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ABSTRACT 

 

Improving computer-aided early detection techniques for breast cancer is 

paramount because current technology has high false positive rates.  Existing methods 

have led to a substantial number of false diagnostics, which lead to stress, unnecessary 

biopsies, and an added financial burden to the health care system.  In order to augment 

early detection methodology, one must understand the breast microenvironment.  The 

CompuMAINE Lab has researched computational metrics on mammograms based on an 

image analysis technique called the Wavelet Transform Modulus Maxima (WTMM) 

method to identify the fractal and roughness signature from mammograms.  The WTMM 

method was used to color code the mammograms based on the type of tissue present and 

assign the Hurst exponent (H) value to corresponding tissue: dense tissue with H greater 

than 0.55, fatty tissue with H less than 0.45, and disrupted tissue with H between 0.45 

and 0.55, with the latter being a key trait in tumorous tissue.  This analysis on the full 

breast was performed on 127 cases for the Medio Lateral Oblique (MLO) view.  We are 

revisiting these data by analyzing the region behind the nipple for the MLO view and the 

region outside the nipple area.  After performing the WTMM analysis on each breast, 

non-parametric statistical analysis methods were performed to determine the level of 

significance between normal, benign, and cancerous cases.  Furthermore, we utilized 

logistic models to assess the predictability of these metrics for future datasets.  
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1. INTRODUCTION 

1.1 Motivation Behind The Research 

Breast cancer is a common type of cancer among women in the US.  It is 

estimated that there will be around 268,600 breast cancer cases in 2019 in the US alone, 

and the mortality rate for breast cancer patients in the US is around 15.5% [1].  Breast 

cancer is categorized as localized, regional, or distant.  For patients with access to proper 

early treatment, survival rates are relatively high for individuals in localized or regional 

stages, but low for individuals in the distant stage.  The survival rate for localized cancer 

in a five-year period is around 98.8%, while for patients diagnosed during the regional or 

distant stages, the survival rates are about 85.5% and 27.4%, respectively.  In total, the 

chance of survival in the 5-year period for any given breast cancer patient with access to 

proper medical care irrespective of stage is around 89.9% [1].  

Early cancer diagnostic tools including digital mammograms and Computer 

Aided Detection/Diagnostic (CAD) software have helped prevent deaths caused by breast 

cancer.  However, current CAD software has a false positive rate of around 15% given 

the specificity of CAD is around 85%.  False positive rate in this context means being 

diagnosed with breast cancer, when a patient does not have breast cancer, and specificity 

in this context means correctly identifying breast cancer patients [2].  False positive rates 

incur an unnecessary financial burden and unnecessary stress on patients.  In 2012 and 

2013 alone, the false positive diagnoses cost the US around 4 billion dollars per year [3].  

However, because of the potential cost savings and improved diagnostics, more accurate 

CAD technology is in high demand. 
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1.2 Current Mammography Screening Techniques 
 

1.2.1 Who Receives Mammograms? 

The primary function of mammograms is that of early detection.  Since early 

detection plays such an important role in the survival rate of breast cancer, the American 

College of Radiology (ACR) recommend that women forty-five and above receive annual 

screenings.  Further, the ACR also advises women who have additional risk factors (i.e. 

have a family history of breast cancer, were previously diagnosed, etc) to participate in 

annual screenings [4].  
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1.2.2 Mammography Procedure  

   

Figure 1.1      Figure 1.2 

Figure 1.1 and 1.2 are taken from [5]. 

The patient's breast is placed on a flat surface while the paddle compresses the 

breast.  The x-ray machine then emits a small dosage of x-ray radiation.  The dark regions 

of the mammogram represent the places where the x-rays reached the detector, while the 

light places are the places where the breast tissue absorbed the x-rays [6].  It is common 

Two-dimensional (2D) mammography imaging uses two different views, the 
Medio Lateral Oblique (MLO) view shown in Figure 1.1 and Cranial Caudal (CC) 
view shown in Figure 1.2.  The MLO view depicts the breast at an angle and the 
CC view is a projection of the breast from above.  Both views are used because 
each view has crucial information that the other view lacks.  In this research, we 
utilized only the MLO. 
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practice to take two different views of each breast.  The Medio Lateral Oblique (MLO) 

view is taken at an 45° angle with respect to the side of the breast whereas the Cranial 

Caudal (CC) view is obtained by positioning the source vertically above the breast and 

then the detector below.  Both views are used to aid in breast cancer detection [7]. 

 

1.2.3 Benefits of Mammography 

 As mentioned in Section 1.1, early detection of breast cancer almost guarantees 

survival.  Since the breasts are only exposed to low dosage of x-ray radiation during the 

mammogram, it is unlikely that the patient will develop breast cancer from excess 

exposure to ionizing radiation.  There is a small risk, however, and that is why the ACR 

and NCCN recommend annual rather than more frequent screenings [8, 9]. 

 

1.3 Information Gathered From the Mammogram 

 A distinction can be made between breasts in terms of tissue density.  

Breast tissue density can be categorized as one of four types.  According to the 

National Cancer Institute, the densities are defined (from lowest density to highest 

density) as follows: 

• The breasts are almost entirely fatty 

• There are scattered areas of dense glandular tissue and fibrous connective 

tissue (together known as fibroglandular density) 

• The breasts are heterogeneously dense, which means they have more of 

these areas of fibroglandular density. This may make it hard to see small 

masses in the breast tissue on a mammogram. 
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• The breasts are extremely dense, which makes it hard to see tumors in the 

breast tissue on a mammogram [10]. 

 

1.4 Computer Aided Detection/Diagnostic 

 In an effort to reduce healthcare costs, many institutions are implementing digital 

screening Computer Aided Detection/Diagnostic (CAD) software.  CAD is utilized by 

around 92% of all the digital screening facilities in the US in 2016 [11].  As mentioned in 

Section 1.1, the false positive rates for CAD is higher than would be ideal.  In order to 

augment CAD methodologies, one must have an understanding of the breast 

microenvironment.  In this research, four metrics were used to analyze the full breast area 

and identify differences in breast microenvironment for normal and cancer cases, normal 

and benign cases, and normal and tumorous cases.  In this context, tumorous refers to 

both benign and cancerous cases. 

 

1.5 Review of Marin et al. (2017) 

In previous research, identifying tumors in a mammogram has often the main tool 

for cancer detection, but research done by Marin et al (2017) [12] hypothesized that there 

is a correlation between breast microenvironment and the development of breast cancer.  

If the tissue structure of the breast is not disrupted, the patient is not likely to have 

tumorous breast tissue.  If the tissue structure is disrupted, that is, if the tissue exhibits a 

high level of entropy, then the breast tissue will enable tumor growth.  In this research, 

breast tissue is categorized into three groups: fatty, disrupted, and dense.  The Hurst 

Exponent (H) is used to quantify the roughness of breast tissue and Marin et al (2017) 



6 
 

[12], and this information is used to categorize breast tissue in this research as well.  Fatty 

tissue has an H value between 0 and 0.45, disrupted tissue has an H value between 0.45 

and 0.55, and dense tissue has an H value greater than 0.55.  When H is 0.5, this means 

that the tissue growth is random, which is associated with unhealthy tissue growth.  The 

ranges of H have already been predetermined in Marin et al (2017) [12].  Examples in 

Chapter 2 will illustrate that cancerous cases typically exhibit more disrupted tissue than 

normal cases. 

 

1.6 Brief Description of Image Analysis Methodology 

 

Figure 1.3:  The above figure is an RGB file, which provides an example of the 2D 

Wavelet Transform Modulus Maxima (WTMM) method and the Window Sliding 

method applied to the two mammograms.  The blue represents fatty tissue, with H < 

0.45, red represents dense tissue, with H > 0.55, and yellow represents disrupted tissue, 

with 0.45 < H < 0.55.  Small size scale is represented in B1, C1, and D1.  Medium size 

scale is represented in B2, C2, and D2.  Large size scale is represented in B3, C3, and 

D3.  The Wavelet Skeleton of results from all size scales are represented in B4, C4, and 

D4.  The above figure is taken from Marin et al (2017) [12]. 
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By understanding breast microenvironment and tissue disruption, CAD 

augmentation is possible via the 2D Wavelet Transform Modulus Maxima (WTMM) 

method and Window Sliding method, implemented in Marin et al. paper (2017) [12].  

The 2D WTMM is used to identify the H value of any given region and the Window 

Sliding method is used to analyze the image at one subregion at a time.  The 

mammograms used in this research were analyzed by the 2D WTMM method in 

conjunction with the Window Sliding Method. 

The 2D WTMM uses the Gaussian function to examine where the gradient or 

slope, is maximal on the mammogram.  This process is done for all size scales and all the 

results are combined into a 3D plot called the wavelet skeleton.  The results of the 

wavelet skeleton are fed into a partition function.  The output of the partition function is 

the Hurst exponent.  The Hurst exponent, as mentioned in Section 1.5, classifies the type 

of tissue present in the given subregion.  Hurst exponents can be calculated only if the 

subregion analyzed is monofractal in nature, meaning the roughness is homogeneous 

throughout the whole subregion.  Otherwise,  if the subregion analyzed is not 

monofractal, the sub region would be colored gray, as shown in Figure 1.3 [12]. 

 The mammograms are analyzed from left to right and top to bottom.  Each 

mammogram is sectioned off into 360 * 360 pixel subregions, and a 256 * 256 pixel 

subregion is placed at the center of a 360 x 360 subregion.  The reason for having 360 * 

360 pixel area subregion with the 256 * 256 pixel area subregion in the center is to avoid 

edge effects from the 2D WTMM method [12].  The 2D WTMM method is used to 

analyze the 256 * 256 pixel subregion.  After this is done, the Window Sliding method 

moves the 256 * 256 region to the next adjacent subregion or to the next row and 
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employs the 2D WTMM method again.  This process is utilized until all subregions of the 

breast have been analyzed. 

