Michigan
Technological
University

Block-avoiding sequencings of points in Steiner triple systems

Donald L. Kreher
Michigan Technological University, kreher@mtu.edu

Douglas R. Stinson
University of Waterloo

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p
Part of the Mathematics Commons

Recommended Citation

Kreher, D. L., \& Stinson, D. R. (2019). Block-avoiding sequencings of points in Steiner triple systems. AUSTRALASIAN JOURNAL OF COMBINATORICS, 74(3), 498-509.
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/600

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p
Part of the Mathematics Commons

Block-avoiding sequencings of points in Steiner triple systems

Donald L. Kreher
Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan, 49931
U.S.A.

Douglas R. Stinson*
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, N2L 3G1
Canada

Abstract

Given an $\operatorname{STS}(v)$, we ask if there is a permutation of the points of the design such that no ℓ consecutive points in this permutation contain a block of the design. Such a permutation is called an ℓ-good sequenc$i n g$. We prove that 3 -good sequencings exist for any $\operatorname{STS}(v)$ with $v>3$ and 4 -good sequencings exist for any $\operatorname{STS}(v)$ with $v>71$. Similar results also hold for partial $\operatorname{STS}(v)$. Finally, we determine the existence or nonexistence of 4 -good sequencings for all the nonisomorphic $\operatorname{STS}(v)$ with $v=7,9,13$ and 15 .

1 Introduction

A Steiner triple system of order v is a pair (X, \mathcal{B}), where X is a set of v points and \mathcal{B} is a set of 3 -subsets of X (called blocks), such that every pair of points occur in exactly one block. We will abbreviate the phrase "Steiner triple system of order v " to $\operatorname{STS}(v)$.

It is well-known that an $\operatorname{STS}(v)$ contains exactly $v(v-1) / 6$ blocks, and an $\operatorname{STS}(v)$ exists if and only if $v \equiv 1,3 \bmod 6$. The definitive reference for Steiner triple systems is the book [4] by Colbourn and Rosa.

[^0]Suppose (X, \mathcal{B}) is an $\operatorname{STS}(v)$. We ask if there is a permutation (or sequencing) of the points in X so that no three consecutive points in the sequencing comprise a block in \mathcal{B}. That is, can we find a sequencing $\pi=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{v}\end{array}\right]$ of X such that $\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \notin \mathcal{B}$ for all $i, 1 \leq i \leq v-2$? Such a sequencing will be termed a 3 -good sequencing for the given $\operatorname{STS}(v)$.

More generally, for an integer $\ell \geq 3$, we could ask if there is a sequencing of the points such that no ℓ consecutive points in the sequencing contain a block in \mathcal{B}. Such a sequencing will be termed ℓ-good for the given $\operatorname{STS}(v)$. Obviously an ℓ-good sequencing is also m-good if $3 \leq m \leq \ell$.

As an example, consider the $\operatorname{STS}(7)(X, \mathcal{B})$, where $X=\mathbb{Z}_{7}$ and $\mathcal{B}=\{013,124,235$, $346,450,451,562\}$. The sequencing [0 123456] is easily seen to be 3 -good. However, it is not 4 -good, as the block 013 is contained in the first four points of the sequencing. (Note that, here and elsewhere, we might write blocks $\{x, y, z\}$ as $x y z$ if the context is clear.)

Actually, it is not difficult to see that the unique (up to isomorphism) STS(7) does not have a 4 -good sequencing. By relabelling points if necessary, suppose there is a 4 -good sequence for an $\operatorname{STS}(7)$ that begins $\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$. There cannot be a block contained in $\{0,1,2,3\}$. Hence, without loss of generality, $\{0,1,4\},\{0,2,5\}$ and $\{0,3,6\}$ are blocks. This forces the remaining blocks to be $\{1,2,6\},\{1,3,5\},\{2,3,4\}$ and $\{4,5,6\}$. In particular, $\{4,5,6\}$ is a block, so there is no way to complete the sequence beginning $\left[\begin{array}{lll}0 & 2 & 3\end{array}\right]$ to a 4 -good sequence.

A partial Steiner triple system of order v is a pair (X, \mathcal{B}), where X is a set of v points and \mathcal{B} is a set of 3 -subsets of X (called blocks), such that every pair of points occur in at most one block. We will abbreviate the phrase "partial Steiner triple system of order v " to partial $\operatorname{STS}(v)$ or $\operatorname{PSTS}(v)$. There are no congruential restrictions on the values v for which $\operatorname{PSTS}(v)$ exist. We will also consider ℓ-good sequencings of $\operatorname{PSTS}(v)$.

