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ABSTRACT 

It is important to understand the response of the Antarctic Ice Sheet (AIS) to 

ongoing global atmospheric and oceanic warming to anticipate future sea-level change.  

There are several contrasting views in this regard.  Harig and Simons (2015) concur with 

the IPCC (2013) conclusion that, in recent decades, outflow across the peripheral 

grounding lines of the ice sheet has exceeded increased accumulation on the interior 

surface of the ice sheet. In contrast, Zwally et al. (2015) suggest that recent surface 

accumulation in the interior East and West Antarctica has outpaced peripheral losses.  

They further suggest that this recent positive imbalance adds to a long-term ice-sheet 

thickening in interior Antarctica that began at the end of the last ice age when the 

increase of atmospheric temperature caused a doubling of surface accumulation that has 

persisted through the Holocene.   

An independent glacial geologic history can provide a long-term perspective on 

the issue of Antarctic ice response to Holocene interglacial warming. As a contribution to 

this history, my study aims to develop a robust chronology of the Joyce and Garwood 

land-terminating alpine glaciers in Garwood Valley in the McMurdo sector of the 

Transantarctic Mountains. The goal is to determine whether these glaciers have expanded 

during the Holocene and, if so, when and why. Existing data suggest that alpine glaciers 

in southern Victoria Land fluctuate in concert with nearby land-terminating East 

Antarctic outlet glaciers, making them a useful proxy for ice-sheet behavior. Such alpine 

glaciers are isolated from direct marine forcing and therefore are ideal to observe 

Holocene behavior that may result from changes in accumulation. Here, I present a 

chronology of the Joyce and Garwood glacial systems from 14C dates of lacustrine algae 



samples within moraines and 10Be surface-exposure ages of boulder erratics on moraines. 

The results indicate glacier expansion since 2820 years BP and do not exclude the 

possibility that this expansion is ongoing.  
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CHAPTER ONE 

INTRODUCTION 
 
1.1 The Problem 
 

The Antarctic Ice sheet (AIS) is the largest ice mass on Earth and thus plays a 

major role in global climate. Aside from its impacts on planetary albedo and atmospheric 

circulation, the ice sheet effects changes in global sea level that are of societal 

importance. An estimated ~58 m of sea-level equivalent is currently contained in the 

largely terrestrial East Antarctic Ice Sheet (EAIS) and another ~3.3 m in the marine-

based West Antarctic Ice Sheet (WAIS) (Bamber et al., 2009; Fretwell et al., 2013). 

Understanding the mechanisms that govern the past behavior of the AIS affords 

background for anticipating future sea-level change. Thus, knowledge of ice-sheet 

behavior under past warm climates will enable better-informed predictions of ice-sheet 

response to ongoing anthropogenic forcing.  

In a time of global atmospheric and oceanic warming, it has become important to 

understand the past responses of the AIS to elevated temperatures. WAIS is generally 

thought to be susceptible to rapid collapse, because it is primarily grounded below sea 

level. Moreover, the subglacial topography is such that the bed slopes downward toward 

the center of the ice sheet (Hughes, 1973). Buttressing ice shelves that protect the WAIS 

are in danger of shrinkage because of melting by the warming Southern Ocean. In fact, 

several significant sections of ice shelves on the Antarctic Peninsula have begun to 

degrade (Scambos et al., 2004; Cook & Vaughan, 2010; Rignot et al., 2014). Mercer 

(1978) predicted that degradation on a wider scale could lead to the demise of the WAIS, 
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which potentially could open a gateway that would render the EAIS vulnerable to 

significant recession (Hughes, 2009).  

Conflicting reports have led to opposing hypotheses on current ice-sheet behavior. 

A study from Harig and Simons (2015) validates the IPCC report (2013) that the outflow 

of ice mass at the grounding lines is exceeding the accumulation rate at the interior, thus 

contributing to sea-level rise and undermining the stability of the ice sheet. In contrast, 

Zwally et al. (2015) suggest that accumulation at the interior is outpacing the loss, with 

thickening of the ice sheet as a result of warming temperatures and increased 

precipitation.  

