9x2  0x2

+q=0

To find the governing equations in terms of w, several algebraic manipulations are

done to equations (2.25) and (2.26). These simplifications are shown as:

(9%u)
Ay A16] 0x? } _ {771}
Aig Agesl | 020, N2
d0x?
( 3w a3w* ’wow 9*wow, d*wyow\ ONI ONH)
Biulamt o) 41\ 5230 T 352 2 3% +
{Th} _ 0x 0x 0x% 0x 0x% O0x  0x? Ox 0x 0x
M2 B 63W+63W* 4 (')Zwaw_l_azwawo +62W0 ow
L 6l ox3 = 9x3 16\ 0x2 9x = 9x? dx = 9x? ox J
solving for 22;" and 22;20,
0%u, AieM2 — Ags™
ox? | _ Afg — A11 466
0%v, AieM — A1l

0x? kA%s — Ay1466 )
rearranging,
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0x2  \ A%, — A1 Age d0x3 = 0x3

Aj1Age — A%\ (07w 0w N 02w ow* N 92w* ow
A%, — Aj1Age )\ Ox?% Ox  0x? Ox  0x? 0Ox

Age aNT N ONH
A%ﬁ - A11A66 ax ax
82170 _ BllAlﬁ - BlﬁAll a3W + a3W* + A16 aNxT + aN;I

62u0 62170
0x? and 0x?

Hence, and their derivatives can be expressed as a function of w only.

These equations are shown below.

ox2 dx3 + d0x3 Oxza-l_ 0x2 0x + x2 0x
kT <6NxT N 6N,f>

0%uy <63w 63W*> (62waw 02w ow* 62W*6W>
) _
(2.28)

L\ ox 0x
0%v, 3w a3w* oNI oNH
—K = V4 KT ad o 2.29
0x? 2<6x3+6x3>+ 2<6x+6x> (2.29)
d3u, (04W 04W*>
=M

ax3 dx* + x4
Bwow (32w’ 63W6W*+63W* ow
0x3 dx O0x? 0x3 0x 0x3 0x
(')ZW(')ZW*]_ T<62NxT aZN;’)

(2.30)

+ —_ _ -
0x?2 0x? L\ 9x2 0x?2
93v, o*w  o9*w* 0:NI 092NH
_ T X X
ax3 ke <6x4 + dx* > + K < 0x2 + 0x2 ) (2.31)
_ BisA16 — B11466
K, = 5
A16 - A11A66
_ B11416 — B16A11
2 A%s - A11A66
— &
A%e - A11A66

(2.32)

K{

A16

K] = 59—
2 A%e - A11A66

Finally, substituting equations (2.30) and (2.31) in equation (2.27), the non-linear
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differential equation can be expressed as follows:

*w  o*tw*
~Du 0x* + 0x*

a%m+ 92w\’ Wwaw+a%wmﬁ+a%waw
0x? 0x3 0x  0x3 0x 0x3 0x

0w a%w* d3v, 0’w 9*MI o*MmH
+ 2 = 5 16 A~ = + 9? - - + P = 0
0x?% 0x?2 0x3 0x? O0x? O0x?
*w  o*tw* d*w 23w ow 92w\’ 23w ow*
C T gyt + 0x* + Buk ax* Buy 9x3 0x Buy ax2 ) Buy 0x3 0x
3w* ow 0%w a%w* o (0°Ny 0N
—Bu—m g o 2Bus g —BukKi\ 5ot
0x3 0x 0x?2 0x2 0x? 0x?2
B 92w\’ ow 63W+ 23w ow* N a3w* ow
1\ 9x2 1 ox 9x3 1 5x3 9x 1 9x3 9x
02w dw* o*w ; (0°Ng  0*Ny , 0%w
+ 281 0x2 0x2 + BisKa dx* *+ BisKz 0x? dx? * 9x2

0°My  9*MY
O0x? 0x?2

In which N can be defined by multiplying equation (6) by dx and integrating over

+P=0

the beam’s length.

JiNci-—fLA Oto +j¢A“(aW)ii-+fLA awaw*d-+fLA Mo 4
T A ) 2 ax) T e e T e ax

L 52y L L
—f B11de—f Ndex—f NHdx
0 0 0

Aux Ay Au (* 9wy’
M =T (a0 ~ 1 () + T (w0 = vo©@) + 57 | (55

Ay (Fowow* By, (fo*w
_2 2 D gx - NT - NE
L J, 0x ox T o 0x? S
(uo(L) - uO(O)) =0

(VO(L) - 170(0)) =0
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o A [Frow 2 Ay (Fowow* By, Lazwd
* 2L ), (ax) L J, 0x ox 71 o 0x? * (2.33)
— Ny -NY
do*tw  a*w* 02w
Elers (W*W) 2

0:NI 0°NE\ o02MI
 (ByoKT — 311K{)< . S ) o (2.38)
oMy =0
axz 17
Eleff = BllKl + B16K2 - D11 (235)
The moment M, is defined as a function of w only. From equations (2.28) and
(2.29), we obtain:
2 2.,,% 1 2 * NO NT NH
%= : 6W+6w __(6_W) _6_W6W+ v + Ny + Ny (2.36)
ox 0x?  0x? 2 \0x dx 0x Aqq
vy X 0w N 2w* (2.37)
ax ~ 2\ox?  ox? '
Then, equations (2.36) and (2.37) are substituted in equations (2.8).
M =B K 0w N 0°w*\ By, <0W)2 B ow ow* N Bi1 <6W)2 ow ow*
* TP 9x2 T ox? 2 \ox Mox ax 2 \ox " ax ox
*w  0*w* 0°w By,
+ Bi6K> (W-I_W) - 11W+A_11(N’? + Ny + Ny)

— (M{ +M;)

aZW aZW* 0 T H T H
Mx=Eleff W+W +K1(Nx + N, +Nx)_(Mx +Mx) (2.38)

2.2. First-Order Shear Deformation Theory
The following assumptions are considering for the derivation of the governing
equations of motion with the first-order shear deformation theory:
. The beam length is much larger than its width and thickness.
. The in-plane strains ¢, &,, and y,., are small compared to unity.

. The effects of shear are considered, but the in-plane strain y,, is neglected
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. The problem is a plane stress type problem.
. The transverse deflection w is a function in terms of x only
aw aw*
2.39
P = 5 T ox (2:39)

In equation (2.39), Z—: is the total deflection of the beam, and ¢ is the rotary

deformation. Hence, considering the shear effects, curvature-displacement relations can

be redefined.

K o¢
{K}={Ky}=_ 9x (2.40)
Ky 8
Therefore, the resultant in-plane loads and moments with the effects of shear are defined
as bellow:
duy 1 /0w\*> owow* v, op
= —+ (=] +—— - 2.41
Nx A“[ax +2(0x) T ox axl 16, ~Bugy TN~ (2.41)
du, 1,0w\> Owow* v, ¢
— o, (= —_— 2.42
Ney = 416 | 5 +2(ax) T ox axl oo 5% ~ Bro gy (242)
V- B du, 1(aw>2 ow ow* v, ) ¢ o
* T T ax 2 \ox dx 0x 9x  “Mox TV (243)
— ng

Equilibrium Equations for a Plate

From previous derivations, recall equations (2.22) and (2.23). However, two more
equilibrium equations are needed to solve for the deflection in terms of w only. These
two equilibrium equations can be obtained by rearranging equations (2.14) and (2.17) for

a beam. Hence, the equilibrium equations will be as shown below.

Nx _ (2.22)
0x
Wy _ (2.23)

0x



oM, .
o Qx
0*w  9Q,

* 9x2 + o0x +tq=0

where,
(=12 2ol

ow ow”* )
0x 0x

Qx = KAss (

00y

kA 62w 92w 9
ax  Nsfss\gxz T o2 T 9

)

K, is a constant shear factor that depends on the cross-section shape of the beam.

17

(2.44)

(2.45)

(2.46)

(2.47)

To obtain the governing equations of motion for a composite beam with the shear effects,

equations (2.41), (2.42) and (2.43) are substituted in the equilibrium equations found

above.

0%u, 0%v, 0%¢ 0w ow

Allaz A16az Bllaz Allaza

0*w*ow  ONTI 6Nf

T ey T o ox

0%u, 0%v, 0%¢ 02w ow
oGz e gur ~Hie gz T hiegua g T4
4 0w ow
1 9x2 ox
0%u, 0%v, 0%¢ 90%w ow

Bi1—5— %2 + Bis—=— %2 D11a > +B“_ax25+

B ’w*ow oMI aM,’Z
175x2 9x  ox 0x

062W
N + K Age

* 322 o2 T oxz " ox

X

a%w ow*
15x2 ox

d2%w ow*

16 9x2 9x

2%w ow*
1 9x2 9x

’w  d*w* 0
¢> +q=0

(2.48)

(2.49)

(2.50)

(2.51)
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Where N is obtained by multiplying N, by dx and integrating over the beam’s length.

A11 ow\> Ay [Fowow? By, (fo¢

NO = ( ) dx + 21 _Zu (709 252
x ax) L o 0x Ox T o 0% dx (2:52)
— Ny - Ny

To find the governing equations of motions in terms of w only several algebraic

manipulations are done to equations (2.48), (2.49) and (2.50). These simplifications are

shown below.
0%u,
Aqq A16] Jale _ {771}
Aig Agel | 020, M2
0x? )
02 WOW o*wow* 0*w*ow\ ONI ONH)
Bll - + e +_+
J ax2 0x2 ox 6x2 ox 0x2 0x 0x 0x l
| B 02W6W+62W6W* +62W* ow |
\ 166 2 0x2 0x = 0x% dx = 0x% ox J
6 uo
solving for

0%u, (A1612 — Age1)
J(’)le _ ! Afg — A114cs L
9%v, A6 — A1

0x2 LAfa — A11466 J

rearranging,

92 Uo _ (BisAis — Bi1des 0% [A1Age — A3\ (07w 0w N 9w ow* N 92w* ow
0x2  \ A% —AjAgs ) 0x%2  \A%  — A A ) \0x% 0x  9x2 9x = 9x? Ox

Age ONT .\ ONH
A%6 - A11A66 ax ax
0%v, _ (Bi11416 — B16A11 0%¢ N A oNy " oN,
9%y,

0%u, 0
Hence, —"and ——

and can be expressed as a function of only w. These equations are
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shown below.