  

1.7 Research Question 

 As mentioned in Section 1.5, Marin et al. (2017) [12] established a link between 

loss of normal tissue structure and tumor growth.  In this research, we hope to learn more 

about the breast microenvironment by examining other regions of the breast such as the 

1024 x 1024 pixel area nipple region (nipple region) and the area excluding the 1024 x 

1024 pixel area nipple region (exclusion zone).  Further, we hope to utilize additional 

statistical tools to help construct models to better understand the nuances of the breast 

microenvironment as well as differentiate between normal and tumorous breasts. 

 

1.8 Paper Overview 

In Chapter 2, the primary focus is to determine whether the metrics in Marin et al 

(2017) [12] can be used to determine significant differences between the four subgroups, 

normal, benign, cancerous, and tumorous, for the nipple region and the exclusion zone.  

For this research, the significance level was p<0.05.  The Wilcoxon Rank Sum Test was 

utilized to determine whether significant differences exist between the four subgroups.  In 

Chapter 3, we outline the Logistic modeling methodology and the interpretation of 𝛽’s 

and how it contributes to our understanding of breast microenvironment.  The 𝛽’s are the 

slope of the logistic model.  Furthermore, the methodology behind model selection is also 

outlined.  The comparison done in Chapter 3 augments our understanding of breast 
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microenvironment by exploring how other variables such as density score and age 

contribute to distinctions between tumorous and normal cases. 
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2. ANALYZED RESULTS USING NON-PARAMETRIC STATISTICS 

 
2.1 Data: (For all MLO cases analyzed) 

 In this research, a total of 127 cases were analyzed.  The cases were categorized 

follows: 43 cases from patients with normal tissue, 35 cases from patients with benign 

tumors, and 49 cases from patients with cancerous tumors.  These mammograms were 

used for the full breast analysis, nipple region analysis, and the exclusion zone analysis.    
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2.2 Left versus Right Breast Image Registration 

 

Figure 2.1: Image registration of a breast to the opposite breast.  The above figure 

is taken from Marin et al (2017) [12]. 

The registration process is done so the transitioned squares metric for the full 

breast can be performed.  The transitioned squares metric will be outlined in Section 

2.3.1.  First, both the mammograms for the left breast, shown in dark gray in Figure 2.1, 

and the right breast, shown in light gray, must be obtained.  Then, the left breast 



12 
 

mammogram must be flipped horizontally.  After this is done, the left breast mammogram 

is fitted to that of the right breast so they are roughly the same size, in terms of both area 

and perimeter [12].  Once the registration process was completed on the mask files, the 

RGB image files were then transformed to match the corresponding mask.  These RGB 

image files represent the different types of breast tissue as categorized in Section 1.5, 

where red represents dense tissue, green represents disrupted tissue, blue represent fatty 

tissue, and gray represent tissue which was unable to be classified properly. 

2.3 Metrics Used 
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2.3.1 Full Breast [𝜆 Analysis (MLO) 

The full breast analysis, which will be referred to as the 𝜆 analysis, examines the 

full breast area of the mammogram.  An example of this can be seen in Figure 2.2A.  The 

research performed in the Marin et al. (2017) [12] paper identified computational metrics 

which were utilized for the 𝜆 analysis.  To use these metrics, masks of full breasts were 

drawn for every single MLO view mammogram.  From here, the respective masks and 

RGB files were opened in RStudio, where each computational metric for the 𝜆 analysis 

was computed to compare benign and normal breast tissue, cancerous and normal breast 

tissue, and tumorous and normal breast tissue.   

The following computational metrics were used: the sum of yellow squares, the 

sum of yellow clusters, the sum of transitioned squares, and the combination metric.  The 

combination metric as established in March et al (2017) is computed as 

 Ξ(𝛼) = 	 ∑234456	789:;37∗∑234456	=497>3;7∗∑>;:?7@>@5?3A	789:;37
(∑B44	789:;37)C

,  [Equation 2.1] 

with a= 1.5 [12].  For the sum of yellow clusters metric, clusters are defined as 45 or 

more connected squares.  For the sum of transitioned squares metric, the computer 

examines the same pixel location for the left and right breast of the same case and 

compares whether both pixels are the same color or not. 

Figure 2.2 Is a representation of the Full Breast [𝜆] analysis (A), Nipple Region [𝜉] 

analysis (B), and Exclusion Zone [𝜙] analysis (C).  We first use the RGB file we have 

as a result of the 2D WTMM and window sliding analysis to run the metrics we have 

developed for the full breast analysis. 
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 After each metric was performed on the RGB files, the Wilcoxon Rank Test (Two-

tailed) was applied to compare the data sets from the four subgroups: normal, benign, 

cancerous, and tumorous cases.  The Wilcoxon Rank Test (Two-tailed) was best suited for 

this dataset since the distribution of the data was unknown [12].  Afterwards, to determine 

whether benign, cancerous, and tumorous cases exhibited certain patterns that normal 

cases do not, the Wilcoxon Rank sum test (Upper-tail) was applied between groups to the 

data. 

2.3.2 Nipple Region [𝜉] Analysis (MLO) 

 The nipple region analysis, which will be referred to as the 𝜉 analysis, examines 

the nipple region area of the mammogram depicted in Figure 2.2B.  The motivation 

behind utilizing the 1024 * 1024 region was to replicate experiments performed by other 

academic institutions.  After masks of 1024 x 1024 pixel area were drawn and placed as 

close to the nipple region inside the breast as possible, the respective masks and RGB 

files were opened in RStudio.  Each computational metric for the 𝜉	analysis was 

computed to compare normal and benign breast tissue, normal and cancerous breast 

tissue, and normal and tumorous breast tissue.  The metrics performed were the number 

of yellow squares behind the nipple, the number of yellow clusters behind the nipple 

(cluster sizes from 1 and greater), and the number of transitioned squares.   

 The size of the clusters was determined by computing the p-values for the clusters 

of sizes 1 and greater to clusters of size 50 and greater.  The p-values were calculated by 

employing the Wilcoxon Rank Sum Test (Two-tailed) to compare the normal and 

cancerous data sets.  The p-values for normal and cancerous tissue were used for this 

comparison since this is how the computational metrics were calibrated in Marin et al 
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(2017) [12].    Out of the fifty p-values calculated, the smallest p-value was selected and 

the cluster size at this p-value were used, which in this experiment was cluster size 1 and 

greater. 

 The transitioned squares metric for the 𝜉analysis is different from the lambda 

analysis because the images were not registered.  Instead, the area behind the nipple of 

one breast was flipped horizontally and both 1024 x 1024 areas were aligned.  The 

combination metric was not attempted since the sum of yellow squares and sum of 

transitioned square metric returned p-values greater than 0.05 for the normal versus 

benign, normal versus cancerous, and normal versus tumorous comparison.  The 

Wilcoxon Rank Sum Test (Two-tailed) was used to determine if each metric could be 

used to differentiate between the four subgroups.  Finally, the Wilcoxon Rank Sum Test 

(Upper-tail) was used between groups to determine if there was a significant difference 

between normal and benign, normal and cancerous, and normal and tumorous cases. 

 

2.3.3 Exclusion Zone [𝜙] Analysis (MLO) 

 The exclusion zone analysis, which will be referred to as the 𝜙 analysis, examines 

the region of the mammogram depicted in Figure 2.2C.  First, masks for the 𝜉analysis and 

the full masks for each case were opened, because the exclusion zone is the area of full 

mask minus the area of the masks used in the 𝜉analysis.  Afterwards, the respective RGB 

files were opened in RStudio, and the RGB file was mapped with the new area.  Each 

computational metric for the 𝜙analysis was tested to determine whether there were 

significant differences between normal and benign breast tissue, normal and cancerous 

breast tissue, and normal and tumorous breast tissue.   
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 The metrics performed were the number of yellow squares in the exclusion zone, 

the number of yellow clusters in the exclusion zone (cluster sizes 45 and greater), and the 

new combination metric, 

𝜒 = 	∑𝑦𝑒𝑙𝑙𝑜𝑤	𝑠𝑞𝑢𝑎𝑟𝑒𝑠 ∗ 	∑𝑦𝑒𝑙𝑙𝑜𝑤	𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝑠𝑖𝑧𝑒	45+) 

[Equation 2.2] 

The new combination metric, outlined in Equation 2.2, is the number of yellow squares 

times the number of yellow clusters.  The best size to establish any significant differences 

between the three subgroups was determined to be 45 and above.  The size of the clusters 

was determined by the process outlined in 2.3.2.  After each metric was performed on the 

RGB files, the same statistical methodology outlined in section 2.3.1 was utilized to 

analyze the data sets generated by each metric for the four subgroups. 

 

2.4 Wilcoxon Rank Sum Test 

2.4.1 Brief Description 

 The Wilcoxon Rank Sum Test is the non-parametric equivalent of the paired t-test.  

The Wilcoxon Rank Sum Test is used because it can be applied to samples of size 10 or 

greater and it can be performed on samples with unknown distributions.  The null 

hypothesis of the Wilcoxon Rank Sum Test is that there are no differences in means 

between two data sets.   

𝐻T: 𝛥 = 0 

[Equation 2.3] 

For Equation 2.3, the delta sign is the difference in means for the two data sets that are 

being compared.  The W statistic is defined as 
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𝑊 = ∑ 𝑅Z?
Z[\   

[Equation 2.4] 

If one were to calculate the W statistic by hand, the W statistic is calculated by entering 

data sets of both subgroups into the same vector and ordering the elements from least to 

greatest.  The 𝑅Zvalue of each element is determined by ordering the elements in the 

vector from smallest to largest.  The ranks associated with each data point are then 

summed.  The letter j denotes the jth data point of the dataset and n is the total number of 

data points in one dataset [13].  For this research, we consider p<0.05 to be significant. 