During the last glacial maximum (LGM) grounded ice fed from both the EAIS 

and the WAIS filled the Ross Embayment. Studies of moraines alongside EAIS outlet 

glaciers that fed this grounding show that the timing of the local LGM position became 

younger with increasing distance from the coast, with some glaciers reaching their 

maximum at the edge of the EAIS only at 4-8 years BP (Todd et al. 2010). Hall et al. 

(2015) suggested that this was due to accumulation overwhelming the marine downdraw 

effect, which was propagating up glacier from the retreat of marine portions. This leads to 

the hypothesis that land-based portions of the ice sheet, such as certain outlet glaciers in 

the Dry Valleys and the interior ice sheet, may be affected primarily by accumulation 

changes driven by temperature. When the climate warms, Antarctic air masses have an 

increased capacity to hold water vapor, which then leads to an increase in precipitation on 

the ice sheet (Simpson, 1934). Under such circumstances, interior portions of the EAIS 

may have thickened throughout the Holocene and may continue to do so in the face of 

future warming.  
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One way to determine the Holocene behavior of land-terminating ice is to 

examine moraines of independent alpine glaciers, which appear to behave in a fashion 

similar to the land-terminating outlet glaciers (Stuiver et al., 1981). The geometry of 

moraines in Taylor Valley shows that alpine glaciers expanded and merged with an 

enlarged Taylor Glacier, an outlet of the EAIS, during the last interglacial period (Denton 

et al., 1989; Higgins et al., 2000). Both Taylor Glacier and adjacent Rhone and Hughes 

alpine glaciers were smaller than at present during the last glacial maximum, as indicated 

by the age of preserved lacustrine deltas in front of the present-day glaciers (Stuiver et 

al., 1981).  

 

1.2 Goals and Objectives 
 

The goals of this study are to understand better the history of the EAIS by 

studying the behavior and relationship of local alpine glaciers that are experiencing the 

same climate as the ice sheet and that have previously shown coeval behavior with that of 

EAIS outlets. In doing this we hope to address whether or not land-terminating glaciers 

advance during times of warm climate and high accumulation, such as the Holocene. Or 

do they advance in concert with the marine, Ross Sea ice during the global LGM and 

retreat in the Holocene? To test this my study aims to develop a robust chronology of two 

land-terminating alpine glaciers in Garwood Valley to determine the timing and cause of 

their most recent advance. The valley is isolated from oceanic influences and therefore an 

ideal place to observe glacier behavior as a result of climate.  
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1.3. Background 
Understanding the changes in behavior and extent over long-term climate cycles, 

such as throughout the Plio-Pleistocene, is necessary for our assessment of how the EAIS 

will be impacted by future climate and ocean changes. The Ross Embayment is an area of 

substantial change during the last glacial-interglacial cycle. The grounding line in the 

embayment advanced by as much as 1000 km, and the catchment area expanded by 

approximately 30% during the LGM relative to present (Greenwood et al., 2018). In the 

Ross Embayment, EAIS outlet glaciers flowing through the Transantarctic Mountains 

and ice streams draining the WAIS coalesced to create an expanded ice sheet that 

extended close to the continental shelf edge of the Ross Sea (Denton and Hughes, 2000; 

Anderson et al., 2014). Chronologies based on marine sediments suggest deglaciation of 

the western Ross Embayment about 13,000 years BP with a further retreat to Ross Island 

by 7800 years BP and near Beardmore Glacier by ~7000 years BP (Conway et al., 1999; 

Anderson et al., 2014; Spector et al., 2017).  

Local glaciers may have behaved differently from the Ross Sea ice. 

Geomorphological evidence from cross-cutting relationships at Walcott Glacier suggests 

that its fluctuations may have been out of phase with that of the Ross Sea ice. However, 

numerical chronologies of local glacier behavior are nearly non-existent. My goal is to 

examine two of these local glaciers in detail and provide a chronology of their most 

recent advance. 

