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Abstract: Electrospinning and polymer blending have been the focus of research and the industry
for their versatility, scalability, and potential applications across many different fields. In tissue
engineering, nanofiber scaffolds composed of natural fibers, synthetic fibers, or a mixture of both have
been reported. This review reports recent advances in polymer blended scaffolds for tissue engineering
and the fabrication of functional scaffolds by electrospinning. A brief theory of electrospinning and
the general setup as well as modifications used are presented. Polymer blends, including blends
with natural polymers, synthetic polymers, mixture of natural and synthetic polymers, and nanofiller
systems, are discussed in detail and reviewed.

Keywords: electrospinning; nanofibers; tissue scaffold engineering; polymer blending; functional
nanofibers

1. Introduction

The field of tissue engineering involves the fabrication of artificial tissues, artificial organs, and
tissue regeneration [1]. Scaffolds are used as templates for tissue engineering studies and are composed
of decellularized tissue matrices and synthetic or natural polymer constructs [2]. The scaffolds provide
mechanical support as well as the physical cues within the microenvironment, aiding cell growth.
To enable optimum conditions, it is necessary to mimic the natural microenvironment. This includes the
mechanical properties, such as topography, architecture, elasticity, and stiffness, and biochemical factors,
such as surface chemistry, growth factors, and cytokines. This need for mimicking the extracellular
matrix (ECM) has driven the design of novel biomaterials and fabrication techniques. The readers are
encouraged to refer to some of the recent reviews on this topic [3–9].

While several innovative approaches for tissue engineering have been developed within the last
decade, electrospinning has continued to be the most commonly used. The advantages of electrospinning
are its versatility, flexibility, ability to use different polymer combinations, and ability to upscale easily.
Electrospinning is the modification of the electrospraying process where electrostatic fields are used
for liquid atomization to form droplets (Figures 1 and 2A). Since mechanical forces are not used for
the formation of fibers, it is also known as hydrodynamic jetting. While the effect of electric fields
on droplets have been known since the 17th century and was patented in 1900 by J.F. Cooley [10],
practical applications were not well developed. In the latter part of the 20th century Doshi and Reneker
demonstrated the versatility of the technique by fabricating fibers from organic polymer solutions [11,12].
The typical setup is straightforward and provides flexibility over the fabrication method. Scaling the
system for mass manufacturing is relatively easy and all the advantages of the approach translate
effectively. The common features of the set-up include a voltage source, syringe pumps, and a collector.
For all forms of electrospinning, an initial sol-gel composed of polymers in suitable solvents is needed.
The use of one or more polymers with compatible solvents has been reported [13–15].
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Polyblending or polymer blending is an effective strategy to blend polymers by incorporating the
unique properties of the component polymers or to create novel materials [16]. They can be sub-classified
based on their miscibility as homogenous (miscible blend) and heterogenous (immiscible) polymer
blends. Miscible blends exhibit a single glass transition temperature while immiscible polymer blends
exhibit glass transition temperatures of the individual polymer components. Miscible blends usually
form clear solutions, while immiscible blends form cloudy solutions. Furthermore, immiscible blends
can have a separation of phases if there is no mechanical stimulus. Polymer blends can be distinguished
from block and graft polymers because of the formation of chemical bonds to prepare new polymer
systems in the latter. The blending of polymers is typically achieved using approaches such as extrusion,
mixing, and injection molding, to make sure the polymers are blended correctly and do not separate
out. The thermodynamics of the polymer systems play a major role in determining the miscibility of
polymer blends. Some of the parameters that can be modified in order to transition from the preparation
of a miscible polymer blend to an immiscible polymer blend are molecular weights of the individual
polymer components, solubility of the solvents used for making polymer solutions, temperature,
and the ratio of the polymer components in the polymer blend. The major challenge involved in the
blending of polymers is that most polymers are thermodynamically immiscible and hence separate out
unless stabilized using fillers. It is essential that the blends remain stable in order to create functional
materials with the desired properties. The advantage of electrospinning is that functional nanofibers
can be fabricated from both miscible and immiscible blends. In this review, we will focus on the
fabrication of functional scaffolds through the preparation of novel polymer blends and electrospinning.
The modifications made to the electrospinning systems are highlighted. The different polymer blends
and the method of fabrication are discussed in detail in the later sections.

2. Electrospinning

2.1. Theory

The generalized setup (Figure 1) consists of a voltage source, syringe pump, nozzle, grounded
collector, and syringe. A high electric field is applied (>0.5 kV/cm) to the tip of the nozzle through
which a polymer solution of compatible viscosity (200–4000 cP) flows through. A grounded collector
is used to collect the fibers. The process of electrospinning revolves around the deformation of the
polymer droplet at the tip of the nozzle under the influence of an electric field forming a Taylor cone as
seen in Figure 2A [17].

Figure 1. A basic illustration of the electrospinning set-up showing all the possible parameters that can
be controlled. Adapted with permission from [18], Samerender Nagam Hanumantharao, 2017.
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Figure 2. Schematic illustration of the behavior of jets during the electrospinning process.

The entire electrospinning process consists of three stages: Jet initiation, jet elongation, and the
formation of nanofibers. The jet initiation starts after the formation of a Taylor cone. The formation
of the Taylor cone occurs when the electric field can overcome the surface tension of the polymer
solution, thus elongating it. There is a threshold limit to the voltage during which the shape of the
Taylor cone changes gradually. A higher voltage causes the droplet to recede into the nozzle while a
lower voltage does not create a Taylor cone [19]. The jet travels to the grounded collector or negatively
charged collector after ejecting out from the Taylor cone in a linear path initially and later collects on
top of it after chaotically moving from the nozzle towards the collector, caused by bending instabilities.
The angle of the Taylor cone formed varies depending on the parameters used for electrospinning [20].
The jet initiation process begins when the electric field applied is above the critical voltage value.
The critical voltage value is based on the surface tension of the polymer solution and its flow rate.
The charge density is highest at the tip of the Taylor cone. Once the jet is initiated, it travels in a linear
trajectory. Several parameters play a role in the jet elongation step. Environmental conditions, such as
humidity and temperature, electrostatic forces, which are dependent on the electric field applied and
the permittivity of the fluid, solvent evaporation rate, and viscoelastic response of the fluid are some of
the parameters that affect the process [21].

The acceleration of the jet towards the collector is proportional to the electric field and flow rate.
A steady jet is required for continuous electrospinning. The rate of decay of the jet depends on the
molecular weight of the polymer and the evaporation rate of the solvent apart from the environmental
conditions when the flow rate is constant. A low molecular weight polymer solution or a volatile
solvent lead to a faster decay of the jet, leading to splattering or electro spraying (Figure 2B). The forces
on the jet vary over time as the jet travels from the tip of the Taylor cone to the collector. Several
forces act on the jet in different directions, leading to various fluid instabilities. Splitting of the jet into
multiple jets occurs when there is a local charge accumulation on the tip of the jet, leading to branching
into sub-jets in a process known as splaying (Figure 2D). Splaying is dependent on the physical and
electrical properties of the solvent used and the molecular weight of the polymers. It also generally
occurs when a relatively high electric field is used for electrospinning. The process of splaying in
different solvents was reviewed in detail by Eda and colleagues [22]. However, in some cases when
the electric field applied is higher than the critical value, it leads to receding of the Taylor cone into
the nozzle and multiple jets emanating from a single nozzle. This process is known as jet splitting
(Figure 2C). After following a linear trajectory, the jet undergoes chaotic flow, which is caused by a
non-axisymmetric force or whipping instability [23]. These forces cause the jet to stretch and follow a
helical path whose diameter keeps increasing. This provides enough time for the local charges on the
tip of the jet to redistribute themselves because of Coulombic repulsion and allows the jet to become
elongated and thin. The other instabilities acting on the jet during electrospinning and influencing the
formation of nanofibers are the Rayleigh–Plateau instability and an axis-symmetric force. Rayleigh
force acts on the jet on opposite sides perpendicular to the surface area of the jet while surface tension
works to reduce the total surface area of the jet. This leads to the formation of elongated droplets as
the charge on the droplets prevent them from coalescing (Figure 2B). The presence of droplets during
electrospinning is not desired in many applications. Hence, a balance between Rayleigh instability and
surface tension is needed for continuous electrospinning. The physical properties of the solvent used,
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and the viscosity of the polymer solution are key in maintaining the balance [24]. As the jet reaches
the collector, it solidifies and forms nanofibers. The electric field applied, solvent used, and polymer
concentration play a role in the solidification of the jet and evaporation of the solvents. A process
called conglutination, where partially solidified jets lead to the production of fibers that are attached at
points of contact, affects the morphology and mechanical properties of the fibers [25]. In the entire
process, environmental conditions impact the formation of the Taylor cone, affecting the structure of the
nanofibers (diameter, morphology, and mechanical properties). For example, higher humidity leads to
the formation of pores on the surface of the nanofibers [26,27]. The entire process of electrospinning
can be modified according to the requirements and reengineered to provide more control over the
parameters in order to fabricate novel nanostructures. The theoretical models and mechanisms of
electrospinning were reviewed in detail by Li et al. [28].

