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Abstract

Periodontal diseases are a major public health concern leading to tooth loss and also shown to be 

associated with several chronic systemic diseases. Smoking is a major risk factor for developing 

numerous systemic diseases, as well as periodontitis. While it is clear that smokers have a 

significantly enhanced risk for developing periodontitis leading to tooth loss, the population varies 

with regards to susceptibility to disease associated with smoking. This investigation focuses on 

identifying differences in four broad sets of variables consisting of: (a) host response molecules, 

(b) periodontal clinical parameters, (c) antibody measures for periodontal pathogens and oral 

commensal bacteria challenge, and (d) other variables of interest in a smoking population with (n 

= 171) and without periodontitis (n = 117). Subsequently, Bayesian network structured learning 

techniques (BNSL) techniques were used to investigate potential associations and cross-talk 

between the four broad sets of variables. BNSL revealed two broad communities with markedly 

different topology between the non-periodontitis and periodontitis smoking population. 

Confidence of the edges in the resulting network also showed marked variations within and 

between the periodontitis and non-periodontitis groups. The results presented validated known 

associations, as well as discovered new ones with minimal precedence that may warrant further 

investigation and novel hypothesis generation. Cross-talk between the clinical variables and 

antibody profiles of bacteria were especially pronounced in the case of periodontitis and mediated 

by the antibody response profile to P. gingivalis.
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INTRODUCTION

Periodontal diseases are a major public health concern leading to tooth loss and associated 

chronic systemic diseases (1–7). Bacterial-induced periodontal diseases have been 

categorized into two general types related to connective tissue attachment loss and alveolar 

bone resorption, ie. gingivitis and periodontitis. Gingivitis is a reversible inflammation of the 

gum tissue (i.e., gingiva) caused by the presence of a biofilm that forms on the tooth surface 

and resolves rather quickly after the reinstitution of mechanical and chemical oral hygiene 

procedures. Most individuals will experience at least mild and transient gingivitis at some 

time in their life (8–10). Periodontitis characterized by persistent gingival inflammation, 

breakdown of the connective tissue (i.e., attachment apparatus surrounding teeth), and 

destruction of alveolar bone (11, 12) with epidemiologic data supporting the concept of 

differential susceptibility to periodontitis regarding onset, rate of progression, and severity 

across the population (13, 14).

Smoking is a major risk factor for developing numerous systemic diseases, as well as 

periodontitis (15–18). Smokers frequently present with lower levels of gingival bleeding 

than would be predicted based upon the level of tissue destruction of the periodontium (19) 

This is likely due to effects of the smoke derived xenobiotics on local vascular functions (19, 

20), while tobacco smoke appears to amplify the inflammatory response to the microbial 

challenge (21–23). A report using NHANES III data determined that a population 

attributable risk (PAR) for current or former smoking was approximately 50% for exhibiting 

periodontitis (24). However, while it is clear that smokers have a significantly enhanced risk 

for developing periodontitis leading to tooth loss, the population varies with regards to 

susceptibility to disease associated with smoking (25, 26).

The oral ecology in an individual evolves over time with variations in quantity and quality of 

phyla, genera and species (27), as well as the genomic profile of the individual species (28–

30). However, this evolution generally leads to an equilibrium between the microbiota and 

the individual’s oral environment, as a climax community. The resulting microbial 

communities or biofilms are complex ecosystems of bacteria that are somewhat unique to 

various ecological niches in the oral cavity (31). The microbiomes of the subgingival 

environment of periodontally healthy and periodontally diseased sites are quite distinct (27, 

32). The accretion of tooth-associated bacterial biofilms elicits gingival inflammation as a 

result of bacterial virulence and metabolic factors affecting tissue vasculature. In sites 

colonized by more pathogenic biofilms, the inflammatory response results in destruction of 

connective tissue and alveolar bone, the classic features of periodontitis. Various extrinsic 

environmental factors can also affect the microbial composition in the oral cavity, as well as 

host response patterns. Recent studies have demonstrated clear effects of smoking on the 

composition of the microbiome at sites of periodontitis and peri-implantitis (33–36).
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The accumulation of these biofilms also elicits a robust inflammatory response with the 

cellular infiltrate releasing a panoply of pro-inflammatory molecules that initiate clinical 

inflammatory measures of gingival redness and edema (14, 37, 38). Numerous studies of 

gingival crevicular fluid at inflamed sites have identified associated biomolecules, such as 