The field area selected for this study is the western basin of Garwood Valley 

located in the largely ice-free Dry Valleys region of the Transantarctic Mountains in 

southern Victoria Land (Fig. 1). The valley is ~2.5 km long and 1.2 km wide and 

constrained by two cold-based glaciers, Garwood in the east and Joyce in the west. 
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Meltwater from Joyce Glacier forms a large delta complex that supplies Lake Colleen 

near the center of the valley. Both glaciers are land terminating. Previous chronologic 

work in the valley consists of one cosmogenic nuclide study of seven samples taken from 

moraines along the western and southern margin of Garwood Glacier and three samples 

taken from degraded terraces outboard of the recent moraines at Joyce Glacier (Joy et al., 

2017). The significant findings reported by Joy’s group placed the timing of advance of 

Garwood and Joyce Glacier between 26,000 and 51,000 years BP. 
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Figure 1. Location of field area in reference to the Antarctic continent 

Garwood Valley is separated into eastern and western basins by Garwood 

Glacier. The western basin is the subject of this study and is outlined in red. 

The maps are provided by the Polar Geospatial Center. Valley is approximately 

2,380 m long and 855 m wide. 
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CHAPTER TWO 

METHODS 
 
2.1 Mapping 
 

Prior to the field season, I examined landforms on World View half-meter 

resolution satellite images obtained from the Polar Geospatial Center. Once I arrived in 

Antarctica, the landforms identified from imagery were examined in detail by traversing 

them in the field and examining natural sections in stream cuts. GPS coordinates, 

morphology, composition, cross-cutting relationships, and degree of erosion and 

weathering were recorded for each landform of significance. I created a georeferenced 

glacial geomorphological map using ArcGIS.  

 
2.2 Sample Collection 

 
I collected samples of in situ subfossil algae from moraines for radiocarbon 

dating. Algae samples were found either in natural exposures or by digging into 

sediments using small metal spades. At each site, I noted the geographic location, 

elevation, and depth of each sample. The geographic position was determined using a 

handheld GPS, which was compared to a base station, whose elevation was known 

precisely (sub-meter) by differential GPS. Photos of each sample site were taken for later 

reference. After collection, the algae were air-dried, separated from sand using tweezers, 

and sealed in plastic vials. Samples were shipped to the University of Maine where they 

were kept at 4oC until analysis.  

I collected samples for beryllium cosmogenic isotope dating from large, stable 

boulders embedded in moraine crests or perched on other boulders. Boulders that were at 
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risk of having been disturbed because of steep slopes and fluvial channels, or that 

appeared older than surrounding rocks, were not selected. Rocks that were exfoliated, 

pitted, disintegrated, fractured or otherwise strongly altered also were avoided. I preferred 

samples that had glacial polish, as that indicates minimal material loss at the surface. 

 The geographic location and elevation of each sample was recorded using a 

handheld GPS and compared against a static base station, whose elevation was known 

precisely (sub-meter) by differential GPS. I also recorded elevations using a Kestrel 

barometric altimeter, set at least twice a day at the base station. A handheld clinometer 

was used to assess the topographic shielding. Photographs of each sample were taken 

prior to sampling for later reference of geomorphic context.  

 I extracted samples using hammers and chisels. The depth of a sample was kept to 

a maximum of 4 cm, if possible, to obtain the most accurate beryllium ratios. Rock 

surfaces in excess of 4 cm or that had other unwanted portions, such as edges, were 

marked at the time of collection with a pen and trimmed with a saw upon arrival at the 

lab. 