The main results we prove in this paper are that every $\operatorname{STS}(v)$ with $v>3$ has a 3 -good sequencing, and every $\operatorname{STS}(v)$ with $v>71$ has a 4 -good sequencing. Similar results are obtained for $\operatorname{PSTS}(v)$ as well. We also study 4 -good sequencings of $\operatorname{STS}(v)$ for $v \leq 15$. We show that there is no 4 -good sequencing of the $\operatorname{STS}(7)$ or $\operatorname{STS}(9)$, but all STS(13) and STS(15) have 4-good sequencings.

We will use the following notation. Suppose (X, \mathcal{B}) is an $\operatorname{STS}(v)$. Then, for any pair of points x, y, let third $(x, y)=z$ if and only if $\{x, y, z\} \in \mathcal{B}$. The function third is well-defined because every pair of points occurs in a unique block in \mathcal{B}.

1.1 Background and motivation

Brian Alspach gave a talk entitled "Strongly Sequenceable Groups" at the 2018 Kliakhandler Conference, which was held at Michigan Technological University. In this talk, among other things, the notion of sequencing diffuse posets was introduced and the following research problem was posed:
"Given a triple system of order n with $\lambda=1$, define a poset P by letting its elements be the triples and any union of disjoint triples. This poset is not diffuse in general, but it is certainly possible that P is sequenceable."

A sequenceable $\operatorname{STS}(v)$ (or $\operatorname{PSTS}(v)$) is an $\operatorname{STS}(v)$ in which the points can be ordered (i.e., sequenced) so that no t consecutive points can be partitioned into $t / 3$ blocks, for any $t \equiv 0 \bmod 3, t<v$. The problem is studied in Alspach, Kreher and Pastine [1] and in Kreher and Stinson [3]. In [3], it is shown that there is a nonsequenceable $\operatorname{STS}(v)$ for all $v \equiv 1 \bmod 6, v>7$.

One possible relaxation of the definition of sequenceable $\operatorname{STS}(v)$ would be to require a sequencing of the points so that no t consecutive points can be partitioned into $t / 3$ blocks, for any $t \equiv 0 \bmod 3, t \leq w$, where $w<v$ is some specified integer. Such an $\operatorname{STS}(v)$ could be termed w-semi-sequenceable.

A 3-semi-sequenceable $\operatorname{STS}(v)$ has a sequencing of the points so that no three consecutive points form a block. This is identical to a " 3 -good sequencing." As noted above, we then generalize this notion to ℓ-good sequencings and we consider the cases $\ell=3$ and $\ell=4$ in detail.

Although we do not explicitly study w-semi-sequenceable STS in this paper, we note the following connection between w-semi-sequenceable $\operatorname{STS}(v)$ and $\operatorname{STS}(v)$ having ℓ-good sequencings.

Theorem 1.1. Let $u \geq 1$ be an integer. An STS(v) that has a $(2 u+1)$-good sequencing is $3 u$-semi-sequenceable.

Proof. Let π be a sequencing of the points of an $\operatorname{STS}(v)$ that is not $3 u$-semi-sequenceable. Then, for some $t \equiv 0 \bmod 3$, there are t consecutive points in π that can be partitioned into $t / 3$ blocks of the $\operatorname{STS}(v)$. Let these t points be denoted (in order) x_{1}, \ldots, x_{t}. Then

$$
\left\{x_{1}, \ldots, x_{t}\right\}=\bigcup_{j=1}^{t / 3} B_{j}
$$

where $B_{1}, \ldots, B_{t / 3}$ are blocks in the $\operatorname{STS}(v)$. For $1 \leq j \leq t / 3$, let

$$
m_{l o}(j)=\min \left\{i: x_{i} \in B_{j}\right\}
$$

and let

$$
m_{h i}(j)=\max \left\{i: x_{i} \in B_{j}\right\} .
$$

Clearly there is a block B_{j} such that $m_{l o}(j) \geq t / 3$. It also holds that $m_{h i}(j) \leq t$. Therefore the block $B_{j} \subseteq\left\{x_{t / 3}, \ldots, x_{t}\right\}$, which means that the sequencing π is not $(2 t / 3+1)$-good.

2 Existence of 3-good sequencings

In this section, we show that there is a 3 -good sequencing for any $\operatorname{STS}(v)$ with $v \geq 7$. We prove this in three ways: by a counting argument, by using a greedy algorithm,
and by relabelling the points of the design in a suitable way. The counting argument and greedy algorithm can also be adapted to handle $\operatorname{PSTS}(v)$ with $v>3(v>5$, respectively).