IL-1β, PGE2, IL-10, and acute phase response proteins, including plasminogen activator 

inhibitor-1 (PAI-1) and myeloperoxidase (MPO), which can contribute to local antibacterial 

responses (39). The current paradigm in periodontal disease is a local chronic infection with 

microbial dysbiosis (40) that triggers a persistent destructive inflammatory response, rather 

than direct toxic/noxious actions of the bacterial virulence factors (41). Beyond innate 

immune and inflammatory responses, substantial literature documents the production of 

specific local and systemic antibodies to oral bacteria (38). Bacterial species-specific 

antibody levels increase significantly with periodontitis and decrease following therapy (14, 

38). Additionally, various studies have demonstrated alterations in the characteristics of the 

induced antibody in the presence of smoking (42–44). However, there is rather limited data 

regarding these adaptive immune responses in smokers presenting with a range of 

periodontal health and periodontal diseases.

The present study investigates changes in magnitude of four broad sets of variables 

consisting of: (a) host response molecules, (b) periodontal clinical parameters, (c) antibody 

measures of periodontal pathogens and oral commensal bacteria and (d) other variables of 

interest related to smoking population with (n = 171) and without periodontitis (n = 117). 

Subsequently, it investigates the potential associations and cross-talk between these variables 

using Bayesian network structured learning techniques (BNSL). BNSL is a probabilistic 

approach and widely used (45–47) to model direct as well as conditional dependencies 

between a given set of variables. In contrast to traditional statistical modeling, BNSL does 

not impose a pre-defined relationship between the given set of variables. It rather aims to 

discover these relationships from the data generated across the variables and abstract them as 

directed acyclic graphs (DAGs). The resulting DAGs can validate established associations as 

well as discover novel undocumented associations providing a more informed basis for 

hypothesis generation in addition to hypothesis testing. More importantly, a break down in 

associations across disease states is accompanied by marked changes in the topology or 

wiring pattern (48–50) of the DAGs as shown in this study. DAGs also serve as useful 

system-level abstractions of the concerted working of the variables that may not be readily 

apparent by investigating the variables in isolation. While BNSL has the potential to reveal 

causal relationships there are definite limitations to this approach. The DAG representation 

of the relationships between the variables in BNSL implicitly assumes absence of feedback 

between them. Such an assumption need not necessarily be true in general. Also, the number 

of potential structures in BNSL increases markedly with the number of variables 

discouraging an exhaustive search for all potential structures especially when the number of 

variables is large. PDAGs returned by BNSL essentially represents multiple structures that 

are probabilistically equivalent (equivalence class) as opposed to a single structure and may 

result in graphs comprising of directed as well as undirected edges. Thus BNSL can learn 

the associations between the variables only up to the equivalence class irrespective of the 

choice of the sample size. While directed edges may indicate potential causal relationships, 

undirected edges provide no such insights. However, it is important to note that causal 

Nagarajan et al. Page 3

J Periodontal Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associations can be determined ideally only through active interventions. Thus associations 

returned by BNSL need to be validated experimentally using appropriate interventions.

MATERIALS and METHODS

Patient Population and Clinical Parameters

The cohort included 30 periodontally healthy subjects (M:F – 7:23), 55 gingivitis patients 

(M:F – 14:41), and 184 periodontitis patients (M:F – 73:111) ages 21–65 years. The 

protocol for this study was approved by the University of Kentucky Institutional Review 

Board and all participants signed an appropriate consent form. A comprehensive oral and 

periodontal examination was completed to assess the periodontal health. Inclusion/exclusion 

criteria for participating in the study: must be smokers, able to complete a questionnaire and 

sign a consent form, have a minimum of 20 teeth, willing to have blood drawn, whole saliva 

collected, and have a full periodontal evaluation.

Three clinical parameters routinely used for periodontal evaluation: (a) mean probing pocket 

depth (PPD), (b) clinical attachment level (51), and (c) bleeding on probing (BOP) were 

obtained from all patients. Full-mouth mean pocket depth and attachment level measured in 

millimeters (mm), and bleeding on probing, measured by percentage of sites in the mouth 

that bleed were determined at 6 sites per tooth excluding third molars (52). The 

measurements were taken and recorded by a single examiner. Measures of BOP and PPD 

were used to categorize the patients recognizing that various patients fell into “gray” areas. 