 

2.3 Radiocarbon Dating 
 

Algae samples were re-examined in the laboratory, and any remaining sediment 

was removed. Samples were sent to the National Ocean Sciences Accelerator Mass 

Spectrometry (NOSAMS) laboratory at Woods Hole Oceanographic Institution for 

accelerator analysis. Radiocarbon samples were subjected to acid-base-acid pretreatment, 

and resulting ages were corrected for δ13C values. The ages were then calibrated to 

calendar years within 1-sigma error using version 7.1 of the CALIB radiocarbon 
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calibration program and the INTCAL13 curve (Reimer et al., 2013). Ages presented in 

the text are the midpoints of the calibrated ranges. Ages were not corrected for a lake 

reservoir effect, because none was anticipated. The algae are thought to have lived in a 

shallow pond with an open moat, which should have been well aerated (Doran et al., 

1999; Hendy and Hall, 2006).  

 

2.4. 10Be Exposure Dating 
 

Rocks at the earth’s surface are exposed to high-energy particles generated in 

outer space, referred to as cosmic rays. These particles bombard rock surfaces and cause 

spallation reactions in the oxygen and silicon atoms that constitute quartz (SiO2), 

resulting in the formation of the cosmogenic radionuclide 10Be in a reaction that occurs at 

a known rate (Gosse and Phillips, 2001). Thus, by measuring the concentration of 10Be, 

one can calculate the age of exposure to cosmic rays. Boulders that are deposited by a 

glacier are assumed to begin their accumulation of 10Be at the time of deposition. Intense 

erosion associated with glacial transport is thought to remove any nuclides from prior 

episodes of exposure. However, this doesn't always happen in the Antarctic, because the 

glaciers are cold-based and non-erosive. Thus, some rocks have inherited 10Be from 

previous periods of exposure and, as a result, the concentration of 10Be in the rock leads 

to an overestimate of the age of the last glacial event. Such rocks with prior exposure 

commonly can be identified in the field by their degree of weathering but generally are 

more apparent after data collection, where results may appear as anomalously old outliers 

in the data set. 
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2.5 Laboratory Processing 
 

Beryllium-10 samples were processed at the University of Maine Cosmogenic 

Isotope Laboratory. The process began by describing and measuring the thickness of each 

sample with calipers. The sample was then crushed and sieved to ensure that the grain 

size was between 250-500 mm. The desired grain fraction was then washed with water to 

remove dust and then boiled in 10% HCl to remove weathering products. The samples 

were then subject to froth floatation with lauryl amine and essential oil to remove 

feldspar and other non-quartz minerals. The remaining sample was placed in a 2% 

HF:2% HNO3 acid solution and then placed in an ultrasonic hot water bath for multiple 

days. This was done to dissolve any other minerals in the sample aside from quartz. The 

purity of each sample was checked via ICP-OES and if deemed clean enough (<100 ppm 

each of Al, Ca, Fe, and Ti) proceeded to the clean laboratory. Impure samples repeated 

the acid etching process.   

Samples that passed the ICP-OES test had their beryllium extracted in the 

University of Maine Cosmogenic Isotope Laboratory following their established protocol 

which is posted at:  https://umaine.edu/earthclimate/research/glacial-geology-and-

geochronology-research-group/cosmogenicisotope/. Samples were weighed, spiked with 

low-level 9Be carrier, and dissolved in concentrated HF acid. Upon dissolution, the acid 

was evaporated, and the samples were taken back up in 6M HCl. After a series of dry 

downs and additions of HCl to remove fluorides, the samples were loaded onto columns 

to remove iron. This was followed by sulfate conversion and processing of the samples 

through additional resin columns to remove titanium. Samples were evaporated, taken 

back up in 1% nitric acid, and Be(OH)2 was precipitated by ammonium hydroxide 
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additions. Samples were combusted to form BeO, mixed with niobium, and packed into 

targets. Beryllium targets were sent to the Center for Accelerator Mass Spectrometry at 

Lawrence Livermore National Laboratory in Livermore, CA.  

