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ABSTRACT OF DISSERTATION 
 
 
 
 

LANGUAGE DYSFUNCTION IN MOTOR NEURON DISEASE: 
COGNITIVE FEATURES AND SCREENING SENSITIVITY 

 
Motor neuron disease (MND) is a set of neuromuscular diseases that affect the 

upper and/or lower motor neurons, resulting in progressive disability. Amyotrophic 
lateral sclerosis (ALS) and Primary lateral sclerosis (PLS) are two forms of MND that 
both involve upper motor neuron degeneration, which can also accompany extra-motor 
changes in cognitive, behavioral, and/or emotional functioning for some individuals. 
Characterization of the cognitive profile of MND is still evolving, with growing interest 
in cognitive subtypes. The development of cognitive screens targeted to the MND 
cognitive profile aim to provide efficient and accurate brief assessments. However, 
empirical evaluation of tailored MND cognitive screens is needed for cross-validation 
independent of tests’ original developers. The present study addresses the cognitive 
profile of MND and the utility of brief cognitive screens with a focus on impairments in 
the language domain. The two primary aims include: (1) comprehensive assessment and 
characterization of language dysfunction in MND, and (2) empirical evaluation of brief 
cognitive screens with regard to detecting language impairments. 

 
Forty-one patients with MND (ALS n = 36; PLS n = 5) were administered a 

comprehensive language battery to classify cognitive impairment (MND/ALSci; Strong 
et al., 2017) in the language domain and/or verbal fluency. Patients also completed two 
tailored cognitive screens [ALS Cognitive Behavioral Screen (ALS-CBS), Edinburgh 
Cognitive and Behavioral ALS Screen (ECAS)] and one general screen (Montreal 
Cognitive Assessment; MoCA). 

 
The current preliminary results suggest language dysfunction in MND is 

characterized by prominent difficulties with word retrieval (confrontation naming) and/or 
syntax comprehension. However, evidence of reduced word production resembling 
nonfluent/agrammatic aphasia was not found. In total, 19.5% of the sample met criteria 
for MND/ALSci in the language domain (n = 8, all ALS); 22.0% met criteria for 
MND/ALSci in the verbal fluency domain (n = 9). Patients were classified into three 
subgroups, those with broad language impairments (ALSci-L n = 4, 9.8%), phonemic 
fluency impairments (MNDci-VF n = 5, 12.2%), or both impairments (ALSci-L+VF n = 
4, 9.8%).



 

 

 

Results also revealed existing challenges in accurately classifying patients with language 
dysfunction using brief cognitive screens. The ECAS Language subscore offered limited 
classification of broad language impairments in the present MND sample (sensitivity 
50%, specificity 70%). Among the broader cognitive screens, sensitivities to language 
impairments were: ALS-CBS (100%), ECAS ALS-Specific Score (75%), and MoCA 
(71%). Convergent validity was demonstrated between outcomes on the ALS-CBS and 
ECAS ALS-Specific Score (rf = .59). Discriminant validity was also demonstrated 
between outcomes on ALS-CBS compared to the MoCA (rf = .11). 

 
Future research is needed to assess whether language dysfunction reflects a 

distinct MND cognitive phenotype(s) and potential relationships with disease prognosis. 
Naming and syntax comprehension may be fruitful language screening targets for future 
research. 

 
KEYWORDS: Amyotrophic Lateral Sclerosis, Motor Neuron Disease, Language, 

Screening, Naming, Syntax 
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NOTICE 

This document represents the doctoral dissertation version of this project. 
However, this version does not reflect the final results of this research project as 
additional data collection is ongoing. Future publication of the final results is planned, as 
well as secondary analyses.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Efficient and accurate cognitive assessment is an important clinical issue for 

patients with motor neuron disease (MND). MND is a set of neuromuscular diseases 

defined by upper and/or lower motor neuron degeneration resulting in progressive 

disability. Amyotrophic lateral sclerosis (ALS), the most common form of MND, is 

characterized by progressive upper and lower motor neuron degeneration. Primary lateral 

sclerosis (PLS) is a rarer form of MND that is characterized by progressive upper motor 

neuron degeneration, whereas lower motor neurons remain comparatively intact. Though 

MND was previously thought to spare cognitive functioning, it is now recognized that 

impairments can develop in some people with ALS and PLS (Agarwal et al., 2018; 

Strong et al., 2017). It is estimated that cognitive impairments impact up to 49% of 

people with ALS (Phukan et al., 2012). Preliminary evidence suggests that in ALS, 

cognitive impairments are important prognostic indicators and may affect patients’ ability 

to follow multidisciplinary regimens (Chiò et al., 2009; Elamin et al., 2011; Gordon et al., 

2010). 

Some MND clinics have limited resources for neuropsychological assessment and 

patient referrals may require triaging. Therefore, there is a growing need for brief, 

efficient, and accurate cognitive screening tools sensitive to impairments observed in 

MND. Responding to this demand, the development of cognitive screens tailored to 

MND is burgeoning (Abrahams, Newton, Niven, Foley, & Bak, 2014; Beeldman, 

Govaarts, et al., 2016; Woolley et al., 2010) and cognitive screening measures developed 

for other conditions have also been applied to patients with MND (Osborne, Sekhon, 
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Johnston, & Kalra, 2014; Oskarsson et al., 2010). Empirical evaluation of cognitive 

screens for MND is needed to provide cross-validation independent of the test’s original 

developers. 

1.2 Cognitive Screening in Motor Neuron Disease 

Brief cognitive screens have produced varying results for identifying impairments 

in people with MND. Yet, cross-validation and accuracy evaluations for cognitive 

screening measures among people with MND is scarce. In general, cognitive screens 

applied to MND take either a tailored or broad approach, which may impact their 

detection accuracy for impairments in MND. Screening measures that use a tailored 

approach target cognitive domains thought to be cardinal to MND, namely executive 

functions (Abrahams et al., 2014; Beeldman, Govaarts, et al., 2016; Woolley et al., 2010). 

In contrast, general cognitive screening measures (e.g., Montreal Cognitive Assessment; 

MoCA; Nasreddine et al., 2005) that use a broad approach assess several cognitive 

domains, though potentially less precise for MND. 

In ALS for example, the MoCA, a general cognitive screen, classified more 

patients as cognitively impaired than a screen focused on executive functioning, the 

Frontal Assessment Battery (53% and 21% impaired respectively; FAB; Dubois, 

Slachevsky, Litvan, & Pillon, 2000, Osborne et al., 2014). This raises the question of 

whether the FAB provides too narrow assessment, leaving certain impairments 

undetected. Perhaps broader cognitive functions assessed by the MoCA provides higher 

sensitivity to impairments in MND. On the other hand, the MoCA may simply result in 

more false-positives than the FAB, especially given its reliance on hand-motor 

functioning. However, conclusions about the relative accuracy of these two cognitive 
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screens cannot be determined from this example. Cognitive screens require validation 

against cognitive impairment criteria to produce operating characteristics (e.g., 

sensitivity, specificity), which is overlooked by some previous research (Osborne et al., 

2014; Oskarsson et al., 2010). 

Few MND studies evaluate cognitive screens against gold standard cognitive 

impairment criteria and methodologies vary widely. Cognitive impairment criterion 

consist of both the test battery content and performance classification. Criteria often 

include broad neuropsychological test batteries that assess a breadth of cognitive 

domains, although at the cost of depth within these domains. In some batteries, the 

language domain was assessed with a single test (Floris et al., 2012). In other batteries, 

language domain tests were restricted to abilities specifically targeted by the screen 

(Pinto-Grau et al., 2017). Criteria from another study included a standard cognitive 

battery developed for other neurological conditions (e.g., the Consortium to Establish a 

Registry for Alzheimer’s Disease plus Scale; Lulé et al., 2015). Such batteries may 

variably capture domain-specific impairments critical to the MND cognitive profile. 

Likewise, impaired performance is diversely classified. For example, one study defined 

impaired performance by z-scores £ 2, averaged across multiple tests (Pinto-Grau et al., 

2017). This method may detect global impairments but could obscure impairments from 

individuals with poor cognitive functioning in specific areas but strong abilities in other 

areas.  

In sum, screening operating characteristics reflect the cognitive impairment 

criteria they are validated against, including the breadth or depth of those criteria and 

appropriateness for the patient population. Previous gold standard criterion included 
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batteries with limited assessment of the language domain and few classified impairments 

using the consensus criteria for the diagnosis of frontotemporal dysfunction in 

ALS/MND (Strong et al., 2009; Strong et al., 2017; Woolley et al., 2010). 

1.3 Broad Cognitive Assessment Issues in Motor Neuron Disease 

Within this nascent field several broader assessment challenges remain, affecting 

the cognitive impairment criteria that screening measures are validated against. Since 

MND was established as a spectrum disorder that affects cognition, efforts to characterize 

impairment patterns have increased, though the MND cognitive profile is still evolving 

(Beeldman, Raaphorst, et al., 2016; Raaphorst, de Visser, Linssen, de Haan, & Schmand, 

2010). Early on, executive dysfunction received substantial recognition and was central 

to the original consensus criteria for cognitive and behavioral syndromes in ALS (Strong 

et al., 2009). More recently, a meta-analysis revealed impairments in several other 

cognitive domains in ALS including language, verbal fluency, verbal memory, and social 

cognition, in addition to executive dysfunction (Beeldman, Raaphorst, et al., 2016). 

Revisions to the consensus criteria now recognize the involvement of other cognitive 

domains, particularly language and social cognition impairments (Strong et al., 2017). 

However, optimal neuropsychological assessment methods for MND remain 

unclear. The National Institute for Health and Care Excellence (NICE) released 

assessment guidelines for MND, though the authors indicated that these guidelines were 

constructed via expert informal consensus due to current lack of clinical evidence (NICE, 

2016). The NICE guidelines highlight a variety of cognitive measures that may be used in 

MND, with no clear agreement on validated assessment tools. The updated Strong and 

colleagues (2017) criteria began to address the need for consensus on assessment tools 
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for MND, though evidence for some cognitive measures is limited. Certain measures 

provide limited psychometric information or demonstrate poor properties, particularly 

language tests. Additional research is needed to establish the nature of language 

impairments in MND and measures with good psychometric properties that capture these 

impairments. 

There is also growing interest in cognitive profiles and potential MND subtypes. 

Varied cognitive impairments may represent different MND manifestations, and thus 

research on deficits beyond executive dysfunction may help elucidate MND cognitive 

phenotypes (Consonni et al., 2016; Taylor et al., 2013). For example, frontotemporal 

dementia (FTD), a nosologically related condition, has multiple variants with some 

patients exhibiting greater executive dysfunction and others exhibiting greater language 

dysfunction (Neary et al., 1998). It is plausible that MND may have similar subtypes that 

manifest different deficit proportions across cognitive domains. 

Thus, for brief cognitive screening effectiveness within the MND population, 

these tools need to detect patients with cognitive impairments beyond executive 

dysfunction alone. Cognitive screening in MND may require a balance between targeted 

and broad assessment, which both have strengths and weaknesses. In MND, targeted 

cognitive screens may be highly sensitive to executive dysfunction but may lack 

sensitivity to other commonly impaired cognitive domains such as language dysfunction. 

In contrast, broad cognitive screens may sample several cognitive domains but may not 

provide adequate sensitivity to distinct cognitive impairments that manifest in MND. 



 7 

1.4 Language Dysfunction in Motor Neuron Disease 

The current study focuses on cognitive abilities in the language domain as 

cognitive impairment criteria. This study takes a ‘clinical-neuroanatomical approach’ to 

language assessment (Spreen & Risser, 2003). As previously mentioned, executive 

dysfunction is well established in MND, though language dysfunction has received less 

attention. Assessment of both executive and language dysfunction is vital in MND as 

“predominantly dysexecutive” and “predominantly linguistic” cognitive profiles have 

been proposed (Taylor et al., 2013, p. 497). Next, language abilities are discussed, 

followed by domain interrelationships with executive abilities. 

Language is a complex system of hierarchical abilities including several basic 

(e.g., phoneme perception, symbol decoding) and complex functions (e.g., grammar, 

verbal concept integration) (Hickok & Poeppel, 2007). Generally speaking, language 

abilities may be partitioned into expressive and receptive functions, which rely on 

associative networks heavily implicated in the frontal and temporal lobes, but not 

exclusively. The term aphasia refers to a diverse set of language impairment syndromes. 

Aphasias can arise from neurological insult (e.g., stroke) or progressive 

neurodegeneration such as frontotemporal lobar degeneration. The historic Wernicke-

Lichtheim Model classifies language dysfunction in terms of several classic syndromes 

(e.g., Wernicke’s aphasia, Broca’s aphasia, transcortical sensory aphasia, transcortical 

motor aphasia, conduction aphasia; Graves, 1997), although contemporary cognitive 

research indicates this model is underspecified (Damasio, Tranel, Grabowski, Adolphs, & 

Damasio, 2004; Dronkers, Ivanova, & Baldo, 2017; Hickok & Poeppel, 2007). 
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Language abilities are multidimensional and comprehensive assessment should 

include perception, comprehension, expression, and responses to various language-based 

stimuli (Lezak, Howieson, Bigler, & Tranel, 2012). The Gorno-Tempini and colleagues 

(2011) criteria recommend several language tasks for the assessment of progressive 

degenerative aphasias including measures of speech production, confrontation naming, 

repetition, comprehension, semantic knowledge, reading, and spelling. 

Several expressive and receptive language deficits have been identified among 

patients with MND, though evidence is conflicting. It is unclear which language abilities 

are primarily affected in MND. Table 1 summarizes previous language research, with 

some research suggesting deficits in MND and contrary research suggesting intact 

language functioning. This summary table is not exhaustive but provides a broad 

overview (for a recent systematic review also see Pinto-Grau, Hardiman, & Pender, 

2018). A meta-analytic review indicates that language deficits have the largest effect size 

for patients with ALS in comparison to healthy controls (g = .56), primarily driven by 

confrontation naming (g = 0.60; Beeldman, Raaphorst, et al., 2016). However, 

complications exist, impaired confrontation naming can reflect several underlying 

problems such as an expressive language deficit, semantic deficit, perceptual deficit, or 

potential interference from executive dysfunction (Migliaccio et al., 2016). The need for 

detailed and systematic language assessments in MND has been recognized (Bak & 

Hodges, 2004; Strong, Grace, Orange, & Leeper, 1996; Tsermentseli et al., 2016), which 

may have implications for both understanding the disease process and clinical care. 

  



 9 

Table 1. Summary of Previous MND Research Suggesting Language Deficits or Intact 
Functioning 

Function(s) Task Supportive evidence  
of language deficits 

Contrary evidence  
of intact functioning 

Verbal 
Command 
Execution 

Modified token test Tsermentseli et al., 2016*  
Token Test short form Talbot et al., 1995* Bambini et al., 2016 

Confrontation 
Naming  

Boston Naming Test Libon et al., 2012; Massman 
et al., 1996; Taylor et al., 
2013*; York et al., 2014* 

Ash et al., 2014;  
Talbot et al., 1995 

Category Specific 
Names Test 

Taylor et al., 2013*  

HSB Naming  Rakowicz & Hodges, 1998 
SYDBAT Naming Leslie et al., 2015*  
ACE-R Naming Leslie et al., 2015*  
Graded Naming Test Abrahams et al., 2004*; 

Cobble, 1998* 
Abrahams et al., 2000; 
Rakowicz & Hodges, 1998; 
Tsermentseli et al., 2016 

Novel noun naming task  Papeo et al., 2015 
Verb Naming Action Naming Test  Libon et al., 2012 

Novel action naming 
task 

 Papeo et al., 2015 

Receptive 
Vocabulary  

British Picture 
Vocabulary Test 

Taylor et al., 2013* Tsermentseli et al., 2016 

Semantic 
Processing 

Pyramids and Palm 
Trees Test 

Rakowicz & Hodges, 1998*; 
Libon et al., 2012 

Taylor et al., 2013; 
Tsermentseli et al., 2016; 
York et al., 2014 

SYDBAT Semantic 
Associations and Word 
Comprehension subtests 

 Leslie et al., 2015 

ACE-R Auditory 
sentence-picture 
matching 

Leslie et al., 2015*  

HSB Word-Picture 
Matching 

 Rakowicz & Hodges, 1998 

PALPA Word Semantic 
Association test 

 Cobble, 1998 

Novel Associativity 
Judgment task (nouns) 

 York et al., 2014 

Novel noun word-
picture matching task 

 Papeo et al., 2015 

Verb Processing Kissing and Dancing 
Test 

Taylor et al., 2013*; 
Tsermentseli et al., 2016* 

 

Novel Associativity 
Judgment task (verbs) 

York et al., 2014*  

Novel verb word-
picture matching task 

 Papeo et al., 2015 

Verb 
Sequencing 

Novel picture 
sequencing task 

Talbot et al., 1995*  

Novel sentence and 
picture sequencing task 

Papeo et al., 2015*  

Synonyms 
Judgment 
 

PALPA 
Judgment of Synonyms 

Taylor et al., 2013* Cobble, 1998 
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Table 1. (Continued) 
Receptive 
Grammar/Syntax 

TROG  Rakowicz & Hodges, 1998*; 
Taylor et al., 2013*; 
Tsermentseli et al., 2016* 

 

TROG abbreviated  Kamminga et al., 2016 
Novel Grammatical 
Comprehension task 

 York et al., 2014 

PALPA Auditory 
sentence to picture 
matching 

Cobble, 1998*  

STA Yoshizawa et al., 2014  
Expressive 
Grammar/Syntax 

Frog, Where Are You? 
(Sentence-level fluency, 
grammar, lexical 
access) 