2.2. The Electrospinning Apparatus

The properties of nanofibers that have been fabricated are broadly dependent on the initial sol-gel
processing of the polymer blend (e.g., polymer concentration, polarity, solvents used), environmental
conditions (humidity and temperature), and parameters used during the electrospinning process
(e.g., electric field, polymer flow rate) [29,30]. In this section, the modifications that have been made
to the electrospinning apparatus will be discussed. Some of the commonly used configurations are
presented here.

2.2.1. Changes in Collector Design

The collector is where the nanofibers are deposited in the process of electrospinning. The basic
electrospinning setup consists of a grounded flat surface over which the fibers are collected. Hence, in
order to create specific nanostructures, the design of the collector can be modified.

Rotating Mandrel

The rotating mandrel collector consists of a grounded/negatively charged cylinder whose rotation
is controlled through an external motor as seen in Figure 1. The use of a rotating mandrel collector helps
in the fabrication of aligned nanofibers (Figure 3). The alignment of the fibers is along the direction
of the rotation of the collector. The linear rotational velocity of the collector affects the morphology,
mechanical strength of the fibers, and crystallinity [31,32]. The alignment of fibers along the rotation of
the collector takes place only after reaching a critical value of rotational velocity, which is dependent
on the time taken for jet solidification. The electrical field and fluid flow rate are also responsible
for the alignment. A higher value of the electric field leads to breaking of the fibers while a higher
flow rate of the polymer solution provides less time for the jet to solidify and align along the surface.
Interestingly, high rotational speeds yield bands of fibers or overlapping fiber architectures. This was
used by Persano et al. to create a three-dimensional mat, which was composed of aligned fibers [33].

Patterned Collector

The use of a patterned collector allows the fabrication of nanofibers with varied morphologies,
such as a honeycomb structure or patterns with raised morphologies (Figure 4). The collector used can
be of two dissimilar materials with patterns for the selective deposition of nanofibers. The collector
can be a conductive or a non-conducting surface. The fabrication of aligned nanofibers were also
demonstrated by Dan Li [34]. The surface area and geometry of the collector play a major role in the
deposition of fibers. Modeling the electrostatic behavior and altering the polymer solution potentially
leads to the fabrication of nanofibers of novel morphologies. Ding et al. demonstrated the deposition
of Poly(ethylene oxide) (PEO) fibers on a patterned collector composed of pyramidal protrusions [35].
The fibers were selected and deposited on the tips to form a pattern.
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Figure 3. Field Emission Electron Scanning Microscope (FESEM) images of aligned PCL fibers fabricated
on a rotating collector. The inset image is a high magnification image showing the alignment and
directionality of the fibers. Adapted with permission from [18], Samerender Nagam Hanumantharao, 2017.

Figure 4. A representation of the electrospinning technique used by Ding and colleagues for the
controlled deposition of fibers on a patterned collector. Adapted with permission from [35], American
Chemical Society, 2009.

Gap Electrospinning

Gap electrospinning is an alternate way of achieving aligned nanofibers over long distances.
A schematic representation of the gap electrospinning setup is shown in Figure 5. The collector consists
of two conductive electrodes, which are separated by an insulating gap. The fibers are deposited
from one end of the electrodes to the other as the insulating gap causes the fibers to depend on the
electrostatic attraction provided by the conductive electrodes. The collector can further be modified
with the use of multiple electrodes or stacking electrodes to get thicker 3D constructs.
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Figure 5. A representation of gap electrospinning and the length of fibers that can be produced by the
technique. Adapted with permission from [36], American Chemical Society, 2018.

Magnetic Field Associated Electrospinning

A magnetic field has been used as a parameter to align nanofibers. Polymer solutions are deposited
on a collector, which has magnets positioned in parallel, similar to gap electrospinning, to ensure
alignment as reported by Yaqing Liu [37]. This technique can be used to stretch the fibers and manipulate
the branching of jets to influence the electrical and mechanical properties. The technique introduces an
additional force on the jet and can be used to balance out the instabilities caused in the jets.

Wet Spinning

In wet spinning, the electrospun fibers are collected on the surface of a liquid, such as water, which
is grounded or negatively charged. In this technique, layers of random fibers are collected, leading to
the fabrication of thick constructs. The use of water provides control over the porosity of the scaffold.
Tzezana et al. reported the fabrication of 3D constructs for tissue engineering using hydrospinning [38].
The porosity of the scaffold fabricated ensured increased cellular infiltration compared to the fabrication
of scaffolds on a plate. The porosity of the electrospun fibers was 80.4% with an average thickness of
0.29 mm while the fibers fabricated through wet spinning had a porosity of 99.3% with an average
thickness of 10 mm.

2.2.2. Changes in Orientation

This section discusses the changes that have been made in the geometrical positioning of the
tip and collector. The generally used set-up is vertical electrospinning, where gravity acts on the
droplet, thereby attracting it to the collector. The alternatives to these arrangements are horizontal
electrospinning and converse electrospinning.

Vertical Electrospinning

This is the conventionally used electrospinning set-up, where the spinneret is positioned in
parallel on top of a collector (Figure 6A). Gravitational forces act on the jet during electrospinning,
accelerating the jet elongation and jet decay. Several studies exist to show the role of parameters
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and equations modeling the electrospinning process, generally considering gravitational forces to be
constant throughout the process [39–42].
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Horizontal Electrospinning

Horizontal electrospinning is thus called because the electrical fields are parallel to the ground. The
spinneret and the collector are along the same axis, parallel to the ground (Figure 6B). The gravitational
forces act on the droplet in the downward direction and hence higher electrical fields are needed to
overcome the surface tension of the polymer solution and gravitational forces. The projectile motion of
the jet is different because of the additional forces and the altered shape of the Taylor cone.

Converse Electrospinning

The converse electrospinning is the converse of the vertical electrospinning method. The spinneret
is positioned perpendicular to the ground underneath the collector, which is parallel to the ground
(Figure 6C). The spinneret and the collector lie on the same vertical axis. The effect of gravitational
force is highest on the droplet and acts against it. Hence, higher electrical fields are required to initiate
the formation of a Taylor cone compared to vertical and horizontal electrospinning. Thicker diameter
nanofibers with a very narrow size distribution are obtained using this technique [43].

2.2.3. Changes in Spinneret

Coaxial Electrospinning

Coaxial electrospinning is a modification where multiple polymer solutions are electrospun
simultaneously from coaxial capillaries to form coaxial or multiaxial nanofibers as seen in Figure 7.
The process was first demonstrated by Loscertales and colleagues in 2002, where a coaxial spinneret
was used [44]. A schematic representation of the coaxial electrospinning setup and the changes in the
Taylor cone during the electrospinning process are shown in Figure 3. The spinneret has two or more
separate syringe pumps for the injection of the polymer solutions in the inner and outer capillaries.
The inner capillary helps in the formation of the core polymer while the outer capillaries help in the
formation of the sheath(es).
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Figure 7. The basic representation of the setup for coaxial electrospinning and the change in the Taylor
cone during the fabrication of common core-shell nanofibers. Reprinted with permission from [45],
IntechOpen, 2010.

Interestingly, Bazilevsky and colleagues demonstrated the fabrication of coaxial fibers from a
single spinneret using selective precipitation of the core polymer in a polymer blend and the polymer
present on the sheath was able to form a Taylor cone along with the precipitate as seen in Figure 8 [46].
The theoretical considerations of the formation of coaxial nanofibers using a single nozzle was reviewed
in detail by A.L. Yarin [47].

Figure 8. The setup by Bazilevsky and colleagues for the fabrication of single nozzle coaxial electrospinning
of polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) using Dimethylformamide (DMF) as
a solvent. PAN forms the core while PMMA forms the sheath of the polymer. Reprinted with permission
from [46], American Chemical Society, 2007.