2.1 A counting argument

Let (X, \mathcal{B}) be an $\operatorname{STS}(v)$ on points $X=\{1, \ldots, v\}$. For a sequencing $\pi=\left[x_{1} x_{2} \cdots x_{v}\right]$ of X, and for any $i, 1 \leq i \leq v-2$, define π to be i-forbidden if $\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \in \mathcal{B}$. Let forbidden (i) denote the set of i-forbidden sequencings. Also, define a sequencing to be forbidden if it is i-forbidden for at least one value of i and let forbidden denote the set of forbidden sequencings. Clearly, a sequencing is 3 -good if and only if it is not forbidden.

Theorem 2.1. Suppose $v>3$ and (X, \mathcal{B}) is an $\operatorname{STS}(v)$ on points $X=\{1, \ldots, v\}$. Then there is a sequencing $\pi=\left[\begin{array}{lll}x_{1} x_{2} \cdots & x_{v}\end{array}\right]$ of X that is 3-good for (X, \mathcal{B}).

Proof. Clearly,

$$
\text { forbidden }=\bigcup_{i=1}^{v-2} \text { forbidden }(i) \text {. }
$$

For any given value of i, it holds that \mid forbidden $(i) \mid=v!/(v-2)$. This follows because, for any two points, x_{i} and x_{i+1}, the 3 -subset $\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \in \mathcal{B}$ if and only if $x_{i+2}=$ third $\left(x_{i}, x_{i+1}\right)$. So given any x_{i} and x_{i+1}, the probability that $\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \in \mathcal{B}$ is $1 /(v-2)$.

Next, by the union bound,

$$
\begin{equation*}
\mid \text { forbidden }\left|\leq \sum_{i=1}^{v-2}\right| \text { forbidden }(i) \left\lvert\,=(v-2) \times \frac{v!}{(v-2)}=v!\right. \tag{1}
\end{equation*}
$$

Equality in (1) would be obtained if and only if the sets forbidden $(i), 1 \leq i \leq v-2$, are pairwise disjoint.

We show that equality in (1) is impossible: Consider any two intersecting blocks $\{a, b, c\},\{c, d, e\} \in \mathcal{B}$ (here is where we use the assumption that $v>3$). Then any sequencing in which the first five symbols are $a b c d e$ (in that order) is in forbidden $(1) \cap$ forbidden (3). Therefore, \mid forbidden $\mid<v$! and thus there exists a 3 -good sequencing.

Theorem 2.1 also holds for partial $\operatorname{STS}(v)$ when $v>3$.
Theorem 2.2. Suppose $v>3$ and (X, \mathcal{B}) is a partial $S T S(v)$ on points $X=$ $\{1, \ldots, v\}$. Then there is a sequencing $\pi=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{v}\end{array}\right]$ of X that is 3-good for (X, \mathcal{B}).

Proof. If (X, \mathcal{B}) is an $\operatorname{STS}(v)$, then we are done by Theorem 2.1. Therefore, we can assume there is at least one pair $\{a, b\}$ that does not appear in any block in \mathcal{B}. Suppose $x_{i}=a$ and $x_{i+1}=b$. Then, for every possible x_{i+2}, we have $\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \notin$ \mathcal{B}. It then follows that \mid forbidden $(i) \mid<v!/(v-2)$ for all i.

Now, when we apply the union bound, we have

$$
\mid \text { forbidden }\left|\leq \sum_{i=1}^{v-2}\right| \text { forbidden }(i) \mid<(v-2) \times v!/(v-2)=v!
$$

and we are done.

2.2 A greedy algorithm

Theorem 2.1 and a slightly weaker version of Theorem 2.2 can also be proven using a greedy algorithm. First, we consider the case where (X, \mathcal{B}) is an $\operatorname{STS}(v)$, where $X=\left\{x_{1}, \ldots, x_{v}\right\}$. We begin by choosing any two distinct values for x_{1} and x_{2} and then we attempt to define $x_{3}, x_{4}, \ldots, x_{v}$ in turn, in such a way that we end up with a 3 -good sequencing. Thus, our strategy is to design a greedy algorithm.

Consider any i such that $3 \leq i \leq v-1$. We require the following conditions to be satisfied:

1. $x_{i} \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$, and
2. $x_{i} \neq \operatorname{third}\left(x_{i-2}, x_{i-1}\right)$.

Thus, there are at most i values for x_{i} that are ruled out. Because $i \leq v-1$, there is at least one value for x_{i} that satisfies the two required conditions.