Ash et al., 2015*  

Narrative 
Discourse  

Frog, Where Are You? 
(Speech connectedness) 

Ash et al., 2014*  

QPA using the BDAE 
Cookie Theft picture 
description 

Tsermentseli et al., 2016*  

BDAE Cookie Theft 
picture description 
complexity index 

 Taylor et al., 2013 

Pragmatics 
Expressive & 
Receptive 

Novel test battery, 
APACS 

Bambini et al., 2016*  

Spelling Graded Difficulty 
Spelling Test 

Taylor et al., 2013*  

PALPA Spelling to 
dictation 

Cobble, 1998*  

Phonemic 
Fluency  

Controlled Oral Word 
Association Test (FAS) 

Ash et al., 2014*;  
Massman et al., 1996; 
Rakowicz & Hodges, 1998*; 
York et al., 2014* 

Libon et al., 2012;  
Talbot et al., 1995 

Vfi (CFL)  Jelsone-Swain et al., 2015 
Vfi (S) Taylor et al., 2013* Tsermentseli et al., 2016 
Vfi (PRW) Abrahams et al., 2004* Abrahams et al., 2000 
Written vfi (S) Abrahams et al., 2004* Abrahams et al., 2000 

Semantic 
Fluency  

Animal fluency York et al., 2014* Ash et al., 2014 
HSB Category Fluency 
(various) 

Rakowicz & Hodges, 1998*  

Vfi (Animals, foods)  Taylor et al., 2013; 
Tsermentseli et al., 2016 

Vfi (Animals) Abrahams et al., 2000* Abrahams et al., 2004 
Vfi (Colors, fruits, 
towns) 

 Abrahams et al., 2000; 
Abrahams et al., 2004 

Combined 
Fluency 

ACE-R Fluency 
(Letter P, Animals) 

Leslie et al., 2015* Kamminga et al., 2016 

Lexical 
Decisions/  
Est. Verbal IQ 
 
 
 

Spot the Word Test Taylor et al., 2013*  
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Table 1. (Continued) 
Word Reading/ 
Est. Verbal IQ 

NART  Abrahams et al., 2000; 
Cobble, 1998; 
Rakowicz & Hodges, 1998; 
Talbot et al., 1995 

ANART  Massman et al., 1996 
Note. ACE-R = Addenbrooke’s Cognitive Examination-Revised; ANART = American version of the 
National Adult Reading Test; APACS = Assessment of Pragmatic Abilities and Cognitive Substrates, a novel 
test battery that includes expressive and receptive tasks including Interview, Description, Narratives, Humor, 
and Figurative Language tasks; BDAE = Boston Diagnostic Aphasia Examination; HSB = Hodges’ semantic 
battery per Hodges, Salmon, & Butters (1991); NART = National Adult Reading Test; PALPA = 
Psycholinguistic Assessment of Language Processing in Aphasia; STA = Syntax Test for Aphasia; SYDBAT 
= Sydney Language Battery; TROG = Test of Receptive Grammar; Vfi = Verbal Fluency Index, which 
adjusts for motor speed per Abrahams et al., 2000; QPA = Quantitative Production Analysis. * Indicates 
statistically significant difference compared to a control group. 

 
Furthermore, cognitive abilities within the language and executive functioning 

domains are intertwined. The frontal lobe and its interconnections support executive 

functioning, language output, and motor functions, all implicated in MND. Complex 

language functions such as syntax/grammar and verb processing are thought to somewhat 

depend on executive functioning and prefrontal regions including the dorsolateral 

prefrontal cortex (Grossman et al., 2008; Novais-Santos et al., 2007). Executive abilities 

also depend on intact basic functions, such as language (Miyake et al., 2000). Language 

and executive dysfunction are linked in MND; executive functioning accounted for 44% 

of the variance in language abilities in patients with ALS (Taylor et al, 2013). Verbal 

fluency tasks in particular, demonstrate these interrelated abilities, as this paradigm is 

both executive and linguistic in nature. Broadly, verbal fluency tasks require expressive 

language abilities, psychomotor speed, lexical dependent retrieval, semantic dependent 

retrieval, executive dependent retrieval and components such as initiation, productivity, 

monitoring, and updating (Lezak et al., 2012; Shao, Janse, Visser, & Meyer, 2014). For 

patients with ALS, worse phonemic fluency was associated with impaired fMRI 

activation within extensive brain regions suggestive of both executive and language 

components (Abrahams et al., 2004). Yet, patients with normal executive performance 
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can exhibit language dysfunction suggesting that despite overlap, executive and language 

abilities may be discriminable in MND (Tsermentseli et al., 2016). Others suggest that 

certain language impairments in ALS, such as syntax/grammar processing, reflect 

problems with sequencing and organization that are executive in nature (Papeo et al., 

2015). 

In sum, although language and executive functioning are considered distinct 

cognitive domains, and at times may be examined separately, it is not possible at present 

to completely disentangle these domains in MND. Nevertheless, the scope of brief 

cognitive screening measures may impact their sensitivity to various cognitive 

impairments in MND. Certain cognitive impairments, such as executive dysfunction, may 

be more readily detected than others, such as language dysfunction. 

1.5 The Current Study 

The overarching purpose of the current study is to collect information that may 

improve cognitive assessment for patients with MND, which have important clinical 

implications. The first goal is to comprehensively assess language dysfunction in MND 

to elucidate cognitive features and replicate previous research. 

The second goal is to empirically evaluate brief cognitive screens for sensitivity to 

language impairments in MND and provide cross-validation independent of the tests’ 

original developers. Three brief cognitive screens are examined against gold standard 

language criteria. These include a comprehensive language battery and the Strong and 

colleagues (2017) consensus criteria for MND/ALS with cognitive impairment. Specific 

study aims include: 



 13 

1.5.1 Primary aims. 

Aim 1. Examine the pattern of language dysfunction in patients with MND. 

Hypothesis 1: Language impairments in MND will resemble that of 

nonfluent/agrammatic aphasia (i.e., prominent word production and syntax 

impairments) per the Gorno-Tempini and colleagues (2011) criteria, 

potentially suggestive of fronto-insular degeneration. 

Aim 2. Empirical evaluation of brief cognitive screens applied to the MND 

population, in particular, the relative sensitivity of three brief cognitive screens for 

detecting language impairments in MND and the relationships among these measures. 

The goal of these direct comparison is to inform future assessment methods. 

Hypothesis 2a: It was hypothesized that screening measures tailored to 

MND [i.e., Edinburgh Cognitive and Behavioral ALS Screen (ECAS; 

Abrahams et al., 2014) and ALS Cognitive Behavioral Screen (ALS-CBS; 

Wooley et al., 2010)] would demonstrate significantly higher sensitivity to 

language impairments in MND. In contrast, the MoCA, a general 

cognitive screening measure, would demonstrate lower sensitivity to 

language impairments in MND. This result would provide evidence of 

discriminant validity for the tailored screening measures and support for 

their use in MND. 

Hypothesis 2b: Given that the ECAS includes a targeted language 

assessment, it was hypothesized that the ECAS Language subscore would 

demonstrate the highest sensitivity to language impairments, as compared 

to the ALS-CBS and MoCA due to the scope of these measures. 
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Hypothesis 2c: If tailored MND cognitive screens index a common 

construct (i.e., the MND cognitive profile), convergent measures should 

exhibit higher intercorrelations (i.e., the ALS-CBS Total Score correlated 

with the ECAS ALS-Specific Score) and divergent measures should 

exhibit lower intercorrelations (i.e., the ALS-CBS and ECAS correlated 

with the MoCA, a general screening measure). 

1.5.2 Exploratory aim. 

Aim 3. Assess various screening combinations to examine whether higher 

sensitivity to language impairments in MND is achieved.  
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CHAPTER 2: METHODS 

2.1 Participants 

2.1.1 A priori power analyses. 

Two a priori methods informed the minimum patient sample size target for this 

project. The first a priori power analysis focused on effect sizes for language dysfunction 

in ALS/MND. This power analysis indicated that at 80% power (p < .05), 41 individuals 

with MND would be sufficient to detect a large effect for language dysfunction based on 

a previous meta-analysis in ALS (language domain g = 0.56; confrontation naming g = 

0.60; phonemic fluency g = 0.68; Beeldman, Raaphorst, et al., 2016; Faul, Erdfelder, 

Lang, & Buchner, 2007). 

The second method focused on sample size for sensitivity and specificity analyses 

(Bujang & Adnan, 2016). Within this framework, screening evaluations aimed to assess 

the sensitivities of three brief cognitive screens for detecting language impairments in 

patients with MND. It was predicted that the prevalence of language impairments would 

fall between 40% and 50% (Taylor et al., 2013). Based on 40% estimated prevalence, a 

minimum sample size of 50 patients with MND (including 20 with language 

impairments) would be required to achieve a minimum power of 80% (actual power = 

80.4%) for detecting a change in the sensitivity of a screening measure from .50 to .80, 

with a target significance level of p < .05 (actual p = .041; Bujang & Adnan, 2016). 

Based on 50% estimated prevalence, a minimum sample size of 40 patients with MND 

(including 20 with language impairments) would be required to achieve a minimum 

power of 80% for screening sensitivity, using the same parameters above. These 

minimum sample sizes also exceed the estimates to achieve a minimum power of 80% for 
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screening specificity. Considering all methods outlined above, the a priori minimum 

patient sample size target was set to N = 41. This minimum target was met, though 

additional data collection continues. It is necessary to address that the observed 

prevalence of language impairments was lower than a priori predictions. Post hoc power 

for the sensitivity and specificity analyses is discussed in the Limitations section. 

2.1.2 Patient sample. 

Patients were eligible for participation if they were classified by their neurologist 

as having ALS or PLS (Brooks, Miller, Swash, & Munsat, 2000; Pringle et al., 1992), 

both requiring progressive upper motor neuron degeneration. Additional inclusion criteria 

for patients were: age between 18 and 97 years, fluency in English, diagnosis >1 month 

prior to participation, absence of a learning or intellectual disability or language 

impairment (e.g., dyslexia), absence of serious mental illness (e.g., schizophrenia 

spectrum disorders, psychosis, bipolar disorder, PTSD with current flashbacks and/or 

hyperarousal, current substance abuse disorder, or active suicidal ideation), and absence 

of other major health conditions that could affect cognition [e.g., stroke, epilepsy 

disorder, organ failure, hydrocephalus, brain tumor, complicated mild traumatic brain 

injury (TBI) with skull fracture, or moderate to severe TBI (i.e., post-traumatic amnesia > 

24 hrs, loss of consciousness > 30 mins; Lezak et al., 2012)]. 

During the initial recruitment period, 62 individuals with MND were screened for 

the study. Although this study was broadly inclusive, 5 individuals (8.1%) were unable to 

participate due to advanced illness (e.g., frequent hospitalizations, unable to 

communicate) and 3 individuals (4.8%) passed away before they could take part in the 

study. An additional 13 individuals (20.9%) were ineligible for the following reasons 
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(note: groups not mutually exclusive): history of learning disability (n = 3), known 

dyslexia (n = 4), suspected dyslexia (n = 3; i.e., reported trouble learning to read/write), 

special education (n = 2), moderate to severe TBI (n = 3), epilepsy disorder (n = 1), 

advanced stage organ failure (n = 1), and PTSD with current flashbacks (n = 1). 

The resulting patient sample included in these preliminary results consisted of 41 

individuals with MND (PLS n = 5; classic ALS n = 35; adult with juvenile onset ALS n = 

1) residing in the Ohio River Valley region of the U.S. (Kentucky n = 33; Ohio n = 5; 

West Virginia n = 2; Tennessee n = 1). Participants were recruited via research flyers 

distributed within the ALS/MND clinic at the University of Kentucky (n = 31) and local 

ALS support groups (n =10). 

2.1.3 Control sample. 

Healthy family members/caregivers were invited to participate as controls for two 

cognitive tasks (i.e., the Kissing and Dancing Test, KDT, and spoken verbal fluency 

index, vfi; Abrahams et al., 2000; Bak & Hodges, 2003) due to limited availability of 

standardization data for these tasks. Parallel to the patient sample, inclusion criteria were: 

age between 18 and 97 years, fluency in English, absence of a learning or intellectual 

disability or language impairment, absence of serious mental illness, and absence of other 

major health conditions that could affect cognition. Blood relatives of patients with 

known or suspected familial MND were also excluded. 

Fourteen patients did not have a family member/caregiver that was willing/able to 

participate. Two family members/caregivers chose not to complete the cognitive tasks but 

took part in a psychosocial evaluation for secondary research projects. Two additional 

family members/caregivers agreed to complete the KDT but chose not to complete the vfi 
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tasks. Family members/caregivers were excluded as healthy controls for due to the 

following reasons: blood relative of patient with known or suspected familial MND (n = 

2), severe mental illness (n = 1). The resulting healthy control sample included in these 

preliminary results consisted of 22 individuals (KDT n = 22; vfi n = 20). See Table 2 for 

demographics. 

Table 2. Sample Demographics and Background 
Characteristics 
 Patients Controls 
N 41 22 
Age M (SD) 60.98 (11.09) 56.82 (13.99) 
Education yrs. M (SD) 14.24 (2.46) 14.55 (2.28) 
Estimated FSIQ M (SD) 109.00 (7.18) 109.80 (5.67) 
Right handed 34 (82.9%) -- 
Left handed 7 (17.1%) -- 
Male 26 (63.4%) 5 (22.7%) 
Female 15 (36.6%) 17 (77.3%) 
White/Caucasian 38 (92.8%) 21 (95.5%) 
Black/African American 1 (2.4%) 0 (0%) 
Hispanic/Latinx 1 (2.4%) 0 (0%) 
Asian American 0 (0%) 1 (4.5%) 
Other race/ethnicity 1 (2.4%) 0 (0%) 
Note. Frequencies and percentages unless otherwise 
indicated. Estimated FSIQ = full scale IQ estimated from the 
Barona demographics formula (Barona, Reynolds, & 
Chastain, 1984). 

 

2.2 Data Collection Procedure 

Eligible patients had the opportunity to attend a research visit at the University of 

Kentucky or in their home, to ease travel burden and allow patients with advanced illness 

to participate. All patients opted for a home visit. Informed consent was obtained from all 

participants, patients also completed the University of California, San Diego Brief 

Assessment of Capacity to Consent (UBACC; Jeste et al., 2007). All research visits were 

conducted by the author (NEGW), a clinical neuropsychology doctoral candidate. Study 
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procedures took approximately 2.5 hours for patients and 1 hour for family 

members/caregivers. Patients were compensated $20 cash for their time. Controls were 

not compensated. The University of Kentucky Institutional Review Board approved all 

study procedures. 

2.2.1 Patient data collection. 

For patients, the study procedures included two parts: (1) collection of 

demographic information, questionnaires, and administration of three brief cognitive 

screens, and (2) a comprehensive language battery. For part one, patients and family 

members/caregivers were interviewed together (if applicable) regarding the patient’s 

medical history and physical symptoms (e.g., disease onset, functional abilities). Next, 

patients were interviewed individually about their psychological functioning and were 

administered a series of three brief cognitive screens, in a counter-balanced order to 

control for order effects. For part two of the study, patients were administered a 

comprehensive language battery. Verbal fluency measures were administered first to 

prevent performance interference from the other language tests. The other cognitive tests 

were administered using two orders (opposite order for even and odd IDs) to minimize 

potential fatigue effects for tests administered later in the battery. Patients were provided 

breaks throughout the assessment. 

 Testing accommodations. At the beginning of the research visit patients indicated 

their preferred communication method (spoken responses n = 38; written responses n = 3) 

and completed most study procedures using this method. A flexible testing approach was 

used based on each patients’ particular physical abilities and limitations (see Table 3). 

Patients with severe dysarthria or hand weakness completed substitute tests (e.g., written 
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instead of spoken picture description to assess word production). In some cases, certain 

tasks were omitted due to lack of a substitute test (e.g., repetition). However, 87.8% (n = 

36) of the sample completed all tasks. Measures that do not require quick motor or verbal 

responses were intentionally favored due to potential physical limitations of patients. 

However, when applicable, adjustments for speed were applied (e.g., vfi) as described in 

the measures section. All questionnaires were read to patients by the examiner. Response 

cards were presented that displayed the rating scale for each questionnaire. Patients 

provided either spoken responses or pointed to their rating on the response card. 

Similarly, for many test items patients provided spoken responses (e.g., “picture in the 

top right corner”) or pointed to their response. For yes/no items, patients that were unable 

to speak were provided a response card to point to their answer. 
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Table 3. Flexible Battery used to Accommodate Motor/Speech Impairments 

Function/Ability Standard Task Alternate Task 
Brief Cognitive Screening MoCA MoCA-BLIND 

ALS-CBS -- 
ECAS -- 

Verbal Fluency D-KEFS Verbal Fluency vfi Thurstone Written  
Word Fluency Test 

Word Production NAB Oral Production  NAB Writing 
Following Commands MAE-3 Token Test NAB Auditory Comprehension 

Colors/Shapes/Numbers 
Confrontation Naming NAB Naming -- 
Verb Processing Kissing and Dancing Test -- 
Complex Auditory Comprehension BDAE-3 Complex Ideational Material -- 
Syntax Comprehension BDAE-3 Syntactic Processing -- 
Reading Comprehension BDAE-3 Sentences & Paragraphs -- 
Repetition BDAE-3 Word Repetition -- 
Spelling MAE-3 Spelling Test -- 
Note. MoCA = Montreal Cognitive Assessment Standard Form 7.1; MoCA-BLIND = adapted version 
developed for individuals who are visually impaired and omits visually presented items including the motor 
items (visuospatial/executive abilities and naming omitted; Wittich et al., 2010); ALS-CBS = ALS Cognitive 
Behavioral Screen Cognitive Score; ECAS = Edinburgh Cognitive and Behavioral ALS Screen Cognitive 
Score; D-KEFS Verbal Fluency = Delis-Kaplan Executive Function System Verbal Fluency Tests; vfi = Verbal 
Fluency Index, which adjusts for speech speed (60 secs – secs to read words / correct words produced; 
Abrahams et al., 2000); NAB = Neuropsychological Assessment Battery; BDAE-3= Boston Diagnostic 
Aphasia Examination Third Edition; MAE-3 = Multilingual Aphasia Examination Third Edition. 
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Medical records review. After patients signed the consent/HIPAA authorization 

form, disease information (e.g., date of diagnosis) was verified from patients’ medical 

records and additional pertinent medical information was obtained (e.g., ALS Functional 

Rating Scale-Revised ratings, breathing tests) per the informed consent. 