Coaxial electrospinning includes a few more controllable parameters than the conventional
technique. Since the core and sheath polymers interact, the properties of the polymer solution, like
miscibility, boiling point, and viscosity, play a significant role. Additionally, since the process involves
electrospinning two or more polymer systems at the same time, the electrospinning parameters need
to be compatible. The fluid flow rate is one parameter that can be individually altered during the
electrospinning process. Some of the challenges during electrospinning are the solidification of jets
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at different points, improper elongation of the jets, and irregular flow rate ratios, which affect the
continuous electrospinning process.

Recently, quadriaxial and triaxial spinnerets have also been designed and used to produce
tetra-layered and triaxial nanofibers, respectively (Figure 9). The advantage of coaxial electrospinning
is that it produces nanofibers of polymers with completely different properties. The core and the sheath
polymers retain their properties and, in some cases, enhance the properties of the nanofibers. Also, this
technique allows the electrospinning of polymer systems, which are not electrospinnable by themselves
due to low viscosity or high conductivity. In order to prepare hollow nanofibers, a sacrificial polymer
is used in the core, which is preferentially soluble in a solvent or more thermally degradable than the
sheath polymer. Hence, coaxial electrospinning can be used to create novel polymer combinations,
such as polymer/inorganic and inorganic/inorganic coaxial nanofibers, and fabrication of nanofibers
that contain easily degradable compounds, like enzymes.

Figure 9. A schematic illustration of an example of a multiaxial spinneret system. Reprinted with
permission from [45], IntechOpen, 2010.

Co-Electrospinning

Co-electrospinning involves the use of multiple spinnerets and simultaneous electrospinning
on the same collector (Figure 10). This enables the production of composites that have the favorable
properties of several polymers. Since different spinnerets are used, the morphologies of the resultant
nanocomposites can be varied greatly. Modifications of this technique include using a single voltage
source for multiple spinnerets or using multiple spinnerets, each with its own voltage supply. The major
challenge associated with co-electrospinning is the interference of the jets during electrospinning.
The charges on the jet repel each other and hence, the jets have an angle. While the parameters
controlling electrospinning are applicable to co-electrospinning as well, the advantage is in the ability
to prepare nanofibers on a large scale using multiple spinnerets. To ensure that there is no interference
among the jets, spinnerets placed on either side of the collector to prepare aligned nanofibers have been
reported [48]. Co-electrospinning is usually combined with the use of a rotating mandrel to prepare
aligned nanocomposites [49].
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Figure 10. A graphical representation of the co-electrospinning setup used by Hillary and colleagues
for the development of scaffolds with improved biophysical properties and bioactivity [50]. Reprinted
with permission from [50], PLoS ONE, 2016.

In-Line Polymer Blending

Another approach to create nanocomposites is to combine multiple favorable properties of different
polymers for use in in-line polymer blending. The polymer solutions are fed to a mixing chamber and
flow through a single spinneret for electrospinning. This method of electrospinning needs precise
control of the solvents and polymers used. One of the important advantages of this technique is the
fabrication of nanofibers from immiscible and miscible blends, which results in novel nanomaterials.

2.2.4. Other Modifications

Centrifugal Electrospinning

Centrifugal electrospinning uses centrifugal force for the fabrication of nanofibers apart from the
electrostatic and gravitational forces. Ultra-thin fibers are produced, owing to the centrifugal forces
acting during jet elongation. This technique was first reported by Weitz and colleagues [51]. The set-up
consists of a rotating spinneret and an annular collector, which is present around the spinneret.
The diameter of the collector is the distance of separation from the tip to the collector. The revolution
of the spinneret helps in providing the centrifugal force during electrospinning. This set-up can be
further modified by using different spinnerets, like a coaxial spinneret, or co-electrospinning.

Near Field Electrospinning

The design of the setup of near field electrospinning is like the vertical electrospinning set-up, except
that the distance between the tip of the spinneret and the collector is in the microscale. The technique
is used for the controlled deposition of fibers over a surface. The electric field used is high and the
polymer flow rate is maintained to ensure a steady jet. Lin et al. demonstrated the use of near field
electrospinning for the production of fibers with diameters ranging from 50 to 500 nm on a collector
and the polymer feed rate was similar to that of a dip pen (Figure 11) [52].
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Figure 11. A schematic representation of the near field electrospinning process and the fibers obtained
after electrospinning. Sun and colleagues used this technique to demonstrate the fabrication of
continuous nanofibers with a desired pattern using a Tungsten tip. Reprinted with permission from [52],
American Chemical Society, 2006.

Needleless Electrospinning

The initiation of a jet from a polymer solution can be done if the voltage applied is higher than the
critical voltage needed for jet initiation. This theory was used to design spinnerets of any desired shape,
a representation of which is shown in Figure 12. The first needle-less electrospinning was demonstrated
and patented by Simm et al., where an annular electrode was used as the spinneret [53]. The mode of
fiber generation is used to classify the two types of needle-less electrospinning setups. The rotating
needle-less electrospinning setup uses mechanical forces to assist in the jet initiation from the surface of
the polymer. The jets are formed from a thin layer of polymer solution on the surface of the spinneret
because of the mechanical forces. This leads to perturbations assisting in the formation of Taylor
cones followed by jet initiation, jet elongation, and fiber formation. Multiple jets are formed from the
spinneret. The other mode of needle-less electrospinning is the stationary needle-less electrospinning,
where the jet initiation occurs from the liquid surface with the use of external forces, such as magnetic
fields, gravity, and the flow of gases. This technique has been in focus recently because of the ease
of formation of nanofibers, higher productivity compared to conventional electrospinning, and the
advantage of no clogged orifices [54]. The challenge with this technique is the use of a higher voltage
for the jet initiation process.

Figure 12. A basic representation of the linear needle-less electrospinning setup [55].
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Emulsion Electrospinning

Emulsion electrospinning is a technique used to create nanofibers of different compositions
and structures. The feed polymer solution used for electrospinning is an emulsion of two or more
polymers that are insoluble with each other. A ratio of hydrophilic and hydrophobic polymers has
been used to fabricate fibers with core-shell morphologies as demonstrated by Xu et. al. [56]. Emulsion
electrospinning is different from the single nozzle coaxial electrospinning described by Bazilevsky and
colleagues [46]. The fibers fabricated using emulsion electrospinning may or may not have a continuous
core-shell morphology but are composed of different phases of the polymers. Emulsion electrospinning
provides control over the composition of the core and the sheath and diameters of the fibers by
allowing modifications of the emulsion composition and the emulsification parameters. This system is
beneficial in loading a drug or bioactive component that is soluble only in an inorganic solvent into
an organic media or vice versa. The difference in the loading of the component is different compared
to polymer blending and coaxial electrospinning as seen in Figure 13. Emulsion electrospinning is
advantageous in tissue engineering applications where the bioactive components or drugs can be
released in a controlled manner based on the degradation profile of the nanofibers. Some of the model
proteins, microRNA, growth factors, and drugs that have been encapsulated are Bovine Serum Albumin
(BSA) [57], basic fibroblasts growth factor (bFGF) [58], Cytochrome C [59], doxorubicin hydrochloride
(anticancer drug) [60,61], vascular endothelial growth factor (VEGF) and platelet-derived growth
factor-bb (PDGF) [62], human-nerve growth factor [63], Rhodamine B [64], microRNA-126 [65], and
epidermal growth factor (EGF) [66]. The other major advantage is the use of water-based solvent
systems instead of more toxic solvents that provide ease of fabrication and usage.

Figure 13. The difference in the loading of the polymer feed solution between blend, coaxial, and
emulsion electrospinning and the difference in the resulting structure of the nanofibers. Reprinted with
permission from [67], The Royal Society of Chemistry, 2017.

3. Polymer Blends for Tissue Scaffold Engineering

The blends for tissue scaffold engineering are prepared based on the requirements to mimic
the extracellular microenvironment. Table 1 summarizes some of the key properties that are used
to design an ideal scaffold. Apart from the key properties discussed in the table, properties, such
as antibacterial activity, initiating cellular signaling, drug delivery, and electrical conductivity, are
useful in scaffolds with more functionality [68–71]. The blends and functional scaffolds are designed
and tested based on these design principles. Electrospinning provides flexibility for the formation of
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different morphologies of scaffolds. The morphologies of the scaffold play a major role in eliciting an
appropriate tissue response and influences stem cell behavior [72–76]. The morphologies of the fibers
include the topography of the scaffold and the diameter, orientation, and alignment of the individual
nanofibers of the fibrous scaffold.