2.4.2 Assumptions for the Wilcoxon Ranks Sum Test 

Assumption 1: 

In this research, it is assumed that there is a difference between the normal and benign, 

cancerous, and tumorous breast tissue data sets. 

Assumption 2: 

The data points from each dataset are randomly selected from the total population. 

Assumption 3: 

Each data point comes from the total population. 

A list of assumptions and how they were derived can be seen in reference [13]. 
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2.4.3 Wilcoxon Rank Sum Test (Two-tailed) 

For the two-tailed test, the null hypothesis is the same as the one outlined in 

Section 2.4.1.  The alternative hypothesis for the two-tailed test states that there is a 

difference in means for the two data sets compared. 

𝐻B:𝛥 ≠ 0 

[Equation 2.5] 

In the equations below, 𝛼^is the lower tail probability, whereas 𝛼\is the upper tail 

probability.  Also the table of W calculations can be consulted in reference [13] if one 

wished to calculate W by hand.  In the equations given in the remainder of this section, n 

and m are the sizes of the two data sets that are being compared. 

 

If the null hypothesis were to be rejected, the following condition needs to hold true: 

W ≥ w(𝛼^, m, n) or W ≤ [n(m+n+1) – w(𝛼\, m, n)] 

[Equation 2.6] 

If the null hypothesis cannot be rejected, then the following condition must hold true: 

[n(m+n+1) – w(𝛼\, m, n)] ≤ W ≤ w(𝛼^, m, n). 

[Equation 2.7] 

[13] 

2.4.4 Wilcoxon Rank Sum Test (Upper-tail) 

For the upper-tail test, the null hypothesis is the same as the one outlined in 

Section 2.4.1.  The alternative hypothesis for the upper-tail test states that one of the two 

data sets being compared, has a higher mean than the other in the comparison. 

𝐻B:𝛥 > 0 

[Equation 2.8] 
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If the null hypothesis were to be rejected, then the following condition must hold true: 

W ≥ w(𝛼, m, n) 

[Equation 2.9] 

If the null hypothesis cannot be rejected, then the following condition must hold true: 

W < w(𝛼, m, n). 

[Equation 2.10] 

[13] 

2.4.5 Large Sample Approximation 

 In this research, the Large Sample Approximation is utilized because all data sets 

have more than 10 elements. 

𝑊∗ = 	
𝑊 −	𝐸T(𝑊)
[𝑣𝑎𝑟T(𝑊)]\ ^⁄ = 	

𝑊 − [𝑛(𝑚 + 𝑛 + 1)
2 ]

[𝑚𝑛(𝑚 + 𝑛 + 1)
12 ]\ ^⁄

 

[Equation 2.11] 

The hypothesis testing mechanism utilizes the normal theory approximation.  In the 

normal theory approximation below, 𝑧jmeans the z-score at the given level of 

significance, 𝛼. 

Normal Theory Approximation: 

If the null hypothesis were to be rejected, then the following condition must hold true: 

𝑊∗ ≥ 𝑧j 

[Equation 2.12] 

If the null hypothesis cannot be rejected, then the following condition must hold true: 

𝑊∗ < 𝑧j. 

[Equation 2.13] 
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[13] 

2.4.6 Treatment of Ties 

When there are ties in rank for different elements in the same vectors, we utilize the 

treatment of ties to compute the W statistic, 

𝑉𝑎𝑟T(𝑊) =
𝑚𝑛
12

l𝑚 + 𝑛 + 1 −
∑ 𝑡Z
m
Z[\ n𝑡^Z − 1o

(𝑚 + 𝑛)(𝑚 + 𝑛 + 1)
p 

[Equation 2.14] 

In the above formula, g is the total number of tied groups and 𝑡Zis the size of the groups 

[13]. Equations 2.3 – Equations 2.14 are taken from [13]. 

 

2.5 Wilcoxon Rank Sum [Two-tailed] Test Analysis of all three regions 

In this research, our hypothesis was that the breast microenvironment for normal 

breast tissue is different from benign, cancerous, and tumorous breast tissue.  If p<0.05, 

one can reject the null hypothesis.  The p-values yielded in Tables 2.1 to 2.4 are produced 

by utilizing the Wilcoxon Rank Sum (Two-sided) Test.  The only conclusion that can be 

arrived at when utilizing the Wilcoxon Rank Sum (Two-sided) Test is whether there are 

any differences between two data sets. 

 

2.5.1 𝜆 Analysis (MLO) 

 The results for the sum of yellow squares metric from Table 2.1 show the p-value 

for normal and cancer is 0.01692, the p-value for normal and benign is 0.0002238, the p-

value for benign and cancer is 0.1408, and the p-value for tumor and normal is 

0.0008336.  The p-values for normal versus cancer, normal versus benign, and normal 
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versus tumorous cases suggests there is a difference between normal versus, benign 

cases, normal versus cancerous cases, and normal versus tumorous cases.  As shown in 

the middle box plot of Figure 2.6, the yellow squares medians for normal and tumorous 

cases are different from each other.  Since the p-values for normal versus benign, normal 

versus cancer, and normal versus tumor group are small, we decided to utilize the sum of 

yellow squares as a metric to help differentiate between normal versus benign, normal 

versus cancer, and normal versus tumor group. 

 The results for the sum of yellow clusters metric from Table 2.2 show the p-value 

for normal and cancer is 0.009061, the p-value for normal and benign is 0.002951, the p-

value for benign and cancer is 0.4313, and the p-value for tumor and normal is 0.001469.  

The p-values for normal versus cancer, normal versus benign, and normal versus 

tumorous cases are smaller than 0.05, this suggests that there is a difference between 

normal versus, benign cases, normal versus cancerous cases, and normal versus tumorous 

cases.  As shown in the middle box plot of Figure 2.7, the yellow clusters medians for 

normal and tumorous cases are different from each other.  Since the p-values for normal 

versus benign, normal versus cancer, and normal versus tumor group are small, we 

decided to utilize the sum of yellow clusters as a metric to help differentiate between 

normal versus benign, normal versus cancer, and normal versus tumor group. 

 The results for the sum of transitioned squares metric from Table 2.3 show the p-

value for normal versus cancer is 0.02471, the p-value for normal and benign is 

0.0008767, the p-value for benign and cancer is 0.1533, and the p-value for tumor and 

normal is 0.001665.  The p-values for normal versus cancer, normal versus benign, and 

normal versus tumorous suggests that there is a difference between normal versus, benign 
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cases, normal versus cancerous cases, and normal versus tumorous cases.  As shown in 

the left box plot of Figure 2.8, the transitioned squares medians for normal and tumorous 

cases are different from each other.  Since the p-values for normal versus benign, normal 

versus cancer, and normal versus tumor group are small, we decided to utilize the sum of 

transitioned squares as a metric to help differentiate between normal versus benign, 

normal versus cancer, and normal versus tumor group. 

 The results for the combination metric from Table 2.4 show the p-value for 

normal and cancer is 0.003425, the p-value for normal and benign is 0.001647, the p-

value for benign and cancer is 0.5854, and the p-value for tumor and normal is 

0.0005389.  The p-values for normal versus cancer, normal versus benign, and normal 

versus tumorous cases suggests that there is a difference between normal versus, benign 

cases, normal versus cancerous cases, and normal versus tumorous cases.  As shown in 

the left box plot of Figure 2.9, the combination metric medians for normal and tumorous 

cases are different from each other.  Since the p-values for normal versus benign, normal 

versus cancer, and normal versus tumor group are small, we decided to utilize the 

combination score as a metric to help differentiate between normal versus benign, normal 

versus cancer, and normal versus tumor group. 

 



23 
 

 

Figure 2.6:  Box plot of results generated by the sum of yellow squares metric.  The 

yellow represents the benign cases, the red represents the cancer cases, green represents 

the normal cases, and the seashell color represents the tumorous cases (benign and 

cancer). 

Table 2.1: Table of p-values for the yellow square metric 

 Full Breast Nipple Region Exclusion zone 

Benign versus Normal 0.0002238 0.1052 9.512e-06 

Cancer versus Normal 0.01692 0.5475 0.002083 

Benign versus Cancer 0.1408 0.01978 0.08598 

Tumor versus Normal 0.0008336 0.6699 3.25e-05 
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Figure 2.7:  Box plot of results generated by the sum of yellow clusters metric.  The 

yellow represents the benign cases, the red represents the cancerous cases, green 

represents the normal cases, and the seashell color represents the tumorous cases (benign 

and cancer). 

Table 2.2: Table of p-values for the yellow clusters metric 

 

 Full Breast Nipple Region Exclusion zone 

Benign versus Normal 0.002951 7.79e-04 1.58e-03 

Cancer versus Normal 0.009061 1.53e-05 2.52e-03 

Benign versus Cancer 0.4313 8.74e-01 4.85e-01 

Tumor Versus Normal 0.01461 4.77e-06 3.54e-04 
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Figure 2.8:  Box plot of results generated by the sum of transitioned squares metric.  The 

yellow represents the benign cases, the red represents the cancer cases, green represents 

the normal cases, and the seashell color represents the tumorous cases (benign and 

cancer). 

Table 2.3: Table of p-values for the transitioned squares metric 

 Full Breast Nipple Region 

Benign versus Normal 0.0008767 0.7895 

Cancer versus Normal 0.02471 0.2829 

Benign versus Cancer 0.1533 0.4775 

Tumor Versus Normal 0.001665 0.3965 
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Figure 2.9:  Box plot for results generated by the combination metric.  The yellow 

represents the benign cases, the red represents the cancer cases, green represents the 

normal cases, and the seashell color represents the tumorous cases (benign and cancer). 