2.2.2 Control data collection. 

In a separate room, family members/caregivers completed questionnaires about 

their own demographics and medical history to determine eligibility as healthy controls. 

Next, eligible family members/caregivers were administered the spoken vfi and KDT to 

collect local standardization data. Family members/caregivers completed additional 

questionnaires about their own psychosocial functioning and provided information about 

the patient’s emotional, behavioral, and cognitive functioning for secondary research 

projects. 

2.3 Assessment Construction and Description 

The present study aimed to characterize language abilities that may deteriorate 

due to extra-motor degeneration and abilities that remain intact, using objective 

standardized measures. The present battery was constructed with the intention of 

capturing a fairly comprehensive picture of language functioning among patients with 

MND; this includes non-aphasic patients with milder language deficits and the potential 

for some patients to develop aphasia comorbidity. Several factors guided test selection 

including recommendations for comprehensive language assessments (Gorno-Tempini et 

al., 2011; Lezak et al., 2012), language abilities and measures identified in the MND 

literature, test appropriateness for the MND population, and psychometric properties. 

Although qualitative and experimental paradigms can provide useful information, the 
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present assessment focused on objective measures with concrete scoring and 

standardization data for replicability in clinical practice and research. Considering these 

factors, the comprehensive language battery includes select subtests from three language 

batteries, the Boston Diagnostic Aphasia Examination Third Edition (BDAE-3; 

Goodglass, Kaplan, & Barresi, 2001), the Neuropsychological Assessment Battery 

Language Module (NAB; Stern & White, 2003), and the Multilingual Aphasia 

Examination Third Edition (MAE-3; Benton, Hamsher, & Sivan, 1994), along with a few 

supplemental tasks. Local standardization data was collected for two tasks. 

The BDAE-3 and its predecessors have a long history and are among the most 

prominent aphasia batteries used by neuropsychologists and speech-language 

pathologists. The BDAE-3 is designed to aid diagnosis of classic aphasia syndromes, 

providing language assessment breadth and severity (Strauss, Sherman, & Spreen, 2006). 

The NAB is a contemporary battery with several subtests modeled after classic test 

paradigms. The NAB demonstrates comparatively strong psychometrics and extensive 

standardization data (N = 1,448 healthy adults, demographically standardized). The NAB 

Language Module was validated in an aphasia sample and demonstrated convergent 

validity with the Boston Naming Test (r = .83) and the Token Test (r = .92; Stern & 

White, 2003). The MAE-3 is another common aphasia battery, which allows multimodal 

responses for certain subtests (e.g., spoken, written, or block letter spelling) and provides 

a moderate-length Token Test, sensitive to language dysfunction (Benton et al., 1994; 

Spreen & Risser, 2003). 
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2.3.1 Unique psychometric issues for language tests. 

Tests used to assess language functioning often exhibit psychometric properties 

unique from most other cognitive domains. These unique psychometric properties have 

important implications for the type of standardization data (i.e., ‘norms’) used to convert 

a person’s raw score to a meaningful value that represents a comparison with a reference 

group (i.e., standardization sample). The converted score, or standardized score, is 

typically used to classify impaired test performance. 

For many cognitive domains, test performance varies widely among healthy 

adults and produces a normal distribution. In contrast, language is a domain that includes 

several rudimentary tasks that evaluate the integrity of the language system. For 

illustrative purposes, a broad distinction can be made regarding the difficulty of language 

tests including those that assess: (1) basic and distinct language abilities and (2) complex 

language abilities (note: in actuality, these distinctions are not dichotomous but exist on a 

continuum). 

Most language abilities assessed by aphasia batteries are best understood in the 

context of the first distinction above. These tasks generally aim to examine basic 

language functions in a fairly ‘isolated’ manner (e.g., repeating words or phrases, spelling 

simple words; Goodglass et al., 2001; Lezak et al., 2012; Spreen & Risser, 2003). These 

basic language tests allow for more granularity to detect mild to severe levels of aphasia, 

though near perfect performance is expected for ‘healthy’ individuals, including children. 

As a result, tests that assess basic language abilities produce highly skewed distributions, 

truncated ranges, and ceiling effects in healthy populations (Lezak et al., 2012; Sherman, 

Iverson, Slick, & Strauss, 2011; Spreen & Risser, 2003). Due to the purpose of these 
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tests, most aphasia batteries provide clinical comparison data from an aphasia 

standardization sample, which indicate how a person’s performance compares to patients 

with known language dysfunction (Mitrushina, Boone, Razani, & D’Elia, 2005; Spreen & 

Risser, 2003). This is in contrast to standardization data from a healthy sample (or 

‘normative data’). Though ideally tests provide information about performance from both 

aphasic and healthy samples. 

These properties have additional implications for test interpretation and reliability. 

For instance, z-scores obtained from skewed distributions do not correspond to expected 

percentile values as they do for normally distributed data. Percentiles must be derived 

directly from the standardization sample rank rather than translated from one metric to 

another (Sherman et al., 2011; Strauss et al., 2006). Reliability can also be limited by 

common language assessment characteristics. For basic language tests, internal 

consistency is typically stronger in clinical samples due to truncated ranges obtained by 

healthy samples. However, test-retest estimates from aphasia samples can be impacted by 

change in the condition itself, especially for aphasias from neurological insult (e.g., 

stroke; Spreen & Risser, 2003). 

In contrast, other language tests assess more complex abilities (e.g., verbal 

fluency) that are best understood in the context of the second distinction above. These 

complex language abilities often implicate higher-level cognitive functions such as 

executive functioning or verbal reasoning. Complex language tasks may detect subtle 

language dysfunction in non-aphasic patients, though these tests are also more vulnerable 

to impairments in other cognitive domains and global impairment (Spreen & Risser, 

2003). As a result, tests that assess complex language abilities typically produce normal 
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distributions in healthy populations. Such tests typically provide data from a healthy 

standardization sample for comparison (or ‘normative data’), which is a familiar format 

used for most cognitive tests in other domains (e.g., intelligence, executive functioning, 

memory). 

2.3.2 Defining impairment: Individual test level. 

For the present language battery, impairments on individual tests were defined 

with consideration to psychometric properties, standardization data, guidelines from test 

manuals and the broader literature, and the Strong and colleagues (2017) consensus 

criteria. These criteria specify that, “impairment on individual measures is defined as a 

score falling at or below the 5th percentile, compared to age- and education matched 

norms” (Strong et al., 2017, p. 164). However, this portion of the Strong and colleagues 

(2017) criteria are most applicable to cognitive tests with standardization data from 

healthy populations. 

In contrast, this cut-off is not applicable for defining impairment on cognitive 

tests with standardization data from clinical populations. For example, BDAE-3 

standardized scores are expressed in percentiles (0 to 100th percentile, in units of 10) that 

compare performance to an aphasia standardization sample (Goodglass et al., 2001). In 

this context, a score corresponding to the 10th percentile indicates that a person’s 

performance is better than or equal to 10% of people with aphasia that comprise the 

standardization sample, and likewise indicates their performance is worse than 90% of 

people in the aphasia standardization sample. However, a score this low is typically not 

represented in a healthy sample, suggesting extreme impairment. Accordingly, the Strong 
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and colleagues (2017) criteria were slightly modified within the present study to 

accommodate tests with aphasia standardization data. 

For complex language tests with standardization data from healthy samples, 

scores falling at or below the 5th percentile of the healthy standardization sample were 

classified as impaired per Strong and colleagues (2017). This impairment cut-off 

approach (£ 5th percentile) was applied to the following tests: D-KEFS Verbal Fluency 

(converted to spoken vfi; £ 5th percentile local norms), Thurstone Written Word Fluency 

Test, BDAE-3 Complex Ideational Material (T-scores £ 34; Heaton, Miller, Taylor, & 

Grant, 2004), MAE-3 Token Test (£ 5th percentile; Benton et al., 1994), and MAE-3 

Spelling Test (< 6th percentile; Benton et al., 1994). 

Basic language abilities assessed by other BDAE-3 subtests provide 

standardization data from an aphasia sample with known language dysfunction. For most 

BDAE-3 subtests, scores falling at or below the 50th percentile of the aphasia 

standardization sample were classified as impaired. Scores within this range reflect test 

performance worse than or equal to 50% of the aphasia standardization sample. Notably, 

scores at or below the 50th percentile corresponded to Aphasia Severity Ratings £ 2 in the 

standardization sample. Language functioning at Aphasia Severity Ratings of 2 are 

described as “conversation about familiar subjects is possible with help from the listener. 

There are frequent failures to convey the idea, but the patient shares the burden of 

communication” (Goodglass et al., 2001, booklet p. 8). This impairment cut-off approach 

(£ 50th percentile) was applied to the Syntactic Processing subtests (Touching A with B, 

Reversible Possessives, Embedded Sentences) and the Reading Comprehension 

Sentences & Paragraphs subtest. The one exception is for BDAE-3Word Repetition, the 
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most rudimentary language ability assessed. Healthy individuals are expected to obtain a 

perfect score on word repetition. Therefore, scores falling below the maximum were 

classified as impaired (i.e., < 10; Goodglass et al., 2001). 

2.3.3 Defining impairment: Diagnostic level. 

Next, patients that met diagnostic criteria for cognitive impairment (MND/ALSci; 

Strong et al., 2017) in the language domain or verbal fluency were classified accordingly. 

Strong and colleagues (2017) specify that, “language impairment is defined as: 

impairment on two non-overlapping tests and in which language impairment is not solely 

explained by verbal fluency deficits.” (p. 162). Furthermore, these criteria specify that 

individuals with impaired phonemic fluency are classified with executive impairment 

(Strong et al., 2017). 

Three subgroups emerged from patients that met these criteria. For the first 

subgroup, the term MND/ALSci-VF is used to refer to patients that demonstrated verbal 

fluency impairments (written fluency or ³ 2 phonemic vfi trials). For the second 

subgroup, the term MND/ALSci-L refers to patients that demonstrated impairments on ³ 2 

tasks from the comprehensive language battery. For the third subgroup, the term 

MND/ALSci-L+VF refers to patients that met both criteria (impairments on ³ 2 language 

tasks and written fluency or ³ 2 phonemic vfi trials). 

2.4 Measures 

2.4.1 Descriptive measures. 

Capacity to consent. Patients were administered the UBACC (Jeste et al., 2007), a 

10-item practical measure that asks brief questions about the study to assess decision-

making capacity. Patients were given a copy of the consent form and were not required to 
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rely solely on their ability to memorize the protocol details when giving consent. If 

patients were unable to demonstrate capacity to consent, they would not be enrolled. 

Demographics. Demographic information including age, date of birth, sex, 

race/ethnicity, relationship between patient and caregiver (e.g., spouse, sibling), family 

income level, educational and occupational history. 

Medical history. Medical history included physical and mental health conditions 

and medications that may influence performance on cognitive tasks. Information from 

family members/caregivers was used to determine whether they qualified as healthy 

controls for standardization data. Patients provided information about their MND 

diagnosis (e.g., date of diagnosis, symptom onset, use of supportive treatments). When 

available, information was verified from patients’ medical records for descriptive and 

control purposes per the informed consent. 

Estimated premorbid intelligence. The Barona formula was utilized to estimate 

participant’s premorbid intelligence based on their demographic characteristics (Barona, 

Reynolds, & Chastain, 1984). The Barona formula is a regression equation developed to 

estimate IQ scores on the Wechsler Adult Intelligence Scale-Revised (WAIS-R; 

Wechsler, 1981) from examinees age, education, race, sex, occupation, and geographic 

location (Smith-Seemiller, Franzen, Burgess, & Prieto, 1997). This method was chosen 

instead of a word-reading task as such measures can result in biased estimates for 

individuals with language dysfunction (Lezak et al., 2012; Strauss et al., 2006). The 

standard error of the estimate of WAIS-R full scale IQ is 12.14, r = .60 (Barona et al., 

1984). 
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Disease severity. The ALS Functional Rating Scale-Revised (ALSFRS-R; 

Cedarbaum et al., 1999) is a 12-item scale used to assess disease severity for people with 

MND via their functional abilities (i.e., speech, salivation, swallowing, handwriting, 

utensil use, dressing and hygiene, turning in bed, walking, climbing stairs, dyspnea, 

orthopnea, and need for ventilator support). Functional abilities are individually rated 

from 0 to 4; total scores range from 0 (worst functional ability) to 48 (intact functional 

ability). 

Daytime somnolence. The Epworth Sleepiness Scale (ESS; Johns, 1991) is an 8-

item self-report scale that was used to assess daytime somnolence potentially related to 

respiratory dysfunction, which may affect cognitive performance. Items are rated from 0 

(would never doze or sleep) to 3 (high chance of dozing or sleeping); higher scores 

indicate more daytime somnolence. The cut score to identify high-level of daytime 

sleepiness is > 16, which was only exhibited by individuals with moderate to severe 

obstructive sleep apnea syndrome in the original validation study (Johns, 1991). No 

patients exceeded the cut-off for daytime somnolence. 

Depression. The ALS-Depression-Inventory (ADI-12; Hammer, Häcker, 

Hautzinger, Meyer, & Kübler, 2008) was used to assess depressive symptoms. The ADI-

12 is a 12-item self-report scale designed for people with ALS/MND aimed to minimize 

bias due to somatic symptoms that may overlap with the MND disease process. The ADI-

12 was validated using the Structured Clinical Interview for the Diagnostic and Statistical 

Manual of Mental Disorders-IV. The cut score to identify any possible depressive 

disorder is ≥ 23 (Hammer et al., 2008). 
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Emotional lability. The Center for Neurologic Study Lability Scale (CNS-LS; 

Moore et al., 1997) is a 7-item scale used to assess pathological laughing and crying. The 

CNS-LS has been validated for patients with neurological conditions including ALS. The 

cut score to identify affective lability is ≥ 13 (Moore et al., 1997). 

2.4.2 Brief cognitive screens. 

 ALS Cognitive Behavioral Screen (ALS-CBS; Wooley et al., 2010). The ALS-

CBS is a brief screening instrument tailored to patients with MND, recommended for the 

characterization of cognitive impairment in ALS per the Strong and colleagues (2017) 

diagnostic criteria. The ALS-CBS includes a cognitive and a behavioral screen, only the 

cognitive screen was used for the purposes of the present study. The cognitive screen 

includes items to tap abilities including attention, concentration, mental tracking/ 

monitoring1, and verbal fluency, which are weighted towards executive functioning. The 

ALS-CBS was developed to be independent of patients’ physical disability level. The 

ALS-CBS also includes a verbal fluency item (i.e., letter F1 or S) that may be completed 

through either writing or speaking. Summing all cognitive items creates a total score, 

lower scores reflect worse cognitive functioning. The test developers reported that the 

ALS-CBS (cut-score < 17) demonstrated 85% sensitivity and 71% specificity for 

identifying any level of cognitive dysfunction, defined via the consensus criteria for 

ALS-cognitive impairment, ALS-behavioral impairment, and ALS-FTD combined 

(Strong et al., 2009). The cut-score for identifying ALS-FTD is < 10 (Woolley et al., 

2010). 

                                                
1 Methodological note, because there are some overlapping tasks (e.g., letters F and S 
fluency, number and letter alternation) among the tests (e.g., ALS-CBS, ECAS, MoCA, 
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 Edinburgh Cognitive and Behavioral ALS Screen (ECAS; Abrahams et al., 

2014). The ECAS is a brief screening instrument tailored to patients with MND, 

recommended for the characterization of cognitive impairment in ALS per the Strong and 

colleagues (2017) diagnostic criteria. The ECAS includes a cognitive and a behavioral 

screen, only the cognitive screen was used for the purposes of the present study. The 

cognitive screen includes items to tap abilities including naming, verbal comprehension, 

spelling, verbal fluency, working memory1, sentence completion, and social cognition, 

which together make up the ALS-Specific composite score. Additional items tap verbal 

memory and visuospatial abilities, which together make up the ALS Non-Specific 

composite score. The ECAS includes two verbal fluency items (i.e., words beginning 

with letter S1 and four-letter words beginning with T) that may be completed through 

either writing or speaking and includes an adjustment for speed (i.e., vfi calculation; 

Abrahams et al., 2000). Lower scores reflect worse cognitive functioning. Cut scores are 

provided for the total ECAS score, ALS-Specific and ALS Non-Specific scores, and 

cognitive domain scores. The test developers reported that the ECAS total score (cut-

score £ 105) demonstrated 77% sensitivity and 89% specificity, the ALS-Specific score 

(cut-score £ 77) demonstrated 69% sensitivity and 89% specificity, and the language 

domain score (cut-score £ 26) demonstrated 86% sensitivity and 64% specificity for 

identifying cognitive dysfunction, defined as performance £ 2 SDs on cognitive 

composites composed of a larger battery (Niven et al., 2015). 