These “gray” area patients were assigned to a category and simply contributed to the 

variation within the different groups. We used a mean PPD ≤2.5 mm for non-periodontitis 

(ie. Health and Gingivitis) and ≥2.5 mm for periodontitis. While all Gingivitis subjects were 

categorized accurately (>20% sites BOP; mean PPD ≤2.5 mm), a subset of healthy subjects 

(26) had mean PD ≥2.5 mm, but limited % BOP and no sites with >4 mm pocket depths. 

Two of the periodontitis subjects had mean PPD ≤2.5 mm, but these subjects also had high 

% BOP and numerous sites with >4 mm pocket depths.

Variables such as age (Age), pack years of smoking (Yrs), salivary cotinine (Cot) levels, and 

body mass index (BMI) that have been traditionally investigated in periodontitis and 

smoking population studies were also included in the analysis.

Serum Analyses

Serum from a venipuncture blood sample was originally obtained from a group of 301 

smokers (age 21–65, 82 black, 219 white; 106 males, 195 females). After preliminary 

investigation and eliminating missing values the subjects were distributed to non-

periodontitis (NP; n=117) and periodontitis (PD; n=171) groups. The serum samples were 

stored at −80°C until the assays were performed. An array of oral microorganisms were used 

in the assays, cultivated under standard conditions, and prepared for antigens as described 

previously (53). The bacteria included periodontal pathogens: Aggregatibacter 
actinomycetemcomitans (Aa) strain JP2, Porphyromonas gingivalis (Pg) ATCC 33277, 
Treponema denticola (Td) ATCC 35405, and a group of oral commensal bacteria that 

included Streptococcus sanguinis (Ss) ATCC 10556, Actinomyces naeslundii (An) ATCC 
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49340, Veillonella parvula (Vp) ATCC 10790, Capnocytophaga ochracea (Co) ATCC 33596. 

An ELISA was used to determine the level of IgG antibody to the bacteria (52). Purified 

human IgG was bound to the plate to produce a standard curve. Sample data was 

extrapolated from this curve, using a four parameter logistic curve fit (54).

Molecular markers of inflammatory responses in serum, including interleukin-1β (IL-1β), 

plasminogen activator inhibitor-1 (PAI-1), myeloperoxidase (MPO), and IL-10 were 

evaluated using Luminex beadlyte technology (EMD Millipore, Billerica, MA) or 

commercial high sensitivity PGE2 ELISA ELISA kits (Assay Design, Ann Arbor, MI) (42).

Salivary cotinine levels were measured in whole saliva using an ELISA (Salimetrics’ High 

Sensitivity Salivary Cotinine Quantitative enzyme immunoassay kit, Carlsbad, CA) as we 

have described previously (43).

Statistical Analyses

Parametric t-test was used to identify those variables whose magnitude changed significantly 

across non-periodontitis and periodontitis groups after controlling the false-discovery rate 

(55). Variables whose adjusted p-values were significant (p < 0.02) are reported. 

Subsequently, BNSL was used to model potential associations between 15 variables 

comprising critical proteins (IL-1β, PAI-1), clinical parameters (BOP, PD, CAL), antibody 

to periodontal pathogens (Aa, Pg, Td) and oral commensal bacteria (Co, An, Vp, Ss), and 

other variables (Age, Yrs, Cot) across periodontitis and non-periodontitis subjects in the 

smoking population. Several techniques, such as constraint-based and search-score 

approaches, have been traditionally proposed in the literature for BNSL (56–58). Recent 

studies have shown that hybrid techniques such as max-min hill climbing (MMHC) that use 

a combination of constraint-based and search-score frameworks in tandem to outperform 

either of these approaches (59). Constraint-based part of MMHC uses max-min parents-

children approach to determine the skeleton of the underlying network. Subsequently, a 

Bayesian-greedy hill-climbing approach is used to determine the orientation of the edges in 

the skeleton. Partially directed acyclic graph (PDAG) representations that incorporate 

equivalence classes of the DAGs were subsequently generated (56, 57) in order to account 

for DAGs are probabilistically indistinguishable. Confidence of the edges (60, 61) in the 

PDAGs was determined from 1000 independently by resampling with replacement and 

edges with confidence less than 30% were deemed noisy, hence eliminated from further 

consideration. The remaining edges along with their confidences are reported as weighted 

graphs. Open-source implementation of the MMHC approach as a part of the bnlearn R 

package (62, 63) was used in the present study. Graphical layouts were generated using 

Gephi (64).