0%u, 0%¢ <62W6w 0w ow* azw*6w>

0x? - Toxz  \ 0x2 £+ 0x?% 0x + 9x? 0x (2.53)
r(ON: ONJf '
—~ +
L\ ox 0x
0%v, 0%¢ r ONI oNH
9 _ —_r 2.54
0x? ke 0x? Kz < ox + ox ) ( )

K; and K, were previously defined in equations (2.32.1) and (2.32.2).
Then, replacing equations (2.53) and (2.54) in equation (2.50), an expression for ¢

can be obtained as shown below.

B K 0%¢ 02w ow N 02w ow* N 02w* ow B KT oONTI N oONH
117 5x2 B\ ox2 9x = 9x? ox 0x?% 0x BT ox 0x
92¢ ONT  oNH 92 92w ow
¥ Bisl gz + Bk (W Yo ) T PugE P Buga gy
B d%w ow* B ’w*ow oMI omH )
1 9x2 9x 1 9x2 9x  ox ox QOx =

62(],') ow aNT aNH
Elerr axZ KsAss Ix + K;Ass¢ + (BigK; — By1K{) <—; + =

oMl omf
_( X4 x>:0

0x 0x
Thus,

_ aW Eleff 62(]5 (B16Kér - BllKiT) azN; asz
B 0x KSA55 axz KSASS axz axz
1 oMI oMH
+ =+ —
K Ags \ 0x 0x

(2.55)

99
dx

o¢p N 0’w  o*w* q
—=|1 2.56
0x < + KSA55> <ax2 + 0x? + K. Ass (2.:56)

a2¢ ]
—— can be outlined as
0x?

From equation (2.51), — and
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0% - N 03w N a3w*
0x2 K.Ags )\ 0x3 = 0x3 (2.57)

Thus, replacing equation (2.57) into equation (2.55) and deriving, a new expression for

% is found as shown in equation (2.58).

0x KA K.Ace )\ 0x3 = 0x3 K Acc d0x d0x

1 (oMl 9MH
+ +
K Ass \ 0x 0x
0x - axz KSA55 KSASS ax4 5x4‘
Bi¢K7 — B;1KT) (9°NI  9%N}H
_( 16122 11 1) X X (2,58)
KSA55 axz axz
1 [a?MI 92MH
+ +
K Ass \ 0x? 0x?

Equating equations (2.58) and (2.56), a non-linear differential equation of motion can

be obtained.

0'w _Elyy (. N2\ (3w 3w\ _(Buki — BuK]) (0°NT 9°NI
axz KSASS KSASS 6x4 6x4 KSASS axz axz

+

L (M a*ME\ (. NP \Pw g
KSASS axz axz N KSASS axz KSASS

El,ef i+ N? 64W+64W* N N 62W+ q

K Ass KAgs J\ 0x* ~ Ox* K Ass ) 0x? K Asgs

(B1gKT — B K1) (02NT  92NH 1 [o*MI o2MH
K. Ass 0x? dx? K. Ass \ 0x? d0x?

=0
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EI 1+ Ny a4w+a4w* +N°az
efs KAss )\ 9x* ' ax* dx2

0°NI 92NH
92MT  92MH
_<ax2 + 0x2 >+q—0
Ay ow\* Ay (Fowow*
NO =21 (—) dx + 21
x 1 o 0x Ox
B N2 \ 0%w 2.60
11[ K ) + q ldx (2.60)
K Ass K Ass
— NT

The moment M, is defined as a function of only w. From equations (2.53) and

(2.54):
2 * 0 T H
auozKlﬁ_l(GW) _a_waw +Nx+Nx + N, (2.61)
0x 0x 0x dx Ox Ay
av, d¢
g L 2.62
0x K, dx ( )

Then, equations (2.61) and (2.62) are substituted in equations (2.43) to give:

M, = B,k 0¢p By, ((’)W) ow ow* _I_Bn <6W) B ow ow* CBK 0w
M9y 2 \ox Bax ax = 2 \ox 1 9x ax 1672 52
d¢ By,
—D11—¢+ (N°+NT NI — (MF + ME)
ox A

d¢
M, = Eleffa+ K;(N2 + NI + NE) — (M + M)

M, =EI 1+ Ne 62W+62 + 1
x T meff KAss )\ 0x2 '~ 9x2 | ' K Ass (2.63)
+ K, (N2 + NI + NEY — (MT + M)
2.3. Material Modeling
Two types of unsymmetrically laminated composites considered in this thesis:

angle-ply and cross-ply laminated composite. It is important to note that some of the

stiffness constants are equal to zero for angle-ply and cross-ply.



For angle-ply laminated composite:

A1g =436 =10

Biy = Biz = By, = Bgs = B{; = 0

Dig =Dy =0

Therefore,

El ;=0
For cross-ply laminated composite:

A1 =4A36=0
Bi; = B1g = By = Bgg = 0
Dig =Dy =0
Therefore,
Bi1
K, =—
A,
K, =0
1
Kl = ——
! Apq
KI=0
B},
El = —D
EIT 1
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(2.64)
(2.65)

(2.66)

(2.67)

(2.68)

(2.69)
(2.70)

(2.71)

(2.72)

(2.73)
(2.74)
(2.75)

(2.76)
(2.77)
(2.78)
(2.79)
(2.80)

(2.81)
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3. Method of Solution for Thermal Bending

This section deals with the nonlinear bending analysis for a beam subjected to two
different types of loading. The first subsection takes care of the nonlinear bending of a
beam subjected to a mechanical transverse load g with the effects of temperature and
moisture. The second part of this section is concerned with the derivation and solution of
the nonlinear bending of a beam subjected to a thermal load. For both cases, linear
temperature rise and a uniform moisture variation are considered.

3.1. Mechanical Loading
To solve for bending of a beam subjected to a transverse loading g, equation (2.34) can

be rearranged as follow:

2*w d2%w
Z " 72 " 3.1
ow* O0x? ¢ (1)

Ny
2= - 3.2
Eleff (3.2)

q
Y =— 3.3
El,, (33)

The 4™ order ODE shown in equation (3.1) has a solution with two parts:
homogeneous solution and a particular solution.
The homogeneous solution can be obtained as follow:
m4 _ {ZmZ =0
m?(m?—-7{3)=0
m= 10
m=1(
Thus, assuming a solution of the form w(x) = Ce™*
wp(x) = ;% + c,e 7% + c3e* + ¢ e

rearranging,
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wp(x) = C; + C,x + C5 sinh Ax + C, cosh Ax (3.4)
Additionally, the particular solution is obtained by assuming a solution of the form:

w,(x) = Ax* + Bx + C

ow.

wp () =2Ax + B
0x
92wy (x)
—ax2 =24

To find the constant A, the above equations are substituted in equation (3.1).

0-0?A) =9
Therefore,
w,(x) = —%xz (3:5)
The total solution to the differential equation is shown in equation (3.6).

w(x) = C; + Cpx + Cs sinh {x + C, cosh {x — Z%xz (3.6.1)
a“(;ix) — C, + C5¢ cosh {x + C4{ sinh {x — %x (3.6.2)
(')Zam:c(zx) = C3¢?% sinh {x + C,{? cosh {x — éﬁz (3.6.3)
63am;(3x) = (5303 cosh {x + C,¢3 sinh {x (3.6.4)

Considering a linear variation of temperature as shown in equation (3.7), and a
constant moisture gradient, AM = constant, the hygrothermal moments and loads for an

unsymmetrical laminated beam can be defined as in equation (3.8).

AT = 4Ty (1 + r%) (3.7.1)
_ 2T 3.7.2
r= aT, (3.7.2)
ke z r
NI = Zf @uDe(@)dT (1 +77) dz = AT, (47, + BT, ) (3.8.1)
—1 ’h



h
N = [ @DBowandz = atp.an

k=1" -1

he Z T
Mp=> j (@uDe(@)edT, (1 +77) zdz = AT, (BY, + D] )
=1 " M1

he
my = Z |  @elBOrdtads = Blp.aH
N
AL = Z(éll)khk(ax)k
k=1
N
A¥1 = Z(én)khk(ax)k
1k=1\j
B1Tl = EZ(Qll)khi(ax)k
k=1

N
H 1 A 2
Bi1 = EZ(Qll)khk(ax)k
k=1

3.1.1. Simply Supported Beam

For a simply-supported beam, the boundary conditions are as shown be

25

(3.8.2)

(3.8.3)

(3.8.4)

(3.8.5)

(3.8.6)

(3.8.7)

(3.8.8)

low in

equation (3.9). For this case, the origin has been placed at mid-span of the beam. Since

the origin is in the middle, due to symmetry the second and third constant of deflection

will be zero.

i
<«

Figure 3.1. Simply-supported beam subjected to mechanical loading.
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w(=D)=w()=0 (3.9.1)
*w(=0) o*w(l) _

o = g = 0 (3.9.2)

M,(-D)=M,(1) =0 (3.9.3)

When x = —I, w(—1) = 0 and M, (—1) = 0.
Cy + C,(=1) + C3sinh (=) + C, cosh {(=1) — 2—52( D2=0

C, — C,l — Cy sinh L+ C, cosh I —2%12 0

0 =Elys (C3{2 sinh {(—=1) + C,¢? cosh {(—1) ——) + K, (N2 + NI + NI
- My + M)

0 = Elyss (—C3(2 sinh L+ C,¢% cosh {1 — 2) + K, (N2 + NT + NH) — (MT + MH)

¢
Whenx =[,w(l) =0and M, () =0

Cy + Cy(1) + C3sinh {(1) + C, cosh (1) — 22 (l)2 =0
C, + Cyl + Cs sinh L+ C, cosh ! —2%12 —0

0 =El,, (cgcz sinh (1) + C,¢% cosh (1) — —) + K (N® + NT + NH) — (MT + MH)

0 =El,y (C3{2 sinh {l + C,{? cosh {l — 52) + K, (N2 + NF + NI — (MY + ME)
Therefore, the constants of equation (3.6) for a simply supported beam are equal to:

Ki(NQ + Ny + N — (Mg + M) @ ol?