Table 2.4: Table of p-values for the combination metric 

 Full Breast Exclusion zone 

Benign versus Normal 0.001647 0.0001282 

Cancer versus Normal 0.003425 0.001393 

Benign versus Cancer 0.5854 0.2383 

Tumor Versus Normal 0.0005389 6.427e-05 
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2.5.2 𝜉Analysis (MLO) 

 The results for the sum of all yellow squares metric from Table 2.1 show the p-

value for normal and cancer is 0.5475, the p-value for normal and benign is 0.1052, the p-

value for benign and cancer is 0.01978, and the p-value for tumor and normal is 0.6699.  

The p-values for normal versus cancer, normal versus benign, and normal versus 

tumorous cases suggests that there is no difference between normal versus benign cases, 

normal versus cancerous cases, and normal versus tumorous cases.  As shown in the right 

box plot of Figure 2.6, the yellow squares medians for normal and tumorous cases are not 

seemingly different from each other.  Since the p-values for normal versus benign, normal 

versus cancer, and normal versus tumor group are relatively large, we decided to not 

utilize the sum of yellow squares as a metric to help differentiate between normal versus 

benign, normal versus cancer, and normal versus tumor group. 

The results for the sum of all yellow clusters metric from Table 2.2 show the p-

value for normal and cancer is 1.53e-05, the p-value for normal and benign is 7.79e-04, 

the p-value for benign and cancer is 8.47e-01, and the p-value for tumor and normal is 

4.77e-06.  The p-values for normal versus cancer, normal versus benign, and normal 

versus tumorous cases suggests that there is a difference between normal versus, benign 

cases, normal versus cancerous cases, and normal versus tumorous cases.  As shown in 

the right box plot of Figure 2.7, the yellow clusters medians for normal and tumorous 

cases are not seemingly different from each other.  Since the p-values for normal versus 

benign, normal versus cancer, and normal versus tumor group are small, we decided to 

utilize this as a metric to help differentiate between normal versus benign, normal versus 

cancer, and normal versus tumor group. 
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The results for the sum of transitioned squares metric from Table 2.3 show the p-

value for normal and cancer is 0.2829, the p-value for normal and benign is 0.7895, the p-

value for benign and cancer is 0.4775, and the p-value for tumor and normal is 0.3965.  

The p-values for normal versus cancer, normal versus benign, and normal versus 

tumorous cases suggests that there is no difference between normal versus, benign cases, 

normal versus cancerous cases, and normal versus tumorous cases.  As shown in the right 

box plot of Figure 2.8, the transitioned squares medians for normal and tumorous cases 

are not seemingly different from each other.  Since the p-values for normal versus benign, 

normal versus cancer, and normal versus tumor group are relatively big, we decided to 

not utilize this as a metric to help differentiate between normal versus benign, normal 

versus cancer, and normal versus tumor group. 

 

2.5.3 𝜙Analysis (MLO) 

 The results for the sum of yellow squares metric from Table 2.1 show the p-value 

for normal and cancer is 0.002083, the p-value for normal and benign is 9.512e-06, the p-

value for benign and cancer is 0.08598, and the p-value for tumor and normal is 3.25e-05.  

The p-values for normal versus cancer, normal versus benign, and normal versus 

tumorous cases suggests that there is a difference between normal versus, benign cases, 

normal versus cancerous cases, and normal versus tumorous cases.  As shown in the left 

box plot of Figure 2.6, the yellow squares medians for normal and tumorous cases are 

different from each other.  Since the p-values for normal versus benign, normal versus 

cancer, and normal versus tumor group are small, we decided to utilize this as a metric to 



29 
 

help differentiate between normal versus benign, normal versus cancer, and normal 

versus tumor group. 

 The results for the sum of yellow clusters metric from Table 2.2 show the p-value 

for normal and cancer is 2.52e-03, the p-value for normal and benign is 1.58e-03, the p-

value for benign and cancer is 4.85e-01, and the p-value for tumor and normal is 3.54e-

04.  The p-values for normal versus cancer, normal versus benign, and normal versus 

tumorous cases suggests that there is a difference between normal versus, benign cases, 

normal versus cancerous cases, and normal versus tumorous cases.  As shown in the left 

box plot of Figure 2.7, the yellow clusters medians for normal and tumorous cases are 

different from each other.  Since the p-values for normal versus benign, normal versus 

cancer, and normal versus tumor group are small, we decided to utilize the sum of yellow 

clusters as a metric to help differentiate between normal versus benign, normal versus 

cancer, and normal versus tumor group. 

 The results for the combination metric from Table 2.4 show the p-value for 

normal and cancer is 0.001393, the p-value for normal and benign is 0.0001282, and the 

p-value for benign and cancer is 0.2383, and the p-value for tumor and normal is 6.427e-

05.  The p-values for normal versus cancer, normal versus benign, and normal versus 

tumorous cases are smaller than 0.05, this suggests that there is a difference between 

normal versus, benign cases, normal versus cancerous cases, and normal versus tumorous 

cases.  As shown in the right box plot of Figure 2.9, the combination metric medians for 

normal and tumorous cases are different from each other.  Since the p-values for normal 

versus benign, normal versus cancer, and normal versus tumor group are small, we 
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decided to utilize this as a metric to help differentiate between normal versus benign, 

normal versus cancer, and normal versus tumor group. 

2.6 Wilcoxon Rank Sum [Upper-tail] Test Analysis of All Three Regions 

2.6.1 𝜆Analysis (MLO) 

Section 2.5.1 suggests that all the metrics for the 𝜆 analysis can be used to 

differentiate benign, cancerous, and tumorous groups from the normal group because the 

p-values for all of those comparisons are less than 0.05.  The question we would like to 

answer is, what makes the benign, cancerous, and tumor groups different from normal 

breast groups? 

For the sum of yellow squares metric, the median count from Figure 2.6 shows 

that benign, cancerous, and tumorous breasts have a higher median than normal breasts.  

The p-value for benign vs normal is 0.0001119, the p-value for cancer and normal is 

0.008458, and the p-value for tumor and normal is 0.0004168.  Since the p-values are 

smaller than 0.05, this suggests that benign, cancer, and tumorous groups have a higher 

yellow square count than the normal group. 

The median count for the sum of yellow clusters from Figure 2.7 shows that 

benign, cancerous, and tumor group have a higher median than normal breasts.  After 

performing the upper-tail test, I found the p-value for benign vs normal is 0.001446, the 

p-value for cancer and normal is 0.00453, and the p-value for tumor and normal is 

0.0007346.  Since the p-values are smaller than 0.05, this suggests that benign, 

cancerous, and tumorous groups, in general, have a higher yellow cluster count than the 

normal group. 
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The median count for transitioned squares from Figure 2.8 shows that benign, 

cancerous, and tumorous groups have a higher median than the normal group.  After 

performing the upper-tail test, I found the p-value for benign vs normal is 0.0004384, the 

p-value for cancer and normal is 0.01235, and the p-value for tumor and normal is 

0.0008324.  Since the p-values are smaller than 0.05, this suggests that benign, 

cancerous, and tumorous groups, in general, have a higher transitioned square count than 

the normal group. 

The median count for the combination metric from Figure 2.9 shows that benign, 

cancerous, and tumorous groups have a higher median than the normal group.  After 

performing the upper-tail test, I found the p-value for benign vs normal is 0.0008233, the 

p-value for cancer and normal is 0.001712, and the p-value for tumor and normal is 

0.0002694.  Since the p-values are smaller than 0.05, this suggests that benign, 

cancerous, and tumorous groups, in general, have a higher combination metric count than 

the normal group. 

 

2.6.2 𝜉Analysis (MLO) 

 Section 2.5.2 suggests that the yellow squares metric and the transitioned squares 

metric are ineffective in the 𝜉 analysis because the p-values for those comparisons are 

greater than 0.05.  We need to examine if the tumorous, cancerous, or benign cases will 

exhibit more clusters than the normal cases.  

The median count for yellow clusters from Figure 2.7 shows that benign, 

cancerous, and tumorous groups have a lower median than the normal group.  After 

performing the upper-tail test, I found the p-value for benign vs normal is 0.0003897, the 
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p-value for cancer and normal is 7.65e-06, and the p-value for tumor and normal is 

2.385e-06.  Since the p-values are smaller than 0.05, this suggests that benign, cancerous, 

and tumorous groups, in general, have a lower yellow cluster count than the normal 

group. 

 

2.6.3 𝜙 Analysis (MLO) 

Section 2.5.3 suggests that for the 𝜙 analysis, all the metrics were able to 

differentiate between benign, cancerous, and tumorous groups from the normal group 

because the p-values for those comparisons are less than 0.05. 

The median count for yellow squares from Figure 2.6 shows that benign, 

cancerous, and tumorous groups have a higher median than the normal group.  After 

performing the upper-tail test, I found the p-value for benign vs normal is 4.756e-06, the 

p-value for cancer and normal is 0.001041, and the p-value for tumor and normal is 

1.625e-05.  Since the p-values are smaller than 0.05, this suggests that benign, cancerous, 

and tumorous groups, in general, have a higher yellow cluster count than the normal 

group. 

The median count for yellow clusters from Figure 2.7 shows that benign, 

cancerous, and tumorous groups have a higher median than the normal group.  After 

performing the upper-tail test, I found the p-value for benign vs normal is 0.0007887, the 

p-value for cancer and normal is 0.00126, and the p-value for tumor and normal is 

0.000177.  Since the p-values are smaller than 0.05, this suggests that benign, cancerous, 

and tumorous groups, in general, have a higher yellow cluster count than the normal 

group. 
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The median combination metric count from Figure 2.9 shows that benign, 

cancerous, and tumorous groups have a higher median than the normal group.  After 

performing the upper-tail test, I found the p-value for benign vs normal is 6.408e-05, the 

p-value for cancer and normal is 0.0006967, and the p-value for tumor and normal is 

3.213e-05.  Since the p-values are smaller than 0.05, this suggests that benign, cancerous, 

and tumorous groups, in general, have a higher combination metric count than the normal 

group. 
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3. STATISTICS 
 

3.1 Logistic Regression Methodology 

3.1.1 Purpose of the Logistic Model 

 The logistic modeling methodology was utilized due to its ability to quantify the 

probability that a predictive variable will correctly identify tumorous breast tissue. One 

purpose of the logistic model is to answer classification problems.  For this research, it is 

utilized to see if the metrics from sections 2.3.1, 2.3.2, and 2.3.3 will have high odds of 

differentiating between the tumor and normal groups. 

