Singular reaction diffusion equations where a parameter influences the reaction term and the boundary condition (I)

Nalin Fonseka

University of North Carolina at Greensboro

Abstract

We analyse positive solutions to the steady state reaction diffusion equation:

$$\begin{cases} -u'' = \lambda h(t) f(u); \ (0,1) \\ -du'(0) + \mu(\lambda)u(0) = 0 \\ u'(1) + \mu(\lambda)u(1) = 0 \end{cases}$$

where $\lambda > 0$ is a parameter, $d \ge 0$ is a constant, f is a C^2 increasing function on $[0,\infty)$ such that f(0) = 0 and $\lim_{s\to\infty} \frac{f(s)}{s} = 0$, h is a C^1 nonincreasing function on (0,1] with h(1) > 0 and there exist constants $d_0 > 0$, $\alpha \in [0,1)$ such that $h(t) \le \frac{d_0}{t^{\alpha}}$ for all $t \in (0,1]$, and μ is an increasing continuous function on $[0,\infty)$ such that $\mu(0) \ge 0$. We will discuss existence and multiplicity results via the method of sub-supersolutions. Further, we will discuss uniqueness results for $\lambda \gg 1$.

*co-authors: A. Muthunayake, R. Shivaji and Byungjae Son.