 

                                                
D-KEFS), each task was administered only once. Responses were transcribed to each test 
and scored as appropriate for each measure. 
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 Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005). The MoCA is 

a general cognitive screen that was designed as a rapid screening instrument for mild 

cognitive dysfunction. In the present study, the MoCA was used for the purposes of 

discriminant validity and comparison with tailored screening measures for MND. The 

MoCA includes items to tap abilities including visuospatial/executive abilities, naming, 

verbal memory, attention, repetition, verbal fluency, abstraction, and orientation. The 

MoCA includes three items that require motor abilities (i.e., visuospatial/executive 

drawing items), two items that require spoken repetition, and a verbal fluency item (i.e., 

letter F1). For patients that were unable to complete the motor items, the MoCA-BLIND 

was administered, which was developed for individuals who are visually impaired and 

omits visually presented items including the motor items (i.e., visuospatial/executive 

abilities and naming omitted; Wittich, Phillips, Nasreddine, & Chertkow, 2010). 

Summing all items creates a total score (MoCA standard max = 30; MoCA-BLIND max 

= 22), lower scores reflect worse cognitive functioning. The test developers reported that 

the standard MoCA (cut-score < 26) demonstrated 90% sensitivity and 87% specificity 

for identifying mild cognitive impairment and 100% sensitivity and 87% specificity for 

identifying mild Alzheimer’s dementia (Nasreddine et al., 2005). The MoCA-BLIND 

(cut-score < 18) demonstrated 63% sensitivity and 98% specificity for identifying mild 

cognitive impairment and 94% sensitivity and 98% specificity for identifying mild 

Alzheimer’s dementia (Wittich et al., 2010). Among patients with FTD behavioral-

variant, a condition clinically related to MND, the standard MoCA (cut score < 17) 

demonstrated 78% sensitivity and 98% specificity (Freitas, Simões, Alves, Duro, & 

Santana, 2012). The present study will utilize the standard cut scores (i.e., Standard 
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MoCA < 26, MoCA-BLIND < 18) as well as a cut score specified for FTD behavioral-

variant (i.e., Standard MoCA < 17). 

2.4.3 Verbal fluency evaluation.  

Verbal fluency. The Delis-Kaplan Executive Function System (D-KEFS) Verbal 

Fluency Test (Delis, Kaplan, & Kramer, 2001) is a spoken verbal fluency test used in this 

study to primarily assess phonemic (letter) fluency. This paradigm involves several 

executive and expressive language abilities such as intrinsic word generation, word 

retrieval, verbal association, monitoring, and updating. Notably, verbal fluency tasks are 

also somewhat impacted by vocabulary size and lexical access speed during 

confrontation naming (Shao et al., 2014). The D-KEFS Verbal Fluency Test includes 

three conditions including phonemic letter fluency (i.e., FAS), semantic category fluency 

(i.e., animals and boys names), and a switching condition (i.e., alternating fruits and 

furniture); the latter is thought to more heavily assess an executive component. This test 

requires participants to orally produce as many words as possible that meet particular 

criteria (e.g., words beginning with letter F) within one minute. The vfi calculation was 

used to adjust for speaking speed, as recommended by the Strong and colleagues (2017) 

consensus criteria (vfi = 60 secs – secs to read words / correct words produced; 

Abrahams et al., 2000). Although, it is notable that there is lack of reliability information 

about the vfi. Healthy family members/caregivers served as controls (N = 20), patients’ 

vfi scores were compared to the 5th percentile (Strong et al., 2017). The D-KEFS Verbal 

Fluency Test vfi was only administered to patients with adequate speech intelligibility, 

though some had dysarthria.  
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Patients with significant dysarthria but intact hand motor ability completed the 

Thurstone Word Fluency Test (Thurstone, 1938) an alternative written verbal fluency 

test. Participants were asked to write as many words as possible that meet particular 

criteria (e.g., words beginning with letter S within five minutes; four-letter words 

beginning with letter C within four minutes). In previous research, the Thurstone Word 

Fluency Test demonstrated adequate 6-week test-retest reliability in a mixed clinical 

sample (r = .79; Strauss et al., 2006). In the present sample, all but one patient who 

completed the Thurstone Word Fluency Test scored within normal limits using the 

standard scoring procedures (total administered n = 3). The one individual who scored 

within the impaired range had difficulty generating responses and provided no additional 

responses beyond three minutes into each task. Normative data for written vfi are also 

limited. Therefore, standard scoring procedures were retained for this task; combined raw 

scores were standardized by age, sex, race, and education, derived from a sample of N = 

704 healthy adults (Heaton et al., 2004). Although verbal fluency is sometimes treated as 

a language domain measure, these tasks were considered separate from the 

comprehensive language battery per Strong and colleagues (2017), which classifies these 

impairments within the executive functioning domain. Phonemic fluency was the focus of 

the verbal fluency assessment per these criteria and the MND literature (Strong et al., 

2017). 

2.4.4 Comprehensive language battery. 

Word production. The NAB Oral Production (Stern & White, 2003) subtest is a 

narrative picture description task used to assess expressive language, specifically 

speech/word production. Additional abilities are embedded within this task such as 
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naming and semantic knowledge. Patients are asked to verbally describe a picture of a 

family picnic and are given two minutes to respond. Responses are scored for their 

conveyance of the picture using a checklist of target content. One point is given for each 

target content-unit produced. NAB Oral Production was only administered to patients 

with adequate speech intelligibility, though some had dysarthria. For patients with 

significant dysarthria but intact hand motor ability, the NAB Writing (Stern & White, 

2003) subtest was used as an alternative narrative picture description task to assess word 

production. Patients are asked to write a description of the same picture of a family picnic 

and given four minutes to respond. Responses are scored for conveyance of the picture 

content, spelling, and syntax. The NAB Oral Production and Writing subtests are similar 

to the BDAE-3 Cookie Theft picture task, though the former provides a more quantitative 

assessment approach and stronger standardization data (Stern & White, 2003). In order to 

assess for potential impact of verbal or written motor speed, patients’ scores were 

recorded using the standard administration time (2 mins) as well as extra time during the 

same trial (extended to 2 mins and 30 seconds). However, all patients scored within 

normal limits for content conveyance within the standard administration time. In previous 

research, the NAB Oral Production subtest demonstrated high internal consistency (α » 

.80s), though ~6-month test-retest reliability was low in a healthy sample (r < .60; Strauss 

et al., 2006). Raw scores were standardized by age, sex, and education, derived from a 

sample of N = 1,448 healthy adults (Stern & White, 2003). 

Confrontation naming. The NAB Naming (Stern & White, 2003) subtest is a 31-

item color picture object-naming task used to assess expressive language through 

confrontation naming. Several abilities are embedded within this task such as perceptual 
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abilities, semantic knowledge, lexical access, and word retrieval (Migliaccio et al., 2016). 

NAB Naming is similar to the Boston Naming Test, though the former includes a larger 

standardization sample and may be less impacted by educational attainment (Harry & 

Crowe, 2014; Stern & White, 2003). In previous research, NAB Naming demonstrated 

adequate internal consistency (α » .70s) and ~6-month test-retest reliability (r » .70s) in a 

healthy sample (Strauss et al., 2006). NAB Naming also demonstrated strong convergent 

validity with the Boston Naming Test validated in an aphasia sample (r = .76) and a TBI 

sample (rs .74 to .80; Harry & Crowe, 2014; Stern & White, 2003). Raw scores were 

standardized by age, sex, and education derived from a healthy sample (Stern & White, 

2003). 

Following commands. The MAE-3 Token Test (Benton et al., 1994) is a 22-item 

test used to assess receptive language through following commands. Several abilities are 

embedded within this task such as simple auditory comprehension, more complex syntax 

comprehension (e.g., order prepositions), basic semantic knowledge (i.e., colors, shapes), 

motor planning, short-term memory, and global cognitive functioning (Strauss et al., 

2006). Patients are asked to follow increasingly complex commands using plastic tokens. 

Earlier items assess simple auditory comprehension (e.g., “point to a circle”); later items 

also assess syntax (e.g., “touch the green square with the black circle”). The MAE-3 

Token Test is untimed but requires hand-motor functioning. Several patients with hand-

motor weakness performed this task by using their stronger arm or grasping the tokens 

with two hands to compensate. Scoring is based on correctly following each command 

sequence, but not based on clumsiness or speed. Observed errors were often in the form 

of opposite sequencing and perseverative responses. Several comparable Token Test 
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versions exist, reliability is typically stronger in clinical samples; 10-month test-retest 

reliabilities were high in a dementia sample (rs .85 to .91, two versions) but low in 

healthy samples. Internal consistency evaluations suggest these tests assess two different 

language factors (i.e., simple and syntactically complex auditory comprehension) 

resulting in low alphas (Strauss et al., 2006). However, the Token Test demonstrates 

strong clinical utility for detecting various forms of aphasia, particularly receptive 

(Spreen & Risser, 2003; Strauss et al., 2006). MAE-3 raw scores were corrected for 

education and converted to standardized percentiles from a sample of N = 350 adults 

without evidence of neurologic disease (Benton et al., 1994).  

For patients with hand weakness that were unable to manipulate the tokens but 

were able to point, the NAB Auditory Comprehension Colors/Shapes/Numbers subtest 

(Stern & White, 2003) was used as an alternative auditory commands task. Patients are 

asked to follow increasingly complex commands by pointing to images on a page in a 

certain order. This test was selected as an alternate task for its limited motor demands, 

though its psychometric properties were less desirable. In previous research, the NAB 

Auditory Comprehension composite score demonstrated low internal consistency (α < 

.60) and ~6-month test-retest reliability (r < .60) in a healthy sample. These reliability 

results may reflect assessment of different language factors and ceiling effects in healthy 

samples, similar to the Token Test (Strauss et al., 2006). The NAB Auditory 

Comprehension Colors/Shapes/Numbers subtest was also validated in an aphasia sample 

and demonstrated moderate convergent validity with the MAE Token Test (r = .55; Stern 

& White, 2003). NAB raw scores were standardized by age, sex, and education derived 

from a healthy sample (Stern & White, 2003). 
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Repetition. The BDAE-3 Word Repetition (Goodglass et al., 2001) subtest is a 

10-item test used to assess verbal repetition. Patients are asked to repeat single and 

multisyllable words. In previous research, the BDAE-3 Word Repetition subtest 

demonstrated high internal consistency in an aphasia sample (α = .88; Goodglass et al., 

2001), although there is lack of test-retest reliability information (Strauss et al., 2006). In 

the present study, this task was only administered to patients with adequate speech 

intelligibility, though some had dysarthria. Disentangling impaired repetition from motor-

related dysarthria presents a challenge in this patient population. Consistent articulation 

difficulties were considered motor-related dysarthria, whereas repetition errors associated 

with aphasia are variable and may only appear under certain conditions (Goodglass et al., 

2001). Repetition scoring was liberal within the present study, consistent articulation 

difficulties from dysarthria were not scored as repetition errors. In contrast, paraphasias 

were scored as repetition errors. In aphasia, two common types are phonemic and 

semantic paraphasias. Phonemic paraphasias are errors in which the sound structure 

produced is incorrect, often due to substituted, omitted, or transposed sounds. Semantic 

paraphasias are errors in which the word produced is incorrect but semantically related 

(Goodglass et al., 2001). One individual demonstrated a phonemic paraphasia during 

multisyllable repetition, without the presence of a consistent articulation difficulty (i.e., 

dysarthria). 

Spelling. The MAE-3 Spelling Test (List C; Benton et al., 1994) is an 11-item test 

used to assess spelling. Patients are asked to spell auditory-presented words. Responses 

may be provided in written, spoken, or block letter formats, which is suitable for patients 

with MND. In previous research, alternate-form reliability indicated no significant 
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differences across versions, although there is lack of information about other forms of 

reliability (Strauss et al., 2006). Raw scores were corrected for education and converted 

to standardized percentiles derived from an adult sample without evidence of neurologic 

disease (Benton et al., 1994). 

Reading comprehension. The BDAE-3 Sentences and Paragraphs (Goodglass et 

al., 2001) is a 10-item test used to assess reading comprehension, with difficulty ranging 

from first-grade through high-school level. Additional abilities are embedded within this 

task such as semantic knowledge, syntax comprehension, contextual inferences, and 

verbal reasoning. Patients are asked to read sentences and paragraphs and then provided 

four choices to complete the text. Responses may be provided in any format (e.g., 

spoken, written). Earlier items assess basic comprehension of sentences and single word 

response choices. Later items assess comprehension of paragraphs in which complex 

abilities are embedded. In previous research, the BDAE-3 Sentences and Paragraphs 

subtest demonstrated adequate internal consistency in an aphasia sample (α = .79; 

Goodglass et al., 2001), although there is lack of test-retest reliability information 

(Strauss et al., 2006). BDAE-3 raw scores were converted to standardized percentiles 

from a disease sample of N = 85 patients with aphasia (Goodglass et al., 2001). 

Syntax comprehension. The BDAE-3 Syntactic Processing (Goodglass et al., 

2001) section includes three subtests (i.e., Touching A with B, Reversible Possessives, 

and Embedded Sentences) that assess receptive language through various aspects of 

syntax comprehension (e.g., order prepositions, possessive and passive subject-object 

relationships). Additional abilities are embedded within this task such as basic auditory 

comprehension and semantic knowledge. Patients are read sentences involving verbal 
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relationships and asked to select the picture that shows the relationship (e.g., “the child 

calling her mother has dark hair”). In previous research, the BDAE-3 Syntactic 

Processing subtests demonstrated adequate internal consistency in an aphasia sample (αs 

.71 to .79; Goodglass et al., 2001), although there is lack of test-retest reliability 

information (Strauss et al., 2006). Raw scores were converted to standardized percentiles 

derived from an aphasia sample (Goodglass et al., 2001). 

Complex auditory comprehension. The BDAE-3 Complex ldeational Material 

(Goodglass et al., 2001) subtest is a two-part 12-item test used to assess receptive 

language through complex auditory comprehension. Several abilities are embedded 

within this task such as basic auditory comprehension, syntax comprehension (e.g., 

prepositions), verbal reasoning, contextual inferences, semantic knowledge, and short-

term memory. During earlier items patients are asked yes or no questions based on simple 

knowledge, though syntax comprehension is embedded within the task (e.g. “do two 

pounds of flour weight more than one?”). During later items patients are asked yes or no 

questions in response to short stories read aloud. Responses may be provided in any 

format (e.g., spoken, written). In previous research, the BDAE-3 Complex ldeational 

Material subtest demonstrated high internal consistency in an aphasia sample (α = .80) 

and moderate correlation with the Syntactic Processing Embedded Sentences subtest (r = 

.68; Goodglass et al., 2001). Although there is lack of test-retest reliability information 

(Strauss et al., 2006). Raw scores were standardized by age, sex, and education, derived 

from a sample of N = 326 healthy adults (Heaton et al., 2004). 

Verb processing. The Kissing and Dancing Test (KDT; Bak & Hodges, 2003) is a 

measure used to assess receptive language, verb processing, and semantic relationships. 
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Participants are presented with a target picture and asked to select between two picture 

response options. The correct response is a picture of a verb that is semantically related to 

the target stimulus (e.g., washing and ironing). Responses may be provided in any format 

(e.g., spoken, written, pointing). The KDT was selected for three primary reasons: (1) the 

KDT is recommended for the characterization of language impairment per the Strong and 

colleagues (2017) criteria, (2) unique assessment of verb processing, and (3) growing 

popularity within the MND/ALS, FTD, and aphasia literature. The KDT was developed 

and validated in a FTD sample. The authors suggest that poor performance reflect 

problems with verb processing, linked to frontal cortical regions (Bak & Hodges, 2003). 

However, there is lack of reliability information and standardization data are limited to a 

small healthy sample from the United Kingdom (N = 20; Bak & Hodges, 2003). The 

KDT was modeled after the Pyramids and Palm Trees Test, which demonstrated cultural 

influences suggesting culturally specific standardization data may be necessary (Klein & 

Buchanan, 2009). Healthy family members/caregivers served as culturally comparable 

controls (N = 22), patients’ raw scores were compared to the 5th percentile (Strong et al., 

2017). 

2.5 Data Analyses 

 Raw cognitive test scores were converted to standardized scores based on 

standardization data to determine the relative standing of participants’ test performance 

compared to either heathy controls or patients with aphasia. In most cases, 

standardization data was used from published literature. Local standardization data was 

collected from healthy controls for two measures (KDT and spoken vfi). Univariate 

analyses (e.g., means, standard deviations, frequencies, percentiles) were calculated in 
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Statistical Package for the Social Sciences (SPSS) version 25. 

2.5.1 Gold standard impairment classification. 

 To address Aim 1 (Hypothesis 1), each test score from the comprehensive battery 

was classified as “impaired” or “not impaired” based on modified Strong et al. (2017) 

criteria (see the Defining Impairment: Individual Test Level for further details). Gold 

standard criteria were applied to classify language (or verbal fluency) impairments per 

Strong and colleagues (2017) MND/ALSci using impaired scores from the 

comprehensive language battery. Subgroups were constructed for descriptive purposes 

(see the Defining Impairment: Diagnostic Level for further details). Additionally, T-test 

and Chi square (χ2) tests were used to evaluate potential demographic or clinical 

differences among those with language impairments and those with intact language 

functioning. 