 

3.1.2 Relation Between Probability And Odds (For Logistic Regression With Single 

Explanatory Variable) 

 The logit model (linearized logistic model) has two different outputs for its 

response variables, 0 and 1.  The probability P can be calculated for the two response 

variables.  In this research, 𝜋(𝑥) is the probability that a mammogram in the sample 

shows evidence of tumorous tissue, Y is the binary response variable tumorous or 

normal, and X is any given metric, the predictive variable. Then 

 
𝜋(𝑥) = 𝑃(𝑌 = 1|𝑋 = 𝑥) = 1 − 𝑃(𝑌 = 0|𝑋 = 𝑥) 

[Equation 3.1] 

 𝜋(𝑥) = 3wx	(jyzw)
\y3wx	(jyzw)

 

[Equation 3.2] 
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In Equation 3.2, 𝜋(𝑥), Y, and X are the same variables as defined in Equation 3.1.  Also, 

𝛼 is the intercept of the logit model, and 𝛽 is the slope of the logit model. The logit model 

has a linear relationship between the predictive variable and its response variable. 

𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)] = 𝑙𝑜𝑔 |
𝜋(𝑥)

1 − 𝜋(𝑥)
} = 𝛼 + 𝛽𝑥. 

[Equation 3.3] 

Equations 3.1 – 3.3 are taken from [14]. 

 

 

Figure 3.1:  Logistic curve example. 

The example  above depicts the probability that a mammogram shows evidence of 

tumorous tissue as a function of the number of yellow clusters in the image.  The two 

horizontal scatter plots at y=1 and y=0 show how many images in each cluster category 

(e.g., the data points along the line x=1 corresponds to the images containing one yellow 

cluster) showed evidence of the tumorous tissue and how many did not, respectively. The 

logistic curve with the red dots shows a correlation between the number of yellow 
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clusters and the likelihood that an image in a given cluster category will depict tumorous 

tissue.  The vertical line in the figure is the median effective level, and that is where the 

probability that an image in a given cluster category will show tumorous tissue is 50 

percent.  The value of the median effective level is �j
z

.  For the analysis done in Figure 

3.1, 𝛼 is -1.12 and 𝛽 is 0.381. This yields 2.94 for the median effect level. 

 

3.1.3 Interpretation of the 𝛽′𝑠 

 In this research, the response variable is tissue type, namely healthy versus 

tumorous, and the predictive variables are the metrics outlined in sections 2.3.1, 2.3.2, 

and 2.3.3.  As outlined in section 3.1.2, the logit model of logistic regression is linear.  

Therefore, 𝛽Z represents the slope of the relationship between the predicted diagnosis and 

the metric.  𝑒z�  is the odds ratio between X = x+1 and X = x.  This means if 𝛽Z is positive, 

the odds that an image depicts tumorous tissue increase with each x.    If 𝛽Z is negative, 

the odds of that an image depicts tumorous tissue  decreases with each increase in x.    If 

𝛽Z is zero, this means that for the given metric, there is likely no correlation between the 

chosen metric and the probability that an image will show evidence of tumorous tissue 

[14]. 

3.1.4 Receiver Operating Characteristic (ROC) Curve 
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Figure 3.2:  Example of ROC Curve. 

 The receiver operating curve (ROC) plot is a plot of sensitivity versus 1-

specificity.  Sensitivity is the true positive rate, meaning the percentage of correctly 

predicted tumorous diagnoses, whereas specificity is the probability that normal tissue 

will be predicted correctly.  The ROC curve, then, is a plot of true positive rate versus 

false positive rate as shown in Figure 3.2. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	𝑃(𝑦�:> = 1	|	𝑦 = 1) 

[Equation 3.4] 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑃(𝑦�:> = 0	|	𝑦 = 0) 

[Equation 3.5] 

[Equation 3.5] 
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In the above equations, 𝑦�:> is the prediction that the data point has a value of 1, and y is 

the actual value (0 or 1) of the data points.  The ROC curve usually has a concave shape 

connecting the points (0, 0) and (1, 1).  The higher the area under the ROC curve, the 

better the predictions of the given model.  In other words, the ROC curve is used to 

summarize the predictive power of a given model. 

In Figure 3.2, the area under the ROC curve is 0.71, meaning the predictive power 

of the model is 0.71.  The predictive power of the model in Figure 3.2 to determine if the 

mammogram depicts tumorous tissue is greater than the predictive power of CAD today, 

which is at 0.63 [15].  Predictive power is the ability to make an accurate assessment of 

potential future data.  The lower triangle represents 50% predictive power, which would 

be the same as random guessing.  If the area under the ROC curve matched the area of 

the lower triangle, it could mean that the model is  no better at predicting than random 

guessing [14].  Equation 3.4 and 3.5 are taken from [14]. 

 

3.1.5 Goodness of Fit Tests 

 Possessing predictive power beyond 0.50 does not mean the model should be 

utilized.  The model should also fit the data well in addition to possessing high predictive 

power.  In order to compute how well the model fits the data, one must utilize goodness 

of fit tests.  There are two common types of the goodness of fit tests, one being the 

Pearson residual test and the other being the 𝐺^ test.  The Person residual test is defined 

as 

𝑋^ = ∑ 𝑒@^�
@[\ . 

[Equation 3.6] 
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In Equation 3.6, the 𝑒@ stands for Pearson residuals, and the sum of the Pearson residuals 

provides the Pearson statistic, which is used to determine if a model fits the data poorly.  

The deviance residual, which is used in the 𝐺^ test, is defined as 

�𝑑@ ∗ 𝑠𝑖𝑔𝑛(𝑦@ − 𝑛@𝜋@�C�) 

[Equation 3.7] 

In Equation 3.7, the 𝑑@ stands for deviance, “𝑦@ denote the binomial variate for 𝑛@ trials” 

[14], and “𝑛@𝜋@�C� is the fitted number of successes” [14].  Further, the square root of 𝑑@ is 

multiplied by the sign of 𝑦@ − 𝑛@𝜋@�C�  to get the deviance residual which is used in the 𝐺^ 

test. Both are used this research.  If both goodness of fit tests return p-values greater than 

0.05 for the current model, this suggests the current model fits the data.  However, if at 

least one goodness of fit test returns a p-value less than 0.05 for the current model, this 

suggests the current model fits the data poorly.  Should the model fit the data poorly, the 

model is rejected in favor of an alternative model [14]. 

 

3.1.6 Logistic Regression with Categorical Predictive Variable 

 The motivation behind using categorical predictive variable is that the density 

score may contribute to better fitting of the data in the amended models.  A categorical 

variable is a variable that is not quantitative, for example, a 1 to 10 rating system, or type 

1 versus type 2 diabetes.  The numerical representation of categorical data is either 

ordinal or nominal, meaning data with a ranking order (e.g. race times) or data without a 

ranking order (e.g. colors), but not a representation of quantity. 

 The method in which categorical variables are analyzed in this research is by the 

use of indicated variables.  The model is in the form of 
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𝑙𝑜𝑔𝑖𝑡(𝜋@) = 𝛼 + 𝛽^𝑥^ + 𝛽�𝑥� +⋯+ 𝛽�𝑥� , 

[Equation 3.6] 

where i ={2,3,…,I} because this is the default setting in RStudio, where I is the total 

number of levels (e.g., density score ranges from 1 to 4; therefore I in this context is 4) 

[14]. 

Equation 3.6 is taken from [14]. 

 

3.1.7 Model Selection via Backwards Elimination 

 In order to maximize predictive power of models, the complex models are 

examined for goodness of fit.  The most complex model in this context means a model 

including all possible predictive variables with all interaction terms.  The motivation 

behind the backwards elimination method is to find the most simple model which also fits 

the data well.  The backward elimination algorithm starts with the most complex model 

and the algorithm eliminates the least significant terms one at a time until goodness of fit 

is compromised [14]. 

 

3.2 Logistic Regression Results for Single Predictive Variable 

3.2.1 𝜆 Analysis (MLO) 

 The model utilizing the yellow square metric as a sole predictive variable has a 

predictive power of 0.674, or around 67.4%.  The mathematical definition of the model is 

given as: 

𝑌 = −0.6996 + 1.4481𝑋, where X is the yellow squares metric result divided by 1000.  

The odds ratio is 4.255, which is greater than 1.  This suggests that for every additional 
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1000 yellow squares, the odds that an image depicts tumorous tissue increases.  The 

Pearson residuals test has a p-value of 0.356, and the 𝐺^test has a p-value of 0.043.  Since 

the model failed to pass at least one goodness of fit test, this indicates that the model 

utilizing the sum of yellow squares divided by 1000 is not suitable to gauge whether an 

image shows tumorous tissue. 

 The model utilizing the results from the yellow clusters metric has a predictive 

power of 0.661, or around 66.1%.   The mathematical definition of the model is given as: 

𝑌 = −0.3109 + 0.2339𝑋, where X is the yellow clusters result.  The odds ratio is 1.2635, 

which is greater than 1.  This suggests that for each additional yellow cluster, the 

probability that an image depicts tumorous tissue increases.  The Pearson residuals test 

has a p-value of 0.293, and the 𝐺^test has a p-value of 0.035.  Since the model failed to 

pass at least one goodness of fit test, this indicates that the model utilizing the sum of 

yellow clusters is not suitable to gauge whether an image shows tumorous tissue. 