= -+ 10.1

: Elyr 2 g (3.100)

C,=0 (3.10.2)

C;=0 (3.10.3)

__Ki(NZ + Ny + Ny — (Mx + M) % (3.10.4)
4 El,sr0? cosh{l {* cosh {l o

Thus, the function for the deflection and the geometric imperfection deformation can be
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expressed as follows:

w(x) = 2(%(12 —x?)
KNP + NI + NI — (ME+ME) ], _ coshix (3.11.1)
+[ ElgsrG? _F]( B cosh(l)
w(x) @ K;(N) + NI + NEY— (MI + M) ] /Csinh(x
ox _ﬁx B [ El,ffG? NG ( cosh ¢l ) (3.11.2)
’wx) @ [Ki(NQ+ Ny + N — (MY + M) @] (T coshix 3113
axz (% Elfr(? — 7*|\ coshql (3.11.3)

Equations (3.11) is substituted in equation (2.33) to account for the nonlinearity and
to solve for the in-plane load.

A l
N,?—£ ( ¢

S )\
2
K,(NP+ NI+ NEY—MI + ME) ¢ ((sinh(x) J
Elor /02 7#|\coshqr )] *
_Bu('f_e
20 )\ ¢?

(3.12)
[Kl(NQ + Ny + Ny — (MY + M;)

Eleffcz
@] (C?cosh {x
— 2 (== Jax - NI -NE
¢4 < cosh {1 XN

In equation (3.12), A depend on N2, so it should be solved numerically. Using

Matlab, the Newton method is implemented to solve for N2.

3.1.2. Clamped-Clamped Beam

The boundary conditions for a clamped-clamped beam assuming the origin to be as

shown in Figure 3.2 are described in equation (3.13).

w(0)=w(L)=0
ow(0) ow(L)
=0 (3.13.2)

(3.13.1)
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v
V4

Figure 3.2. Clamped-clamped beam subjected to mechanical loading.

Due to the nature of the boundary conditions, a different method is applied to find the

deformation amplitude. Instead of solving for the constants in equation (3.4), a solution

that satisfy the boundary conditions is assumed. This solution is shown in equation

(3.14).

d%w o d%w
eff 38 TNx 522 =4
2nx>

w(x) =a (1 — cosT

dw(x) 4 (27‘[) 27X

EI

sin—

dx L L
0°w(x) 2m\*  2mx
s = e(T) s
2*w(x) 2m\*  2mx
e = —a() o

By replacing equation (3.14) in equation (3.13) and equation (2.33), a complex

expression in terms of x and the amplitude is obtained.

2m\* 2mx , (2T z 2mx
—a(—) cos——( a(—) cos =

L L L L
SV L )
ZEIeffL 0 0x EIeffL 0 axz

¢? = -

Elysy

Elys \L L Elyps \L

All (T[)Z 2 N_;' + N;I
Elyss

NY + Nf 2m\? 2m* Ay 2
[—u(—) a—(—) I —— (—) a3]cos—+

Elysys

(3.13)
(3.14.1)
(3.14.2)
(3.14.3)
(3.14.4)
q
NI + N2
Ely,
L (3.15)
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In order to solve equation (3.15), the Galerkin method is applied as follow:

3 2mx q
R(x) = (Xya + X,a )cosT+ El,;;

X (271)4 NI + N} <2n)2

1=—\7) ———F%—\—7—

L Ely; \L

Ay N2
X, = —
27 Elysy (L)

2mx

¢(x) = (1 — cos T)
chp(x)R(x)dx =0
0

L 2mx 2mx q
f (1—COST> (Xia — X,a®) cos— + dx =0
0

L ' Elyf
gL (Xja — X,a3)L _
Elyss 2
Ayq /T\2 2m\*  NT + NE /2m\? 2
w5 a3+l(—) +u(—) la— -0 (3.16)
Elyss \L L Elysr \L Elysy

Equation (3.16) is polynomial function; thus, to find the amplitude, the roots of
equation (3.16) are obtained.
3.1.3. Mixed Boundary Conditions
Assuming the origin to be in the middle of the beam and considering a beam that is
simply supported at one end, and fixed at the other end, the boundary conditions are as

shown below in equation (3.17).

A\
A

Figure 3.3. Beam with mixed boundary conditions subjected to a mechanical load.

2
w(l) = aaLxﬁ” =M, () =0 (3.17.1)
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ow(—1
wien =D _ (3.17.2)
ox
When x = -, w(—0) = 0 and a”;(;” =0
. o
Cl - Czl - C3 Slnhzl + C4_ COShgl _ﬁl —_ 0

C, + C3¢ cosh ¢l — €, sinh —éﬁzz —0

Whenx =1, w(l) = 0,and M,.(1) =0

C, + Cyl + Cy sinh L+ C, cosh I —2%12 —0
0= El,; (6352 sinh {L + C,¢% cosh {l — 2'42) + K, (N® + NT + NH)

Therefore, the constants of equation (3.6) for a CS beam are equal to:

C
1<p cosh ¢l (2sinh {l — 2{l cosh {l — 3{?1? sinh {l + 1)
- 2¢*(1 — cosh ¢l sinh 1) (3.18.1)
K (N2 + NI + NE) — (MI + MH)] cosh ¢l (sinh {l — {l cosh {I)
B l El,z (2 l (1 — cosh {lsinh {1)
c, = lKl(N,? + NI+ NI — (ME + M,’Z)l sinh? {1
(1-c

ElffC osh {1 sinh (1)
@ sinh? {1 @l cosh {l sinh {I (3.18.2)
¢3(1 — cosh {lsinh {l) = ¢?(1 — cosh {lsinh {l)
Cs
= ol (sinh ¢l — {1 cosh {1)
"~ ¢3(1 = cosh {lsinh {1) sinh ¢l = ¢l cosh¢ 318.3
K (NO + NT + NH) — (MT + MH) I sinh ¢l (318.3)
Elf¢C (1 — cosh{lsinh {l)
- IKl(N,? + NI + NI — (ME + M,’Z)l sinh ¢l — ¢l cosh {1
4 — 2 _ .
El.sf¢ 1 — cosh{lsinh{l (3.18.4)

@(¢?1? sinh ¢l — sinh {l + {l cosh {1)
{*(1 — cosh{lsinh {l)

Note that in the case of a CS beam, the expressions for the constants are much longer
than in the previous cases. However, the process to follow is the same. These constants in

equations (3.18) should be substituted in equation (3.6) to find deflection solution. Then,



31

the deflection function should be evaluated in equation (2.33), and the newton method is
applied to solve for the in-plane force N2.
3.1.4. Shear Deformation Effects

To account for the shear deformation effects in the nonlinear bending analysis of
unsymmetrically laminated beams with different boundary conditions, a process similar
to the ones described in sections 3.1.1, 3.1.2 and 3.1.3 should be performed. Therefore,

the 4™ order differential equation with the shear deformation effects is described as

follow.
o*w 0*w
ow* & axz _ ? (3.19)
Ny
= 3.20
s =i (320)
NO
2 X
= 3.21
‘s Elsr(1+ Bs) (3:21)
q
05 = (3.22)

 Elopp(1+B5)
The solution for equation (3.19) is described in equation (3.23), and it has the same

shape as the solution found for classical theory.

w(x) = C; + Cyx + C5 sinh {sx + C4 cosh {sx — 2<p—;2x2 (3.23)
S
The solution procedure to follow is the same as in the previous sections, but in this

case equation (2.63) should be used in the boundary conditions for simply-supported and
mixed boundary conditions. Additionally, equation (2.60) will be used to obtain N2.
3.2. Thermal Loading

In order to study the bending behavior of a beam subjected to thermal loading, the
following temperature function is assumed. It should be noted that the moisture is still

considered to be constant.
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AT = AT (1+r5) sin— (3.24)
-0 h L :
o e z X
= Z f (Q11)k(“x)kATo (1 + TE) SianZ
k=1" Tk~ (3.25.1)
= AT, (AT + BT r) mnx
=d4dlg\A1q 11y ) L
hi
Ny = z f (A (BxdHdz = AY, B AH (3.25.2)
Rg-1

— Z\ | TX
Z f (Q11)k (a ) ATy (1 + rﬁ) smTde
Pie-s (3.25.3)
= AT, (B + DT ) smE
11 1y