2.5.2 Cognitive screening operating characteristics.  

 To address Aim 2 (Hypotheses 2a and 2b), the three brief cognitive screens were 

evaluated for their relative operating characteristics. Published cut-scores were used to 

dichotomize scores into those suggestive of impairment (i.e., positive test sign) or intact 

functioning (i.e., negative test sign). The positive and negative test signs for each brief 

screen were compared with the gold standard language impairment classification criteria 

(MND/ALSci; Strong et al., 2017) using 2 x 2 contingency tables. Sample based point-

estimates and 95% confidence intervals were calculated in Excel for the following 

operating characteristics: sensitivity, specificity, efficiency, positive predictive value 

(PPV), negative predictive value (NPV), and Cohen’s kappa (Mackinnon, 2000; 

McKenzie, Vida, Mackinnon, Onghena, & Clarke, 1997). 
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 Sensitivity is the proportion of people with the target condition, who have a 

positive test sign. In the present study, the sensitivity point-estimate this is the observed 

percentage of patients that met criteria for MND/ALSci in the language domain (Strong 

et al., 2017), who were correctly classified by the screen cut-score. Confidence intervals 

reflect estimates of the proportion of the MND population with language impairments 

that would be correctly classified by the screen cut-score (McKenzie et al., 1997). 

 Likewise, specificity is the proportion of people without the target condition, who 

have a negative test sign. In the present study, specificity is the proportion of patients 

with intact language functioning, who were correctly classified by the screen cut-score. 

Efficiency is the overall correct classification rate (true positives and true negatives). PPV 

is the conditional probability that an individual with a positive test sign has the target 

condition, determined by the prevalence of the condition. In the present study, PPV is the 

probability that a patient with an ‘impaired’ screen score has MND/ALSci in the 

language domain (Strong et al., 2017). Therefore, NPV is the conditional probability that 

a patient with a ‘normal’ screen score has intact language functioning. Cohen’s kappa (k) 

is a coefficient that summarizes level of agreement between two ratings when chance-

level agreement is accounted for (k = 0 indicates chance-level agreement and k = 1 

indicates complete agreement). In the present study, kappa compares agreement between 

the screen outcome (‘impaired’ or not) and the gold standard MND/ALSci language 

impairment classification. However, it is important to note that PPV, NPV, and kappa are 

all dependent on prevalence of the condition of interest, here MND/ALSci with language 

impairments. Poorer PPV and kappa values are common when prevalence is below 50% 

(Streiner, 2003). 
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 In the context of the present study, the general focus is on sensitivity to language 

impairments.  Specificity and NPV are less meaningful as the present gold standard 

criteria are focused on language (or verbal fluency) impairments exclusively. In other 

words, the gold standard for language dysfunction used in the present study does not 

assess for MND/ALSci in other cognitive domains (e.g., social cognition, executive 

functioning more broadly). Thus, “true negative” cases for overall MND/ALSci is 

unknown in this sample. 

 To address Aim 3, the cognitive screening measures were evaluated for their 

combined sensitivity. Various serial combinations of two screening indices were used to 

assess which combination produced the highest sensitivity. Screening results were 

combined using the ‘believe the positive’ approach, wherein the chained screening result 

was considered positive if the results of either screen was positive (Marshall, 1989; 

Thompson, 2003). 

2.5.3 Cognitive screening interrelationships. 

 To address Hypothesis 2c, phi coefficients (rf) were calculated in SPSS to 

examine the magnitude of the relationships between the dichotomous outcomes (i.e., 

“impaired” or “not impaired”) for the three brief cognitive screens (i.e., ALS-CBS, 

ECAS, and MoCA). rf is similar to the Pearsons correlation coefficient but is intended 

for dichotomous variables. Chi square (χ2) tests were used to test the significance of 

individual correlations. Convergent validity was assessed by correlating outcomes from 

the ALS-CBS with the ECAS ALS-Specific Score, both tailored for MND. Additionally, 

probability values were used to test whether two correlations significantly differ in 

magnitude. Discriminant validity was assessed by comparing the expected divergent 
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correlations (i.e., each tailored screen with the MoCA), to the expected convergent 

correlation (i.e., ALS-CBS with the ECAS ALS-Specific Score). 

 

CHAPTER 3: RESULTS 

3.1 Disease Characteristics 

Table 4 presents patient disease characteristics. Most individuals had limb onset. 

Disease severity varied among the sample, though most were early enough in their illness 

that changes to speech or handwriting were only mild (ALSFRS-R speech and 

handwriting items modal rating = 3 for both). However, three patients were unable to 

speak and over half used assistive equipment for mobility. Approximately a third of the 

sample reported elevated emotional lability; the same proportion reported elevated 

depressive symptoms. None reported elevated levels of daytime somnolence. 
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Table 4. Patient Disease Characteristics 

Total MND N 41 
   Classic ALS n 35 (85.4%) 
   PLS n 5 (12.2%) 
Familial MND 2 (4.8%) 
Bulbar onset  5 (12.2%) 
Limb onset 35 (85.4%) 
Other onset a 1 (2.4%) 

Disease Length and Severity 
Years since symptom onset M (SD) 4.44 (3.73) 
Total ALSFRS-R M (SD) 30.10 (7.50) 
   Speech (ALSFRS-R item 1) M (SD) 2.98 (.96) 
   Handwriting (ALSFRS-R item 4) M (SD) 2.51 (1.17) 

Assistive Devices 
Bipap use 12 (29.3%) 
Continuous ventilation 0 (0%) 
Feeding tube use 5 (12.2%) 
Nonverbal communication 3 (7.3%) 
Ambulates with walker/rollator 13 (31.7%) 
Wheelchair mobility 11 (26.8%) 

Self-Report Symptoms 
Emotion Lability (CNS-LS) M (SD) 11.02 (4.22) 

elevated 12 (29.3%) 
Depression (ADI-12) M (SD) 19.68 (4.75) 

elevated 12 (29.3%) 
Somnolence (ESS) M (SD) 4.76 (3.83) 

elevated 0 (0%) 
Note. Frequencies and percentages unless otherwise indicated. Total sample 
includes n = 1 adult with juvenile onset ALS, counted separately from the 
Classic ALS subgroup. ALSFRS-R = ALS Functional Rating Scale-Revised, 
total scores range from 0 (worst functional ability) to 48 (intact functional 
ability), items 1 and 4 range from 0 (unable) to 4 (normal); CNS-LS = Center 
for Neurologic Study Lability Scale, scores ≥ 13 suggest emotional lability; 
ADI-12 = ALS-Depression-Inventory, scores ≥ 23 suggest possible depressive 
disorder; ESS = Epworth Sleepiness Scale, scores > 16 suggest significant 
daytime somnolence; For the ALSFRS-R higher scores indicate better 
functional ability. For all other rating scales higher scores indicate worse 
symptoms. a Indicates that one individual reported simultaneous bulbar and 
limb onset. 
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3.2 Normative Data: Spoken vfi and KDT 

Table 5 presents the local standardization data from healthy controls. Spoken vfi 

and KDT cut-scores scores indicate performance worse than or equal to the 5th percentile, 

used to identify patient impairments (Strong et al. 2017). 

Table 5. Local Standardization Data from Healthy Controls 

Measure N Mean (SD) Skew Kurtosis 5th %tile 
Cut-Scores 

Kissing and Dancing Test raw score 22 50.59 (1.56) -1.30 2.17 < 47 
D-KEFS spoken vfis      
   Letter F vfi 20 4.10 (1.43) 0.66 0.16 ³ 7.49 
   Letter A vfi 20 4.99 (2.01) 0.86 0.12 ³ 9.17 
   Letter S vfi 20 3.97 (1.47) 0.34 -0.49 ³ 6.96 
   Animals vfi 20 2.52 (0.69) 0.31 -0.16 ³ 4.04 
   Boys Names vfi 20 2.18 (0.46) 0.76 2.00 ³ 3.43 
   Fruits/Furniture Switching vfi 20 3.65 (0.83) 0.13 0.23 ³ 5.40 
Note. Cut-scores indicate performance worse than or equal to the 5th percentile from 
healthy controls per Strong et al. (2017). D-KEFS = Delis-Kaplan Executive Function 
System; vfi = Verbal Fluency Index, which adjusts for speech speed (60 secs – secs to 
read words / correct words produced; Abrahams et al., 2000); n = 2 controls completed 
the Kissing and Dancing Test but did not complete the D-KEFS vfi; Higher vfi scores 
indicate worse verbal fluency; Lower Kissing and Dancing Test scores indicate worse 
verb processing. 

3.3 Comprehensive Assessment: Task-Level Impairments 

Descriptives of patients’ performance on the verbal fluency tasks and 

comprehensive language battery are presented in Tables 6 and 7. It was hypothesized that 

the pattern of language dysfunction would resemble nonfluent/agrammatic aphasia 

(Gorno-Tempini et al., 2011), including prominent word production and syntax 

comprehension impairments (Aim 1, Hypothesis 1). 

Overall, the most common impairments were on phonemic fluency tasks, 

classified within the executive domain (Strong et al., 2017). Altogether, the frequency of 

impairments on any phonemic fluency task was 34.1% (n = 14; impaired written fluency 

or ³ 1 spoken vfi trial).
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Table 6. Patient Scores and Individual Impairments on the Spoken and Written Fluency Tasks 

Test Ability/Function Score Norms N Mean 
(SD) 

Cut-Score Impaired 
n (%) 

D-KEFS Spoken 
Verbal Fluency 

Phonemic Fluency F vfi Local 38 5.69 
(3.53) 

£ 5th %tile 10 
(24.4%) 

  A vfi Local 38 6.67 
(4.71) 

£ 5th %tile 6 
(14.6%) 

  S vfi Local 38 5.29 
(3.97) 

£ 5th %tile 7 
(17.1%) 

 Semantic Fluency Animals vfi Local 38 2.81 
(1.34) 

£ 5th %tile 6 
(14.6%) 

  Boys Names vfi Local 38 2.78 
(0.90) 

£ 5th %tile 5 
(12.2%) 

 Switching 
Semantic Fluency 

Switching 
Fruits/Furniture vfi 

Local 37 4.14 
(1.21) 

£ 5th %tile 6 
(14.6%) 

Thurstone Written  
Word Fluency Test 

Phonemic & 
Restricted Fluency 

Total T-score Heaton 3 38 
(13.75) 

T £ 34 1 
(2.4%) 

Note. D-KEFS = Delis-Kaplan Executive Function System; vfi = Verbal Fluency Index, which adjusts for speech 
speed (60 secs – secs to read words / correct words produced; Abrahams et al., 2000). Sources for standardization 
data: Heaton norms (Heaton, Miller, Taylor, & Grant, 2004); Local norms (see Table 5). 
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Within the comprehensive language battery, the most common impairments were 

on syntax comprehension tasks. Altogether, the frequency of impairments on any of the 

three BDAE-3 Syntactic Processing tasks was 17.1% (n = 7) (Embedded Sentences n = 4, 

9.8%; Reversible Possessives n = 3, 7.3%; Touching A with B n = 2, 4.9%). The second 

most common language impairments were on confrontation naming and complex 

auditory comprehension (NAB Naming and BDAE-3 Complex ldeational Material each n 

= 4, 9.8%). Notably, confrontation naming generally improved with phonemic cueing, 

suggesting that poor performance was likely due to a word-retrieval impairment rather 

than a semantic storage impairment (Jefferies, Patterson, & Ralph, 2008). The next most 

common were impairments complex reading comprehension, verb processing (BDAE-3 

Reading Comprehension Sentences & Paragraphs and KDT each n = 3, 4.9%), and 

following syntactically complex commands (MAE-3 Token Test n = 2, 4.9%). All 

comprehension errors were at the paragraph level, suggesting that difficulties were due to 

higher-order verbal abilities (BDAE-3 Complex ldeational Material and Reading 

Comprehension Sentences & Paragraphs). Impaired repetition and spelling were rare 

(BDAE-3 Word Repetition and MAE-3 Spelling Test each n = 1, 2.4%). One patient 

(2.4%) demonstrated impaired performance on the written picture description task due to 

spelling and syntax subscores, whereas conveyance of the scene was above average 

(NAB Writing). No patients were impaired on the verbal picture description task (NAB 

Oral Production) or written conveyance, which assess expressive language via word 

production. 
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Table 7. Patient Scores and Individual Impairments on the Comprehensive Language Battery 

Ability/Function Test Norms Cut-Score N Mean 
(SD) 

Impaired 
n (%) 

Expressive Language 
Word Production NAB Oral Production  NAB £ 5th %tile 38 76.66 %tile 

(19.54) 
0 

(0%) 
NAB Writing Total Score NAB £ 5th %tile 3 49.00 %tile 

(41.57) 
1a 

(2.4%) 
Confrontation 
Naming 

NAB Naming NAB £ 5th %tile 41 53.76 %tile 
(28.20) 

4 
(9.8%) 

Repetition 
Repetition BDAE-3 Word Repetition  BDAE-3 < 10 raw 39 9.97 raw 

(.16) 
1 

(2.4%) 
Receptive Language 

Syntax 
Comprehension 

BDAE-3 Syntactic Processing 
Embedded Sentences 

BDAE-3 £ 50th %tile 
(aphasia) 

41 89.02 %tile 
(17.15) 

4 
(9.8%) 

Reversible Possessives BDAE-3 £ 50th %tile 
(aphasia) 

41 98.78 %tile 
(20.88) 

3 
(7.3%) 

Touching A with B BDAE-3 £ 50th %tile 
(aphasia) 

41 90.00 %tile 
(17.46) 

2 
(5.3%) 

Complex Auditory 
Comprehension 

BDAE-3 Complex ldeational 
Material  

Heaton £ 5th %tile 41 50.85 T-score 
(11.19) 

4 
(9.8%) 

Following 
Commands 

MAE-3 Token Test  MAE-3 £ 5th %tile 35 56.63 %tile 
(27.58) 

2 
(4.9%) 

NAB Auditory Comprehension 
Colors/Shapes/Numbers 

NAB £ 5th %tile 3 100 cumm% 
(.00) 

0 
(0%) 

Verb Processing KDT Local £ 5th %tile 41 49.37 raw 
(2.53) 

3 
(7.3%) 

       



 

 
 

52 

Table 7. (Continued) 
Reading 

Reading 
Comprehension 

BDAE-3 Sentences & 
Paragraphs  

BDAE-3 £ 50th %tile 
(aphasia) 

40 87.75 %tile 
(21.30) 

3 
(7.3%) 

Spelling 
Spelling  MAE-3 Spelling Test  MAE-3 £ 5th %tile 41 55.02 %tile 

(20.99) 
1 

(2.4%) 
Note. BDAE-3= Boston Diagnostic Aphasia Examination Third Edition; KDT = Kissing and Dancing Test; 
MAE-3 = Multilingual Aphasia Examination Third Edition; NAB = Neuropsychological Assessment Battery; £ 
5th %tile = percentile cut-score compared to a healthy standardization sample; £ 50th %tile (aphasia) = percentile 
cut-score compared to an aphasia standardization sample; cumm% = cumulative percent. Sources for 
standardization data: NAB norms (Stern & White, 2003); BDAE-3 aphasia norms (Goodglass, Kaplan, & 
Barresi, 2001); Heaton norms (Heaton, Miller, Taylor, & Grant, 2004); MAE-3 norms (Benton, Hamsher, & 
Sivan, 1994); Local norms (see Table 5). a One individual demonstrated impaired NAB Writing performance due 
to spelling and syntax but not conveyance of the picture scene. 
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It is possible that impaired scores are impacted by aging, educational attainment, 

or premorbid intelligence. Notably, confrontation naming scores were standardized based 

on age, sex, and education (Stern & White, 2003), though the verbal fluency and syntax 

comprehension tasks were standardized but not demographically corrected. Associations 

between patients’ characteristics (i.e., age, education, and Barona estimated FSIQ) and 

the most common impairments (i.e., verbal fluency, confrontation naming, and syntax 

comprehension) were considered. Pearsons correlations revealed that age, education, and 

estimated FSIQ were not significantly associated with the phonemic vfis, NAB Naming, 

or the BDAE-3 Syntactic Comprehension tasks (rs .01 to .30, all ps > .05). 

Regarding Hypothesis 1, overall language dysfunction observed in this MND 

sample did not particularly resemble a nonfluent/agrammatic pattern. However, a portion 

of the hypothesis was supported, difficulties with syntax comprehension were prominent. 

The most common language impairments were on tasks that directly assess syntax 

comprehension. Impairments on additional complex comprehension tasks with embedded 

syntax were also common (e.g., BDAE-3 Sentences & Paragraphs, Complex ldeational 

Material, and MAE-3 Token Test). Contrary to the hypothesis, there was not evidence of 

consistent expressive language/nonfluent impairments. No patients exhibited impairments 

in word production/conveyance on the picture description tasks. Rather, difficulties with 

confrontation naming were prominent. 