Table 1. Properties of the scaffold considered when designing a scaffold.

Properties Design Considerations

Biocompatibility Ensure scaffolds are compatible with the cells and do not elicit an
immune response. An essential requirement of all scaffolds.

Biodegradable/Non-biodegradable
Based on the application, the scaffolds need to be biodegradable or
non-biodegradable. Biodegradable scaffolds degrade through enzymatic
or hydrolytic action in a controlled manner.

Electrical Conductivity
Electrical signals form an integral part of the cell signaling cascade.
Scaffolds that are conductive can be used to manipulate
cell behavior accordingly.

Morphology

Cell–scaffold behavior is influenced by the morphology of the scaffold.
Porosity is one of the properties that ensures appropriate nutrient
transfer to different layers of cells in the scaffold and cellular infiltration.
Cellular alignment and migration are also dependent on morphology.

Mechanical Characteristics

Mechanical properties, like the stiffness, Young’s modulus, elasticity,
and relaxation modulus, directly affect cell behavior. Mimicking the
properties of the scaffold as closely as possible to the natural
microenvironment is essential for an ideal scaffold.

Magnetic

Magnetic stimulation in electroactive tissues, like cardiac, nerve, and
bone tissues, has shown increased cellular proliferation, differentiation,
and cell alignment along the direction of the magnetic field lines. The
magnetic field can be applied externally or by using scaffolds which
exhibit magnetism.

Bioactivity

Bioactive scaffolds have surface ligands, like Arg-Gly-Asp (RGD)
binding sequences, that can be recognized by the host. They elicit a
response from the host due to the binding of surface receptors or
peptides, or due to the release of degradation products from the scaffold.

Ease of manufacturing
Cost of raw materials, manufacturing process, storage, etc. are some of
the factors that influence the effectiveness of a scaffold in tissue
engineering applications on a wide scale.

Some of the commonly used morphologies used for tissue engineering applications are scaffolds
composed of randomly oriented fibers, aligned fibers, banded fibers, and honeycomb structured fibers
(Figure 14). The topographies of each of these morphologies have unique properties that are beneficial
in tissue engineering applications. For example, the aligned topography in certain tissues helps in better
cellular migration and differentiation [77,78]. The following sections review the developments made in
the formation of functional scaffolds through polymer blending and electrospinning. The modifications
in electrospinning have been used to fabricate various scaffolds with different morphologies, and
structural and chemical properties that are tuned based on the intended application. The chemical
properties of the scaffolds are important properties that are tuned in the case of biodegradable or
bioabsorbable scaffolds, and to tune the drug release profile from the scaffold. The review by Cheng et al.
provides some of the latest innovations in drug delivery from scaffolds by using electrospinning [79].
The state of the art polymer blends used for the fabrication of scaffolds for drug delivery applications
were reviewed by Contreras-Cáceres and colleagues [80].
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Figure 14. The field emission scanning electron microscope (FESEM) images of the commonly used
morphologies for scaffold tissue engineering fabricated using electrospinning. (A) Random morphology
composed of randomly oriented fibers (B) The aligned morphology consists of layers of identically
oriented fibers in a 3D fibrous structure. (C) Overlapping morphology is composed of layers of
fibers overlapped at regions (D) 3D honeycomb structured morphology consists of fibers in a specific
arrangement in the scaffold.

3.1. Natural Polymer Blends

Natural polymers are the first choice for the fabrication of scaffolds initially because of their
biocompatibility and inherent bioactivity. The commonly used natural polymers in engineering scaffolds
are components of the extracellular matrix, like collagen [81], elastin [82], hyaluronic acid [83], and
fibrinogen [84], or derivatives from natural sources, like gelatin [85], chitosan [86,87], silk fibroin [88,89],
or vegetable oils. The main challenges associated with the use of natural polymers are the strict
purification processes, chances of loss in conformation during material processing, difficulty in
preparing polymer solutions, variable degradation rates, and lower mechanical strength of the scaffolds.
However, polymer blending has been a useful strategy to prepare functional scaffolds that are able to
overcome these common problems. The use of post-processing techniques, use of sacrificial templates,
and blending with binary or ternary solvent systems has been key to the fabrication of functional
scaffolds from natural polymers. Table 2 summarizes the scaffold characteristics in terms of the natural
polymers used, solvents used to blend the polymers, modifications to the electrospinning equipment,
tissue targeted, and a description of the research.
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Table 2. Electrospun scaffolds based on natural polymer blends.

Polymers Used Solvents Used Type of Electrospinning Type of Tissue Engineering Comments Ref.

Alginate/Gelatin
(PEO: sacrificial template;
Pluronic® F-127: Surfactant)

PBS and water Wet Electrospinning (Ethanol) Cardiac Tissue Engineering

The method of polymer blending, and choice of electrospinning
helped in the formation of a microporous network. The
alginate/gelatin hydrogel scaffolds provide a 3D microenvironment
which help in maturation of human iPSC-derived
ventricular cardiomyocyte.

[90]

Collagen/Chitosan/HA
(PEO: Sacrificial template) Acetic acid, DMSO and water Vertical Electrospinning Bone Tissue Engineering The scaffolds demonstrated osteogenic differentiation and bone

regeneration in animal models. [91]

Gelatin and oxidized
carboxymethyl cellulose Acetic acid and water Rotating collector coated with PEG Vascular Tissue Engineering

Scaffolds with tunable mechanical properties and pore sizes were
fabricated. The tubular constructs (scaffolds) had a homogenous
distribution of fibers.

[92]

Gelatin and Urinary
Bladder Matrix

Acetic acid, water and ethyl acetate
(Crosslinker: 3 wt% glyoxal) Low Voltage Electrospinning - Biofunctional ECM fibers were fabricated with tunable biochemical,

mechanical, and topographical properties. [93]

Gelatin/Chitosan TFA and DCM (v/v 7:3) Vertical Electrospinning Skin Tissue Engineering Fibrous scaffolds with improved mechanical properties helped in
attachment, migration, and proliferation of cells in vitro. [94]

Gelatin/Sodium Alginate Water
(CaCl2: crosslinker) Patterned electrospinning -

3D printing, freeze drying, and electrospinning were used to
manufacture the porous scaffold. Long term in vivo studies
demonstrated the ability of cells to vascularize on the scaffolds.

[95]

Gelatin/Glycosaminoglycan TFE and water Rotating collector Cartilage Tissue Engineering A nanofibrous scaffold was fabricated and tested with stem cells,
15% glycosaminoglycan in gelatin matrix showed the best results. [96]

HA and collagen
(PVP: sacrificial template) Ethanol Vertical Electrospinning Bone Tissue Engineering Bottom-up method was used to fabricate bone Haversian

microstructure scaffold. [97]

SF and HA
(PEO: Sacrificial template) Water Wet Electrospinning Bone Tissue Engineering

Mussel inspired polydopamine was used as an adhesive to coat
another layer of HA on the fibers post-electrospinning. The
scaffolds promoted cellular differentiation in vitro.

[98]

Zein and Gelatin Acetic acid/water (v/v 4:1) and
5% w/v glucose Vertical Electrospinning -

Maillard reaction was used to crosslink glucose with the proteins.
Scaffolds with variable mechanical and surface properties
were obtained.

[99]
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3.2. Synthetic Polymer Blends

There are a vast number of synthetic polymers that can be used for the fabrication of functional
scaffolds. Polymer blending facilitates the incorporation of complementary properties of different
synthetic polymers. There are several synthetic polymers that have been approved by the Food and
Drug Administration (FDA) for tissue engineering, like PCL [100,101], PLLA, PGA, and PLGA. Some of
these polymers are biodegradable while some of the polymers are bioactive because of the degradation
products which are recognized by the native tissues. Conductive polymers, such as PANI and PPy [102],
and piezoelectric polymers [103], like PVDF, provide additional features to the scaffold and can be used
to elicit electrical or mechanical stimulus to the tissues, respectively. The major advantages associated
with synthetic polymers are the ease of scaling up, electrospinnability, relative affordability, superior
electrical and mechanical characteristics, and relative ease of altering structures. Hanumantharao et al.
demonstrated the fabrication of different morphologies of scaffolds from a polymer blend of PCL-PANI
using electrospinning as seen in Figure 15. The fibroblasts used for in vitro analysis exhibited a
difference in behavior based on morphology [104]. The disadvantage is that following electrospinning,
the fibers need to be surface treated before culturing with cells or implantation. Table 3 summarizes the
scaffold characteristics in terms of the synthetic polymers used, solvents used to blend the polymers,
modifications to the electrospinning equipment, tissue targeted, and a description of the research.
The most commonly used polymers as seen from the table are PCL [105], PLLA, and PPy [106].