Z [ @rerdtizdz = 5iypam (325.4)
h

k-1
The 4™ order ODE equatlon for the case of thermal loading is as follows:

o*w 02w
72— =T 3.26
ow* oxz ¢ (3.26)
Ny
(2 =-— (3.27)
Elyss
1 0*MI B, 0°NT
o7 = SIS S (3.28)
Eleff axz A11 axz
Equations (3.25) are substituted in equation (3.28). Thus, a more convenient
expression for the thermal load is expressed in equation (3.30).
s
o =Cr sinzx (3.29)
_ ATy (mN\?[B11 7 T r T r
Cr = El, s (L) A 4, At (h 1) Bix hD“] (3.30)

The 4" order ODE shown in equation (3.26) has a solution composed of two parts:
homogeneous solution and a particular solution.
The homogeneous solution can be obtained as follow:

m* — ?m? =0
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m?(m? -3 =0
m= 10
m==1(
Thus, assuming a solution of the form w(x) = Ce™*
wh(x) = c1% + e % + cze¥ + c e
rearranging,
wp(x) = C; + C,x + C5 sinh Ax + C, cosh Ax (3.31)

Additionally, the particular solution is derived by assuming a solution of the form:

s
wy(x) = ArCr sinzx (3.32)
owp (x) T s
Fa Ar (Z) Cr coszx
92wy (x) T\ 2 oom
W = _AT (Z) CT Sll’lzx
03wy, (x) T\ 3 T
W = _AT (Z) CT COSZX
9w, (x) 4 oom
W = AT (z) CT Sll’lzx
To find the constant A, the equations above are substituted in equation (3.26).
A (ﬂ)4c . T +52A (T[)ZC . T — Cosi T
T\] TsmLx T\7 TsmLx— TsmLx
L4—
Ar = 3.33
T w2(m? + {212) ( )
Therefore,
L* T (3.34)
wy(x) = 22 (2% + 0200) Cr smzx
The total solution to the differential equation is shown in equation (3.23).
w(x) = C; + Cyx + C5 sinh {x + C, cosh {x
* T (3.35.1)

+ 2 + P12 Cr sinzx
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ow(x) .
F C, + C3¢ cosh {x + C4{ sinh {x
4 - ; - (3.35.2)
+ w2 (m? + {?1?) (Z) T COSZ’“
0°w(x) . 5
oz C3{“ sinh {x + C4,¢* cosh {x
x 14 5 (3.35.3)
- E) C sinzx
m2(n2 + {212) (L )

3.2.1. Simply Supported Beam

For simply supported beams, two different methods are developed here. The first one
consist of finding the constant in equation (4.35) by applying the boundary conditions.
The constants will be a function of ¢, which is a function of the in-plane load. Thus, the
nonlinearity is considered there. For simplicity and symmetry of the problem, the origin
is moved to the mid-span of the beam. The second method consists of assuming a
solution that satisfies the boundary conditions that has an amplitude. The amplitude can
be found by replacing the expected solution in equation (3.26) to find the amplitude.
Method 1

For a simply supported beam, the boundary conditions are as shown below in

equation (3.36).

w(=D=w(l)=0 (3.36.1)
’w(=0) 2*w(l) _

oxz  0x? 0 (3.36.2)

M (=) = M.() = 0 (3.36.3)

When x = —[, w(—1l) = 0 and M, (—1) = 0.

C1 + C,(=1) + C3sinh {(—=1) + C, cosh {(—1) + ArCr sin (211 (=1) + g) —0

C; — Gyl —C3sinh{l+ Cycosh(l =0
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2

0= El,z (cng sinh (1) + C, 2% cosh {(—1) — A, (%) Cpsin (% (=D + g))

+ K, (NQ + NF + NI — (MF + ME)
0 = El,sr(—C30? sinh {l + C4,{* cosh (1) + K; (Ny + Ny + N{') — (MY + M)

When x = [, w(l) = 0 and M, (1) = 0,

VA VA
Cy + Co(D) + Cysinh {(1) + C, cosh {(1) + AyCy sin (2—1 0+ E) =0

Ci + Gl + C3sinh{l+ Cycosh{l =0

T2 T T
— 2 o1 2 _ _ 3 — —
0= Elyy ((33{ sinh {(1) + C,0% cosh {(1) — Ay (zz) Cp sin (21(1) + 2))
+ K,(NQ + NF + NI — (MF + ME)
0 = El,;r(C3¢? sinh {l 4+ C,3* cosh 1) + K, (N} + N + Ny') — (M3 + M)

Therefore, the constants of equation (3.35) for a simply supported beam are equal to:

_ Ky(N + N{ + NJ) = (M + M)

3.37.1

1 Eleffzz ( )
C, =0 (3.37.2)

C;=0 (3.37.3)

_K(N? 4 NY+ N - My + M) (3.37.4)

4= Elos32 cosh{l

Thus, the function for the deflection and the geometric imperfection deformation can

be expressed as below.

K;(N2 + NF + NEY — (MT + M;’)l (1 cosh (x)

W(X) - I Eleffcz COSh(l

161* TX T (3-38.1)

+ w2 (m? + 40%1?) Crsin (Z + E)
ow(x)  [Ki(NQ + Ni + N;) — (Mg + M) (Z sinh Zx)
ox Elosr(? cosh(l

1614
* o @) G+

(3.38.2)
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0°w(x) [Kl(N,? + NI + NI — (MT + M}f)l <(2 cosh (x)

0x? Elf¢C cosh {1 (3.38.3)

161* c (7‘[)2 . (7TX+TL') R
w2 (2 + 4¢22) T \2p) M\ T3
Equations (3.38) are substituted in equation (2.33).

Ny

_Au [F KNS+ NE + NED = (ME + MY (( sinh(x)

-4l ), El Q> cosh {1

161* /i1 mx 1)’
TR A T (30)os (7 + E)} dx (3.39)

By [ {[KI(N,? + NI + NI — (MT + M,’Z)] ((2 cosh (x)
2l ), El Q> cosh {1
161* T2 X T
— N ain(2 L5 _ nNT _NH
2 14 T (31) sin(G+ 2)} dx = Ny =Ny

In equation (3.39), A depend on N2, so it should be solved numerically. The Newton
method is implemented using Matlab to solve for N2.

Method 2
AT(x,z)

\
z

Figure 3.4. Simply supported beam subjected to thermal loading.

A sinusoidal solution that satisfies the boundary conditions in equations for a

simply-supported beam is assumed. This solution is shown in equation (3.40)

w(x) = asin”L_x (3.40.1)
av;ix) 4 (%) COS?TL_x (3.40.2)
azav)vc(zx) _ 4 (%)2 SinﬂL_x (3.40.3)
T =) ¢409
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m\*  mx m\%  TX X
a(z) sinT+(2a(z) sinTzCTsinT
Ay [ rown? By, (Ld%w NI + NH
f( )dx+ —_—
0

%= i dx +

2= Ay (E)Z . 2By - Ny + NY
4El ¢ \L El,frL? El.sy

T\ | X Ay m\t 0 2Bym o my2 L Ny + Ny 2 o mx o Tmx
a(—) SmT+<_4Eleff(Z) a _EleffLZ(Z) a +Teﬁ(z) a smT—CTsmT

A 4 2B 2 4 NT 4 NH .2
B 4Ellelff (%) - Ele;;lr; (%) “ [(%) + %ffx(%) la —r=0

3.2.2. Clamped-Clamped Beam

The second method applied to the simply-supported is also adopted for a clamped-
clamped beam. The main difference will be that a different function for the solution is
assumed. Thus, the Galerkin method should be applied to solve for the amplitude.

Galerkin Method

A solution that satisfies the boundary conditions for a clamped-clamped is assumed.

AT(%,2)

7717y,
v
=

Figure 3.5. Clamped-clamped beam subjected to thermal loading.

This solution is shown in equation (3.41):

w(x) =a (1 — cos 2L£> (3.41.1)
ow(x) 2w\  2mx
o =elT)m T (3412
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0%w(x) 2m\%>  2mx
ARG AL AR Peiad - 3.41.3
92 a( L) T (3419
2*w(x) 2m\*  2mx
=—al— - 3.41.4
= —a(T) cos = (3.41.4)

Substituting equation (3.41) in equation (3.26) and (3.27);

(27‘[)4 21X ) (271)2 27Tx_C . TX
aLcosL ZaLcosL—TsmL

{2 _ A11 fL <0W)2 dx + B11 LaZW N; + Nf
0

- — dx +
2Bl 7L )y \ox ElgrL)y 0x2 ' Elyy

A1 (7‘[)2 22 N; + N;I
L

% =

Elgsy Elysys

Therefore, equation (3.42) is obtained. The goal is to solve for the amplitude;
however, the expression in equation (3.42) it is very complex. The Galerkin method

should be applied to obtain a polynomial expression for the amplitude a.

NI + NH (27‘[)2 (271)4 N Ay (n)z 5 27x
Ely, \L) “"\T) " TEL,\L) T |70
(3.42)
X

—Crsin—=10
rsin—

2mx X
R(x) = (X,a + X,a®) cos—— = Cr sinT

2m\* NI + NP 2m\?
- -

L Ely; \L
A mN\2

= A
Elyss \L

27X

¢(x) = (1 — cos T)

L
f ¢(xX)R(x)dx =0
0
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L 2mx s 2mx X
J. (l—cos—) [(Xla—Xza )cos— — Crsin—|dx =0
. L L L

L(X,a + X,a®) N 8CrL

3.43
2 3w ( )

From equation (3.43), the roots for the amplitude can be obtained. The positive root
should be picked as the amplitude of the deflection.
3.2.3. Mixed Boundary Conditions
Considering a beam that is fixed supported at the left end and simply supported at the

right end, the boundary conditions are as shown below in equation (3.44).

w(l) = J =M,()=0 (3.44.1)

aw( D

w(=0) = =0 (3.44.2)

aw( D

When x = —I, w(—1I) = 0 and =0

C; — Gl —C3sinh{l+ Cycosh(l =0

X ﬂ)=0

C, + C3¢ cosh{l — C,{ sinh {l + (Zl) A Cr cos (21 >
Whenx =1, w(l) =0,and M,,(I) =0
C; + Cl+ C3sinh{l+ Cycosh(l =0
0 = El,sr(C3¢? sinh {l 4+ C,3* cosh 1) + K, (N, + N + Ny') — (M7 + M)
It should be noted that the expression for the constants of the deflection in the case of
CS beam is more complex. Therefore, they are not presented in the report. However, the
same process should be followed. The constants are substituted in equation (3.35) and

then, in equation (2.33) where A will depend on N, so it should be solved numerically.