After choosing $x_{1}, x_{2}, \ldots, x_{v-1}$ as described above, there is only one unused value remaining for x_{v}. But this might not result in a 3 -good sequencing, if it happens that $\left\{x_{v-2}, x_{v-1}, x_{v}\right\} \in \mathcal{B}$. However, in this case, it turns out that we can find a slight modification of of the sequencing $\left[x_{1} x_{2} \cdots x_{v}\right]$ that is 3 -good, provided that $v>5$.

Suppose we made sure to select x_{5} such that $\left\{x_{2}, x_{3}, x_{5}\right\} \in \mathcal{B}$, i.e., we define $x_{5}=\operatorname{third}\left(x_{2}, x_{3}\right)$. This is an allowable choice for x_{5} because

- $\left\{x_{1}, x_{2}, x_{3}\right\} \notin \mathcal{B}$ and $\left\{x_{2}, x_{3}, x_{4}\right\} \notin \mathcal{B}$, which implies that

$$
x_{5} \notin\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},
$$

and

- $\left\{x_{3}, x_{4}, x_{5}\right\} \notin \mathcal{B}$, because $\left\{x_{2}, x_{3}, x_{5}\right\} \in \mathcal{B}$ and $x_{2} \neq x_{4}$.

Now, suppose we have a sequencing $\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{v}\end{array}\right]$, where $\left\{x_{2}, x_{3}, x_{5}\right\} \in \mathcal{B}$, which fails to be 3-good only because $\left\{x_{v-2}, x_{v-1}, x_{v}\right\} \in \mathcal{B}$ (which is not allowed). Consider the modified sequencing $\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{v}\end{array}\right]$ obtained from $\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{v}\end{array}\right]$ by switching x_{1} and x_{v}. In order to show that $\left[y_{1} y_{2} \cdots y_{v}\right]$ is a 3 -good sequencing, we need to show that

1. $\left\{y_{v-2}, y_{v-1}, y_{v}\right\}=\left\{x_{v-2}, x_{v-1}, x_{1}\right\} \notin \mathcal{B}$, and
2. $\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{x_{v}, x_{2}, x_{3}\right\} \notin \mathcal{B}$.
3. Choose a block $\{b, c, e\} \in \mathcal{B}$, let $a \neq b, c, e$ and let $d \neq a, b, c, e$.
4. Define $x_{1}=a, x_{2}=b, x_{3}=c, x_{4}=d$ and $x_{5}=e$.
5. For $i=6$ to $v-1$ do define x_{i} to be any element of X that is distinct from the values x_{1}, \ldots, x_{i-1} and third $\left(x_{i-2}, x_{i-1}\right)$.
6. Define x_{v} to be the unique value that is distinct from x_{1}, \ldots, x_{v-1}.
7. If $\left\{x_{v-2}, x_{v-1}, x_{v}\right\} \in \mathcal{B}$ then interchange x_{1} and x_{v}.
8. Return $\left(\pi=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{v}\end{array}\right]\right)$.

Figure 1: Algorithm to find a 3 -good sequencing for a partial $\operatorname{STS}(v),(X, \mathcal{B})$

To prove 1 , we observe that $\left\{x_{v-2}, x_{v-1}, x_{1}\right\} \notin \mathcal{B}$ because $\left\{x_{v-2}, x_{v-1}, x_{v}\right\} \in \mathcal{B}$ and $x_{v} \neq x_{1}$. To prove 2, we observe that $\left\{x_{2}, x_{3}, x_{5}\right\} \in \mathcal{B}$ and $x_{v} \neq x_{5}$ because $v>5$. Thus the sequencing $\left[y_{1} y_{2} \cdots y_{v}\right]$ is 3 -good.

The above-described process can also be carried out to find a 3-good sequencing for any partial $\operatorname{STS}(v)$ with $v>5$. The resulting algorithm is presented in Figure 1.

From the discussion above, we have the following theorem.
Theorem 2.3. Suppose that (X, \mathcal{B}) is a partial $\operatorname{STS}(v)$ with $v>5$. Then the Algorithm presented in Figure 1 will find a sequencing π that is 3 -good for (X, \mathcal{B}).

2.3 Relabelling points

In this section, we give a short, elegant proof that an $\operatorname{STS}(v)$ with $v \geq 7$ has a 3 -good sequencing. This proof was pointed out to us by Charlie Colbourn (private communication).