3.4 Comprehensive Language Assessment: Diagnostic Evaluation 

Table 8 presents subgroups that met diagnostic criteria for MND/ALSci (Strong et 

al., 2017) with impairments in the verbal fluency and/or language domains. Three 

subgroups were constructed: (1) MND/ALSci-L classified by ³ 2 impaired tasks from the 
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comprehensive language battery (excluding verbal fluency; all had ALS), (2) 

MND/ALSci-VF classified by impaired written fluency or ³ 2 phonemic vfi trials, and (3) 

MND/ALSci-L+VF classified by ³ 2 impaired language tasks and impaired verbal 

fluency (all had ALS). 
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Table 8. MND/ALSci Language and Verbal Fluency Diagnostic Classification Subgroups 

Subgroup Criteria MND type n  
ALS/PLS 

Onset n  
Limb/Bulbar 

Handed n  
Right/Left 

Total  
n (%) 

ALSci-L ³ 2 language tasks impaired 
without evidence of ALSci-VF 

4 / 0 4 / 0 4 / 0 4 
(9.8%) 

MNDci-VF Impaired written fluency or  
³ 2 phonemic vfi trials,  
without evidence of MNDci-L 

3 / 2 5 / 0 3 / 2 5 
(12.2%) 

ALSci-L+VF ³ 2 language tasks and  
impaired verbal fluency 

4 / 0 3 / 1 4 / 0 4 
(9.8%) 

Intact Verbal 
Fluency and 
Language  

Above criteria not met 24 / 3 23 / 4 a 23 / 5 28 
(68.2%) 

Note. ALSci-L = ALS with cognitive impairment in the language domain; MNDci-VF = ALS or PLS 
with verbal fluency impairment; ALSci-L+VF = ALS with language and verbal fluency impairment. a 

Indicates that one individual reported simultaneous bulbar and limb onset. 
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Table 9 presents impairments and deficits by diagnostic subgroup to illustrate 

language dysfunction patterns. Although frank impairments (£ 5th percentile) are the 

basis of the MND/ALSci classifications (Strong et al., 2017), several patients within the 

three subgroups also demonstrated borderline performance. These scores that may reflect 

indicate decline from premorbid cognitive functioning (6th and 9th percentiles per Benton 

et al., 1994; ‘mildly impaired’ T = 39-35 per Brooks et al., 2011). Therefore, borderline 

deficits are included in Table 9 for descriptive purposes. However, these observations 

should be interpreted with caution. 

The ALSci-L subgroup (n = 4) had an average of 2.5 impaired scores from the 

comprehensive language battery. The ALSci-L subgroup had fairly consistent 

performance that appeared to be primarily characterized by poor syntax comprehension. 

All patients with ALSci-L demonstrated impaired performance on tasks that directly 

assess syntax comprehension or complex comprehension tasks that place demands on 

syntax comprehension (i.e., BDAE-3 Complex ldeational Material, Paragraph Reading 

Comprehension, or MAE-3 Token Test). Most also demonstrated poor performance 

(impairments or borderline deficits) on confrontation naming and/or verb processing 

(each n = 3). Although no patients assigned to the ALSci-L subgroup met criteria for 

verbal fluency impairment (³ 2 phonemic vfi trials impaired), half had borderline 

performance (i.e., 1 phonemic vfi trial, n = 2). Word production, spelling, and repetition 

were intact in this subgroup. 

The ALSci-L+VF subgroup (n = 4) had an average of 3.25 impaired scores from 

the comprehensive language battery (excluding verbal fluency). Performance reflected 
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mixed language impairments in this subgroup, though phonemic fluency was consistently 

affected. More specifically, half exhibited poor performance (impairments or deficits) on 

both confrontation naming and comprehension tasks involving syntax (n = 2). One 

patient had impaired confrontation naming, though syntax comprehension appeared 

intact. In contrast, another patient had impaired syntax comprehension, though naming 

appeared intact. Furthermore, half of the ALSci-L+VF subgroup demonstrated impaired 

verb processing (n = 2), whereas the other half did not. The most severely affected patient 

in this subgroup also demonstrated impaired repetition and spelling. Word production and 

reading comprehension were intact in this subgroup. 

Finally, all patients in the MNDci-VF subgroup (n = 5) had phonemic fluency 

impairments. Although no patients with MNDci-VF met criteria for broader language 

dysfunction (³ 2 impaired language tasks), one patient had impaired performance on one 

complex comprehension task. Another patient had borderline performance on two 

complex comprehension tasks. Yet another patient had borderline spelling performance. 
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Table 9. Impairments and Borderline Deficits by MND/ALSci Subgroup 
Ability/Function Deficit Level ALSci-

L+VF 
(n = 4) 

ALSci-L 
(n = 4) 

MNDci-VF 
(n = 5) 

Intact 
 (n = 28) 

Expressive Language 
Combined Phonemic 
Fluency 
(Spoken or Written) 

Impaired 
(written impaired or ³ 2 
phonemic vfi trials) 

4 
(100%) 

0 
(0%) 

5 
(100%) 

0 
(0%) 

Borderline 
(1 phonemic vfi trial) 

-- 2 
(50%) 

-- 3 
(10.7%) 

Confrontation 
Naming 

Impaired (£ 5th %tile) 2 
(50%) 

2 
(50%) 

0 
(0%) 

0 
(0%) 

Borderline (6-15th %tile) 1 
(25%) 

1 
(25%) 

0 
(0%) 

3 
(10.7%) 

Word Production/ 
Content Conveyance 
 

Impaired (£ 5th %tile) 0 a 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Borderline (6-15th %tile) 0 a 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Repetition 
Repetition Impaired (raw < 10) 1 

(25%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
Receptive Language 

Syntactic 
Comprehension 

Impaired (³ 1 BDAE-3 
Syntax subtest) 

3 
(75%) 

1 
(25%) 

0 
(0%) 

3 
(10.7%) 

Following 
Commands 

Impaired (£ 5th %tile) 1 
(25%) 

1 
(25%) 

0 
(0%) 

0 
(0%) 

Borderline (9th %tile) 0 
(0%) 

0 
(0%) 

1 
(20%) 

0 
(0%) 

Complex Auditory 
Comprehension 

Impaired (T £ 34) 1  
(25%) 

2 
(50%) 

1 
(20%) 

0 
(0%) 

Borderline (T = 39-35) 0 
(0%) 

1 
(25%) 

1 
(20%) 

1 
(3.6%) 

Verb Processing Impaired (raw < 47) 2 
(50%) 

1 
(25%) 

0 
(0%) 

0 
(0%) 

Borderline (raw < 48) 0 
(0%) 

2 
(50%) 

0 
(0%) 

1 
(3.6%) 

Reading 
Paragraph Reading 
Comprehension 

Impaired 0 
(0%) 

2 
(50%) 

0 
(0%) 

1 
(3.6%) 

Spelling 
Spelling  Impaired (< 6th %tile) 1 

(25%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
Borderline (6th %tile) 0 

(0%) 
0 

(0%) 
0 

(0%) 
2 

(7.1%) 
Note. Frequencies and percentages; ALSci-L = ALS with cognitive impairment in the language domain; 
MNDci-VF = ALS or PLS with verbal fluency impairment; ALSci-L+VF = ALS with language and 
verbal fluency impairments. BDAE-3= Boston Diagnostic Aphasia Examination Third Edition; vfi = 
Verbal Fluency Index, which adjusts for speech speed (60 secs – secs to read words / correct words 
produced; Abrahams et al., 2000). a One individual demonstrated impaired NAB Writing performance due 
to spelling and syntax but not conveyance of the scene content, therefore their performance is not reported 
as impaired here. 
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3.4.1 Characteristics by Language Impairment Status 

Potential differences in demographics and disease characteristics between patients 

that met criteria for language impairments (ALSci-L and ALSci-L+VF subgroups 

combined) and those with intact language functioning were examined. The impaired 

language group (n = 8) was compared to all patients with MND and intact language 

functioning (n = 33) and those with ALS and intact language functioning (n = 27; see 

Table 10). 

No group differences were observed (all ps > .05), including no significant 

differences in age, education, or Barona estimated FSIQ for those that met criteria for 

language impairments and all patients with MND that did not (ts -.720 to .630, all ps > 

.05). Additionally, there were also no significant differences in age, education, or 

estimated FSIQ for those that met criteria for language or verbal fluency impairments 

(i.e., ALSci-L, ALSci-L+VF, and MNDci-VF; all impaired subgroups combined) and 

those that did not (ts -.104 to .708, all ps > .05).   
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Table 10. Patient Demographics and Disease Characteristics by Language Impairment 
Status 
 Language Impaired Language Intact 

Total 
Language Intact 

ALS only 
N 8 33 27 
Age M (SD) 57.75 (14.94) 61.76 (10.08) 60.78 (10.26) 
Education yrs. M (SD) 14.38 (2.62) 14.21 (2.46) 13.96 (2.38) 
Estimated FSIQ M (SD) 110.32 (6.37) 108.68 (7.42) 108.01 (7.27) 
Right handed 8 (100%) 26 (78.8%) 21 (77.8%) 
Male 6 (75%) 20 (60.6%) 18 (66.7%) 

Disease Characteristics 
Familial MND 0 (0%) 2 (6.1%) 2 (7.4%) 
Bulbar onseta 1 (12.5%) 4 (12.1%) 3 (11.1%) 
Yrs. since symptom onset 4.44 (3.25) 4.44 (3.88) 3.62 (2.86) 
Total ALSFRS-R M (SD) 29.00 (5.16) 30.36 (8.01) 29.67 (8.27) 
   Speech item 1 M (SD) 2.63 (1.89) 3.06 (.90) 3.15 (.86)) 
   Handwriting item 4 M (SD) 2.38 (.74) 2.55 (1.25) 2.44 (1.37) 

Assistive Devices 
Bipap use 4 (50%) 8 (24.2%) 8 (29.6%) 
Feeding tube use 1 (12.5%) 4 (12.1%) 4 (14.8%) 

Self-Report Symptoms 
CNS-LS M (SD) 12.25 (4.13) 10.73 (4.25) 10.96 (4.30) 
ADI-12 M (SD) 19.00 (3.74) 19.85 (5.00) 20.26 (5.20) 
ESS M (SD) 4.50 (4.18) 4.82 (3.80) 4.63 (3.35) 
Note. Frequencies and percentages unless otherwise indicated. Language Impaired = 
subsample with cognitive impairment in the language domain per Strong et al., 2017 
(ALSci-L and ALSci-L+VF combined); Language Intact Total = total MND sample with 
intact language functioning; Language Intact ALS only = subsample with classic ALS and 
intact language functioning (other disease types not included to aid comparisons); 
ALSFRS-R = ALS Functional Rating Scale-Revised; CNS-LS = Center for Neurologic 
Study Lability Scale; ADI-12 = ALS-Depression-Inventory; ESS = Epworth Sleepiness 
Scale, scores; For the ALSFRS-R higher scores indicate better functional ability. For all 
other rating scales higher scores indicate worse symptoms. a Indicates that one individual 
reported simultaneous bulbar and limb onset was counted in this group; *Indicates 
significant group difference (T-test or Chi-Square) between Language Impaired and Intact 
subgroups (p < .05; none observed). 

 

3.5 Cognitive Screening 

For the cognitive screening portion of the study, two screens tailored to MND 

(ALS-CBS and ECAS) and one general screen (MoCA) were evaluated. Table 11 

presents descriptives and outcome classifications for each screen. In total, the ALS-CBS 
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Total score classified 73.2% of the sample (n = 30) as having some level of cognitive 

impairment. Three patients’ scores (7.3%) fell below the alternative cut-score used to 

identify potential FTD. 

Similarly, altogether the ECAS classified 75.6% of the sample (n = 31) of as 

having a cognitive impairment on any one or more scores. Agreement between the ALS-

CBS Total score and ECAS (³1 impairment) was 87.8% (both impaired: 68.3%, n = 28; 

both not impaired: 19.5%, n = 8), though agreement was lower (75.6%) with the ECAS 

ALS-Specific Score (both impaired: 48.8%, n = 20; both not impaired: 26.8%, n = 11). 

Regarding the ECAS disease specific subscores, 48.8% (n = 20) were impaired on 

the ALS-Specific Score, 43.9% (n = 18) on the verbal fluency portion, 39.0% (n = 16) on 

the executive functioning portion, and 34.1% (n = 14) on the language portion. For the 

ECAS Non-Specific Score, 17.1% (n = 7) were impaired, 24.4% (n = 10) on the memory 

portion and 4.9% (n = 2) on the visuospatial portion. 

Thirty-nine patients (95.1%) were able to complete the MoCA, 28 completed the 

standard version and 11 completed the MoCA-BLIND due to hand-motor weakness. 

Altogether, the MoCA classified 35.9% of the subsample (n = 14; 34.1% of the total 

sample) as having a cognitive impairment on either version using the standard cut-scores. 

No patients scored below the alternative cut-score used to identify potential FTD (Freitas 

et al., 2012).
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Table 11. Brief Cognitive Screening Scores and Outcome Classifications 

 
Screen 

 
Score 

 
N 

 
Mean (SD) 

Cut-
Score 

Classified 
Impaired  

n (%) 
ECAS Total (136 max) 41 104.05 (13.65) £ 105 18 (43.9%) 
 Language (28 max) 41 26.17 (2.26) £ 26 14 (34.1%) 
 Verbal Fluency (24 max) 41 14.98 (5.82) £ 14 18 (43.9%) 
 Executive (28 max) 41 35.76 (5.10) £ 33 16 (39.0%) 
 ALS-Specific Score (100 max) 41 76.88 (10.53) £ 77 20 (48.8%) 
 Memory (24 max) 41 15.46 (4.76) £ 13 10 (24.4%) 
 Visuospatial (12 max) 41 11.71 (0.64) £ 10 2 (4.9%) 
 ALS-Nonspecific Score (36 max) 41 27.17 (5.05) £ 24 7 (17.1%) 
 Number of impaired scores (8 max) 41 2.59 (2.43) ³ 1 31 (75.6%) 
ALS-CBS Total (20 max) 41 14.88 (3.00) < 17 30 (73.2%) 
    < 10 a 3 (7.3%) 
MoCA Total (30 max) 28 25.68 (3.38) < 26 9 (22.0%) 
    < 17 a 0 (0%) 
MoCA-BLIND* Total (22 max) 11 17.82 (2.32) < 18 5 (12.2%) 
MoCA Combined -- 39 -- < 26/18 14 (34.1%) 
Note. ALS-CBS = ALS Cognitive Behavioral Screen Cognitive Score; ECAS = Edinburgh Cognitive 
and Behavioral ALS Screen Cognitive Score; MoCA = Montreal Cognitive Assessment Standard Form 
7.1; MoCA-BLIND = adapted version developed for individuals who are visually impaired and omits 
visually presented items including the motor items (visuospatial/executive abilities and naming omitted; 
Wittich et al., 2010); Combined MoCA = outcomes for both the standard and MoCA-BLIND versions. 
*Although the MoCA-BLIND omits the naming items, patients were administered these items and all 
patients performed perfectly, though no points were given for the naming items.  
a Indicates alternate cut-scores that identify potential FTD. 
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3.5.1 Cognitive screening: Detection of language impairments. 

To address Aim 2 (Hypotheses 2a and 2b), operating characteristics were 

calculated for each cognitive screen based on comparisons to the gold standard language 

impairment criteria (i.e., MND/ALSci in the language domain, including both ALSci-

L+VF and ALSci-L subgroups; Strong et al., 2017). Table 12 presents the cognitive 

screening operating characteristics for detecting all patients that met criteria for language 

impairments. Notably, the ECAS Language subscore is the primary measure of interest, 

which is the only index that targets language functioning exclusively. Because the present 

assessment focused on depth within the language domain, breadth across other cognitive 

domains was sacrificed due to feasibility and tolerability for this patient population. Thus, 

specificity values and overall classification indices are less meaningful for indices 

beyond the ECAS Language subscore as the present assessment focused on language 

impairments. However, sensitivity values are of particular interest across all measures. 

Contrary to the hypothesis, the ECAS Language subscore and standard cut-score 

(£ 26) provided low sensitivity (50%), at the point-estimate, and modest specificity 

(70%) for detecting language impairments in this sample (ALSci-L+VF and ALSci-L 

combined). However, 95% confidence intervals were wide. Potential sensitivities ranged 

from very low (16%) at the lower bound, to moderate (84%) at the upper bound. 

Likewise, potential specificities ranged from low (51%) to moderate (84%) at the lower 

and upper bounds respectively. Overall classification accuracy was 66% and not 

significantly better than chance level classification accuracy (k = .15, 95% CI [-.15, .45], 

p = .29). Use of demographically adjusted cut-scores for the ECAS Language subscore 

also resulted in low sensitivity (50%) to language impairments, though specificity 
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improved (85%; Pinto-Grau et al., 2017). Overall classification accuracy increased to 

78%, which was significantly better than chance (k = .33, 95% CI [-.01, .68], p = .03). 

The predictive value of a negative test sign (NPV 88%) was much stronger than the 

predictive value of a positive test sign (PPV 44%). 

Unexpectedly, the ECAS Verbal Fluency and Executive subscores were more 

sensitive to language impairments (63% each) than the ECAS Language subscore. 

Among the ECAS subscores, the ALS-Specific composite score had the highest 

sensitivity (75%) to language impairments, although modest. The ALS-CBS sensitivity to 

language impairments was 100%. The MoCA (standard and MoCA-BLIND versions 

combined), a general screening measure, exhibited better sensitivity (71%) to language 

impairments than the ECAS Language subscore, but modest. 

In sum, Hypothesis 2a was partially supported. This hypothesis predicted higher 

sensitivity to language impairments for both the tailored MND screens (ALS-CBS and 

ECAS) compared to the MoCA. Results revealed that sensitivity to language impairments 

in MND was much higher for the ALS-CBS than the MoCA, but similar for both the 

ECAS ALS-Specific composite score and MoCA in this sample. The MoCA also 

demonstrated better sensitivity to language impairments than the ECAS Language 

subscore. Furthermore, Hypothesis 2b was not supported. This hypothesis predicted that 

the ECAS would demonstrate the highest sensitivity to language impairments in MND, 

compared to the ALS-CBS and MoCA. One concern was that the ALS-CBS and MoCA 

may leave more patients with language impairments undetected due to potentially limited 

assessment scope, yet this was not the case. Results revealed that the ALS-CBS detected 

all individuals with language impairments in this sample, though this result should be 
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considered in light of the high rate of positive test signs observed for this screen (73.2%, 

see Table 11). Sensitivities from the ECAS ALS-Specific score and the MoCA were 

modest, and sensitivity from the ECAS Language subscore was low. 