 

2.6 10Be Age Calculations 

 
For each sample, I calculated the cosmogenic exposure-age using the CRONUS-

Earth online exposure-age calculator with the “New Zealand” production rate (Putnam et 

al., 2010). The New Zealand rate was chosen due to it being the closest calibration site to 

Garwood Valley.  
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CHAPTER THREE 

RESULTS 
 
3.1 Overview of Surficial Geology and Geomorphology 
 

Several prominent ice-cored moraines flank Joyce and Garwood glaciers. 

Weathered drift occurs in patches distal to these moraines. This drift is partially overlain 

by aeolian, alluvial and fluvial deposits. An expansive outwash plain with several active 

and inactive channels is visible in front of Joyce Glacier. Multiple alluvial fans 

originating in the surrounding mountains occur on the valley floor.  

 

 

 

 
 
 

Figure 2. Panoramic View of Garwood Valley 
The photograph was taken looking south towards Mt. Steep. Garwood Glacier 

is visible to the east beyond Lake Colleen. Pre-LGM ground moraine with 

surface boulders is visible in the foreground. The photograph was taken on 

January 17th, 2018. 
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3.2 Joyce Glacier 
 

A prominent belt of discontinuous and largely ice-cored moraines occurs 

alongside the terminus of Joyce Glacier. These large moraines display 2-10 m of relief 

and extend as much as ~0.35 km from the glacier.  Additional, smaller moraines occur 

outboard of the large main ridges and trend obliquely both to the large moraines and to 

the present-day glacier margin. Active meltwater channels divide the moraines into 

separate ridges, cutting sections that expose the internal sediments and structures. The 

moraine crests are sharp and are marked with rare granitoid and metagranite boulders. 

For the most part, the moraines are constructed from largely horizontal to slightly dipping 

layers of sorted fine sediment that contain abundant ancient algal mats. In the core of the 

moraines, these sediments are faulted and folded.  

Weathered drift occurs on the north side of the valley approximately 175 m 

beyond the margin of Joyce Glacier.  This drift forms a small discontinuous terrace that 

extends along the north valley wall with less relief on the uphill flank than on the valley 

side. The surface of the terrace exhibits scattered metagranite boulders and cobbles. 
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Figure 3. Photograph of the Joyce moraines and the terminal ice cliff of Joyce 

Glacier. 

This image faces west across aeolian deposits and towards the moraines and terminus 

of Joyce Glacier. Joyce ice cliffs are approximately 10-15 m high and display several 

debris bands.  The photograph was taken on January 17, 2018. 
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    Figure 4. Photograph of Joyce moraines  

A. This image shows the terminal moraines at Joyce Glacier. Vantage is toward 

the northeast, showing the ice-cored moraines. The terminal ice cliffs of Joyce 

Glacier are approximately 10-15 m in relief. 

B. Image shows faulting and folding (red arrow) of previously deposited 

lacustrine sediments that now make up the Joyce moraines.  
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3.3 Garwood Glacier 

Several moraine ridges exist alongside the western terminus of Garwood Glacier. 

Three of these steep-sided ridges exhibit 2-6 m in relief and are separated by 1-3 m. 

Together, the moraines extend ~0.25 km from the present-day glacier margin. In some 

places, it appears that the glacier currently is overriding the innermost moraine ridge. The 

moraines are formed of fine-grained sand and cobble- and boulder-sized clasts comprised 

primarily of granitoids.  Algae occur in thick mats that crop out in dipping beds of silica 

rich sand in one moraine segment. An extensive, bouldery drift sheet occurs on the valley 

floor for more than 175 m outboard of the moraines. 

 

3.4 Alluvial Deposits 
 

Numerous alluvial fans descend the valley walls towards the valley floor and 

crosscut older deposits. An outwash plain comprised of silicic sand and gravel extends 

along the valley floor between Joyce Glacier and Lake Colleen.  
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    Figure 5. The Garwood moraines 

This image has vantage looking east across the older Garwood drift toward the 

moraines alongside Garwood Glacier. It appears that the glacier is overriding 

these moraines in some sectors. 