Given an $\operatorname{STS}(v)$ with $v \geq 7$, say on points $1, \ldots, v$, relabel the points so that the blocks containing 1 are

$$
\{1,2, v\},\{1,3,4\},\{1,5,6\}, \ldots,\{1, v-2, v-1\} .
$$

Then consider the sequencing $[12 \cdots v]$. We observe the following, using the fact that $v \geq 7$:
$\{1,2,3\}$ is not a block because $\{1,2, v\}$ is a block
$\{2,3,4\}$ is not a block because $\{1,3,4\}$ is a block
$\{3,4,5\}$ is not a block because $\{1,3,4\}$ is a block
$\{4,5,6\}$ is not a block because $\{1,5,6\}$ is a block
$\{5,6,7\}$ is not a block because $\{1,5,6\}$ is a block
etc.
$\{v-3, v-2, v-1\}$ is not a block because $\{1, v-2, v-1\}$ is a block
$\{v-2, v-1, v\}$ is not a block because $\{1, v-2, v-1\}$ is a block.

Therefore this sequencing is 3 -good.

3 Existence of 4-good sequencings

For any integer $\ell \geq 3$, it is tempting to conjecture that all "sufficiently large" $\operatorname{STS}(v)$ have ℓ-good sequencings. In this section, we prove this conjecture for the case $\ell=4$. Then, we present some results on 4 -good sequencings of "small" $\operatorname{STS}(v)$ in Section 3.1.

We might attempt to show the existence of a 4 -good sequencing using any of the three methods described in the previous section. It turned out that we were able to do this using a greedy strategy similar to the algorithm presented in Figure 1. In general, when we choose a value for x_{i}, it must be distinct from x_{1}, \ldots, x_{i-1}, of course. It is also required that

$$
x_{i} \notin\left\{\operatorname{third}\left(x_{i-3}, x_{i-2}\right), \operatorname{third}\left(x_{i-3}, x_{i-1}\right), \operatorname{third}\left(x_{i-2}, x_{i-1}\right)\right\} .
$$

There will be a permissible choice for x_{i} provided that $i-1+3 \leq v-1$, which is equivalent to the condition $i \leq v-3$. Thus we can define $x_{1}, x_{2}, \ldots, x_{v-3}$ in such a way that they satisfy the relevant conditions, and our task would be to somehow fill in the last three positions of the sequencing, after appropriate modifications, to satisfy the desired properties. We describe how to do this now, for sufficiently large values of v.

Suppose that $\left[x_{1} x_{2} \cdots x_{v-3}\right]$ is a 4 -good partial sequencing of $X=\{1, \ldots, v\}$ (that is, there is no block contained in any four consecutive points in the sequence $\left[x_{1} x_{2} \cdots x_{v-3}\right]$). Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=X \backslash\left\{x_{1}, x_{2}, \ldots, x_{v-3}\right\}$. Also, let

$$
\begin{aligned}
& \beta_{1}=\operatorname{third}\left(x_{v-5}, x_{v-4}\right), \\
& \beta_{2}=\operatorname{third}\left(x_{v-5}, x_{v-3}\right), \text { and } \\
& \beta_{3}=\operatorname{third}\left(x_{v-4}, x_{v-3}\right) .
\end{aligned}
$$

Clearly β_{1}, β_{2} and β_{3} are distinct. Observe that x_{v-2} and x_{v-1} must be chosen so that $x_{v-2} \neq \beta_{1}, \beta_{2}, \beta_{3}$ and $x_{v-1} \neq \beta_{3}$.

By permuting $\alpha_{1}, \alpha_{2}, \alpha_{3}$ if necessary, we can assume the following two conditions hold:

$$
\begin{equation*}
\alpha_{2} \neq \beta_{3} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{v-3} \neq \operatorname{third}\left(\alpha_{2}, \alpha_{3}\right) . \tag{3}
\end{equation*}
$$

Now, define the following:

$$
\begin{aligned}
& \gamma=\operatorname{third}\left(\alpha_{2}, x_{v-3}\right), \\
& \delta=\operatorname{third}\left(\alpha_{2}, x_{v-4}\right), \\
& \epsilon=\operatorname{third}\left(\alpha_{3}, x_{v-3}\right), \text { and } \\
& \eta=\operatorname{third}\left(\alpha_{2}, \alpha_{3}\right) .
\end{aligned}
$$

Next, suppose we define $x_{v-2}=\chi, x_{v-1}=\alpha_{2}$ and $x_{v}=\alpha_{3}$, where

$$
\begin{equation*}
\chi \notin\left\{x_{v-5}, x_{v-4}, x_{v-3}, \beta_{1}, \beta_{2}, \beta_{3}, \gamma, \delta, \epsilon, \eta\right\} \tag{4}
\end{equation*}
$$