 The model utilizing only the results from the transitioned square metric has a 

predictive power of 0.672, or around 67.2%.   The mathematical definition of the model 

is given as: 

𝑌 = −0.7822 + 0.5899𝑋, where X is the transitioned squares metric results divided by 

1000. 

The odds ratio is 1.8038, which is greater than 1.  This suggests that for every additional 

1000 transitioned squares, the probability that an image depicts tumorous tissue 

increases.  The Pearson residuals test has a p-value of 0.526, and the 𝐺^test has a p-value 

of 0.057.  Since the model passed both goodness of fit tests, this indicates that the model 
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utilizing the sum of transitioned squares divided by 1000 is suitable to gauge whether an 

image shows tumorous tissue. 

The model utilizing the results from the combination metric has a predictive 

power of 0.677, or around 67.7%.   The mathematical definition of the model is given as: 

𝑌 = −0.2627 + 2.9975𝑋, where X is the combination metric result divided by 100.  The 

odds ratio is 20.035, which is greater than 1.  This suggests for each additional 100 

combination metric count, the probability that an image depicts tumorous tissue 

increases.  The Pearson residuals test has a p-value of 0.351, and the 𝐺^test has a p-value 

of 0.056.  Since the model passed both goodness of fit tests, this indicates that the model 

using the combination metric is suitable to gauge whether an image shows tumorous 

tissue. 

 

3.2.2 𝜉 Analysis (MLO) 

The model utilizing the results from the yellow square metric has a predictive 

power of 0.519, or around 51.9%.   The mathematical definition of the model is given as: 

𝑌 = 0.9736 − 2.1196𝑋, where X is the yellow squares metric result divided by 1000.  The 

odds ratio is 0.1201, which is less than 1.  This suggests that for each additional 1000 

yellow squares, the probability that an image depicts tumorous tissue decreases.  The 

result shows that the yellow squares metric is not much better at differentiating tumorous 

breasts than random assignment.  The Pearson residuals test has a p-value of 0.429, and 

the 𝐺^test has a p-value of 0.009.  Since the model failed to pass at least one goodness of 

fit test, this indicates that the model using the sum of yellow squares divided by 1000 is 

not suitable to gauge whether an image shows tumorous tissue. 
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 The model utilizing the results from the sum of yellow clusters metric has a 

predictive power of 0.756, or around 75.6%.   The mathematical definition of the model 

is given as: 

𝑌 = 4.789 − 15.588𝑋, where X is the sum of yellow clusters metric result divided by 100.  

The odds ratio is 1.669e-07, which is less than 1.  This suggests that for each additional 

100 yellow clusters, the probability that an image depicts tumorous tissue increases.  The 

Pearson residuals test has a p-value of 0.349, and the 𝐺^test has a p-value of 0.101.  Since 

the model passed both goodness of fit tests, this indicates that the model using the sum of 

yellow clusters is suitable to gauge whether an image shows tumorous tissue. 

 The model utilizing the results from the transitioned square metric has a 

predictive power of 0.548, or around 54.8%.   The mathematical definition of the model 

is given as: 

𝑌 = 1.105 − 1.2716𝑋, where X is the transitioned squares metric result divided by 1000.  

The odds ratio is 0.2804, which is less than 1.  This suggests that for each additional 1000 

transitioned squares, the probability that an image depicts tumorous tissue decreases.  The 

result shows that the transitioned squares metric is not much better at differentiating 

tumorous breasts than random assignment.  The Pearson residuals test has a p-value of 

0.428, and the 𝐺^test has a p-value of 0.009.  Since the model failed to pass at least one 

goodness of fit test, this indicates that the model using the sum of transitioned squares 

divided by 1000 is not suitable to gauge whether an image shows tumorous tissue.  
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3.2.3 𝜙 Analysis (MLO) 

 The model utilizing the results from the yellow square metric has a predictive 

power of 0.718, or around 71.8%.   The mathematical definition of the model is given as: 

𝑌 = −1.5880 + 2.7827𝑋, where X is the yellow squares metric result divided by 1000.  

The odds ratio is 16.163, which is greater than 1.  This suggests that for each additional 

1000 yellow squares, the probability that an image depicts tumorous tissue increases.  

The Pearson residuals test has a p-value of 0.066, and the 𝐺^ test has a p-value of 0.154.  

Since the model passed both goodness of fit tests, this indicates that the model using the 

sum of yellow squares divided by 1000 is suitable to gauge whether an image shows 

tumorous tissue. 

 The model utilizing the results from the yellow clusters metric has a predictive 

power of 0.710, or around 71.0%.   The mathematical definition of the model is given as: 

𝑌 = −1.1220 + 0.3808𝑋, where X is the yellow clusters metric result.  The odds ratio is 

1.463, which is greater than 1.  This suggests that for each additional yellow cluster, the 

probability that an image depicts tumorous tissue increases.  The Pearson residuals test 

has a p-value of 0.492, and the 𝐺^ test has a p-value of 0.066.  Since the model passed 

both goodness of fit tests, this indicates that the model the sum of yellow clusters is 

suitable to gauge whether an image shows tumorous tissue. 

The model utilizing the results from the combination metric has a predictive 

power of 0.712, or around 71.2%.   The mathematical definition of the model is given as: 

𝑌 = 0.53597 + 0.27711𝑋, where X is the combination metric result divided by 1000.  The 

odds ratio is 1.3193, which is greater than 1.  This suggests that for each additional 1000 

combination metric count, the probability that an image depicts tumorous tissue 



45 
 

increases.  The Pearson residuals test has a p-value of 0.595, and the 𝐺^test has a p-value 

of 0.082.  Since the model passed both goodness of fit tests, this indicates that the model 

using combination metric is suitable to gauge whether an image shows tumorous tissue. 

 

3.3 Logistic Regression Results with Categorical Predictive Variable 
After fitting models with each metric from sections 2.3.1, 2.3.2, and 2.3.3, we 

decided to fit models with two predictive variables at a time.  One was the categorical 

variable, density score of the breast, which we used in conjunction with each metric to 

see how this new variable affected the predictive power of the model.  The age of the 

patient as a predictive variable was not considered at first because in the Marin et al. 

(2017) [11] paper, age was shown not to be significant.   

 

Figure 3.3: Logistic Curve of the model using two predictive variables, one of which a 

categorical variable. 
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The density score seems to have an inverse relationship with the median effect score.  

The higher the density score, the lower the median effect level.  For higher density 

scores, as shown in Figure 3.3, the median effect score is lower, meaning a mammogram 

depicts dense breast tissue with a high density score, the number of clusters for 

differentiating mammograms with tumors from normal mammograms is lower compared 

to mammograms with lower density scores.  In the future, one should not overlook the 

importance of breast density. 

 

3.3.1 𝜆 Analysis (MLO) 

 The model utilizing density score as a categorical variable and the yellow squares 

metric as variables has a predictive power of 0.776, or around 77.6%.   The mathematical 

definition of the model is given as: 𝑌 = −2.7456 + 1.8755𝑋 + 0.9354𝑍^ + 2.0518𝑍� +

2.5089𝑍�, where X is the yellow squares metric result divided by 1000, 𝑍^ is Density 

score of 2, 𝑍� is the Density score of 3, and 𝑍� is the Density score of 4.  The odds ratio is 

6.524, which is greater than 1.  This suggests that for each additional 1000 yellow 

squares, the probability that an image depicts tumorous tissue increases.  The Pearson 

residuals test has a p-value of 0.036, and the 𝐺^test has a p-value of 0.166.  Since the 

model failed to pass at least one goodness of fit test, this indicates that the model utilizing 

the sum of yellow squares divided by 1000 and density score is not suitable to gauge 

whether an image shows tumorous tissue. 

 The model utilizing density as a categorical variable and the yellow clusters 

metric as variables has a predictive power of 0.752, or around 75.2%.   The mathematical 

definition of the model is given as: 𝑌 = −1.9944 + 0.2980𝑋 + 0.7715𝑍^ + 1.7248𝑍� +
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2.2808𝑍�, where X is the yellow clusters metric result, 𝑍^ is Density score of 2, 𝑍� is the 

Density score of 3, and 𝑍� is the Density score of 4.  The odds ratio is 1.347, which is 

greater than 1.  This suggests that for each additional yellow cluster, the probability that 

an image depicts tumorous tissue increases.  The Pearson residuals test has a p-value of 

0.034, and the 𝐺^test has a p-value of 0.118.  Since the model failed to pass at least one 

goodness of fit test, this indicates that the model utilizing the sum of yellow clusters and 

density score is not suitable to gauge whether an image shows tumorous tissue. 

 The model using density as a categorical variable and the transitioned squares 

metric as variables has a predictive power of 0.775, or around 77.5%.   The mathematical 

definition of the model is given as: 𝑌 = −2.8001 + 0.7151𝑋 + 1.0311𝑍^ + 2.2047𝑍� +

2.4798𝑍�, where X is the transitioned squares metric result divided by 1000, 𝑍^ is Density 

score of 2, 𝑍� is the Density score of 3, and 𝑍� is the Density score of 4.  The odds ratio is 

2.044, which is greater than 1.  This suggests that for each additional 1000 transitioned 

squares, the probability that an image depicts tumorous tissue increases.  The Pearson 

residuals test has a p-value of 0.088, and the 𝐺^test has a p-value of 0.193.  Since the 

model passed both goodness of fit tests, this indicates that the model utilizing sum of 

transitioned squares divided by 1000 and density score is suitable to gauge whether an 

image shows tumorous tissue. 