RESULTS

Adjusted p-values (p < 0.02) from a parametric t-test after controlling the false-discovery 

rate (55) revealed eight variables to exhibit a marked difference between the periodontitis 

(PD) and non-periodontitis (NP) groups (Table 1). As expected, the three clinical parameters 

(BOP, PPD, CAL) were significantly elevated in the periodontitis group as opposed to the 

NP group. As the groups were defined by clinical parameters, it was expected that these 
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would be significantly different. Of the remaining variables, IL-1β, PAI-1, pack-years of 

smoking, and antibody to P. gingivalis and A. naeslundii were also significantly elevated in 

the periodontitis group. Since previous results had not evaluated variations in host responses 

across clinical presentation in smokers, alterations in targeted inflammatory mediators and 

antibody levels, particularly to P. gingivalis, were undefined previously, but not totally 

unexpected.

Subsequently, Max-Min hill climbing approach was used to generate the Bayesian networks 

representing the interplay between 15 clinical and host response variables across the NP and 

PD smoking population. Confidence of the edges in the network was generated across 1000 

independent bootstrap realizations. The five sets of variables are shown by distinct colors in 

Figs.1a–1b for clarity and the thickness of the edges is proportional to their confidence 

represented in these figures. Edges whose confidences were <30% were deemed noisy, 

hence not reported. The networks corresponding to NP and PD exhibit two broad 

communities revealing intricate associations and cross-talk between (clinical parameters, 

other variables, Community 1) and (antibacterial responses, Community 2). However, there 

were substantial differences in the wiring pattern between them. Confidence of the edges 

showed marked variations within and between the NP and PD groups. While the network 

corresponding to NP is disconnected (Fig. 1a) that of the periodontitis patients is weakly 

connected (i.e. it is possible to traverse between any two variables in the underlying 

undirected graph) (Fig. 1b).

More importantly, in the case of periodontitis, antibody to P. gingivalis seems to act as a 

mediator establishing an association between otherwise unrelated variables (eg. CAL and 

Aa) and in turn establishing potential associations between the parameters of Community 1 

and 2. Unlike the PD group, there were no apparent relationships between BOP and mean 

pocket depth (PPD) in the case of the NP group. Scatter plots of (%BOP vs. PPD) also 

validated these findings with the absence of a significant direct association in the NP group 

(r=−0.15) as opposed to the PD group (r=0.58, p<0.01) (Fig. 2a). Our analysis also revealed 

some of the associations to be preserved across the NP and periodontitis groups. This 

includes the correlation between antibody to the pathogen (Aa) and commensal bacterium 

(Co) being reflected by prominent edges in Figs. 1a–1b. Aa and Co also exhibited a 

significant direct association across NP (r=0.58, p<0.01) as well as the PD (r=0.49, p<0.01) 

group (Fig. 2a). Associations between (Co and Td) were significant across NP (r=0.67, 

p<0.01) and PD (r=0.61, p<0.01) groups. Associations between (Co and Pg) were also 

significant across NP (r=0.63, p<0.01) and PD (r=0.39, p<0.01) groups (Fig. 2b).

Examining the associations of systemic inflammatory mediators to the clinical parameters in 

the population of smokers also provided an interesting profile. While numerous 

inflammatory biomarkers have been identified in serum and related to the extent and severity 

of periodontitis (23, 38, 65), the findings of this study in smokers provide a somewhat 

different outcome. Confidence of the edges corresponding to (IL-1β, PAI-1) was markedly 

higher in the periodontitis group as opposed to the non-periodontitis group, reflected by the 

discrepancy in the thickness of the edges in Fig. 1a–1b. This was also reflected by the 

marked decrease in the magnitude of the Pearson correlation between (IL–1β, PAI-1) from 

the PD group (r=0.34, p<0.01) compared to the NP group (r=0.20, p=0.03). Also, IL-1β was 
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associated with the clinical parameter (mean CAL) in the case of NP (Fig. 1a), whereas it 

was connected to the host response variables through linkage with antibody to the pathogen 

(T. denticola) in the case of PD (Fig. 1b). Also, the markers (IL-1β, PAI-1) did not exhibit a 

direct association to clinical disease parameters or smoking measures in the PD group. 