Table 1: Possible blocks in the last six elements of the sequencing

triple	explanation
$\left\{x_{v-5}, x_{v-4}, x_{v-3}\right\}$	greedy algorithm ensures it is not a block
$\left\{x_{v-5}, x_{v-4}, \chi\right\}$	$\left\{x_{v-5}, x_{v-4}, \beta_{1}\right\}$ is a block and $\chi \neq \beta_{1}$
$\left\{x_{v-5}, x_{v-3}, \chi\right\}$	$\left\{x_{v-5}, x_{v-3}, \beta_{2}\right\}$ is a block and $\chi \neq \beta_{2}$
$\left\{x_{v-4}, x_{v-3}, \chi\right\}$	$\left\{x_{v-4}, x_{v-3}, \beta_{3}\right\}$ is a block and $\chi \neq \beta_{3}$
$\left\{x_{v-4}, x_{v-3}, \alpha_{2}\right\}$	$\left\{x_{v-4}, x_{v-3}, \beta_{3}\right\}$ is a block and $\alpha_{2} \neq \beta_{3}$ by (2)
$\left\{x_{v-4}, \chi, \alpha_{2}\right\}$	$\left\{x_{v-4}, \delta, \alpha_{2}\right\}$ is a block and $\chi \neq \delta$
$\left\{x_{v-3}, \chi, \alpha_{2}\right\}$	$\left\{x_{v-3}, \gamma, \alpha_{2}\right\}$ is a block and $\chi \neq \gamma$
$\left\{x_{v-3}, \chi, \alpha_{3}\right\}$	$\left\{x_{v-3}, \epsilon, \alpha_{3}\right\}$ is a block and $\chi \neq \epsilon$
$\left\{x_{v-3}, \alpha_{2}, \alpha_{3}\right\}$	this is not a block by (3)
$\left\{\chi, \alpha_{2}, \alpha_{3}\right\}$	$\left\{\eta, \alpha_{2}, \alpha_{3}\right\}$ is a block and $\chi \neq \eta$.

is to be determined. Thus, the last six elements of the sequencing will be

$$
x_{v-5} x_{v-4} x_{v-3} \chi \alpha_{2} \alpha_{3}
$$

There should be no block in \mathcal{B} contained in any four consecutive points chosen from these six points. We enumerate all the relevant triples and verify that none of them are blocks in Table 1.

Suppose $v \geq 14$. Our strategy is to define χ to be one of $x_{1}, x_{2}, \ldots, x_{8}$, in such a way that (4) is satisfied. Note that $v-5 \geq 9$, so we are guaranteed that $\chi \neq x_{v-5}, x_{v-4}, x_{v-3}$. We can choose $\chi \in\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ because at least one of these eight values is not in the set $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \gamma, \delta, \epsilon, \eta\right\}$, which has size 7. Suppose we take $\chi=x_{\kappa}$, where $\kappa \in\{1,2, \ldots, 8\}$. Then we redefine $x_{\kappa}=\alpha_{1}$. Another way to describe this process is to temporarily define $x_{v-2}=\alpha_{1}$ and then interchange x_{v-2} with x_{κ}.

Now, when we initially choose $x_{1}, x_{2}, x_{3}, \ldots$, we have no idea which value α_{1} we will be interchanging with x_{κ}. So it is necessary to ensure that any value we "swap in" will not result in a block being contained in four successive points of the sequencing. Clearly we only have to worry about the first $8+3=11$ points, $x_{1}, x_{2}, x_{3}, \ldots, x_{11}$.

Define

$$
Y=\left\{\operatorname{third}\left(x_{i}, x_{j}\right): 1 \leq i<j \leq 11,|i-j| \leq 3\right\} \backslash\left\{x_{1}, \ldots, x_{11}\right\} .
$$

(Note, in the definition of Y, that we do not care about pairs of points that are more than three positions apart.) Denote the points in Y as y_{1}, \ldots, y_{m}. It is not hard to verify that $m \leq 27$, because there are ten pairs x_{i}, x_{j} in $\left\{x_{1}, \ldots, x_{11}\right\}$ with $j-i=1$, nine pairs with $j-i=2$ and eight pairs with $j-i=3$.

Having already chosen x_{1}, \ldots, x_{11}, we want to "pre-specify" some of the next points. Due to the changes that are introduced, this part of the algorithm will be referred to as the "modified greedy approach." To be specific, we define $x_{14}=y_{1}$,
$x_{16}=y_{2}, \ldots, x_{2 m+12}=y_{m}$. Note that no three of the y_{i} 's are contained in four consecutive points of the sequencing, from x_{12} to $x_{2 m+12}$.