This view of the outer Garwood moraine crest was taken with vantage to the north  

looking along the crest line. The moraine has medium-sized boulders on the 

surface. Both photographs were taken on January 28th, 2017. 
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3.5 Radiocarbon chronology 

Radiocarbon dates (Table 3.1; Fig. 6; Fig. 7) provide maximum-limiting age 

constraints on the time of moraine formation. I collected samples of ancient algae from 

varying depths in prominent moraines. Some samples were collected near the crest, 

whereas others were as much as 8 m below the crest in section. Twelve samples of in situ 

algae from the Joyce moraines yielded calibrated ages that range from ~2820 to 6230 

years BP. Two samples collected from the same moraine gave ages of 2820 and 5350 

years BP in proper stratigraphic order. A single sample was collected from the Garwood 

moraines and dated to 11,280 years BP.  Two samples were collected adjacent to Lake 

Colleen about 2 m above present lake level and may be from a remnant of a higher-

elevation delta that has been largely eroded. 

 

3.6 Exposure sample chronology 

I measured 10Be concentrations in quartz isolated from three metagranite boulders 

from the surface of moraines alongside Garwood Glacier and from two samples of 

similar composition from Joyce moraines. Nuclide concentrations are summarized in 

Table 3.2, and ages are presented in Table 3.3 and Figure 3.2. The two ages from Joyce 

moraines are 527,380 ± 4180 and 491,610 ± 4030 years BP. Ages from the Garwood 

moraines are 8790 ± 170, 55,080 ± 740, and 129,050 ± 1180 years BP. Interpretation of 

potential reasons for the age differences between radiocarbon and exposure samples is 

provided in Chapter 4. 
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  Figure 6. 14C and 10Be ages of samples collected from Joyce moraines 

Map shows the ages of samples collected from landforms near Joyce Glacier. 

Radiocarbon samples from lacustrine algae, as well as beryllium exposure-age 

samples from this study and recalculated from Joy et al. (2017), are plotted in 

calendar years. The radiocarbon ages range from 3360-6230 years BP whereas 

cosmogenic samples on the moraines adjacent to the glacier range from 491,600-

527,380 years BP. Samples near Lake Colleen have an average age of 3330 years 

BP. 
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  Figure 7. Calculated Ages of Samples Near Garwood 

Apparent ages of samples recorded on the landform map above are based on 

radiocarbon samples, beryllium cosmogenic exposure samples and recalculated 

beryllium ages of samples published in the previous study by Joy et al. (2017). 
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Table 1. Results of radiocarbon dating of Garwood Valley samples 

 

 
Table 2. Cosmogenic nuclide sample information measured in quartz 

 

 

  Table 3. Table of calculated ages for cosmogenic exposure age samples 

The columns labeled “Interr” and “Exterr” refer to the internal and external 

errors respectively, where the internal errors refer to the errors possible in lab 

procedures and equipment uncertainty and external refers to error possible in the 

overall cosmogenic nuclide procedure with respect to changes in the natural 

system such as magnetic field variability, solar flares, etc. 
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CHAPTER FOUR 

DISCUSSION 
 
4.1 Formation of Moraines and Implication for Chronology 

 Examination of the sediments, stratigraphy, and morphology of moraines 

adjacent to Joyce Glacier indicate that they were formed by glaciotectonic reworking of 

pre-existing lake and fan sediments. Sediments, including layers of algae, initially were 

deposited in horizontal or near-horizontal layers and were pushed and thrust upwards in 

faulted blocks and folds by the advancing glacier. This disturbance is observed in 

sections within the moraines at my field site and thus indicates that the landforms can be 

classified as thrust moraines. These landforms are commonly found in the Dry Valleys 

region and often indicate an active or advancing glacier (Fitzsimmons,1996). These 

moraines are formed by the thrusting and faulting of frozen blocks of sediment in front of 

an advancing glacier. This often results in ice-cored moraines and disturbance of the 

sediment stratigraphy.  