These results suggest that smoking may disrupt control of local and systemic inflammatory 

responses that occur related to the health of the periodontium. Active smoking (i.e. salivary 

cotinine levels) exhibited a strong association with the clinical parameter (CAL, p<0.01) in 

the NP group (Fig. 1a), unlike that of the PD group. While obesity has been reported to be 

linked to expression of periodontitis in humans (66–70), our data from a population of 

individuals who were all smokers showed that BMI did not exhibit a significant association 

to any of the clinical parameters, inflammatory responses, or specific antibody in either PD 

or NP individuals, hence not included in Figs. 1a–1b. These observations may indicate that 

certain biologic effects of smoking could overwhelm any contribution that modifiers elicited 

by overweight/obesity might have in altering the presentation of this oral disease. MPO and 

PGE2 exhibited a significant association across NP (r=0.50, p<0.01) and the PD (r=0.37, 

p<0.01) groups solely based on the correlation coefficients and associated p-values. 

However, as can be seen with the scatter plots (Fig. 3) the relationship is highly noisy, 

suggesting that the correlations may primarily reflect outlier values of a few subjects in the 

groups and hence are not identified as important contributors to the community relationships 

identified in Fig. 1a–1b. Additional variables demonstrated minimal or no relationship to 

these community linkages and are also not presented in the figure.

DISCUSSION

Smoking is one of, if not the major cause, of preventable morbidity and mortality in the 

population with substantial negative effects on general and oral health (16–18, 71). Smoking 

has been clearly delineated as a major modifiable environmental risk factor in the extent/

severity of periodontal disease through cross-sectional and longitudinal epidemiologic 

investigations (72). These data indicate that there is a 300–600% increase in periodontitis in 

smokers compared with non-smokers (73), and there clearly is a deleterious impact of the 

wide array of xenobiotics derived from smoking on the response to periodontal therapy (16, 

74). Nevertheless, while a significantly enhanced proportion of smokers exhibit periodontitis 

compared to the non-smoking population, clinical evaluation of smoking and periodontitis 

demonstrate a proportion of the smoking population remain periodontally healthy or only 

develop gingivitis (75). Another facet of the broader literature was that a subset of smokers 

appeared periodontally healthy even with long term smoking (ie. pack years) and substantial 

continine levels. Thus, some features of either the microbial challenge or characteristics of 

the host response profile appear to afford these patients an enhanced capacity to retain tissue 

homeostasis in the oral cavity. Similar observations have been summarized in a recent report 

by Genco and Borgnakke (69).

We have previously demonstrated serum antibody levels to selected oral pathogens and 

commensal bacteria related to race/ethnicity, age, and periodontal disease extent in a 

population of smokers (43), as well as systemic inflammatory responses related to smoking 

level (42). This study extended these findings by examining both serum antibodies and 

inflammatory molecules related to smoking parameters, and periodontal condition to 
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identify the impact of active smoking on the relationships among these various parameters. 

Serum levels of IL-1β were significantly elevated in the periodontitis patients. IL-1β has 

been identified to be a crucial molecule in chronic inflammatory responses, both locally and 

systemically (76). (77) (78). This pro-inflammatory mediator and bone resorbing cytokine 

does appear to contribute to the expression of periodontitis and has been linked to serum 

levels of C-reactive protein and altered IL-6 production appearing to play a role in 

periodontitis in type 2 diabetes mellitus (79). Our findings in smokers with periodontitis 

with the highest cotinine levels demonstrating elevated serum IL-1β provides additional data 

regarding the importance of this pro-inflammatory mediator in periodontitis.

A number of pro-inflammatory mediators are derived via the arachidonic acid pathway, 

including PGE2 (80), which has been implicated in the pathogenesis of gingival 

inflammation and periodontitis (81, 82). Additional biomarkers of inflammatory responses 

in the systemic circulation are components of the acute phase response, eg. PAI-1 (39). This 

array of molecules serves a range of functions with the goal of reestablishing systemic 

homeostasis following noxious challenge and have been related to periodontitis, periodontal 

therapy, and other chronic inflammatory diseases (83, 84) (85, 86) (87, 88) (83, 84). (89) 

(90), (91). Also, during the chronic inflammatory response reactive oxygen species (ROS) 

and free radicals (e.g., NO and NO2) are generated by neutrophils and macrophages, often 

through the action of myeloperoxidase (MPO) that is released into extracellular fluid at sites 

of inflammatory lesions (92, 93) and is affected by smoking (94) (95). Alterations in MPO 

have been identified to vary in periodontitis patients with/without treatment (86, 96, 97) (98) 

(86, 99).