Figure 15. Field Emission Scanning Electron Microscope (FESEM) image of the different morphologies
obtained using a synthetic polymer blend of PCL and PANI at different voltages. The scaffolds had
no significant change in surface chemistry but had different mechanical properties. Reprinted with
permission from [104], Elsevier, 2019.

3.3. Mixed Polymer Blends

Mixed polymer blends are composed of a mixture of natural and synthetic polymers to form a
homogenous blend, which is electrospun to fabricate functional scaffolds. The blending and miscibility
of synthetic polymers are well characterized because of their relatively known or characterizable
glass transition temperatures. Natural polymers have variable glass transition temperatures owing to
the variability in processing and changes in conformations. Hence, a blend of natural and synthetic
polymer is challenging. A suitable solvent system is needed for preparing the blend, such that the
natural polymer does not lose its native structure and consequently, its properties in the blend. Table 4
summarizes the scaffold characteristics in terms of the natural polymers used, synthetic polymers used,
solvents used to blend the polymers, modifications to the electrospinning equipment, tissue targeted,
and key points of the research.
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Table 3. Electrospun scaffolds based on synthetic polymer blends.

Polymers Used Solvents Used Type of Electrospinning Type of Tissue Engineering Comments Ref.

PANI, PEG, and PLA Chloroform,
acetone and water

Coaxial and uniaxial
electrospinning Cardiac tissue engineering Presence of doped PANI and PEG helps in increasing electrical conductivity and affects

thermal properties. Use of PLA helps in reducing the toxicity caused by PANI. [107]

PBAT and PPy DMF and CF Climate controlled
electrospinning Bone tissue engineering The fabricated scaffolds provided a surface for depositing nanohydroxyapatite (nHAp).

The scaffolds were bioactive and helped in the differentiation of cells. [108]

PBAT/PPy DMF and CF Vertical Electrospinning Neural Tissue Engineering
Scaffolds composed of a conductive polymer (PPy) and biodegradable commercial
polymer (PBAT) were fabricated through polymer blending and electrospinning.
The scaffolds supported neuronal differentiation and spreading.

[109]

PCL
(PVA: sacrificial template)

PCL: CF
PVA: PC12
cell culture medium

Liquid–liquid coflowing
electrospinning method Neural Tissue Engineering

Fibers with PCL sheath and PVA/PC12 cell cores were fabricated. Cells were grown
inside the hollow fibers after dissolving the PVA. The scaffold provides a route to make
nerve connections.

[110]

PCL and PANI HFIP Vertical Electrospinning Cardiac Tissue engineering The fabricated scaffolds provide a conductive 3D environment that showed potential as
bio actuators. [111]

PCL and PANI Chloroform Rotating collector Skin Tissue Engineering Honeycomb patterns of varying dimensions were fabricated through self-assembly by
altering the voltage applied during electrospinning. [104]

PCL and PGS CF and acetone Sequential
Electrospinning Vascular tissue engineering

Tubular scaffolds were fabricated from PGS and PCL. The PGS (inner layer) is a fast
degrading polymer that provides a non-thrombogenic surface while PCL (outer layer)
provides mechanical stability and controls the degradation rate.

[112]

PCL and PPy DCM/DMF (v/v 1:1) Rotating collector Muscle tissue engineering
Copolymer of PCL-PPy was initially prepared before electrospinning. The scaffolds
were conductive and composed of aligned fibers. It was found that conductivity did not
play a major role in cellular differentiation.

[113]

PCL or PLLA and
hexaaminocyclotriphosphazene

(HACTP)

PCL: Formic acid and
Acetic acidP
LLA: TFA

Needle-less
Electrospinning - Two different types of scaffolds were fabricated. The addition of HACTP increased the

cell spreading, metabolism, proliferation, and bioactivity of the scaffolds. [114]

PCL/PHB/58S bioactive glass CF/DMF (v/v 8:2)
and ethanol

Horizontal
electrospinning Skeletal tissue engineering The fabricated fibers exhibited high stiffness of PHB, flexibility of PCL, and bioactivity

of 58S bioactive glass. [115]

PCL/PLGA and BMP-2 PLGA and PCL: TFE
BMP-2: BSA and water Coaxial electrospinning Bone Tissue Engineering 3D scaffolds were prepared using TISA post-electrospinning. The scaffolds promoted

osteogenic differentiation and proliferation. [116]

PCL/PLGA/PANI CF/DMF (v/v 3:2) Rotating collector Neural Tissue Engineering Electrically conductive scaffolds were fabricated. The scaffolds when electrically
stimulated resulted in neurite outgrowth and cell proliferation in vitro. [117]

PCL-PLA (4:1) DCM/DMF (v/v 3:2) Rotating collector Bone tissue engineering
Thermally induced nanofiber self-agglomeration (TISA) was used to create 3D
nanofibrous scaffolds after the fabrication of electrospun nanofibers. PCL/PLA-3D
scaffolds facilitated new bone formation in a cranial bone defect mouse model.

[118]

PHBV/PEO TFE Rotating collector
electrospinning Neural Tissue Engineering

The aligned PHBV/PEO fibers after electrospinning were coated with laminin after
treatment with plasma. The scaffolds provided topographic cues for the cellular
alignment and orientation. In vivo studies demonstrated the effectiveness of the
scaffold for peripheral nerve regeneration.

[119]

PU and PGS

Two types of solvent
systems were used.
CF/DMF (v/v 3:2).
HFIP, TFE and acetic acid

Vertical Electrospinning Vocal fold tissue engineering
Two different solvent systems were used to obtain scaffolds composed of PU/PGS. The
morphology and mechanical properties were different when the solvent system was
changed. Scaffolds mimicking mechanical properties of vocal folds were fabricated.

[120]

PVA and tetraethyl orthosilicate Water Vertical Electrospinning - A 3D silica sponge was fabricated using self-assembly. The scaffolds have high porosity,
low density, and demonstrated high cell vitality and proliferation rates. [121]
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Table 4. Electrospun scaffolds based on mixture of synthetic and natural polymer blends.

Natural Polymers Synthetic Polymers Solvents Used Type of Electrospinning Type of Tissue Engineering Comments Ref.

6-O-Tritylchitosan
(Chitosan derivative) PCL DMF Vertical Electrospinning Bone Tissue Engineering The use of chitosan derivative along with PCL helped in increasing the

biocompatibility and mechanical properties of the scaffold. [122]

Alginate/PEO PCL/PEO DMSO Co-electrospinning Cancer research Scaffolds with tunable properties were obtained, which interacted
with cancer cells differently. [123]

CA PVP Acetone and water Vertical Electrospinning Bone Tissue Engineering Polymer blending and electrospinning was used to create coaxial
nanofibers of CA/PVP. [124]

Carboxymethyl
chitosan PCL Acetic acid/formic acid (v/v 2:3) Vertical Electrospinning Bone Tissue Engineering

Carboxymethyl chitosan was used in place of chitosan to ensure the
fabrication of scaffolds with a uniform morphology. The scaffolds
promoted cellular proliferation when compared with
chitosan/PCL scaffold.

[125]

Chitosan Polyamide 6,6 Acetic acid and HFIP Vertical Electrospinning Bone tissue engineering The increase in concentration of chitosan showed enhanced suitability
as scaffolds by increasing the bioactivity. [126]

Chitosan PHB TFA Vertical Electrospinning Cartilage tissue engineering The blend was prepared to increase the hydrophilicity of the scaffolds. [127]

Chitosan PVA Acetic acid Needle-less
Electrospinning - The scaffolds have a controlled degradation rate and

mechanical properties. [128]

Chitosan PCL DCM and DMF (v/v 7:3) Vertical Electrospinning - Formation of a 3D scaffold through post-processing of electrospun
mats using a needle machine and laminating multiple layers [129]

Chitosan PCL DMF and CF Rotating collector -
Nano fibrillated chitosan was blended with PCL to electrospin the
scaffolds, resulting in improved mechanical and surface properties
compared to PCL.