Newton’s method is implemented using Matlab to solve for N2.
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This section is subdivided into two parts. The first part is concerned with the effects

of applying a constant temperature to an angle-ply beam. The purpose of this is to

observe a bifurcation buckling behavior in unsymmetrical laminates. The second part of

this section is to study the behavior of cross-ply laminates when a linear temperature

variation function is applied.

4.1. Uniform Temperature Rise

First, we consider a constant temperature gradient, (AT = constant), and a constant

moisture gradient, (AH = constant), then the resultant hygrothermal and thermal

moments and resultant hygrothermal and thermal normal in-plane loads for an

unsymmetrical laminated beam can be defined as in equation (4.1).

(Qll)k(ax)kATdZ = AI1AT

(Qn)k(ﬁx)kAHdZ = A%AH

(Qll)k(ax)kATZdZ = BlT1AT

(Qn)k(ﬁx)kAHZdZ = BlTlAH

k=1"Nk-1

(4.1.1)

(4.1.2)

(4.1.3)

(4.1.4)

In some cases, like angle-ply laminates, the bending-extension stiffness B, is zero,

thus, the hygrothermal moments will also be zero. For that reason, if no external force is

applied, the beam will remain straight as the temperature gradient reaches its critical

point AT,,.. If the temperature gradient keeps increasing beyond AT,,.., the beam will be

in the post-buckling domain.
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When AT < AT,,, the load P that beam is experiencing can be determined by
neglecting the deflection and non-linear terms on equation (2.33). It is assumed that P =
NQ.

—P = NI + N} (4.2)

When AT = AT,,, equation (2.34) can be rearranged to solve for the critical buckling
load and its corresponding temperature considering different boundary conditions.

2*w 5 2%w

St A S5 =0 (4.3)
Ny
2= (4.4)
Solving the 4" order ODE:
m* + 12m? = 0
m2(m?+12) =0
m =10
m=tAi
Thus, assuming a solution of the form w(x) = Ce™*
w(x) = c;% + ce ™% + czet* 4 c e
rearranging,
w(x) = C; + Cyx + C5sin Ax + C, cos Ax (4.5.1)
av;ix) = Cy + C3A cos Ax — C4A sin Ax (4.5.2)
% = —C3A%sin Ax — C4A? cos Ax (4.5.3)
63am;(3x) = —(C3A3 cos Ax + C4A3 sin Ax (4.5.4)

For post-buckling, when AT > AT, equation (2.33) and the respective solution for

equations (4.5) are utilized to find the post-buckling amplitude.
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4.1.1. Simply Supported Beam
For a simply-supported beam, the boundary conditions are as shown below in

equation (4.6).

w(0)=w(L)=0 (4.6.1)
a*w(0) 9*w(L) _

axz  ox% 0 (4.6.2)

M,(0)=M,(L)=0 (4.6.3)

To find the critical buckling load, equations (4.6.1) and (4.6.2) are applied to equations
(4.5).

2
When x = 0, w(0) = 0, and "’;;S” =0,

0 = C; + C,(0) + C3sin A(0) + C4 cos A(0)
C,+C,=0
0 = —C3A?sin A(0) — C4A% cos A(0)
0 = —C,22

2
When x = L, w(L) = 0, and =2 = 0,

0=C; +C,L+ C3sinAL + C4cos AL
0 = —C3A%sin AL — C4A% cos AL
or

CZ = 0
AL = nm 4.7)

2 p,
22 = (%) — Elsz (4.8)

Therefore, the critical buckling load is expressed as:

Py = ElL,, (%)2 (4.9)

From equation (4.9) and equation (4.2) when the critical buckling is reached, an



43

expression for the critical buckling temperature can be found, as shown below in equation

(4.11).
—Fy = All(axATcr + ﬁxAH) (4-10)
El 2 AH 4,11
AT, = —Zterr (E) B (4.11)
Aq10, \L Ay

To find the post-buckling amplitude, it is assumed that in equation (4.7) n = 1.
Therefore, the function for the deflection and the geometric imperfection deformation can

be expressed as below.

w(x) = asin%x (4.12.1)
d
“a’ix) = a%cos%x (4.12.2)
2°w(x) m2
=—qal(=) sin= 4.12.3
%2 a (L) sin - x ( )

Equations (4.12) are substituted in equation (2.33). Then, the post-buckling amplitude

can be found by getting the roots of equation (4.13).

Ay (F/ o w2
N2 =57 i (azcoszx> dx — NI -NM = —p
Ay a?m?
Tﬁ'(P—N;—Ng):O (4.13)

B 2L |P— NI —N¥ (4.14.1)
4= T A1
B 2L |P— NT - N¥ (4.14.2)
G2 = T Aqq

4.1.2. Clamped-Clamped Beam
For a clamped-clamped beam, the boundary conditions are as shown below in equation

(4.15).

w(0)=w(L)=0 (4.15.1)
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ow(0) B ow(L) _o
ox  ox
To find the critical buckling load, equations (4.15) are applied to equations (4.5).

(4.15.2)

ow(0)
ax

When x = 0, w(0) = 0, and 0,

0 =C; + C,(0) + C3sinA(0) + C4 cos A(0)

C,+C,=0
0 =C, + C3Acos A(0) — C4Asin A(0)
0=2C,+ Cs
When x = L, w(L) = 0, and wi) _ 0,

O0x
0=C; +C,L+ C3sinAL + C4cos AL
0 =C, +C3Acos AL — CyAsin AL
Writing the above equations in matrix form
0 1 Cy
A 0 ¢,

0
1
L sinAL cos AL Cs
0 1 AcosAL —AsinALl \C, 0

21cosAL — A — Acos? AL — Asin®? AL + A*LsinAL =0
2AcosAL — 21 + A’LsinAL = 0
A(2cosAL —2 4+ ALsinAL) =0

_ O
S O O

AL
(1 —=cosAL) —7sin/1L =0

- AL AL /AL AL
sin (—) — —sin (—) cos (—) =0

2 2 2 2
(AL
sin (7> =0
AL AL
tan (7) =7

Therefore,

Cl == CZ == C4_ == O
AL = 2nn (4.16)
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T 2 P
2 — 4 d — cr
2 =4 L) B (4.17)
Therefore, the critical buckling load is expressed in equation (4.18).
Ty 2 (4.18)
Py = 4El, ¢ (Z)

From equation (4.18) and equation (4.2) when the critical buckling is reached, an

expression for the critical buckling temperature can be found, as shown below in equation

(4.20).
Py = A11(a AT, + B AM) (4.19)
4EIeff T 2 ﬁxAM
= -) —— 4.20
= e (7) - (4.20)

To find the post-buckling amplitude, it is assumed that in equation (4.16) n = 1.
Therefore, the function for the deflection and the geometric imperfection deformation can

be expressed as below.

2T
w(x) =a (1 — cosTx) (4.21.1)
ow(x 21 21
afc - a-cos X (4.21.2)
Rk 2m\?% 2
K0 )

Equations (4.21) are substituted in equation (2.33). Then, the post-buckling amplitude

can be found by getting the roots of equation (4.22).

A (Y 2 2m \?
N,?=Z i (aTcosTx) dx — NI -NM =—p
Ay m?
1L12 a?+ (P, —NI —NM) =0 (4.22)

, — NT — NH
a, = _£ u (4.23.1)
T Aqq
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, _NT _ NH
a, = £ u (4.23.2)
T A1

4.1.3. Mixed Boundary Conditions
Considering a beam that is simply supported at one end, and fixed at the other end, the
boundary conditions are as shown below in equation (4.24).

w(0) = _av;iO) =0 (4.24.1)

0°w(L
wil) = aM;c(Z )

=M, (L)=0 (4.24.2)

To find the critical buckling load, equations (4.24) are applied to equations (4.5).

When x = 0, w(0) = 0, and WO _

0,

0 = C; + C,(0) + C3sin A(0) + C4 cos A(0)

Cl + C4_ = 0
0 =C, + C3Acos A(0) — C4Asin 1(0)
O = CZ + C3/1
When x = I, w(L) = 0, and Z%& — ¢,

dx?
0=C; +C,L+ C3sinAL + C4cos AL
0 = —C3A%sin AL — C4A% cos AL

Writing the above equations in matrix form

1 0 0 1 ¢y 0
01 0 C(_)o
1 L sin AL cos AL Cs 0
0 0 —A%sinAL —2A%cosALl \C, 0
—A2(sinAL — AL cosAL) =0
tan AL = AL (4.25)

Therefore, the solution for equation (3.25) can be obtained numerically as follow:

Al = 2.2467
knowing that [ = L/2,
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AL = 1.4303nm (4.26)
T \2 P,
2 — — cr
A (0.7L) El,sf (4.27)

Therefore, the critical buckling load is expressed in equation (4.28).