The following diagram might be helpful in the subsequent discussion:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}

y_{1}	x_{15}	y_{2}	x_{17}	\cdots	$x_{2 m+7}$	y_{m-2}	$x_{2 m+9}$	y_{m-1}	$x_{2 m+11}$

In this diagram, the red values have been defined and we need to determine the black values. Let us consider how the greedy algorithm must be modified in order to accomplish this. We have the following additional restrictions "looking ahead" when choosing values for $x_{12}, x_{13}, x_{15}, \ldots, x_{2 m+11}$:

- each of $x_{12}, x_{13}, x_{15}, \ldots, x_{2 m+11}$ must be distinct from y_{1}, \ldots, y_{m};
- we require that $\left\{x_{11}, x_{12}, y_{1}\right\} \notin \mathcal{B}$, so we must define

$$
x_{12} \neq \operatorname{third}\left(x_{11}, y_{1}\right)
$$

- we require that

$$
\left\{x_{11}, x_{13}, y_{1}\right\},\left\{x_{12}, x_{13}, y_{1}\right\},\left\{x_{13}, y_{1}, y_{2}\right\} \notin \mathcal{B}
$$

so we must define

$$
x_{13} \neq \operatorname{third}\left(x_{11}, y_{1}\right), \operatorname{third}\left(x_{12}, y_{1}\right), \operatorname{third}\left(y_{1}, y_{2}\right)
$$

- in the "general" case, for $i=2, \ldots, m-1$, we require that

$$
\left\{x_{2 i+9}, x_{2 i+11}, y_{i}\right\},\left\{y_{i-1}, x_{2 i+11}, y_{i}\right\},\left\{x_{2 i+11}, y_{i}, y_{i+1}\right\} \notin \mathcal{B}
$$

so we must define

$$
x_{2 i+11} \neq \operatorname{third}\left(x_{2 i+9}, y_{i}\right), \operatorname{third}\left(y_{i-1}, y_{i}\right), \operatorname{third}\left(y_{i}, y_{i+1}\right)
$$

- finally, we require that

$$
\left\{x_{2 m+9}, x_{2 m+11}, y_{m}\right\},\left\{y_{m-1}, x_{2 m+11}, y_{m}\right\} \notin \mathcal{B}
$$

so we must define

$$
x_{2 m+11} \neq \operatorname{third}\left(x_{2 m+9}, y_{m}\right), \text { third }\left(y_{m-1}, y_{m}\right)
$$

Of course, we need to ensure that the greedy algorithm can choose values for all these $x_{i}{ }^{\text {'s }}$.

Now consider what happens when we swap x_{κ} with α_{1}. The value $\alpha_{1} \notin Y$, so α_{1} cannot form a block with any two of the points x_{1}, \ldots, x_{11}. Because $\kappa \leq 8$, there are no blocks contained in any four consecutive points chosen from the first 11

1. Determine x_{1}, \ldots, x_{11} using the greedy approach.
2. Fill in the values y_{1}, \ldots, y_{m} and the determine the remaining values $x_{12}, \ldots, x_{2 m+11}$ using the modified greedy approach.
3. Determine $x_{2 m+13}, \ldots, x_{v-3}$ using the greedy approach.
4. Define the values $x_{v-2}=\alpha_{1}, x_{v-1}=\alpha_{2}, x_{v}=\alpha_{3}$ as described in the text, and then swap x_{v-2} with x_{κ}.
5. Return $\left(\pi=\left[\begin{array}{lll}x_{1} x_{2} & \cdots & x_{v}\end{array}\right]\right)$.

Figure 2: Algorithm to find a 4 -good sequencing for an $\operatorname{STS}(v),(X, \mathcal{B})$
points of the sequencing. At the opposite end, we have guaranteed that there are no blocks contained in any four consecutive points chosen from the last six points of the sequencing, because of the way that x_{κ} was chosen.

Summarizing, the resulting algorithm has the high-level structure described in Figure 2.

All the above steps can be carried out if we ensure that the first $2 m+12$ elements of the sequencing do not overlap with the last six elements of the sequencing. Because $m \leq 27$, this condition is guaranteed to hold if $v-5 \geq 2 \times 27+12+1$, or $v \geq 72$. So we have proven the following.

Theorem 3.1. Suppose $v>71$ and (X, \mathcal{B}) is an $\operatorname{STS}(v)$ on points $X=\{1, \ldots, v\}$. Then there is a sequencing $\pi=\left[x_{1} x_{2} \cdots x_{v}\right]$ of X that is 4-good for (X, \mathcal{B}).

A similar result can also be proven for $\operatorname{PSTS}(v)$ using this technique.

3.1 Results on 4-good sequencings of $\operatorname{STS}(v)$ for $v \leq 15$

We have shown in Section 1 that there is no 4 -good sequencing for the unique $\operatorname{STS}(7)$. Here, we use a counting method to establish the same result, as well as an analogous result for the unique STS(9).