[130]

Chitosan PVA Acetic acid and water Vertical Electrospinning -
The nanofibers were crosslinked with glutaraldehyde post
electrospinning. The mechanical properties of the scaffolds could be
varied by changing the crosslinking time.

[131]

Chitosan PLA PLA: CF Chitosan: acetic acid Vertical Electrospinning - A porous nanofiber network of fibers was fabricated using a binary
solvent system. [132]

Chitosan and
hyaluronic acid

PCL
(PEO: Sacrificial

Template)
Water, Formic Acid, Acetones Vertical Electrospinning Skin Tissue Engineering

A 3D bilayered scaffold composed of chitosan/PCL-hyaluronic acid
was fabricated. The scaffold showed good mechanical and surface
properties as well as facilitated cell proliferation and nutrient transfer
in comparison to PCL and chitosan/PCL.

[133]

Collagen PCL and nano bioglass Acetic acid Vertical Electrospinning Nerve Tissue engineering Bioactive with tunable biodegradation rates were fabricated. [134]

Collagen PLA HFIP and Water (v/v 8:2) Patterned Electrospinning Skin Tissue Engineering
Multi-level architecture scaffolds were obtained by using a patterned
collector. Collagen helped in improving the mechanical and surface
properties of the scaffold.

[135]

Collagen PLGA HFIP Co-electrospinning Neural Tissue Engineering
The fabricated scaffolds had the advantages of collagen and PLGA.
The scaffolds were tested using TBI models on animals and were
found to be successful.

[136]

Collagen PCL HFIP Modified
Electrospinning setup Wound healing applications

Manipulation of the collector during fabrication was used to fabricate
a nanotopographical patterned scaffold with control over the porosity
and pore size.

[137]
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Table 4. Cont.

Natural Polymers Synthetic Polymers Solvents Used Type of Electrospinning Type of Tissue Engineering Comments Ref.

Collagen PCL HFIP Near Field Electrospinning - Near-field electrospinning was used to create interconnected fiber
junctions and fiber overlays. [138]

Decellularized
meniscus
extracellular matrix

PCL

HFIP
(Crosslinker:
1-ethyl-3-3-dimethylaminopropyl
carbodiimide)

Horizontal Electrospinning Meniscus tissue engineering

In a series of studies, the fabrication of decellularized meniscus
extracellular matrix/PCL and their use as scaffolds for meniscus repair
were discussed. The scaffold had the surface receptors from the
decellularized meniscus extracellular matrix and the tensile strength
from PCL. Post-electrospinning, freeze drying, and crosslinking was
done to ensure the scaffold mimicked the natural meniscus
microenvironment.

[139,140]

Demineralized Bone
Matrix and HA PLGA

PLGA: HFIP;
Demineralized Bone Matrix and
Sodium hyaluronate: Water

Multi-jet electrospinning
with rotating collector

Calvarial defect
reconstruction

The scaffolds were fabricated by alternating between electrospinning
PLGA and electrospraying demineralized bone matrix and HA on a
Mg alloy mesh. The scaffolds provided an attractive treatment option
for calvarial defect reconstruction without the use of additional
growth factors.

[141]

Fibrinogen and
Gelatin PCL HFIP and DMEM Vertical Electrospinning Neural Tissue Engineering

PCL improved the mechanical properties of the scaffold while gelatin
and fibrinogen increased the bioactivity and surface properties of the
scaffold. Optimal concentrations of the components in polymer blend
were necessary to fabricate the scaffold.

[142]

Gelatin PGS-PMMA HFP Vertical Electrospinning Nerve tissue engineering
Uniform nanofibers obtained from PGS-PMMA/gelatin blends, which
were biocompatible. The PGS-PMMA blend has tunable molecular
weights and thermal properties.

[143]

Gelatin PCL TFE and acetic acid Vertical Electrospinning Endothelium regeneration
Addition of gelatin increased hydrophilicity but decreased mechanical
properties. A balance between the two was shown to act
as a superior scaffold

[144]

Gelatin PCL TFE Vertical Electrospinning Vascular Tissue Engineering
Human umbilical vein endothelial cells and adipose-derived
mesenchymal stem cells were co-cultured on the PCL/gelatin scaffolds
to form blood vessels.

[145]

Gelatin Poly(ester-urethane)
urea

HFIP
(Crosslinker: Glutaraldehyde) Conjugated electrospinning Skin Tissue Engineering

Nanoyarns were formed using the modified technique of
electrospinning. Gelatin helped in increased the wettability
of the scaffolds.

[146]

Gelatin PLLA-CL HFIP Conjugated electrospinning
with rotating collector

Annulus Fibrosus
Tissue Engineering

Aligned nanoyarn scaffolds were fabricated, which have a fibrous 3D
morphology and allowed cellular infiltration and proliferation in vivo. [147]

Gelatin and
Aloe Vera extract PCL Acetic acid Co-Electrospinning Skin Tissue Engineering

The addition of aloe vera extract to the polymer blend during
electrospinning helped in increasing fibroblast proliferation compared
to PCL and PCL/gelatin scaffolds.

[148]

Gelatin and Chitosan PGS Acetic acid Vertical Electrospinning Nerve tissue engineering PGS/chitosan/gelatin (1:1:2) was used to produce nanofibers at the 80
nm scale. Gelatin was incorporated to make the blend homogenous. [149]

Gelatin and
Chondroitin sulfate PVA Acetic acid and water Rotating collector - Ternary blend consisting of gelatin, chondroitin sulfate, and PVA was

used to fabricate a bead free nanofibrous scaffold. [150]

Gelatin and HA PLLA HFIP Vertical Electrospinning Bone Tissue Engineering
Post-processing of electrospun scaffolds was done by homogenizing,
freeze-drying, and thermal crosslinking techniques to
obtain a 3D scaffold.

[151]
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Table 4. Cont.

Natural Polymers Synthetic Polymers Solvents Used Type of Electrospinning Type of Tissue Engineering Comments Ref.

Gelatin and
Hyaluronic acid PLA HFIP Vertical Electrospinning Cartilage Tissue Engineering

A 3D scaffold composed of gelatin/PLA crosslinked with hyaluronic
acid was fabricated, which demonstrated enhanced repair of cartilage
defects in rabbits.

[152]

Gelatin
methacrylamide PCL HFIP Horizontal Electrospinning Vascular Tissue Engineering

An optimized concentration of polymers in the blend was obtained for
appropriate mechanical and surface properties. The scaffolds
supported the endothelial cell remodeling by providing the required
biological cues and mechanotransduction.

[153]

Gelatin
methacrylamide PCL

HFIP
(Ethanol and
2-Hydroxy-4′-(2-hydroxyethoxy)-
2-methylpropiophenone used for
photocrosslinking)

Co-Electrospinning Vascular Tissue Engineering

A shape morphing scaffold was manufactured by post-processing the
gelatin methacrylamide/PCL fibers and combining it with a shape
memory polymer. The scaffold was rolled into 3D tube structures at
physiological temperatures. The scaffolds provided an adequate
microenvironment for inducing endothelization.

[154]

HA PCL DCM/DMF (v/v 3:2) Patterned electrospinning Bone Tissue Engineering

Alternating electrospinning and electro spraying, and a honeycomb
patterned collector were used to obtain a scaffold composed of
multiple layers of honeycomb patterned PCL nanofibers with HA
nanoparticles. In vitro analysis revealed the scaffold promoted
osteocompatibility and osteoconduction.

[155]

HA bioceramic PVA and PCL
PCL and HA bioceramic:
CF and Methanol
PVA: Water

Co-Electrospinning Bone Tissue Engineering
The favorable properties of all three components helped in the
fabrication of a scaffold that supported the growth
of stromal stem cells.

[156]

HSA PCL HFIP and water Electronetting - Bimodal structures were obtained in the shape of webs, which help in
cell attachment. [157]

Human Liver
ECM proteins PLLA HFIP and Acetic acid Vertical Electrospinning Liver Tissue Engineering

A translatable niche for hepatocytes was obtained by providing the
biochemical cues from the ECM proteins and structural
support from PLLA.

[158]

Lactic acid PCL DCM/DMF (9:1 ratio by weight) Multiple pins rotator
electrospinning Connective tissues Scaffolds mimicking aligned collagen fibrils were fabricated. [159]

Laminin and Collagen Polydioxanone HFIP and water
Magnetic field-assisted
electrospinning with
coaxial spinneret

Neural Tissue Engineering
Aligned laminin-polydioxanone/collagen core-shell fibers were
fabricated. Laminin was systematically released from the fibers.
The scaffolds promoted the hippocampal cell behaviors in vitro.