2

Py = Elysy (%) (4.28)

From equation (4.9) and equation (4.2) when the critical buckling is reached, an

expression for the critical buckling temperature can be found, as shown below in equation

(4.30).
Py = A1 (ay AT, + B AM) (4.29)
Eleff T 2 ﬁxAM
AT, = — 4.30
cr A1y (0.7L) ( )

Oy

To find the post-buckling amplitude, it is assumed that in equation (4.26) n = 1.
Therefore, the function for the deflection and the geometric imperfection deformation can

be expressed as below.

1.43m 1.43m 1.43m

w(x) =a [sin x — 1.43m cos Xt (L - x)] (4.3.1)

ow(x) 1.43m 1.43m 1437 1.43m 1.43m
= 1.4 i — 4.31.2
T @ |——cos——x +1.43m T sin——x ] ( )

32w (x) 1.43m\* 1.43n 1.43m\*  1.43xm

=al—- i 1.4 4.31.3
Py ( T > sin——x + 37r( I ) coS——X ( )

Equations (4.31) are substituted in equation (2.33). Then, the post-buckling amplitude

can be found by getting the roots of equation (4.32).

NO _A11 L 5 1.437 14371 143 1437 = 1.43m
X =7 . a I cos I X A3m I sin I b
143w

2
. ] dx — NI -NM = _p (4.32)



48

4.1.4. Shear Effects

To account for the shear deformation effects in the nonlinear bending analysis of
unsymmetrically laminated beams with different boundary conditions, a process like the
ones described in sections 4.1.1, 4.1.2 and 4.1.3 must be performed. Therefore, the 41"

order differential equation with the shear deformation effects is described as follow.

o*w 0w
Sogt gﬁ =0 (4.33)
NO
Bs =k a (434)
S
NO
2% ad (4.35)

 Elysr(1+ Bs)
The solution for equation (4.33) is described in equation (4.36), and it has the same

shape as the solution found for classical theory.
w(x) = C; + Cyx + C5sin Agx + C4 cos Agx (4.36)
The solution procedure to follow is the same as in the previous sections, but in this
case, the effects of shear are considering. Below are shown the solutions for critical
buckling load and critical buckling temperature with different boundary conditions.

For simply supported beams:

p ElefstAssT[Z (437)
T K¢Assl? — Elyppm?
EIeffKSA557T2 IBXAH (438)

AT,

Ay, (KoAssl? — Elpm?)  ay

For clamped-clamped beams:

4F] K A557T2
Py = i lepKsss (439
KSASSL - 4E1eff7T
AE], ;K Accm? AH
ATCT _ ef fHsf155 _ .Bx (4.40)

Ayyay(KAssl? — AE L)



For beams with mixed boundary conditions:

b 2.04E 1, ;K Assm?
T KAssL? — 2.04E 12
2.04E L, ;K Agsm? B, AH
Ay, (KsAssl? — 2.04E L, pm?)  ay

AT, =

4.2. Linear Temperature Variation

Considering a linear variation of temperature as shown in equation (4.7), and a
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(4.42)

(4.42)

constant moisture gradient, AM = constant, the hygrothermal moments and loads for an

unsymmetrical laminated beam can be defined as in equation (4.8).
When the beam is considered to have a linear temperature variation through its
thickness, there will be a thermal moment, MI, which in the previous case was simply

zero. This moment will cause the beam to deflect as soon as the temperature starts to

increase. Thus, the nature of the problem is not a bifurcation buckling anymore, but it is a

bending-buckling type of problem which occurs before, during, and after the critical
buckling load.
4.2.1. Simply Supported Beam

To find the critical buckling load, equations (4.6.1) and (4.6.3) are applied to
equations (4.5).
When x = 0, w(0) = 0 and M, (0) = 0.

0 =C; + C,(0) + C5sin A(0) + C, cos A(0)
C,+C,=0
0 = El,rr(—C34* sin 1(0) — C4A% cos A(0)) + Ky (Ny + Ny + Ni') — (MY + M)
0 = —El,;rCiA* + K1 (Ny + Ny + NJ) — (Mg + My)
When x = L, w(L) = 0 and M, (L) = 0,

0=C;+C,L+CysinAL + C4cos AL
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0 = —El;(C3A%sin AL + C44% cos AL) + Ky (N2 + NI + N) — (MT + ME)

Therefore, the constants of equation (4.5) are equal to:

K,(N? + NI + N} — MT + MH

_ 4.43.1
C,=0 (4.43.2)
_ K,(N2 + NF + NE) — MI + MH]1 — cos AL (4.433)
° Elp22 sin AL o
c _ Ky (Ne + Ny + Ne') — My + MY (4.43.4)
* Elyp22 o

Thus, the function for the deflection and the geometric imperfection deformation can be

expressed as below.

_ Ky (N2 + NJ + NJ) — MY + MY 1
w(x) = TISE CoS Ax —
1 — coaal (4.44.1)
+ ( sin AL ) sin lx]
ow(x) _Kl(N,9+N§+N,?)—M§+M,’Z[ sind
ox Elep2? o (4.44.2)
1 — cos AL o
+ ( sin AL > A cos Ax]
?w(x) Ky (NS +NI+NO-MI+MIp
axz TE [_A cos Ax
- e/{i (4.44.3)
B cos 5 .
il A% sin Ax

Equations (4.44) are substituted in equation (2.33). In equation (4.44), A depend on
N2, so it should be solved numerically. The Newton method is implemented using
Matlab to solve for N.

4.2.2. Clamped-Clamped Beam
For a clamped-clamped beam, there are two inflection points separated by an

effective length L,. At these two points, it can be shown that M, (x) = 0. Therefore, it
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can be assumed that the beam behaves as a simply supported beam along its effective

length. Using the solution in equation (3.47), the value for L, can be obtained.

K;(N2 + NI + NF) — MT + M}
w(x) = TTIE [cos Ax—1
eff
) (1 B COSMB) - ] (4.45.1)
sinAL, J)°om%
ow(x) K (N2 + NI+ NI —MI+MmE _
ax Elppr 72 [_’1 sin Ax
eff
) (1 _ COSME)A ) ] (4.45.2)
sinAL, )"
0*w(x)  Ki(N) +N{ + NI —My + M1
32 = T [—/1 cos Ax
eff
(1 _ COS/lLe)Az - ] (4.45.3)
sin AL, SIAx
Applying the boundary conditions on equation (3.16.2).
Ki(N2 + NI + NE) — mT + M2 1 —cos AL
1(Nx ad <) al al [—Asinlx+(_—e)/1cos/1x] =0
El ppA? sin AL,
1 —cosAL,
—|—) = 4.4
tan Ax ( sin AL, ) 0 (4.46)
It is noted that equation (4.46) is % periodic; therefore:
L, m
=—_—— 4.47
0=——= (4.47)
21
L, = - (4.48)

4.2.3. Mixed Boundary Conditions

To find the critical buckling load, equations (4.24) are applied to equations (4.5).

ow(0)
ax

When x = 0, w(0) = 0 and 0.

0 =C; + C,(0) + C5sinA(0) + C, cos A(0)
Cl + C4_ = 0
0 =C,+ C3AcosA(0) — C4Asin 1(0)
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0 = Cz + C3A
When x = L, w(L) = 0 and M, (L) = 0,

0=C; +C,L+ C3sinAL + C4cos AL
0 = —El,;;(C3A* sin AL + C4A% cos AL) + K; (Ny + Ny + Nj) — (Mg + M)

Therefore, the constants of equation (4.5) are equal to:

_ K;(N2 + NF + NEY — MT + M
1 ElssA?(sin AL — AL cos AL)
_ [Ki(NQ + NY + N{) — My + MY

2 ElsfA?(sin AL — AL cos AL)
_ K;(N2 + NF + NEY — ML + MH
3 El,srA?(sin AL — AL cos AL)
_ [Ki(NR + NJ+ Ni) — Mg + MY

4 El,;;A?(sin AL — AL cos AL)

l (sin AL — AL) (4.49.1)

l A(cos AL — 1) (4.49.2)

l (cosAL — 1) (4.49.3)

l (sin AL — AL) (4.49.4)

Thus, the function for the deflection and the geometric imperfection deformation can be
expressed as below.

K;(N2 + NF + NEY — MT + M

wx) = ElssA?(sin AL — AL cos AL) l [(sin AL — AL)(cos Ax (4.50.1)
—1) + (cos AL — 1)(Ax — sin Ax)]
ow(x)  [Ky(NQ + Ny +NJ)— M+ M|
ox l Elos22(sin AL — AL cos AL) [(sin AL (4.50.2)
— AL)(—AsinAx) + (cos AL — 1)(A — Acos Ax)]
0°w(x)  [Ki(Ng + N + NJ) — Mg + M|
axz l Elos22(sin AL — AL cos AL) [(sin AL (4.50.3)

— AL)(—=2% cos Ax) + (cos AL — 1)(A? sin Ax)]
Equations (4.50) are substituted in equation (2.33). Since A depend on N2, the
problem cannot be solved analytically. Therefore, a Matlab code is implemented to solve

for N using Newton’s methods.
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If the same solution procedure as the sections above is conducted, the constants of the

displacement function with the effects of shear can be obtained as follow.
For a simply supported beam:

_ Ky(NY + N+ NI - Mg+ MY
te El;s2%(Bs + 1)

CZ=O

- Ki(N2 + NI + N}y — MT + ME11 - cos AL
3 El;s22(Bs + 1) sin AL

c _K((NQ + N+ N - M+ MY
e Elps2*(Bs + 1)

For a clamped-clamped beam:

KN+ Ny + N - M+ My
te El;s22(Bs + 1)
Cz = O

o Ky (N2 + NI + NH) — MT + MH]1 — cos AL,
3T El;s22(Bs + 1) sin AL,
c :Kl(N,?+NxT+N,§’)—M§+M§’

! Elo;s2*(Bs + 1)

For a beam with mixed boundary conditions:

- K;(N2 + NI + NEY — MT + M
V7 |ElsA%(sinAL — ALcos AL)(Bs + 1)
- K;(N2 + NI + NEY — MT + M2
27 |Elss22(sin AL — AL cosAL)(Bs + 1)
‘= K;(N2 + NI + NEY — ML + MH
7 |ElsA%(sinAL — ALcos AL)(Bs + 1)
- K;(N2 + NI + NEY — ME + MH
* 7 |Elss22(sin AL — AL cosAL)(Bs + 1)

l (sinAL — AL)

l A(cosAL — 1)

l (cosAL — 1)

l (sin AL — AL)

(4.51.1)

(4.51.2)

(4.51.3)

(4.51.4)

(4.52.1)

(4.52.2)

(4.52.3)

(4.52.4)

(4.53.1)

(4.53.2)

(4.53.3)

(4.53.4)
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4.2.5. Geometric Imperfection Effects
To account for the imperfection effects, an initial displacement function is defined as
in equation (4.54). It should be noted that the geometric imperfection amplitude u is

defined as a percentage of the thickness of the beam (Brush & Almroth, 1975).