The glaciotectonic origin of these moraines has implications for the radiocarbon 

and beryllium chronologies. My radiocarbon ages are of algae that were buried in 

lacustrine sediments, possibly from higher levels of Lake Colleen. Subsequently, these 

sediments were thrust into the moraines as the glacier advanced. Because the sediments 

were laid down before the moraines formed, the 14C ages of the algae act as maximum-

limiting ages for moraine formation. The youngest date offers the closest constraint to the 

timing of glacial advance.  

Using this context, I can interpret the ages from the Joyce and Garwood moraines. 

The ages for the Joyce moraines range from 6230 ± 20 years BP to 2820 ± 30 years BP. 
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Thus, the youngest moraine must have formed at some time after 2820 years BP.  I only 

have one date from the Garwood moraines, and it indicates that the moraine closest to the 

ice margin formed after 11,280 years BP.  Several outboard moraines exist, but lack algae 

for dating.  The results suggest that both Joyce Glacier and Garwood have advanced in 

the present interglacial and, in at least the case of Joyce Glacier, into the late Holocene. 

Moreover, the chronology does not exclude the possibility that the glaciers are continuing 

to advance today. 

A key question is if thrust moraines are reliable landforms from which to collect 

cosmogenic nuclide samples from surface boulders. It is possible that some boulders on 

the moraine crests were derived from pre-existing sediments that have been uplifted to 

their current position through the glaciotectonic processes. Alternatively, the boulders 

could have dropped onto the crest from the ice margin once the moraine already had 

formed. 

Two large granitoid boulders embedded in the crest provided material for 10Be 

exposure dating of the Joyce moraines. The boulders yielded generally internally 

consistent ages of 491,610 ± 4030 and 527,380 ± 4180 years BP. However, the exposure 

ages are significantly older than the age of the moraine, obtained from  the maximum-

limiting age of 2820 years BP provided by algae in the same moraine segment. One 

sample was adjacent to dated algal layers that likely extended beneath the dated boulder. 

Both boulders also rested atop a moraine that included a thick section of stratified 

sediments, with algae dating to 5350 years BP. Thus, the exposure age should be younger 

than the algae, but that is not the case. This indicates that the two samples, despite 

yielding similar ages, inherited most of their beryllium concentrations prior to moraine 
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formation and are unreliable indicators of moraine age. In Antarctic exposure dating, 

internal agreement of boulder ages on a landform has been used as a measure of 

accuracy. Due to the general agreement between the two dated boulders, the age assigned 

to the landform could have been easily misinterpreted to be older than its actual age. This 

points to the value of using multiple chronologic methods when dating Antarctic 

moraines. 

Interpretation of exposure ages of boulders on the moraines in front of Garwood 

Glacier is less straightforward. An algae sample collected from within the inner thrust 

moraine yielded a result of 11,280 years BP, whereas an exposure sample obtained from 

Joy et al. (2017) on the same moraine yielded an age of 27,380 years BP. Other erratics 

resting on the inner moraine, although not on the same segment, have ages of 28,500 and 

25,590 years BP(Joy et al.,2017).  Thus, although the exposure ages are generally 

consistent, they are considerably older than the maximum-limiting radiocarbon age of 

11,280 yr BP. The outer two moraines yield dates of 40,480-51,200 years BP(Joy et 

al.,2017 and thus study).  Whether these dates are accurate remains to be tested. As the 

thrust moraines curve around the Garwood terminus towards Garwood Stream, it 

becomes more difficult to separate ridges. An erratic from this sector of the moraines 

produced an age of 129,050 years BP. Finally, a sample with an age of 8790 years BP 

came from a separate boulder moraine that is draped across the broad inner thrust 

moraine. At face value, this age is consistent with the radiocarbon date of algae, and 

suggests that the boulder moraine dates to ≤8790 years BP.  