Serum IgG antibody levels to a group of putative periodontal pathogens and oral commensal 

bacteria were also evaluated. As would be expected antibody to the periodontal pathogens 

were significantly elevated in the periodontitis smokers and significantly decreased in the 

periodontally healthy smokers. Substantial literature has demonstrated local and systemic 

adaptive immune responses to oral bacteria related to the presence, extent/severity, and 

therapeutic outcomes of periodontitis (38) (44) (51). We have found similar types of 

response differences in smokers related to the oral health of the individual; however, we 

extended the available literature by demonstrating a racial/ethnic contribution to these 

responses, as well as a difference in response profile to pathogenic compared to commensal 

oral bacteria (43). As importantly, the level of serum antibody to the oral bacteria has been 

shown to provide some reflection of the presence and burden of the particular 

microorganism within the oral cavity (100, 101). Thus, this measure is somewhat of a 

surrogate for the oral colonization, and could be suggested to reflect a challenge that the host 

sees as potentially deleterious and needs to be managed (100, 101). In this regard, the 

identification of antibody to A. actinomycetemcomitans interfacing with responses to P. 
gingivalis and T. denticola in the non-periodontitis smokers and also linked with clinical 

parameters in the periodontitis subset. Historically, periodontitis have been categorized as 

chronic adult and aggressive (102) and linked to microbiological characteristics with P. 
gingivalis and A. actinomycetemcomitans generally considered as representative of the 

major pathogens in these diseases (103) (38, 104). The majority of these studies intermixed 

both smokers and nonsmokers into their cohorts, and did often identify various clinical and 

biological differences related to smoking. However, our population comprised entirely of 
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smokers presented a somewhat unique profile. In the non-periodontitis (NP) group antibody 

levels to P. gingivalis and A. actinomycetemcomitans were associated with antibody to an 

important commensal species, C. ochracea, albeit, the level of antibody to these bacteria 

were significantly lower than in the periodontitis group, as was expected (38, 43). 

Interestingly, in the periodontitis patients antibody to C. ochracea, generally reflecting 

microbial challenge was associated with the group of commensal bacteria and provided a 

strong link to responses to the oral pathogens, ie. Aa, Pg, Td. This host response identifying 

these members of the microbial ecology was also uniquely related to the clinical and 

smoking community variables via responses to P. gingivalis. Thus, in the periodontitis 

patients, where P. gingivalis represents a hallmark bacteria and has been proposed as a 

keystone pathogen, the relationships in this smoking population reflected the capacity of P. 
gingivalis to interface clinical disease with a range of host responses.

These differences in responses were also obvious in demonstrating significant correlations of 

serum PGE2, IL-1β, and PAI-1 with various smoking parameters. In contrast, the serum 

antibodies lacked this type of relationship. We subsequently examined the direct relationship 

between the individual serum inflammatory mediators and the adaptive immune responses in 

subsets of patients stratified by salivary cotinine levels. The results demonstrated that in the 

subsets with lower cotinine levels, antibodies to a number of the commensal bacteria were 

significantly negatively correlated with serum PGE2 and MPO levels. In contrast, in the high 

cotinine group, antibody levels to the pathogens, and particularly P. gingivalis were 

significantly positively correlated with some of the inflammatory mediators (42). Thus, 

while antibodies were not directly correlated with cotinine and smoking levels, there 

appeared to be some interface between the systemic inflammatory and adaptive responses 

related to the interactions of smoking and periodontal disease.

The present study investigated variations in the magnitude of expression of four broad 

categories of variables between periodontitis and non-periodontitis smoking population. 