X
w*(x) = IsinT (4.54.1)
ow*(x) vis X
=](-= —_— 4.54.2
Ix (L) cos— ( )
0°w*(x) m\2  TX
— 7 —_J(=) sin— 4.54.3
3x2 1 (L) sin I ( )
23w*(x) m\3  mx
—_— = J(= — 4544
33 1 (L) cos I ( )

64w*(x)= (n)4 X
L

ax4 sin — (4545)

I =uh (4.54.6)

The governing equation of motion can be rewritten as follow:

2*w d2%w 2*w*

Elep o+ N? 55 = ~Eloyp—— (4.55)

To solve for the equation (4.56), a solution that satisfies the different boundary
conditions is assumed.
For a simply-supported beam, the solution assumed was:

w(x) =a sinnL—x (4.56)

Where a is the amplitude of the deflection. To find the amplitude, the solution equation

needs to be evaluated in equation (4.55) and in the nonlinear equation (2.33) which is the

equation that defines N. That leads to equation (4.57).
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ar* am? <A11a27r2

T H
L*  Ely L2\ 4L2 ~Ne =N

Aylan®\ In* (4.57)

217 L*

Since the above equation has a polynomial shape, a can be solved by finding the roots.
For a clamped-clamped beam the solution assumed was:

wx) =a (1 _ coszLﬂ) (4.58)

In this case, the problem needs to be solved by applying the Galerkin method as

shown below

2w d0%w 2*w*

R(w) = Elf ot N 7+ Elerr 5o (4.59)
¢(x) = (1 — cos 2%) (4.60)

L
f R(w)p(x)dx =0 (4.61)

0

A similar procedure should be conducted for beams with mixed boundary

conditions. For which the solution was assumed to be:

1.43mx 1.43mx 1.437tx)

— 1.43m cos + 1.43m — (4.62)

w(x) =a (sin
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5. Comparison of Results

The results of the methods developed in this thesis have been compared with
previously published works. A good agreement was found between the present work and
the references. For the method developed for bending with mechanical load, a
comparison with Sun & Chin (1998) was made and shown in Figure 5.1 and Figure 5.2.
The material properties and the composite layup used by Sun & Wang (1998) were
adopted for comparison purposes. It should be noted that there is a slight deviation from
the present results and the ones found by Sun & Wang (1998). The reason for this
difference is that the previous authors neglected the effects of N,,, on the derivations of
the governing equations of motion and that the mathematical software used nowadays is

more sophisticated.

—— Present
—o— C.T. Sun

08

0.4}

%
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x/L

Figure 5.1. Validation of the nonlinear bending deflection formulation (Sun & Chin,
1998).
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Figure 5.2. Validation of nonlinear bending mid-span rise for different loadings (Sun &
Chin, 1998).

A comparison with the results for the dimensionless critical buckling load obtained by
Gupta et al. (2009) was made. They developed a general closed-form solution that works
for any kind of composite material by assuming a mode shape function. This closed-form
solution was plotted in Figure 5.3, together with the solution developed in this thesis. The
plots were made for graphite-epoxy angle-ply laminated beams. It should be noted that
there is a slight deviation from the reference work. This is due to an underestimation in
the mode shape function assumed by the reference work (Gunda & Rao 2013).

The critical buckling is compared with the numerical results obtained by Khdeir (1999).
Khdeir (1999) obtained dimensionless numerical values for cross-ply graphite-epoxy
beams subjected to a temperature using both the classical theory and the shear
deformation theory. The same material properties and geometric parameters as the

reference were adopted to compare the results, and a perfect agreement with the reference
was found for the dimensionless critical buckling temperature, as shown in

Table 5.1.



Critical Buckling Load
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920

Figure 5.3. Comparison of the dimensionless critical buckling load (Gupta, Gunda,
Janardhan, & Rao, 2009).

Table 5.1

Critical buckling temperature for different boundary conditions (Khdeir, 1999).
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Boundary conditions

L/h Beam theories SS cs cC
5 Reference FSDT 0.4715 0.5667 0.6927
Present FSDT 0.4715 0.6022 0.6927
10 Reference FSDT 0.8281 1.2896 1.8859
Present FSDT 0.8281 1.3383 1.8858
20 Reference FSDT 1.0212 1.9044 3.3123
Present FSDT 1.0212 1.9274 3.3123
FSDT 1.0925 2.1985 4.2023
Reference
£o CBT 1.1072 2.2652 4.4290
FSDT 1.0925 2.1983 4.2023
Present
CBT 1.1072 2.2588 4.4290

The thermal post-buckling results were compared with Fu, Wang and Hu (2014). Fu

et al. (2014) obtained the solutions for the thermal post-buckling of cross-ply laminated

composite beams using a different method of solution. A perfect agreement was achieved



by adopting the same geometry and material properties as the reference in the method
developed in this thesis. Figure 5.4, Figure 5.5 and Figure 5.6 depict the comparison
results for the mid-span rise of a cross-ply beam subjected to different temperatures.
Figure 5.7, Figure 5.8 and Figure 5.9 show the comparison for the post-buckling

deflection of a beam subjectedtoa T = 1350 K.

25
SS: L/h = 20
— — CBT o
——FSDT e

2 CBT-Fu o
o FSDT-Fu %"

w(L/2)

0.5

0 L L 1 I}
500 550 600 650 700 750 800
T (K)

Figure 5.4. Post-buckling validation for SS beams (Fu, Wang & Hu, 2014).

1.8 |— — CBT
— FSDT
16 CBT-Fu
© FSDT-Fu
14}
12
S 1
=1
0.8 |-
0.6
0.4
02
0 . L . i
700 750 800 850 900 950 1000

Figure 5.5. Post-buckling validation for CS beams (Fu, Wang & Hu, 2014).
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Figure 5.6. Post-buckling validation for CC beams (Fu, Wang & Hu, 2014).
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Figure 5.7. Post-buckling validation for SS beams (Fu, Wang & Hu, 2014).
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Figure 5.9. Post-buckling validation for CC beams (Fu, Wang &Hu, 2014)
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6. Numerical Examples and Discussions

The numerical results of section 3 and 4 are presented here. Since two different types
of laminates were studied, first the results of bending, buckling, and post-buckling of
angle-ply laminated beams are presented. Then, the results for cross-ply will be presented
in the next subsection. The beams in this study are made of graphite-epoxy whose
materials properties are listed in Table 6.1. Material 2 was used for the solution of
mechanical bending (Sun & Chin, 1998). In the rest of examples, Material 1 was utilized
(Fu, Wang & Hu, 2014).
Table 6.1

Material and Geometric Properties of the Graphite-Epoxy beams

Material 1 Material 2
Length, L 12m 9in
Thickness, h 0.6m 0.02 in
E: 189 GPa 20 msi
=) 18.9 GPa 1.4 msi
G2 11.34 GPa 0.7 msi
Gis 11.34 GPa 0.7 msi
Ga2s 9.45 GPa 0.7 msi
V12 0.25 0.3
V23 0.25 0.3
Ks 5/6 5/6
o1 10 um/m/°C 5.5 pin/in/°F
o2 30 um/m/°C 16.5 pin/in/°F
B1 0 m/m/kg/kg 0 in/in/lb/lb
B2 0.6 m/m/kg/kg 0.6 in/in/Ib/Ib
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6.1. Angle-Ply

In this section, the numerical examples of angle-ply laminates are presented. The
angle-ply considered is a [6/-6/6/-0] layup. Here, the effects of shear, geometric
parameter, fiber angle, moisture, and imperfections on thermal bending, buckling, and
post-buckling are discussed.

It should be noted that the results shown for the mechanical bending were obtained
using material 2. Material 2 describes a very thin beam, therefore, only the results from
classical theory are shown. Several trends can be observed in the nonlinear behavior of
angle-ply laminates. When a mechanical load is applied, the in-plane load of the beam is
increased as the mechanical load is increased, as seen in Figure 6.1 through Figure 6.3.
This behavior agrees with the results found by Sun and Chin (1998). On the other hand,
when the temperature is increased, the in-plane load is decreased. This could have been
predicted from equation (2.33) where it is seen that the thermal load reduced the value of
the in-plane load.