[160]

Lecithin PLA and PU THF/DMF mixture Horizontal electrospinning
with rotating collector Liver Tissue Engineering

The use of PU and lecithin helped in increasing the flexibility,
hydrophilicity, and bioactivity. The fibers also had higher
hydrophilicity and biocompatibility than the tissue culture plate.

[161]

Lignin PCL CF Vertical Electrospinning Neural Tissue Engineering

Lignin-PCL copolymers were prepared and blended with PCL and
electrospun. The scaffolds displayed free radical scavenging
properties and promoted neurite outgrowth and myelin protein
expression in Schwann cells.

[162]

Neem oil and Corn oil PU DMF Vertical Electrospinning Bone Tissue Engineering
Neem oil and corn oil were integrated into the PU matrix to fabricate
biocompatible scaffolds with a higher tensile strength and
hydrophilicity in relation to PU/corn oil and PU scaffolds.

[163]

Oyster shell PLLA CF/DMF (v/v 3:1) Rotating collector Bone Tissue Engineering The scaffolds were composed of aligned fibers. The scaffolds
promoted cellular adhesion and differentiation in vivo. [164]
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Table 4. Cont.

Natural Polymers Synthetic Polymers Solvents Used Type of Electrospinning Type of Tissue Engineering Comments Ref.

SF PU HFIP Vertical Electrospinning Cardiac Tissue Engineering

The scaffolds had variable degradation rates and mechanical
properties, which could be controlled by modifying the ratio of SF in
the blend. The scaffolds were viable candidates for heart
valve tissue engineering.

[165]

SF PLGA PLGA: THF and DMF
SF: Formic Acid Multilayer electrospinning Skin Tissue Engineering

A novel method of electrospinning was used to prepare a sandwich of
PLGA between SF. The scaffold fabricated helped in the proliferation
of skin cells.

[166]

SF PEO
(sacrificial template)

Ethanol, Water, Formic acid,
Calcium chloride Jet Electrospinning - Highly aligned fibers were produced using stable jet electrospinning

to form a scaffold with high anisotropy. [167]

SF PCL Formic acid Wet Electrospinning Bone Tissue Engineering

Post-processing of the SF/PCL scaffolds was done by functionalizing
with polyglutamate acid conjugated with BMP-2 peptide. Wet
electrospinning helped in the formation of 3D scaffolds. The
functionalized scaffolds enhanced cellular differentiation in
comparison with the SF/PCL scaffold.

[168]

SF PLLA-CL HFIP Rotating collector Bone Tissue Engineering
A dual layered scaffold composed of random and aligned fibers was
fabricated. It was found to be a suitable model for tendon to bone
healing from in vivo experiments.

[169]

SF PLLA-CL HFIP Vertical Electrospinning Conjunctiva Reconstruction

Transparent scaffolds were fabricated, which are hydrophilic and
porous. Conjunctival epithelial cells were seeded on the scaffolds.
The cells seeded on scaffolds were able to form stratified conjunctival
epithelium, including goblet cells

[170]

SF PEO Water Vertical Electrospinning Periodontal tissue
regeneration

Ultrasonication was used as a parameter to alter the viscosity of the
sol-gel prior to electrospinning. The amount of polymer in the final
scaffold could be varied using this technique.

[171]

SF and Platelet-rich
plasma PCL and PVA HFIP and water Co-electrospinning Bone Tissue Engineering

Platelet rich plasma was incorporated into the scaffolds by making a
suitable blend with PVA. Co-electrospinning was used to fabricate
scaffolds with SF, PCL, PVA, and platelet rich plasma. The scaffolds
exhibited a sustained release of platelet rich plasma and promoted
cellular differentiation, proliferation, and migration.

[172]

Starch PVA Ethanol Vertical Electrospinning Wound healing applications Crosslinking using glutaraldehyde post-electrospinning helped in
improving the mechanical properties of the scaffold. [173]

Sunflower oil and
Neem oil PU DMF Vertical Electrospinning Bone Tissue Engineering Plant oils were successfully integrated into the polymer matrix to

enhance the mechanical properties and bioactivity of the scaffolds. [174]

Tussah SF PLA HFIP Double conjugate
electrospinning [175] Bone Tissue Engineering A novel method of electrospinning was used to fabricate scaffolds

with high mechanical strength. [176]

Virgin coconut oil PU DMF Vertical Electrospinning Vascular Tissue Engineering
The presence of virgin coconut oil in the polymer matrix helped in
increasing antithrombogenicity, surface activity, and mechanical
properties of the scaffold.

[177]

Zein and Gum Arabic PCL Formic acid and
glacial acetic acid Vertical Electrospinning Skin Tissue Engineering

PCL helped in improving the mechanical properties, zein helped in
moderating the degradation while gum arabic helped in improving
the surface properties.

[178]
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3.4. Nanofiller Polymer Blends

Fillers in polymer blends help to impart specific properties to the fibers. They can be uniformly
distributed in the fibers or can be present on the surface. The fillers can aid in the formation of chemical
bonds, fill regions in the polymer matrix, change the orientation of polymers, electrical conductivity, and
modify surface groups. Table 5 summarizes the scaffold characteristics in terms of the polymers used,
fillers used, solvents used to blend the polymers, tissue targeted, and a description of the research. Some
of the commonly used nanofillers are HA [179], GO [180], and ferromagnetic nanoparticles [181,182].

Table 5. Electrospun scaffolds based on the use of nanofiller systems.

Polymers Used Filler Solvents Used Type of Tissue
Engineering Comments Ref.

4-arm PCL-(Zn-curcumin
complex) and
PVA-carboxymethyl
chitosan

GO DMF and DCM Bone Tissue
Engineering

Core shell nanofibers were fabricated composed of
PCL-(Zn-curcumin complex core and
GO-PVA-carboxymethyl chitosan sheath. The
scaffolds showed enhanced osteogenic capability
and antibacterial activity.

[183]

Agarose acetate β-tricalcium
phosphate

Acetic acid and
DMAC

Bone Tissue
Engineering

The addition of β-tricalcium phosphate helped in
increasing cellular differentiation and proliferation
in comparison to the scaffold without the filler.

[184]

Alginic acid
sodium salt/PVA Graphene sheets Water Neural Tissue

Engineering

Electrically conductive scaffolds with high
mechanical strength were fabricated. The use of filler
helped in increasing the mechanical strength by
forming strong bridges with the matrix.

[185]

Chitosan and PU, PPy Functionalized
MWCNT TFA Neural Tissue

Engineering

Nerve conduit was fabricated using aligned fibers.
Post processing of chitosan/PU/MWCNT fibers was
done by sheathing with PPy.

[186]

Chitosan/PVP GO Acetic acid and
distilled water

Skin Tissue
engineering

The preparation of chitosan-based blends and
addition of GO increased the mechanical properties
of the scaffold.

[187]

PCL ZnO HFIP
Periodontal
tissue
engineering

In vivo testing of the scaffolds demonstrated the
antibacterial and osteoconductive properties of the
fibrous scaffold.

[188]

PCL Nano HA particles TFE Bone Tissue
Engineering

A polymer blending method to increase the quantity
of nano HA particles were used to fabricate scaffolds. [189]

PCL and Chitosan
(PEO: Sacrificial template) HA Acetic acid and

DMSO

Tendon and
Ligament
Regeneration

The HA particles were integrated into the polymer
matrix for the fabrication of scaffolds, which are
suitable for tendon and ligament regeneration. The
scaffolds mimic the mechanical properties closely.

[190]

PCL and Gelatin halloysite nanotubes Acetic acid Wound healing
applications

Needle-less and free liquid surface electrospinning
was used to fabricate uniform mats. Addition of
halloysite nanotubes helped in increasing the
mechanical properties of the scaffold.

[191]

PCL/Gelatin Lanthanum
chloride (LaCl3)

PCL: DCE and
ethanol
Gelatin: Formic
acid and ethanol

Wound Healing
applications

Co-electrospinning using a rotating collector was
used for the fabrication of the scaffolds. The
scaffolds showed comparable mechanical properties
to skin and showed good bioactivity.

[192]

PCL/Gelatin/Chitosan β-tricalcium
phosphate

Acetic acid and
Formic acid.

Bone Tissue
Engineering

A functional scaffold for guided bone regeneration
was fabricated from an immiscible blend. The
mechanical and surface properties increased with
the increasing concentration of the filler.