The model using density as a categorical variable and the combination metric as 

variables has a predictive power of 0.748, or around 74.8%.   The mathematical definition 

of the model is given as: 𝑌 = −1.8417 + 3.3971𝑋 + 0.8991𝑍^ + 1.7296𝑍� + 2.2591𝑍�, 

where X is the combination metric result divided by 100, 𝑍^ is Density score of 2, 𝑍� is 

the Density score of 3, and 𝑍� is the Density score of 4.  The odds ratio is 29.877, which 
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is greater than 1.  This suggests that for each additional 100 combination metric count, 

the probability that an image depicts tumorous tissue increases.  The Pearson residuals 

test has a p-value of 0.287, and the 𝐺^test has a p-value of 0.152.  Since the model passed 

both goodness of fit tests, this indicates that the model utilizing the combination metric 

count divided by 100 and density score is suitable to gauge whether an image shows 

tumorous tissue. 

 

3.3.2 𝜉 Analysis (MLO) 

 For the cases of yellow and transitioned squares, since their respective models 

proved to be as effective as random guessing, there was no need to explore further how 

density could  enhance the predictability of the two  models. 

 The model using density as a categorical variable and the yellow clusters metric 

as variables has a predictive power of 0.795, or around 79.5 %.   The mathematical 

definition of the model is given as: 𝑌 = 3.4529 − 15.9624𝑋 + 1.0995𝑍^ + 1.6900𝑍� +

2.1544𝑍�, where X is the yellow clusters metric result divided by 100, 𝑍^ is Density score 

of 2, 𝑍� is the Density score of 3, and 𝑍� is the Density score of 4.  The odds ratio is 

1.17e-08, which is less than 1.  This suggests that for each additional 100 yellow clusters, 

the probability that an image depicts tumorous tissue increases.  The Pearson residuals 

test has a p-value of 0.463, and the 𝐺^test has a p-value of 0.184.  Since the model passed 

both goodness of fit tests, this indicates that the model utilizing the sum of yellow 

clusters divided by 100 and density score is suitable to gauge whether an image shows 

tumorous tissue. 
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3.3.3 𝜙 Analysis (MLO) 

 The model utilizing density as a categorical variable and the yellow squares 

metric as variables has a predictive power of 0.812, or around 81.2%.   The mathematical 

definition of the model is given as: 𝑌 = −3.8353 + 3.3783𝑋 + 1.1407𝑍^ + 2.1294𝑍� +

2.8386𝑍�, where X is the yellow squares metric result divided by 1000, 𝑍^ is Density 

score of 2, 𝑍� is the Density score of 3, and 𝑍� is the Density score of 4.  The odds ratio is 

29.321, which is greater than 1.  This suggests that for each additional 1000 yellow 

squares, the probability that an image depicts tumorous tissue increases.  The Pearson 

residuals test has a p-value of 0.666, and the 𝐺^test has a p-value of 0.351.  Since the 

model passed both goodness of fit tests, this indicates that the model utilizing the sum of 

yellow squares divided by 1000 and density score is suitable to gauge whether an image 

shows tumorous tissue. 

 The model utilizing density as a categorical variable and the yellow clusters 

metric as variables has a predictive power of 0.785, or around 78.5%.   The mathematical 

definition of the model is given as: 𝑌 = −3.1173 + 0.5043𝑋 + 0.7590𝑍^ + 1.7252𝑍� +

2.5637𝑍�, where X is the yellow clusters metric result, 𝑍^ is Density score of 2, 𝑍� is the 

Density score of 3, and 𝑍� is the Density score of 4.  The odds ratio is 1.656, which is 

greater than 1.  This suggests that for each additional yellow cluster, the probability that 

an image depicts tumorous tissue increases.  The Pearson residuals test has a p-value of 

0.422, and the 𝐺^test has a p-value of 0.223.  Since the model passed both goodness of fit 

tests, this indicates that the model using the sum of yellow clusters and density score is 

suitable to gauge whether an image shows tumorous tissue. 
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The model utilizing density as a categorical variable and the combination metric 

as variables has a predictive power of 0.768, or around 76.8%.   The mathematical 

definition of the model is given as: 𝑌 = −18.5913 + 1.1846𝑋 + 15.9745𝑍^ + 17.5494𝑍� +

17.9387𝑍�, where X is the combination metric result divided by 1000, 𝑍^ is Density score 

of 2, 𝑍� is the Density score of 3, and 𝑍� is the Density score of 4.  The odds ratio is 

3.269, which is greater than 1.  This suggests that for each additional 1000 combination 

metric count, the probability that an image depicts tumorous tissue increases.  The 

Pearson residuals test has a p-value of 0.414, and the 𝐺^test has a p-value of 0.142.  Since 

the model passed both goodness of fit tests, this indicates that the model using the 

combination metric count divided by 1000 and density is suitable to gauge whether an 

image shows tumorous tissue. 

 

3.4 Best Fitted Models 

In the best fit models, we did not attempt to put more than one metric in at a time 

due to collinearity concerns, because all metrics are derived from the yellow square 

metric.  Age and density score were added because they have potential to improve the fit 

of the model.  The best fit models start with the most complex model, and then the 

backwards elimination algorithm is used to find a simpler model to describe the data. 

3.4.1 𝜆 Analysis 

 We learned that half of the potential models from section 3.2.1 fit the data poorly.    

After running the backward elimination algorithm on the most complex model, the results 

show that the number of transitioned squares metric in conjunction with other dependent 
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variables yielded the highest predictive power for making future predictions.  The 

mathematical definition of the model is given as:  

𝑌 = 2.81727 − 0.95719𝑋\ − 1.76142𝑍^ + 6.6626𝑍� − 9.788505𝑍� − 0.09926𝑋^

− 0.010861𝑋\𝑍^ 

−4.93515𝑋\𝑍� + 4.50316𝑋\𝑍� + 0.02846𝑋\𝑋^ + 0.01510𝑋^𝑍^ − 0.10270𝑋^𝑍�

+ 0.25474𝑋^𝑍� 

+0.01611𝑋\𝑍^𝑋^ + 0.10168𝑋\𝑍�𝑋^ − 0.09404𝑋\𝑍�𝑋^, where 𝑋\ is the transitioned squares 

metric result divided by 1000, 𝑍^ is Density score of 2, 𝑍� is Density score of 3, 𝑍� is 

Density score of 4, 𝑋^ is age.  The above model has the highest predictive power for full 

breast cases, 0.846 or around 84.6%.  The Pearson residuals test has a p-value of 0.082, 

and the 𝐺^ test has a p-value of 0.365.    Since the model passed both goodness of fit 

tests, this indicates that the model is suitable to gauge whether an image shows tumorous 

tissue. 

 

3.4.2 𝜉 Analysis 

We learned from section 3.2.2 that most models fit the data poorly and therefore 

most models were rejected.  After running the backward elimination algorithm on the 

most complex model, the results show that the number of yellow clusters metric in 

conjunction with other dependent variables yielded the highest predictive power for 

making future predictions.  The mathematical definition of the model is given as:   

𝑌 = −3.3254 + 11452.06𝑋\ + 3333.93𝑍^ + 3322.97𝑍� + 3320.29𝑍� + 48.29𝑋^

− 11479.01𝑋\𝑍^ 

−11456.99𝑋\𝑍� − 11434.21𝑋\𝑍� − 167.05𝑋\𝑋^ − 48.35𝑋^𝑍^ − 48.12𝑋^𝑍� − 48.04𝑋^𝑍� 
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+167.67𝑋\𝑍^𝑋^ + 167.18𝑋\𝑍�𝑋^ + 166.71𝑋\𝑍�𝑋^, where 𝑋\ is the yellow clusters metric 

result divided by 100, 𝑍^ is Density score of 2, 𝑍� is Density score of 3, 𝑍� is Density 

score of 4, 𝑋^ is age.  The above model uses all interaction terms between the three 

different predictive variables.  The above model has the highest predictive power for 

nipple region cases, 0.858 or around 85.8%.  The Pearson residuals test has a p-value of 

0.800, and the 𝐺^test has a p-value of 0.456.  Since the model passed both goodness of fit 

tests, this indicates that the model is suitable to gauge whether an image shows tumorous 

tissue.                                                                                        

3.4.3 𝜙 Analysis 

We learned from section 3.2.3 that none of the models fit the data poorly.  However, 

the predictive power was not as high as it was in models with more predictive variables.  

After running the backward elimination algorithm on the most complex model, the results 

show that the number of yellow squares metric in conjunction with other dependent 

variables yielded the highest predictive power for making future predictions.  The 

mathematical definition of the model is given as:  

𝑌 = 38172.5 − 45807.3𝑋\ − 38189.7𝑍^ − 38183.1𝑍� − 38171.8𝑍� − 747.0𝑋^

+ 45826.1𝑋\𝑍^ 

+45815.5𝑋\𝑍� + 45810.6𝑋\𝑍� + 893.2𝑋\𝑋^ + 747.2𝑍^ + 747.1𝑋^𝑍� − 746.9𝑋^𝑍� 

−893.4𝑋\𝑍^𝑋^ + 893.3𝑋\𝑍�𝑋^ − 893.1𝑋\𝑍�𝑋^, where 𝑋\ is the yellow squares metric 

result divided 1000, 𝑍^ is Density score of 2, 𝑍� is Density score of 3, 𝑍� is Density score 

of 4, 𝑋^ is age.  The above model uses all interaction terms between the three different 

predictive variables.  The above model has the best predictive power for full breast cases, 

0.868 or around 86.8%.  The Pearson residuals test has a p-value of 0.715, and the 𝐺^test 



53 
 

has a p-value of 0.532.  Since the model passed both goodness of fit tests, this indicates 

that the model is suitable to gauge whether an image shows tumorous tissue. 
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4. CONCLUSION 

The goal of this paper is to understand as much about the nuances of the breast 

microenvironment as possible, and also to devise new models to differentiate 

mammograms with tumorous tissue from normal breast tissue.  The Wilcoxon Rank Sum 

Test (Upper-tail) demonstrated that cancerous and tumorous cases typically exhibit more 

disrupted tissue than normal cases.  Further, when analyzing the odds ratio from the 

single variable logit models and two variable logit models, the results suggest that as the 

amount of disrupted tissue increases, so does the probability that the analyzed 

mammogram will demonstrate tumorous characteristics.  The probability that an image 

will exhibit tumorous characteristics is also dependent on breast density.  More 

specifically, the logit models predicting the probability that a given image depicts 

tumorous tissue is shown to be dependent on each metric in conjunction with breast 

density.  Finally, the logit models with the highest predictive power utilize each metric in 

conjunction with the density score and age as mentioned in Section 3.4.   