When an angle-ply beam is subjected to a thermal loading as described in section 4.2,
the beam shows a bending behavior similar to the bifurcation buckling, which means that
when the beam reaches a critical buckling temperature, it starts to deflect positively. It
should also be noted that simply-supported beams will deflect more than the other two
configurations, as seen in Figure 6.7, Figure 6.8 and Figure 6.9. Material 1 was used to

model the thermal bending of angle-ply laminates. Also, the dimensionless deflection is

defined as w(x) = m@ (Fu, Wang & Hu, 2014).
The effects of the shear deformation are analyzed in Table 6.2 for SS beams, Table

6.3 for CS beams, and Table 6.4 for CC beams. If the percentage of the difference
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between FSDT and CBT of the three types of beam configurations are compared, it can
be noted that the effects of shear deformation are more significant for CC beams. Also, it
should be noted that for the fiber angle of 90 degrees, the effects of shear deformation are
reduced. From Table 6.5, it can be concluded that the effects of shear cannot be neglected
for thick beams since the CBT overestimates the values. Figure 6.12 and Figure 6.13

show the dimensionless critical buckling load and temperature for different fiber angles,

_ 2 _ 2
respectively where P, = % (5) ,and T, = Tor (%) (Fu, Wang & Hu, 2014). From

1 \h a
these figures, it can be concluded that an increment in the fiber angle will cause a
reduction on the critical buckling load and temperature which makes sense since at 90
degrees the laminate strength will be the same as the matrix.

The effects of moisture in the critical buckling temperature are shown in Figure 6.14
through Figure 6.16. As expected from the equations derived in section 4.2, an increment
on the moisture percentage will reduce the critical buckling temperature, and will
increase the post-buckling deflection.

The effects of imperfection in the post-buckling are presented in Figure 6.29, and
Figure 6.30 for a simply-supported beam, and for a clamped-clamped beam. The

geometric imperfections make the beam start deflecting after the bifurcation point.
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Mechanical Bending
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Figure 6.1. In-plane load for different transverse loads of a simply supported beam.
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Figure 6.2. In-plane load for different transverse loads of a beam with mixed boundary
conditions.
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Figure 6.3. In-plane load for different transverse loads of a clamped-clamped beam.
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Figure 6.4. In-plane load for different temperature variations of a simply supported beam.
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Figure 6.6. In-plane load for different transverse loads of a clamped-clamped beam.
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Thermal Bending
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Figure 6.7. Mid-span rise for a simply-supported beam subjected to thermal loading.
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Figure 6.8. Mid-span rise for a beam with mixed boundary conditions subjected to
thermal loading.



Figure 6.9. Mid-span rise for a clamped-clamped beam subjected to thermal loading.
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Figure 6.11. Deformation of a 30° angle-ply clamped-clamped beam.

Buckling Results

Table 6.2

Critical Buckling Load T, (K) for simply supported beams

70

0 (°) CBT FSDT % diff

0 505.6168 497.4460 1.6425

30 421.4602 418.2602 0.7651

45 388.6537 387.0953 0.4626

60 370.8356 370.1012 0.1984

90 368.5389 368.2002 0.0920
Table 6.3

Critical Buckling Load T, (K) for beams with mixed boundary conditions

0 (%) CBT FSDT % diff
0 719.6227 686.9443 4.7500
30 574.8759 534.9040 2.4251
45 480.9254 474.5507 1.3441
60 4445613 4415351 0.6854
90 439.8742 438.4709 0.3200




Table 6.4

Critical Buckling Load T, (K) for clamped-clamped beams

71

0 (°) CBT FSDT % diff

0 1122.5111 1005.7000 11.6149

30 785.8407 738.3907 6.4261

45 654.6148 630.9301 3.7539

60 583.3424 571.9457 1.9926

90 574.1557 568.8161 0.9387
Table 6.5

Dimensionless critical buckling loads for different length to thickness ratios for a 30°

angle-ply laminated beam

L/h

Beam theories

Boundary conditions

S-S C-S C-C
FSDT 0.5616 1.0403 1.7373
> CBT 0.6224 1.2701 2.4894
10 FSDT 0.3030 0.6018 1.1232
CBT 0.3112 0.6351 1.2447
20 FSDT 0.1239 0.2518 0.4894
CBT 0.1245 0.2540 0.4979
50 FSDT 0.0124 0.0254 0.0498
CBT 0.0124 0.0254 0.0498s
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Figure 6.12. Dimensionless critical buckling load for different fiber angles.
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Figure 6.13. Dimensionless critical temperature for different fiber angles.
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Figure 6.14: Effects of moisture in the critical buckling load of simply supported beams.
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Figure 6.15. Effects of moisture in the critical buckling load of beams with mixed

boundary conditions.
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Figure 6.16. Effects of moisture in the critical buckling load of clamped-clamped beams.

Post-Buckling Results
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Figure 6.17. Dimensionless mid-span deflection for simply-supported beams with
different angle-ply configurations.
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Figure 6.18. Dimensionless mid-span deflection for beams with mixed boundary
conditions for different angle-ply configurations.
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Figure 6.19. Dimensionless mid-span deflection for clamped-clamped beams with
different angle-ply configurations.
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Figure 6.20. Post-buckling dimensionless deflection for simply supported beams for
different angle-ply configurations.
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Figure 6.21. Post-buckling dimensionless deflection for beams with mixed boundary
conditions with different angle-ply configurations.
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Figure 6.22. Post-buckling dimensionless deflection for clamped-clamped beams with

different angle-ply configurations.
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Figure 6.23. Effects of moisture on the dimensionless mid-span rise for a 30° angle-ply

simply supported beam.
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Figure 6.24. Effects of moisture on the dimensionless mid-span rise for a 30° angle-ply
beam with mixed boundary conditions.
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Figure 6.25. Effects of moisture on the dimensionless mid-span rise for a 30° angle-ply

or clamped-clamped beam.
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Figure 6.26. Moisture effects on the post-buckling dimensionless deflection for a 30°
angle-ply simply-supported beam.
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Figure 6.27. Moisture effects on the post-buckling dimensionless deflection for a 30°
angle-ply beam with mixed boundary conditions.
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Figure 6.28. Moisture effects on the post-buckling dimensionless deflection for a 30°
angle-ply clamped-clamped beam.
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Figure 6.29. Imperfection effects on the dimensionless mid-span deflection for a 30°
angle-ply simply supported beam.
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Figure 6.30. Imperfection effects on the dimensionless mid-span rise for a 30° angle-ply
clamped-clamped beam.

6.2. Cross-Ply

In this section, the numerical examples of cross-ply laminates are presented. The
cross-ply considered is a [902/0;] layup. The mechanical bending and post-buckling of
cross-ply laminates are presented here. Figure 6.31 shows that in the case of cross-ply
laminates, the boundary conditions do not cause a big difference, which is the same case
for angle-ply. Also, an increment on the mechanical load causes an increment in the in-
plane load. However, as in Figure 6.32, an increment in the temperature rise will cause a
reduction in the in-plane load like the case of angle-ply laminates. From Figure 6.33, it
should be noted that cross-ply laminates do not present a bifurcation buckling behavior

since they start to deflect as soon as an increment in the temperature is applied.
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Figure 6.31. In-plane load for different transverse loads of cross-ply laminated beam

subjected to linear temperature variation.
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Figure 6.32. In-plane load for beam subjected to a transverse load g = 5 Ib/in?.
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Figure 6.33. Mid-span rise for a simply supported cross-ply beam subjected to a linear
temperature variation.
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7. Conclusions and Future Recommendations
This section describes the conclusion obtained from the analysis of the thermal
bending, buckling and post-blucking of angle-ply and cross-ply laminated beams under
the effects of moisture and geometric imperfections. Additionally, this section presents
examples for future recommendations.
7.1. Conclusions
Nonlinear analysis of the thermal bending, buckling, and post-buckling of
unsymmetrically laminated beams with the effects of moisture and imperfections was
performed in this thesis. The nonlinear equations of motion were derived with both
classical beam theory and first-order shear deformation theory. The von-Karman
geometrical nonlinearity is considered in the derivations. Analytical expressions for the
bending, buckling, and post-buckling were derived. Two types of unsymmetrically
laminated composites beams were analyzed here: angle-ply and cross-ply.
The following conclusions can be drawn from this research:
e When the length to thickness ratio is less than 30, the effects of shear cannot be
neglected when performing a nonlinear analysis of unsymmetrical composites.
The classical theory overestimates the values of critical buckling load and critical
buckling temperature.
e The effects of the shear deformation are more significant in the case of CC beams.
e The buckling behavior of angle-ply and cross-ply laminates are different.
Therefore, different methods have been presented in this thesis to obtain the
solution for these two laminates.

¢ Angle-ply laminates show a bifurcation buckling, thus, a critical buckling point is
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observed due to their B,; being equal to zero.

e For bending, when the applied transverse load is increased, an increase in the in-
plane load is observed, whereas when the temperature is increased, the in-plane
load is reduced.

e When a thermal load is applied to an angle-ply laminate, a critical point is
observed when at the critical temperature.

e Anincrease in the fiber angle will cause a reduction in the in-plane load, the
critical buckling load, and the critical buckling temperature, but an increase in the
post-buckling deflection.

e As expected, a rise of moisture percentage in angle ply laminates will cause a
reduction in the critical buckling temperature. It was also observed that CC beams
tend to sustain higher moisture percentages than SS and CS beams.

e Cross-ply laminates do not have a bifurcation buckling; hence, as soon as a
change in temperature is applied, the beam starts to extend and bend.

e The effects of shear deformation are more significant in the case of cross-ply due
to their B;;.

7.2. Future Work

The study performed in this thesis is extensive; however, there are still more aspects
to be analyzed. For example, analyzing the effects of imperfections and moisture for
cross-ply, and doing experimental validation of all the results obtained above. Extending
the problem to plates or shells. Also, doing the analysis of thermally induced vibration of
composite laminates. In addition, one can work on aerodynamic or thermoelastic flutter

analysis of composite laminates, and so on.
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