[193]

PCL-Aloe Vera Mg-Ferrite
nanoparticles TFE - Magnetic nanofibers were prepared, and in vitro

viability was tested on fibroblasts. [194]

PCL-Chitosan MgO TFE and water - Fibrous scaffolds with tunable physical properties
were fabricated. [195]

PEA rGO CF and DMF Cardiac Tissue
Engineering

The nanofiller decreased the voltage required for
electrospinning and increased the electrical
conductivity of the scaffolds.

[196]

PHBV Silicate
containing HA CF Bone Tissue

Engineering

The piezoelectric activity of PHBV and bioactivity of
silicate containing HA helped in cellular
differentiation, alignment, and proliferation of cells
when compared to PHBV scaffolds and
PCL scaffolds.

[197]

PLA and Chitosan Tricalcium
Phosphate TFE -

Cryomilling was used to prepare a fine powder of
the polymers and filler before dissolution. The
scaffolds are a suitable candidate for bone tissue
engineering application.

[198]

PLA and PVAc GO
DMF,
Chloroform and
Acetic acid

Bone Tissue
Engineering

The dual-electrospinning technique was used to
fabricate triple shaped memory polymers. Addition
of GO helped to improve the properties.

[199]

PLGA GO HFIP Skeletal tissue
engineering

PLGA and GO (wt. ratio 20:3) were used to create 3D
scaffolds with increased hydrophilicity. [200]
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Table 5. Cont.

Polymers Used Filler Solvents Used Type of Tissue
Engineering Comments Ref.

PLGA Silica Nanoparticles HFIP Bone Tissue
Engineering

The scaffolds fabricated promoted cellular
differentiation, migration, and proliferation. The
mechanical properties of the scaffolds increased as
the silica nanoparticles helped to reinforce the fibers.

[201]

PLLA Fe3O4
DCM/DMF
(4:1 v/v)

Bone Tissue
Engineering

The scaffolds with a filler helped in the better healing
of bone defects in animal studies in comparison with
neat PLLA grafts.

[202]

PLLA/Lactic acid β-tricalcium
phosphate DCM/Acetone Bone Tissue

Engineering

Low density fluffy fibrous scaffolds were fabricated.
The lactic acid was bleached out
post-electrospinning from the scaffolds. The
scaffolds promoted cellular infiltration because of
their morphology and bioactive filler molecules.

[203]

Poly(3-hydroxybutyrate-
co-4-hydroxybutyrate) GO CF Bone Tissue

Engineering

The GO in the scaffold helped in modifying the
diameter of fibers, positively affecting the
mechanical and surface properties of the scaffolds
and enhancing cellular differentiation and
proliferation in comparison with scaffolds without
the filler molecules.

[204]

PU Zinc Nitrate
hexahydrate DMF Wound healing

applications

The incorporation of zinc nitrate in the PU scaffolds
helped in increasing the bioavailability and
blood compatibility.

[205]

PU and PDMS HA nanoparticles THF Bone Tissue
Engineering

Scaffolds composed of an interconnected pore
network were fabricated. The composition of the HA
nanoparticles was optimized to ensure maximum
cell proliferation and vitality.

[206]

PVA
Nanohydroxy apatite
and cellulose
nanofibers

Water Bone Tissue
Engineering

The fillers were used to improve the mechanical
properties of the scaffold, reduce the degradation
rate, and increase cellular activity in relation to
PVA/nanohydroxy apatite and PVA fibers.

[207]

PVA γ-Fe2O3 Water -

The fabrication process involved 3D printing and
thermal inversion phase separation for fabrication of
the collector and electrospinning of the polymer
blend with filler for obtaining the scaffold. The
scaffold had milli, micro, and microporous layers
because of the fabrication process. The filler helped
in increasing the mechanical properties of the
scaffold in relation with PVA.

[208]

PVA and Alginate Graphene (1% PVP
dispersing agent) Water -

Needle-less electrospinning was used for the
fabrication of conductive scaffolds with a high
surface area. The inclusion of a filler improved the
properties of the scaffold greatly.

[55]

PVDF
Barium Titanate and
multiwalled-carbon
nanotubes

DMF and
Acetone -

A fluffy 3D fibrous piezoelectric scaffold was
fabricated by controlling the relative humidity
during electrospinning

[209]

PVDF GO DMAC and
Acetone

Bone Tissue
Engineering

The PVDF containing GO exhibited good
osteoconductive properties and can be
used as a bioimplant.

[210]

SF Reduced GO Formic acid -

The incorporation of reduced GO in the SF matrix
helped improve the mechanical and thermal
properties of the scaffold. The scaffolds also
promoted osteogenic differentiation in vitro.

[211]

SF CoFe2O4 and Fe3O4 Formic acid -
Magnetic fillers were used to prepare scaffolds,
which are magnetically responsive
and biodegradable.

[212]

SF GO Formic acid
Wound
dressing
applications

Scaffolds exhibiting antibacterial activity and high
porosity were fabricated. GO was integrated into the
polymer matrix and this increased the number of
oxygen containing groups.

[213]

4. Perspectives and Conclusions

Electrospinning is a relatively old technique but has not yet lost its significance because of
its ease of use and ability to be combined with other techniques. The modifications made to the
electrospinning apparatus help in adapting the process to fabricate scaffolds with a single polymer
or several blended polymers or through multiple inputs. The use of polymer blends adds more
flexibility to the manufacturing process. Blends between natural and synthetic polymers and the use of
nanofiller systems have been used to demonstrate the fabrication of mechanical, surface, biochemical,
and electrical properties, which are impossible to obtain through any single polymer. The blending
and electrospinning process has also been used to prepare nanostructures from immiscible blends,
which are otherwise unable to be processed. The fabrication of scaffolds that mimic the mechanical,
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surface, electrical, and biochemical properties of a variety of tissues have been electrospun and
processed. The post-processing of the nanofibers after electrospinning by using techniques such as
freeze fracture or cell electrospinning, are interesting methods for further exploration of the potential
of electrospinning. Further research is needed to study the dependence on nanotopographical cues
in cell behavior in vivo. Techniques, such as rotating collector electrospinning [214] and near field
electrospinning [215], have been used previously to fabricate scaffolds that provide topographical cues
to the cells in in vitro conditions. New inroads have also been made in the integration of nanofillers
and bioactive compounds in the polymer matrix that can induce differentiation, modulate cell behavior,
and prevent bacterial infections. The major challenges in the preparation of polymer blends lie in the
identification of a suitable solvent system, processing conditions, and method of electrospinning. This
is critical for blends containing synthetic and natural polymers, where the window for electrospinning
is reduced and the prediction of solubility and miscibility is hard. Finally, the scaffolds fabricated need
to be characterized for long-term stability, degradation profiles, and long-term in vivo responses.
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Abbreviations

CA Cellulose Acetate
CF Chloroform;
DCE 1,2-dichloroethane
DCM Dichloromethane
DMAC Dimethylacetamide
DMEM Dulbecco Modified Eagle’s Medium
DMF N,N-dimethylformamide
DMSO Dimethyl sulfoxide
ECM Extracellular Matrix
GO Graphene Oxide
HA Hydroxyapatite;
HFP 1,1,1,3,3,3-hexa-fluoro-2-propanol
FESEM Field Emission Scanning Electron Microscope
HSA Human Serum Albumin
MWCNT multiwalled-carbon nanotubes
PANI Polyaniline
PBAT Poly(butylene adipate-co-terephthalate)
PBS Phosphate buffered saline
PCL Poly-caprolactone
PDMS polydimethylsiloxane
PEA Poly(ester amide)
PGA Polyglycolide
PGS Poly(Glycerol Sebacate)
PHB Polyhydroxybutyrate
PHBV Poly(hydroxybutyrate-cohydroxyvalerate)
PLA Poly(lactic acid)
PLGA Poly(lactic-co-glycolic acid)
PLLA Poly(l-lactic acid)
PLLA-CL Poly(L-lactic acid-co-e-caprolactone)
PMMA Poly(methyl methacrylate)
PPy Polypyrrole
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PVA Polyvinyl alcohol
PVAc Polyvinyl acetate
PVDF Polyvinylidene fluoride
PVP Polyvinyl pyrrolidone
SF Silk fibroin
TFA Trifluoracetic acid
TFE 2,2,2-Trifluoroethanol
TFE 2,2,2-Trifluoroethanol
THF Tetrahydrofuran
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