 The metrics outlined in Marin et al (2017) [11] (i.e. sum of yellow clusters, sum 

of yellow clusters, sum of transitioned squares, and combination metric) were shown to 

differentiate between cancer and normal groups, benign and normal groups, and 

tumorous and normal groups in Section 2.3.1 by utilizing the Wilcoxon Rank Sum Test 

(Two-tailed).  All the p-values for the cancerous versus normal cases, benign versus 

normal cases, and tumorous versus normal cases are less than 0.05.  Since the p-values 

are less than 0.05, this suggests that there is a significant difference in the breast 

microenvironment for cancerous, benign, and tumorous groups compared to normal 

cases.  The metrics used in the 𝜙 Analysis (i.e. the sum of yellow squares, sum of yellow 
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clusters, and combination metric as defined in Section 2.3.3) also were able to determine 

significance difference for cancerous versus normal cases, benign versus normal cases, 

and tumorous versus normal cases because the p-values for all these cases are less than 

0.05.  This alone, however, is not enough to establish a link between the loss of tissue 

homeostasis and tumor growth because the conclusion one can draw from the Wilcoxon 

Rank Sum Test (Two-tailed) is that the mean number of disrupted regions for the cancer 

group is different from the mean number of disrupted regions in the normal group. 

Marin et al (2017) [11] hypothesized that there is a link between loss of tissue 

homeostasis and tumor growth.  In order to determine if the cancer group has a higher 

mean number of disrupted regions than the normal group, one must utilize the Wilcoxon 

Rank Sum Test (Upper-tail).  The claim is further explored in Section 2.6 for the sum of 

yellow squares metric in the 𝜆 Analysis and 𝜙 Analysis.  The p-values for the Wilcoxon 

Rank Sum Test (Upper-tail) for cancerous versus normal, benign versus normal, and 

tumorous versus normal cases are less than 0.05 for both the 𝜆 Analysis and 𝜙 Analysis.  

This suggests that mammograms from the cancer and tumor groups typically exhibit 

more disrupted regions than mammograms from the normal group in the respective areas 

of analysis.  Also, this may suggest that loss of tissue homeostasis leads to tumor growth 

and cancer development.  This is further emphasized when examining the odds ratio of 

logit models because the odds ratio higher probability of a breast exhibiting tumorous 

characteristics for each increase in a certain characteristic (E.g. 1000 yellow squares). 

 The logistic modeling methodology was utilized due to its ability to quantify the 

probability that a predictive variable will lead to identification of tumorous tissue in a 

mammogram.  When examining logit models with a single predictive variable, the odds 
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ratio for models in the 𝜆 Analysis and 𝜙 Analysis are greater than 1.  This suggests that 

for an increase in each characteristic (e.g., increase in number of yellow squares), the 

probability of an image depicting tumorous characteristics also increases.  Further, when 

examining logit models with each metric in conjunction with breast density, breast 

density was shown to increase the probability that a mammogram depicts tumorous 

growths.  More specifically, in the case of the sum of yellow clusters in 𝜙 Analysis, the 

median effect level for mammograms with higher breast density score is lower compared 

to the median effect level for mammograms with lower breast density score.  In the hopes 

of devising models maximizing p-values, more variables were added. 

We decided to create logit models from running the backwards elimination 

algorithm on the most complex logit model including each metric in conjunction with 

density score, age, and all respective interaction terms.  The resulting predictive power 

ranged from around 85% to 87%, which is higher than the predictive power of CAD 

which is supposedly around 63%, and also higher than some of the prosed augmented 

CAD methodology at 65% predictive power [14].  The logit models yielding maximum 

predictive power also happen to be the most complex logit models.  This suggests that all 

variables are required to devise the models with the highest predictive power and also all 

variables contribute to the probability that tumorous characteristics will be identified in 

an image. 

 

4.1 FUTURE WORK 

In the future, I would like to utilize the cross validation algorithm as a means of 

analyzing the predictive power of additional mammograms with the models devised in 
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this thesis.  Further, I would like to consider other potential predictive variables such as 

family history and previous diagnosis.  Additionally, in conjunction with the methods 

devised in this thesis, I would utilize longitudinal studies to examine how breast tumors 

develop over time and identify critical moments in early development.  The end goal is to 

eventually implement the methodology devised in this thesis and future work in the 

clinical setting. 

 

 
  



58 
 

5. BIBLIOGRAPHY 

 
[1] National Cancer Institute, “Female Breast Cancer - Cancer Stat Facts.”  [Online]. 

Available: https://seer.cancer.gov/statfacts/html/breast.html. [Accessed: 05-Aug-
2019] 

 
 
[2] C. D. Lehman, R. D. Wellman, D. S. M. Buist, K. Kerlikowske, A. N. A. Tosteson, 

and D. L. Miglioretti, “Diagnostic Accuracy of Digital Screening Mammography 
With and Without Computer-Aided Detection,” JAMA Intern Med, vol. 175, no. 11, 
pp. 1828–1837, Nov. 2015 [Online]. 
Available: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2443369. 
[Accessed: 27-Aug-2019] 

 
[3] M.-S. Ong and K. D. Mandl, “National Expenditure For False-Positive 

Mammograms And Breast Cancer Overdiagnoses Estimated At $4 Billion A 
Year,” Health Affairs, vol. 34, no. 4, pp. 576–583, Apr. 2015 [Online]. 
Available: https://www.healthaffairs.org/doi/full/10.1377/hlthaff.2014.1087. 
[Accessed: 26-Aug-2019] 

 
[4] American Cancer Society, “Cancer Screening Guidelines | Detecting Cancer 

Early,” American Cancer Society Guidelines for the Early Detection of Cancer. 
[Online]. Available: https://www.cancer.org/healthy/find-cancer-early/cancer-
screening-guidelines/american-cancer-society-guidelines-for-the-early-detection-of-
cancer.html. [Accessed: 27-Aug-2019] 

 
[5] Digital Database for Screening Mammography, “Digital Database for Screening 

Mammography.”  [Online]. Available: 
http://www.eng.usf.edu/cvprg/Mammography/DDSM/thumbnails/benigns/benign_0
2/case1269/A-1269-1.html. [Accessed: 05-Aug-2019] 

 
[6] National Institute of Biomedical Imaging and Bioengineering, “X-rays | National 

Institute of Biomedical Imaging and Bioengineering,” X-rays. [Online]. 
Available: https://www.nibib.nih.gov/science-education/science-topics/x-rays. 
[Accessed: 26-Aug-2019] 

 
[7] S. J. Shin, A Comprehensive Guide to Core Needle Biopsies of the Breast. Springer, 

2016.  
 
 
[8] National Institute of Biomedical Imaging and Bioengineering, “Mammography | 

National Institute of Biomedical Imaging and Bioengineering.”  [Online]. Available: 
https://www.nibib.nih.gov/science-education/science-topics/mammography. 
[Accessed: 05-Aug-2019] 

 



59 
 

[9] “Mammography (Mammogram).”  [Online]. Available: 
https://www.radiologyinfo.org/en/info.cfm?pg=mammo. [Accessed: 05-Aug-2019] 

[10] “Mammograms,” National Cancer Institute, 06-Jan-2017.  [Online]. Available: 
https://www.cancer.gov/types/breast/mammograms-fact-sheet. [Accessed: 05-Aug-
2019] 

 
[11] J. D. Keen, J. M. Keen, and J. E. Keen, “Utilization of computer-aided detection for 

digital screening mammography in the United States, 2008 to 2016,” Journal of the 
American College of Radiology, vol. 15, no. 1, pp. 44–48, 2018.  

 
 
[12] Z. Marin et al., “Mammographic evidence of microenvironment changes in 

tumorous breasts,” Medical physics, vol. 44, no. 4, pp. 1324–1336, 2017.  
 
[13] M. Hollander and D. A. Wolfe, Nonparametric statistical methods. Wiley New 

York, NY, USA, 1973.  
 
[14] A. Agresti, Categorical Data Analysis, 3rd ed. Hoboken, New Jersey: John Wiley & 

Sons Inc., 2013.  
 
[15] S. Mirniaharikandehei, A. B. Hollingsworth, B. Patel, M. Heidari, H. Liu, and B. 

Zheng, “Applying a New Computer-aided Detection Scheme Generated Imaging 
Marker to Predict Short-term Breast Cancer Risk,” Phys Med Biol, vol. 63, no. 10, 
p. 105005, May 2018 [Online]. 
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976448/. [Accessed: 27-
Aug-2019] 

  



60 
 

6. AUTHOR’S BIOGRAPHY 

 

Dexter G. Canning was born in Taiwan on August 19, 1996 and raised in central Maine.  

Dexter graduated from Foxcroft Academy in May 2015.  He started off as a Civil 

Engineering student at UMaine before switching majors to Mathematics.  He’ll be 

graduatinig with a Bachelor’s of Science in Mathematics with a Minor in Statistics, and 

he served as the President of Pi Mu Epsilon.  In his term, he helped organize a math 

career panel to help math students network and get jobs after graduation as well as a few 

social events to help gain recognition for the math department. 

  

Upon graduation, Dexter will be matriculating into the Mathematics Masters program 

here at UMaine in the Fall of 2019 studying under the direction of Professor Zheng Wei. 

 


	Predictive Diagnostic Analysis of Mammographic Breast Tissue Microenvironment
	Recommended Citation

	Microsoft Word - Canning, Dexter.docx