Subsequently, potential cross-talk and associations between these variables were investigated 

using a BNSL. In contrast to traditional statistical modeling BNSL does not impose any 

constraint on the associations between the variables rather discovers direct as well as indirect 

associations from the given data. This aspect of BNSL is especially useful in hypothesis 

generation. BNSL accommodates all the variables simultaneously and has the ability to 

provide system-level insights and potential cross-talk between them, thus, BNSL is 

markedly different from traditional reductionist approaches that investigate only subsets of 

variables in isolation. More importantly, BNSL has the ability to validate established 

associations, such as P. gingivalis responses in periodontitis and the relationship of age and 

amount of smoking to clinical measure of periodontal disease. Additionally, this approach 

can help to ascertain novel associations with minimal precedence, such as the relationship of 

select inflammatory mediators with clinical presentation on non-periodontitis smokers, 

inflammatory mediators linked more strongly to the microbial challenge in periodontitis, the 

centrality of the response to C. ochracea with response profiles to both commensals and 

pathogens, and the apparent ability of P. gingivalis to provide a bridge in linking bacterial 

responses to clinical parameters of disease in the periodontitis subset of smokers. More 

importantly, the results revealed marked variation in associations, their confidence as well as 

the overall network topology between the periodontitis and non-periodontitis groups. 
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Whether there are molecules in the xenobiotic mix of smoking products that trigger unique 

host response profiles, or this relationship reflects a general noxious challenge to host tissues 

and cells that results in some specificity for eliciting the inflammatory and adaptive 

responses remains to be determined. Thus, while periodontitis is considered to reflect a 

dysregulated host response to subgingival biofilms, these data suggest that smoking has the 

capacity to disrupt these responses to an even greater degree, thus increasing the risk for 

disease initiation/progression.
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Figure 1. 
Bayesian network representing potential associations between four broad sets of variables 

consisting of: (i) host response molecules (IL1β, PAI-1), (ii) periodontal clinical parameters 

(PD, BOP, CAL), (iii) antibody measures of periodontal pathogens (Aa, Pg, Td) and oral 

commensal bacteria (Co, Vp, An, Ss) and other variables (Age, Yrs, Cot) of interest in the 

non-periodontitis and the periodontitis smoking population is shown in (a) and (b) 

respectively. The four broad sets of variables are shown by different colors for clarity with 

the dotted lines representing the two broad communities in (a) and (b). The thickness of the 

edges in (a) and (b) are directly proportional to the edge confidence estimated from (N = 

1000) bootstrap realizations.
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Figure 2. 
(a) Scatter plot representing direct association between clinical parameters (Mean BOP) and 

(Mean PPD) was significant in the periodontitis (red, p<0.01) as opposed to the non-

periodontitis (blue) smoking population. Association between antibody to a periodontal 

pathogen (Aa) and a commensal bacteria (Co) was significant in periodontitis (red, p<0.01), 

as well as the non-periodontitis (blue, p<0.01) smoking population. (b) Scatter plot 

representing direct association between antibody to a periodontal pathogens (Td and Pg) and 

a commensal bacteria (Co) was significant in periodontitis (red, p<0.01), as well as the non-

periodontitis (blue, p<0.01) smoking population.
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Figure 3. 
Scatter plot representing potential association between serum levels of MPO and PGE2 for 

the non-periodontitis and periodontitis smoking population. The correlation is rendered 

significant (p < 0.01) by a few outliers in each of the case.
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Table 1

Average values and standard deviations of the 18 variables across between periodontitis and non-periodontitis 

smoking subjects.

Variable Non-Periodontitis Periodontitis

Clinical/Demographic

Age (years) 36.9±11.1 39.9±9.5

BMI 27.3±5.9 28.7±7.2

BOP** (% >0) 4.7±4.8 25.8±22

PPD** (mouth mean mm) 2.4±0.30 3.4±0.69

CAL** (mouth mean mm) 2.6±0.51 3.8±1

Smoking

Pack/years** 17.2±10 20.7±9.5

Salivary cotinine (ng/mL) 529.2±456.5 649.6±616.4

Inflammatory Mediators

IL-1β** (pg/mL) 39.1±56.7 79.6±99.8

PAI-1** (ng/mL) 110.7±139.3 160.4±157.5

MPO (ng/mL) 13056.5±7316.8 15238±9316.8

PGE2 (ng/mL) 531.5±818.6 472.9±709.8

Serum Antibody (ng/mL)

A. actinomycetemcomitans 15.3±12.9 18±13.6

A. naeslundii** 15.8±9.8 19.1±10.2

C. ochracia 10.2±5.6 11.7±7.3

P. gingivalis** 29±22 42.1±32

S. sanguinis 39.5±19.3 38.1±16.2

T. denticola 14.4±10.6 17.2±12.4

V. parvula 21.8±14.7 22±12.4

**
adjusted p-value < 0.02
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