Suppose we take the points of an $\operatorname{STS}(v)$ to be $1, \ldots, v$. Suppose, by relabelling points if necessary, that $[1234 \cdots v]$ a 4 -good sequencing of an $\operatorname{STS}(v)$. We say that a block B is of type i if $|B \cap\{1,2,3,4\}|=i$. Clearly, we must have $i \in\{0,1,2\}$.

For $i=0,1,2$, let b_{i} denote the number of blocks of type i. Simple counting allows us to determine the values b_{0}, b_{1} and b_{2}. First, because the sequencing is 4 -good, we have $b_{2}=\binom{4}{2}=6$. Next, because each point appears in $(v-1) / 2$ blocks, we have $\left.b_{1}=4((v-1) / 2-3)\right)=2 v-14$. Finally, because the total number of blocks is $v(v-1) / 6$, we have $b_{0}=v(v-1) / 6-(2 v-14)-6=v(v-1) / 6-2 v+8$.

Now, if $v=7$, we obtain $b_{2}=6, b_{1}=0$ and $b_{0}=1$. The block of type 0 must be $\{5,6,7\}$. Since these are the last three points of the sequencing, the sequencing is not even 3 -good. Therefore there is no 4 -good sequencing of the $\operatorname{STS}(7)$.

If $v=9$, we obtain $b_{2}=6, b_{1}=4$ and $b_{0}=2$. If the sequencing is 4 -good, then any block B of type 0 must contain both 5 and 9 (if not, then $B \subseteq\{5,6,7,8\}$ or
$B \subseteq\{6,7,8,9\}$, neither of which can occur if the sequencing is 4 -good). But there is at most one block in the $\operatorname{STS}(v)$ that contains the pair $\{5,9\}$, so $b_{0}=2$ is impossible. Therefore there is no 4 -good sequencing of the $\operatorname{STS}(9)$.

However, for $v=13,15$, we quickly found 4 -good sequencings of all the nonisomorphic $\operatorname{STS}(v)$ by computer, by using a simple backtracking algorithm. We have found such sequencings for the two nonisomorphic STS(13) and the 80 nonisomorphic STS(15); these are presented in the Appendix.

4 Conclusion

For any integer $\ell \geq 3$, let $n(\ell)$ denote the smallest integer such that the following property is satisfied:

$$
\begin{equation*}
\text { any } \operatorname{STS}(v) \text { with } v>n(\ell) \text { has an } \ell \text {-good sequencing. } \tag{5}
\end{equation*}
$$

Also, define $n(\ell)=\infty$ if no integer satisfying (5) exists.
We conjecture that $n(\ell)$ is finite for every integer $\ell \geq 3$. Further, based on the computational results from Section 3.1, we conjecture that $n(4)=9$.

Acknowledgement

We thank Charlie Colbourn for providing the construction presented in Section 2.3.

Appendix: 4-good sequencings for STS(13) and STS(15)

We present 4-good sequencings for the two nonisomorphic STS(13) and the 80 nonisomorphic STS(15). These designs are listed in the same order as in the Handbook of Combinatorial Designs [2, Table 1.27 and 1.28].

Table 2: 4-good sequencings for the $\operatorname{STS}(13)$

$$
\text { 1: }[0136247859 b a c] \quad 2: \quad[0136247859 a b c]
$$

Table 3: 4-good sequencings for the $\operatorname{STS}(15)$

1: [01367428a59dcbe	
3: [01367428a59dbce]	4: [01367428a59db
5: [01367428a59bcde]	6: [0
7: [01367428a59cbde]	8: [0136742895
9: [0136742895adc	10: [0 1
11: $[013674289 a b 5 d c e]$	12: 0136742895
13: $013674289 a b 5 d c e]$	14: $01367428 a 5$
15: [0136742895abcde]	16: $01367428 a 5$
17: [013674289ab5dce]	18: 0106742895
19: $[01367428 a 59 c e b d]$	20: 0136742895
21: [013674289ab5dce]	22: [0136742895acdbe]

References

[1] B. Alspach, D. L. Kreher and A. Pastine, Sequenceable triple systems, Preprint.
[2] C. J. Colbourn and J.H. Dinitz, Handbook of Combinatorial Designs, Second Edition, Chapman \& Hall/CRC, 2006.
[3] D. L. Kreher and D. R. Stinson, Nonsequenceable Steiner triple systems, Bull. ICA 86 (2019), 64-68.
[4] C J. Colbourn and A. Rosa, Triple Systems, Oxford University Press, 1999.

[^0]: * D.R. Stinson's research is supported by NSERC discovery grant RGPIN-03882.