 

Table 12. Brief Cognitive Screening Operating Characteristics for Detecting Total with 
Language Impairments (ALSci-L+VF and ALSci-L combined) 
 ECAS 

Language 
ECAS 

Verbal Fluency 
ECAS 

Executive 
ECAS 

ALS-Specific 
ALS-CBS 

Total 
MoCA/ 
MoCA-
BLIND 

N 41 41 41 41 41 39 (28/11) 
Cut-score £ 26 £ 14 £ 33 £ 77 < 17 < 26/17 
Sensitivity .50 .63 .63 .75 1.00 .71 

95% CI [.16 - .84] [.24 - .91] [.24 - .91] [.35 - .97] [.63 - 1.00] [.29 - .96] 
Specificity .70 .61 .67 .58 .33 .72 

95% CI [.51 - .84] [.42 - .77] [.48 - .82] [.39 - .75] [.18 - .52] [.53 - .86] 
Efficiency .66 .61 .66 .61 .46 .72 

95% CI [.49 - .80] [.45 - .76] [.49 - .80] [.45 - .76] [.31 - .63] [.55 - .85] 
Kappa .15 .16 .21 .21 .16 .31* 

95% CI [-.15 - .45] [-.11 - .42] [-.07 - .49] [-.03 - .45] [.03 - .29] [.02 - .61] 
PPV .29 .28 .31 .30 .27 .36 

95% CI [.08 - .58] [.10 - .53] [.11 - .59] [.12 - .54] [.12 - .46] [.13 - .65] 
NPV .85 .87 .88 .90 1.00 .92 

95% CI [.66 - .96] [.66 - .97] [.69 - .97] [.70 - .99] [.72 - 1.00] [.74 - .99] 
Note. Point-estimates and 95% confidence intervals (Mackinnon, 2000; McKenzie et al., 
1997). Gold Standard: Total with Language Impairment n = 8 (19.5%); ALSci-L = ALS 
with cognitive impairment in the language domain; ALSci-L+VF = ALS with language 
and verbal fluency impairments; ALS-CBS = ALS Cognitive Behavioral Screen Cognitive 
Score; ECAS = Edinburgh Cognitive and Behavioral ALS Screen Cognitive Score; MoCA 
= Montreal Cognitive Assessment Standard Form 7.1; MoCA-BLIND = adapted version 
developed for individuals who are visually impaired and omits visually presented items 
including the motor items (visuospatial/executive abilities and naming omitted; Wittich et 
al., 2010). *p < .05; **p < .01, significant kappa values indicate that screening agreement 
with the gold standard criteria was significantly better than chance-level. 

 
3.5.2 Cognitive screening: Serial combinations. 

 To address Aim 3, serial combinations assessed whether chaining two screens 

produced the higher sensitivity. The ‘believe the positive’ approach was used (i.e., either 

screen is positive; Marshall, 1989; Thompson, 2003). The ALS-CBS exhibited 100% 

sensitivity to language impairments and was therefore not included in these combined 
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analyses. Table 13 presents the cognitive screening operating characteristics for detecting 

all patients that met criteria for MND/ALSci within the language domain specifically 

(i.e., ALSci-L+VF or ALSci-L). Chaining the ECAS Language subscore with the ECAS 

Verbal Fluency subscore did not increase sensitivity above the ECAS ALS-Specific 

composite score alone (75% sensitivity, see Table 12). Chaining the ECAS ALS-Specific 

composite score with the MoCA (standard or MoCA-BLIND version) resulted in higher 

sensitivity (88%), but also increases administration time for those that complete both 

screens (approx. 25 to 30 mins combined). Likewise, applying the ‘believe the negative’ 

approach (i.e., either screen was negative) to chaining the ECAS Language subscore with 

the ECAS Verbal Fluency subscore resulted in higher specificity (82%) but very low 

sensitivity (25%). 
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Table 13. Chained Screening Operating Characteristics for Detecting 
Total with Language Impairments (ALSci-L+VF and ALSci-L combined) 
 Combined 

ECAS Language +  
ECAS Verbal Fluency 

Combined 
ECAS ALS-Specific + 
MoCA/MoCA-BLIND 

N 41 41 
Cut-scores ECAS Language £ 26 

Verbal Fluency £ 14 
ECAS £ 77 

MoCA < 26/17 
Sensitivity .75 .88 

95% CI [.35 - .97] [.47 – 1.00] 
Specificity .45 .45 

95% CI [.28 - .64] [.28 - .64] 
Efficiency .51 .54 

95% CI [.35 - .67] [.37 - .69] 
Kappa .12 .18 

95% CI [-.09 - .32] [-.01 - .37] 
PPV .25 .28 

95% CI [.10 - .47] [.12 - .49] 
NPV .88 .94 

95% CI [.64 - .99] [.70 - 1.00] 
Note. Believe the positive approach applied to chained screening results. 
Point-estimates and 95% confidence intervals (Mackinnon, 2000; 
McKenzie et al., 1997). Gold Standard: Total with Language Impairments 
n = 8 (19.5%); ALSci-L = ALS with cognitive impairment in the language 
domain; ALSci-L+VF = ALS with language and verbal fluency 
impairments; ECAS = Edinburgh Cognitive and Behavioral ALS Screen 
Cognitive Score; MoCA = Montreal Cognitive Assessment Standard Form 
7.1; MoCA-BLIND = adapted version developed for individuals who are 
visually impaired, omits motor items. *p < .05; **p < .01, significant 
kappa values indicate that screening agreement with the gold standard 
criteria was significantly better than chance-level. 
 

3.5.3 Cognitive screening: Convergent and discriminant validity. 

Hypothesis 2c addressed convergent and discriminant validity of the three brief 

cognitive screens (i.e., ALS-CBS, ECAS, and MoCA). Table 14 presents phi coefficients 

among the dichotomous outcomes (i.e., ‘impaired’ or not) from each screening score. It 

was expected that tailored MND cognitive screens would assess a common construct 

(i.e., the MND cognitive profile). Significantly higher correlations were hypothesized for 

convergent screening measures (i.e., the ALS-CBS Total Score correlated with the ECAS 
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ALS-Specific Score) and lower correlations for divergent measures (i.e., the ALS-CBS 

and ECAS correlated with the MoCA). 

As hypothesized, outcomes on the ALS-CBS and the ECAS ALS-Specific 

composite score were strongly correlated [rf = .59; χ2(1, N = 41) = 14.32, p < .001], 

suggestive of convergent validity. Additionally, correlations between the ALS-CBS and 

the ECAS ALS-Specific subscores were moderate (i.e., Language, Verbal Fluency, and 

Executive rf’s = .32 - .43), whereas correlations with the ECAS ALS-Nonspecific scores 

were weak and not significant (i.e., Memory and Visuospatial; rf’s = .12 - .28). 

There were weak and non-significant correlations between outcomes on the 

MoCA (standard version and MoCA-BLIND combined) and each of the tailored MND 

screening measures [ALS-CBS Total rf = .11; χ2(1, N = 39) = 0.50, p = .48; ECAS ALS-

Specific Score rf = .27; χ2(1, N = 39) = 2.89, p = .09]. The expected divergent correlation 

between the ALS-CBS and the MoCA (rf = .11) was significantly different (p = .015) 

from the expected convergent correlation (ALS-CBS and the ECAS ALS-Specific 

composite score; rf = .59), suggestive of discriminant validity for the ALS-CBS. 

In contrast, the expected divergent correlation between the ECAS ALS-Specific 

composite score and the MoCA (rf = .27) was not significantly different (p = .08) from 

the convergent correlation (rf = .59). Therefore, contrary to the hypothesis, discriminant 

validity was not demonstrated for the ECAS ALS-Specific composite score. Furthermore, 

outcomes on the MoCA were moderately correlated with outcomes on the ECAS Total 

Score and some of the ALS-Specific subscores (i.e., Language and Verbal Fluency; rf’s 

= .34 - .46), suggesting some overlap in these screening assessments. Although, outcomes 
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on the MoCA were not significantly correlated with outcomes on the ECAS Executive 

subscore [rf = .29; χ2(1, N = 39) = 3.22, p = .07]. 

Table 14. Phi Coefficients Among Dichotomous Outcomes from 
Convergent and Divergent Cognitive Screens 

 ALS-CBS 
Outcome 
(n = 41) 

Combined MoCA 
Outcome 

(n = 39) 
ALS-CBS Outcome -- .11 d† 
ECAS Language Outcome .32* .44** 
ECAS Verbal Fluency Outcome .43** .46** 
ECAS Executive Outcome .37* .29 
ECAS ALS-Specific Outcome .59** c .27 d 
ECAS Memory Outcome .22 .50** 
ECAS Visuospatial Outcome .12 .07 
ECAS ALS-Nonspecific Outcome .28 .57** 
ECAS Total Score Outcome .54** .34* 
Note. c Indicates hypothesized convergent relationship; d Indicates 
hypothesized divergent relationships; ALS-CBS = ALS Cognitive 
Behavioral Screen Cognitive Score; ECAS = Edinburgh Cognitive 
and Behavioral ALS Screen Cognitive Score; Combined MoCA = 
outcomes for either the Montreal Cognitive Assessment Standard 
Form 7.1 or adapted MoCA-BLIND version that omits motor items. 
*indicates correlation p < .05, ** indicates correlation p < .01. 
† indicates significant difference (p < .05) from the convergent 
correlation between the ALS-CBS and ECAS ALS-Specific 
composite score (rf = .59). 
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CHAPTER 4: DISCUSSION 

The present study addressed the cognitive profile of MND and brief cognitive 

screening, with a focus on language impairments. Two primary aims were examined. 

First, characterization of language dysfunction in MND. Second, empirical evaluation of 

three brief cognitive screens, the ALS-CBS, ECAS, and MoCA. 

4.1 MND Cognitive Profile: Language Dysfunction 

Previous research suggests that a “predominantly linguistic” cognitive phenotype 

may exist in MND, which some posit may be more common that executive dysfunction 

(Taylor et al., 2013). The present study used a comprehensive and objective language 

battery to systematically assess for language dysfunction in MND, guided by progressive 

aphasia syndromes (Gorno-Tempini et al., 2011). Attention was paid to both intact and 

compromised language abilities to identify patterns and inform future research (Strong et 

al., 1996). Although previous language assessments in MND/ALS exist, to my 

knowledge the present study is the first to systematically examine the broad range of 

abilities suggested for comprehensive evaluation, that is: reading, spelling, repetition, 

speech production, verbal comprehension, semantic knowledge, and confrontation 

naming (Gorno-Tempini et al., 2011; Lezak et al., 2012). The present results support the 

existence of language dysfunction in the MND cognitive profile. However, MND/ALSci 

within the language domain affected a modest proportion of the present MND sample 

(19.5% total MND sample; 23.5% right-handed ALS subsample). This rate is somewhat 

lower than a previous report from a right-handed ALS sample without dementia (39%; 

Taylor et al., 2013), but similar to disordered language reported from an unselected MND 

cohort (28%; Rakowicz & Hodges, 1998). 
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4.1.1 Language characteristics. 

Given the nature of MND, it was expected that language dysfunction in this 

population would resemble impairments similar to nonfluent/agrammatic progressive 

aphasia, which predominantly affects left posterior fronto-insular brain regions (Gorno-

Tempini et al., 2011). Nonfluent/agrammatic progressive aphasia is characterized by 

“labored speech, agrammatism in production, and/or comprehension, variable degrees of 

anomia, and phonemic paraphasias, in the presence of relatively preserved word 

comprehension” (Gorno-Tempini et al., 2004, p. 2). Thus, it was expected that language 

dysfunction in MND would affect two characteristics in particular: (1) a prominent 

nonfluent characteristic, albeit milder than frank aphasia, along with (2) prominent syntax 

difficulties (Gorno-Tempini et al., 2011). It was postulated that these characteristics may 

arise from selective neuronal vulnerability potentially spreading from the motor cortex 

into pre-motor areas. 

The first expected impairment, nonfluency, is sometimes used to describe patterns 

of reduced speech in aphasias. Nonfluency/Fluency characteristics refer broadly to 

speech output and flow including aspects such as phrase length, substantive content, and 

grammatical complexity (Goodglass et al., 2001). There are two important distinctions 

regarding this terminology. Fluency characteristics of language dysfunction are not to be 

confused with verbal fluency tasks (i.e., phonemic letter and semantic category fluency), 

which can be impaired for a variety of reasons (Shao et al., 2014). In other words, 

phonemic or semantic fluency tasks may be impacted by fluency level, but these tasks 

alone are not direct indicators of fluent or nonfluent characteristics in language 

dysfunction. Another important distinction is between nonfluent/agrammatic progressive 
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aphasia in the context of neurodegenerative disease and classic nonfluent aphasia 

syndromes, typically in the context of stroke (e.g., Broca’s aphasia). Nonfluent 

characteristics from these disparate etiologies have some similarities but are not directly 

congruent (Patterson, Graham, Ralph, & Hodges, 2006). The second expected 

impairment, syntax, is an aspect of grammar that refers to sentence structure and word 

order that conveys a message. 

Contrary to the hypothesis, the overall pattern of language dysfunction in the 

current MND sample did not particularly resemble a nonfluent/agrammatic pattern. 

However, it is important to note that cases of MND with nonfluent/agrammatic aphasia 

exist (Bak, O' Donovan, Xuereb, Boniface, & Hodges, 2001; Caselli et al., 1993; De 

Marchi et al., 2019). Instead, the current preliminary results suggest the nature of 

language dysfunction in MND is characterized by prominent difficulties with syntax 

comprehension and/or word retrieval (confrontation naming). Results suggest that these 

types of language dysfunction may be accompanied by other impairments such as poor 

verb processing, spelling, and in severe cases impaired repetition with phonemic 

paraphasias, though these additional difficulties appear to be less common.  

Basic verbal comprehension was intact, though difficulties with complex 

comprehension involving syntax and/or contextual inferences were common. There was 

not evidence of prominent semantic difficulties, nor was there evidence of perceptual 

difficulties. When individuals experienced word-finding difficulty, they frequently 

demonstrated knowledge of the target word through description of the item while trying 

to produce the word. Though unable to produce the target word spontaneously, word 

retrieval was frequently aided by phonemic cueing. These performance patterns point to a 
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primary word retrieval impairment, in the context of intact semantic knowledge and 

perceptual abilities (Jefferies et al., 2008). Impairments did not appear to be attributable 

to aging, educational attainment, or premorbid intelligence. 

Moreover, results did not necessarily support a prominent nonfluent characteristic 

that was expected through reduction in expressive language. No patients demonstrated 

impaired word production during a standardized narrative picture description task. The 

volume of content-units patients produced about the picture scene was within normal 

limits (i.e., NAB Oral Production/Writing). Of note, although this picture description task 

provides objective assessment of word production, the oral version does not assess for 

other important fluency characteristics such as sentence length and grammar complexity. 

Therefore, nonfluent characteristics cannot be entirely ruled out in this MND sample. On 

a qualitative level, speech with empty content (e.g., frequent use of indefinite words such 

as “they” or “something”), circumlocutions, and simplistic sentence structures were 

occasionally observed despite normal volume of content-units produced. These 

qualitative speech observations could hint at mild nonfluent characteristics for some 

individuals. Additionally, a limited number of participants completed the alternate written 

version of this task, used for those with loss of speech or significant dysarthria. One case 

revealed normal conveyance of the scene content but impaired grammar and spelling. In 

sum, the objective word production assessment did not suggest compromised fluency, 

though other nonfluent characteristics were not formally assessed and cannot be ruled 

out. 

In nonfluent/agrammatic progressive aphasia, reduced spoken and written word 

production appears to be more prominent than poor grammar quality (Graham, Patterson, 
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& Hodges, 2004), which may lend support for absence of nonfluency in this MND 

sample. However, either reduced speech production or agrammatic speech quality satisfy 

the core diagnostic feature of nonfluent/agrammatic progressive aphasia (Gorno-Tempini 

et al., 2011). 

A small literature suggests nonfluent characteristics may occur in ALS at the level 

of speech quality rather than word production, though results are inconsistent. Picture 

narratives from two small ALS samples (Ns > 27) suggest word production is not 

significantly reduced when motor speech impairments are taken into account. However, 

ratings of speech quality revealed worse grammar and discourse including more 

incomplete sentences, shorter sentences, semantic errors, and less connectedness and 

theme maintenance (Ash et al., 2014; Ash et al., 2015; Tsermentseli et al., 2016). 

Conversely, grammatical complexity ratings from the BDAE Cookie Theft picture 

description task were not significantly different from controls in a larger ALS sample (N 

= 46; Taylor et al., 2013). 

Regarding neural correlates, worse grammar was associated with reduced gray 

matter density in the left inferior prefrontal gyrus2 [orbital part; Brodmann area (BA) 47], 

left anterior temporal gyrus (temporal pole; BA 38), left caudate nucleus, and right 

entorhinal cortex (BA 34; Ash et al., 2015). Worse grammar was also associated with 

widespread reduced white matter integrity including the: bilateral superior longitudinal 

fasciculi, cingulum, corpus callosum, right anterior thalamic radiations, left posterior 

thalamic radiations, bilateral internal capsule, right cerebral peduncle, bilateral uncinate 

                                                
2 Verbatim terminology from the authors of the neuroimaging studies are reported. 
Brodmann areas (BA) are included when reported by the study. Additional descriptive 
terms are also provided in parentheses at times. 
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fasciculi, inferior frontal-occipital fasciculi, and right corticospinal tract (Ash et al., 

2015). In the same ALS sample, worse speech connectedness was associated with 

reduced grey matter density in portions of the left inferior frontal gyrus (frontal pole; BA 

10), bilateral inferior frontal gyrus (orbital part; BA 47), left orbitofrontal cortex (BA 11), 

right dorsolateral prefrontal cortex (BA 46), insula, and anterior cingulate (dorsal part; 

BA 32; Ash et al., 2014). Worse speech connectedness was also associated with reduced 

white matter integrity including the: right corona radiata, bilateral corpus callosum, right 

uncinate fasciculus, inferior frontal-occipital fasciculus, and corticospinal tract (Ash et 

al., 2014). 