While several factors such as erosion, shifting or rolling of samples can affect the 

scatter in calculated ages, all boulders sampled were large, stable and on the moraine 
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crests. In this case, the inconsistency between the radiocarbon and exposure ages may be 

indicative of the poor reliability of exposure dates from thrust moraines. This is a result 

of the incorporation of previously exposed deposits into the landforms during their 

formation, as boulders on the valley floor can be raised onto a moraine during thrusting 

of proglacial sediments. This would result in dates that are older than the age of thrusting 

of the moraine sediments and therefore result in inaccurate conclusions about the timing 

of glacial events. It is also possible that boulders with significant prior exposure dropped 

off the ice margin onto already formed moraines.  

 

4.2 Holocene Advance of Alpine Glaciers 

 There are limited studies of Holocene alpine glacier behavior in the Antarctic. 

The available data usually exists as by-products of larger projects and are understated in 

the conclusions. One of the main goals of this study was to contribute to a more robust 

chronology of Holocene glacial behavior. The ages of the Joyce and Garwood moraines, 

younger than 2810 and 11,670 years BP, respectively, indicate that they formed in the 

Holocene. Other studies that document Holocene alpine glacier expansion include limited 

radiocarbon dates of algae within Suess Glacier thrust moraines that date to 2880-6800 

BP (Stuiver et al., 1981; Hall and Denton, 2000). In addition, several alpine glaciers are 

currently overriding deltas laid down during the maximum of the last ice age. For 

example, Salmon Glacier has advanced onto the back of a delta that is dated to 16,000 

years BP (Jackson et al., 2017), and Rhone Glacier is overriding its delta also dating to 

about 16,000 years BP (Stuiver et al., 1981). 
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Why would alpine glaciers advance in the Holocene? Antarctic glaciers lack a 

direct sensitivity to warmer temperatures because of the lack of surface melting ablation 

zones. Over 90% of ice loss on glaciers in this area is due to sublimation (Chinn, 1993). 

Instead, warming climate increases the capacity for water vapor in the surrounding air 

masses and thus precipitation increases (Simpson, 1934). This results in net growth and 

advance of terrestrial glaciers.  

Available evidence suggests that glacial advance in warm periods, such as the 

Holocene, is not limited solely to these alpine glaciers but rather is also reflective of 

terrestrial-based EAIS outlets during warmer interglacial periods (Stuiver et al., 1981; 

Denton et al., 1989; Higgins et al.,2000). Records of this synchronous behavior can be 

observed in the geomorphic evidence left behind by Taylor Glacier, such as the merging 

of moraines from expanded alpine and outlet glaciers (Higgins et al., 2000). This suggests 

that as the Antarctic continues to warm, increased accumulation will cause thickening 

and advance not only of alpine glaciers but also of terrestrial-terminating EAIS outlets.  
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CHAPTER FIVE 

CONCLUSIONS 
 
● Examination of the sediments, stratigraphy, and morphology of moraines adjacent 

to Joyce Glacier indicate that they were formed by thrusting of pre-existing lake 

and fan sediments. 

 
● Radiocarbon ages of algae within these sediments range from ~2820-6230 years 

BP. These dates afford maximum-limiting ages for moraine formation, indicating 

that these landforms are <2820 years BP. Joyce Glacier must have advanced to this 

position at or since this time, which contrasts with the ages provided by the 

cosmogenic samples from surface boulders, which are 491,600 and 527,380 years 

BP. 

 

● A radiocarbon sample from an inner moraine at Garwood Glacier produced a 

maximum-limiting age of 11,280 years BP, which contrasts with the exposure age 

sample on the same moraine with an age of 27,380 years BP. We infer that the 

exposure age must suffer from inherited nuclides. Thus, exposure samples 

collected from erratics on thrust moraines should be interpreted with care.  

 
● Evidence for Holocene glacial advance supports the idea that increased 

accumulation during interglacial times causes the advance of land-terminating 

glaciers in the McMurdo sector of the Transantarctic Mountains. 
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