In contrast, there is converging evidence that when language dysfunction occurs 

in ALS/MND, it often takes the form of word retrieval and syntax comprehension 

impairments. These prominent findings parallel results from an unselected group of 

patients with MND (Rakowicz & Hodges, 1998). Confrontation naming difficulties are 

also consistent with a growing body of literature (Cobble, 1998; Leslie et al., 2015; Libon 

et al., 2012; Massman et al., 1996; Taylor et al., 2013; York et al., 2014). During 

confrontation naming, patients with ALS demonstrate impaired activation in a 

widespread network of regions including the: right inferior frontal gyrus (dorsolateral 

prefrontal cortex; BA 46), left inferior frontal gyrus (part of Broca's area; BA 44), right 

cingulate gyrus (ventral anterior; BA 24), left superior temporal gyrus (Wernicke’s area; 

BA 22), left middle temporal gyrus (BA 37), left middle occipital gyrus (BA 19), and 

bilateral cuneus (BA 18; Abrahams et al., 2004). However, confrontation naming 

impairments are unfortunately nonspecific and occur in most aphasia syndromes (Benson 

& Ardilla, 1996; Rohrer et al., 2008; Stern & White, 2003). Confrontation naming is 
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variably affected in nonfluent/agrammatic progressive aphasia and not a core feature of 

this syndrome (Gorno-Tempini et al., 2004; Gorno-Tempini et al., 2011; Migliaccio et al., 

2016). 

Likewise, convergent research also points to impaired syntax comprehension in 

MND across different languages (Cobble, 1998; Rakowicz & Hodges, 1998; Taylor et al., 

2013; Tsermentseli et al., 2016; Yoshizawa et al., 2014). In ALS, syntax comprehension 

errors appear to be most common for modifier words that indicate a relationship with 

another word, known as prepositions in English and particles in Japanese. Passive 

sentences with modifier words place higher demands on comprehension regarding which 

noun is executing a verb [e.g., “The girl (receiving noun) is given (verb) an apple from 

(modifier) the father (executing noun)”; Yoshizawa et al., 2014, p. 3]. 

The neural correlates of syntax comprehension impairments in MND/ALS are 

unclear. In a small FTD-ALS sample, poorer syntax comprehension was associated with 

reduced gray matter volume in the right frontal pole, bilateral inferior frontal gyrus, 

orbitofrontal cortex, left middle frontal gyrus, right medial prefrontal cortex, left insula, 

paracingulate gyrus, bilateral cingulate, right subcallosal cortex, amygdala, and putamen. 

This pattern mirrored some regions observed in the nonfluent/agrammatic progressive 

aphasia group (e.g., left middle and inferior frontal gyri, orbitofrontal cortex, 

paracingulate gyrus). However, for the ALS only group, syntax comprehension 

impairments were modest and not significantly correlated with brain volume (Kamminga 

et al., 2016). Another FTD-MND sample reported similar results: poorer syntax 

comprehension was associated with expansive frontal cortical regions (e.g., right superior 

frontal gyrus, bilateral middle and inferior frontal gyri, frontal pole, orbitofrontal cortex), 
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left insula, several limbic regions (e.g., right paracingulate gyrus, bilateral caudate, left 

putamen and thalamus), right primary motor and somatosensory cortex, bilateral 

supramarginal gyrus, and cerebellum (Long et al., 2019). 

Together, this literature suggests that prominent language dysfunction features in 

MND may arise from mild but widespread neuropathology involving frontal (anterior and 

posterior), temporal, and limbic regions, rather than predominantly focused in the left 

inferior frontal gyrus and insula (associated with nonfluent/agrammatic aphasia; Gorno-

Tempini et al., 2011). 

4.1.2 MND/ALSci subgroups. 

Patients were classified with MND/ALSci using a comprehensive battery that 

encompassed both verbal fluency tasks and broader language tests. Consistent with 

previous research, impaired performance on phonemic fluency tasks was most common 

(total n = 9; 22.0%), sometimes accompanied by impaired semantic fluency. Under the 

current consensus criteria, individuals with phonemic fluency impairments are classified 

with executive dysfunction (Strong et al., 2017). Impaired language affected a similar 

proportion of the sample (total n = 8; 19.5%). However, these groups were not mutually 

exclusive. 

Three patterns emerged among MND/ALSci with impairments in the language 

domain and/or verbal fluency. Of those that met criteria for language impairments, all 

had ALS and demonstrated impaired performance on confrontation naming and/or 

comprehension tasks that involve syntax. Half of those with language impairments did 

not meet criteria for phonemic fluency impairments (ALSci-L subgroup n = 4), whereas 

the other half demonstrated concurrent language and phonemic fluency impairments 
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(ALSci-L+VF subgroup n = 4). The third subgroup were those that met criteria for 

phonemic fluency impairments, though broader language functioning was relatively 

intact (MNDci-VF subgroup n = 5). This subgroup represented over half of those with 

impaired phonemic fluency. Interestingly, no patients with PLS had broad language 

dysfunction, though some had phonemic fluency impairments. 

These subgroups could suggest discrete cognitive phenotypes or continua. The 

ALSci-L+VF subgroup demonstrated similarities with the other two subgroups, 

overlapping language impairments (i.e., syntax comprehension and/or confrontation 

naming) and phonemic fluency impairments. Yet, the ALSci-L and MNDci-VF 

subgroups appeared relatively divergent from one another, language functioning was 

comparatively intact in the MNDci-VF subgroup. Furthermore, the ALSci-L+VF 

subgroup appeared more severely impaired compared to the other two subgroups. 

Impairments within each subgroup also resembled a gradient. Together, these patterns 

may suggest continua wherein cognitive impairments may first manifest as either 

executive phonemic fluency impairments (MNDci-VF) or language dysfunction in the 

form of syntax comprehension and/or confrontation naming impairments (ALSci-L). 

Plausibly, these focused impairments may progress into a more severe presentation 

wherein these profiles overlap, and both types of impairments develop (ALSci-L+VF). 

However, these continua are purely speculative. Longitudinal data would be required to 

test this hypothesis, whereas the present data are cross-sectional. 

4.2 MND Cognitive Screening 

The second aim of the study was empirical evaluation of three brief cognitive 

screens: ALS-CBS, ECAS, and MoCA. Screening sensitivities to broad language 
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impairments in MND, using the Strong and colleagues consensus criteria (2017), were 

compared. The ECAS Language subscore was of particular interest, as the only index that 

targeted language functioning exclusively. Accordingly, it was expected that the ECAS 

Language subscore would demonstrate the highest sensitivity. Contrary to the hypothesis, 

the ECAS Language subscore demonstrated the lowest sensitivity to language 

impairments in the present MND sample. The current preliminary results do not support 

use of the standard ECAS Language cut-score, which did not perform better than chance-

level classification. Recently published demographically adjusted cut-scores (Pinto-Grau 

et al., 2017) improved overall classification accuracy, which was driven by higher 

specificity but sensitivity was unchanged. At the sample based point-estimate, the ECAS 

Language subscore result suggests low sensitivity (50%) to MND/ALSci with language 

impairments (Strong et al., 2017). Although the upper bound prediction suggests 

sensitivity could be modest (sensitivity upper bound: 84%). Predictive values indicate 

potential utility for identifying patients with intact language functioning, but not for those 

with language impairments (at a base-rate of 19.5%, PPV 29%, NPV 85%; 

demographically adjusted cut-scores applied per Pinto-Grau et al., 2017). 

For ECAS Language, the low point-estimate sensitivity to broad language 

impairments in the present sample is consistent with low sensitivities to individual 

confrontation naming and semantic comprehension impairments in a previous study (50% 

for Boston Naming Test and Pyramids and Palm Trees Test; Pinto-Grau et al., 2017). In 

contrast, this previous study also reported perfect sensitivity to language impairments 

defined by combined z-scores from three language tasks that indexed abilities targeted by 

the ECAS (sensitivity 100%, specificity 83%, PPV 17%, NPV 100%; Pinto-Grau et al., 
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2017). The original validation study reported modest classification of language 

impairments, also defined by combined z-scores (sensitivity 85%, specificity 74%, PPV 

33%, NPV 95%), and acknowledged that the ECAS “should be used as a whole test to 

increase sensitivity and specificity overall” (Niven et al., 2015, p. 176). To my 

knowledge, the present study is the first to compare the ECAS Language subscale to a 

gold standard implementing the Strong and colleagues consensus criteria (2017). 

The broader ECAS ALS-Specific composite score encompasses screening for 

verbal fluency, executive functioning, and language impairments. In general, composite 

screening scores are typically more reliable than subscores. Accordingly, the ECAS ALS-

Specific composite score performed better, though sensitivity to language impairments 

was modest (75%). Specificity to language impairments was low (58%), which is within 

expectations as the composite score indexes broader cognitive abilities and the criterion 

assessment focused on language impairments. Results suggest that when using the ECAS, 

the ALS-Specific composite score should be favored over its subscores. 

Unexpectedly, the MoCA (standard or MoCA-BLIND version) performed 

similarly to the ECAS ALS-Specific composite score, with modest sensitivity to broad 

language impairments (71%). The MoCA also demonstrated modest specificity (72%) to 

language impairments in MND. Similarly, specificity is within expectations as the MoCA 

assesses several cognitive domains and the criterion assessment was language-focused. 

Chaining the ECAS ALS-Specific composite score with the MoCA resulted in higher 

sensitivity (88%) but substantially increases administration time for those that undergo 

both screens, which may reduce the desirability of this method. 
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Also unexpected, the ALS-CBS, a cognitive screen tailored for executive 

dysfunction in ALS/MND, demonstrated very high sensitivity to language impairments 

(100%). Although this result is in the context of a high percentage of impaired ALS-CBS 

scores within the present sample (73.2%). Specificity to language impairments was low 

(58%), which is within expectations as the ALS-CBS targets executive functioning. 

Together these results suggest additional research is warranted regarding ALS-CBS 

specificity to broader cognitive impairments in MND, which was not addressed by the 

present language-focused criterion assessment. 

Regarding the content of these screens, the ECAS Language items assess 

confrontation naming, auditory comprehension/semantic access, and spelling. Previous 

research suggests the ECAS Language subscore is more sensitive to spelling (75%) than 

other language impairments (Pinto-Grau et al., 2017). Additionally, the ECAS Language 

subscore was not significantly correlated with syntax comprehension, the most prominent 

language impairment in this previous sample (i.e., 43.13% PALPA Sentence-Picture 

Matching; Pinto-Grau et al., 2017). Results from the present study suggests that spelling 

impairments are less prominent than other forms of language dysfunction in MND (e.g., 

confrontation naming, syntax comprehension), which may underlie its low sensitivity. 

The MoCA includes language relevant items that assess naming, sentence repetition, and 

phonemic fluency. Few naming errors were observed on the MoCA, though sentence 

repetition in particular may elicit syntax difficulties (e.g., grammar simplification; 

Goodglass et al., 2001). Furthermore, the ALS-CBS includes a syllable counting item, 

which may potentially account for the high sensitivity to language impairments observed 

in the present study. It could be that those with language dysfunction are also likely to 
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exhibit executive dysfunction assessed within the ALS-CBS. Although this possibility 

may be less likely as half of those classified with language impairments were not 

classified with executive phonemic fluency impairments. Alternatively, it is also possible 

that the ALS-CBS results in a high number of positive test signs overall (i.e., both false 

positive and true positives), which cannot be determined from the present study. 

In summary, brief and accurate cognitive screening in ALS/MND proves 

challenging, especially for detecting broad language impairments in the cognitive profile. 

The ECAS includes a targeted language subtest, although the Language subscore did not 

adequately discriminate language impairments in the present MND sample. In contrast, 

the ALS-CBS does not directly target language but demonstrated the highest sensitivity 

to language impairments. However, precise screening for language dysfunction in MND 

may still call for a language-specific tool. For instance, use of a single full-length 

language test might be explored as an initial screening tool (see Spreen & Risser, 2003 

for a description of this approach). 

4.2.1 MND cognitive screening: Convergent and discriminant validity. 

Finally, there was evidence of convergent validity between outcomes (i.e., 

‘impaired’ or not) from the two tailored MND cognitive screens, the ALS-CBS and 

ECAS ALS-Specific composite score. There was also evidence of discriminant validity 

for the ALS-CBS as compared to the MoCA, a general cognitive screen. Although 

discriminant validity was not demonstrated for the ECAS ALS-Specific composite score. 

Results also suggest that screening for broad executive dysfunction primarily underlies 

differences between the tailored MND screens and the MoCA. In contrast, screening for 

verbal fluency impairments via the ECAS produced moderate agreement with both the 
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ALS-CBS and the MoCA, suggesting that these screens result in similar outcomes for 

these types of impairments. 

4.3 Clinical Implications 

The present research has several clinical implications. First, disease heterogeneity 

in MND presents challenges for patient care, treatment, and prognosis. Phenotypic 

research is crucial to understanding individual differences in disease course. The presence 

of certain neuropsychological deficits may predict more rapid disease progression 

(Elamin et al., 2011; Garcia-Willingham et al., 2018). Utilizing phenotypically 

homogenous MND groups in drug trial designs may reduce error variance and lead to 

tailored treatments (Benatar et al., 2018). The present study provides further evidence of 

language dysfunction in MND, which may represent discrete disease subtype(s). 

Second, patients with MND often receive many recommendations for supportive 

care during multidisciplinary clinic visits. The present results highlight the potential for 

some patients with MND to also develop language impairments, which may impact their 

ability to process complex verbal information. Thus, it is important for multidisciplinary 

clinicians to be aware of potential syntax comprehension difficulties in this patient 

population. For example, patients may have difficulty with complex medication 

instructions such as “take at least 1 hour before or 2 hours after a meal” (Rilutek package 

insert; Sanofi-Aventis, 2010). Phrasing instructions in a simple and direct manner is 

recommended to accommodate patients with potential syntax comprehension difficulties. 

Providing both written and verbal instructions may also ease cognitive demands on 

patients. Assessing comprehension by asking patients to restate clinical feedback in their 
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own words may aid communication and treatment compliance (i.e., the teach-back 

method; Agency for Healthcare Quality and Research, 2015). 

Third, brief cognitive screens are sometimes used in ALS/MND clinics to identify 

patients with potential impairments for comprehensive evaluation referrals to inform 

multidisciplinary care. Overall, operating characteristics for detecting language 

impairments in MND were limited among all brief screens assessed in the present study. 

When selecting any screening instrument, a decision must be made regarding whether the 

context calls for more concern with false positives or false negatives. The design of the 

current study is inherently more concerned with false negatives, with a focus on 

sensitivity to language impairments in MND. The present results suggest that language 

impairments in MND are more likely to be detected by the ALS-CBS than the ECAS, 

though specificity to broader cognitive impairments is uncertain. High false-positive rates 

are a common problem for screening measures, particularly when the condition 

prevalence is low (< 50%; Streiner, 2003). The MoCA demonstrated modest sensitivity 

and specificity to language impairments in the present MND sample, and extensive 

validation literature supports its use among several other neurodegenerative conditions 

(e.g., FTD, Huntington’s disease, Parkinson’s disease; Bezdicek et al., 2013; Freitas et 

al., 2012; Hoops et al., 2009). At present, given these factors, the MoCA (or MoCA-

BLIND) may be a conservative screening option for those with enough functional ability 

to complete the measure. However, it is important to keep in mind that these cognitive 

screens do not substitute formal assessment and results should be interpreted with caution 

(Woolley et al., 2010). 
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4.4 Limitations 

4.4.1 Sampling 

The present study intended to sample a representative MND clinic population in 

the U.S. while accounting for major confounds. Individuals with developmental 

conditions and educational histories that may bias language performance were excluded 

(e.g., dyslexia, learning disability, special education). Some evidence exists that 

individuals with progressive aphasia have higher frequencies of neurodevelopmental 

learning disabilities, although primarily applicable to the logopenic variant (Miller et al., 

2013). However, exclusion was necessary in the present study to avoid misattributing 

mild premorbid language difficulties to a neurogenerative process. Of note, dementia and 

mild concussion were not excluded, though moderate to severe TBI was excluded. The 

present sample reported a high rate of concussion history (49.3%, n = 19), which may be 

a risk factor for MND (Seelen et al., 2014). However, none were acute and long-lasting 

impact on language seems unlikely. Excluding concussion would have skewed the 

sample. Furthermore, although the study was designed to accommodate patients that were 

unable to speak or unable to write, few patients with bulbar onset or severe dysarthria 

enrolled in the study. This may limit generalizability to ALS/MND with these 

presentations and some evidence suggests that syntax comprehension difficulties are 

more common with bulbar onset (Yoshizawa et al., 2014). 

For the portion of the study that examined language dysfunction characteristics, 

the present sample was powered at 80% to detect a large effect in ALS/MND. However, 

a priori prevalence was underestimated for the portion of the study that examined 

screening for language impairments. Post hoc determinations revealed that at 20% 
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prevalence, a minimum sample size of 100 patients with MND (including 20 with 

language impairments) would be required to achieve a minimum power of 80% (actual 

power = 80.4%) for detecting a change in the sensitivity of a screening measure from .50 

to .80, based on a target significance level of p < .05 (actual p = .041; Bujang & Adnan, 

2016). Furthermore, at 20% prevalence, a minimum sample size of 25 patients with MND 

(including 5 with language impairments) would be required to achieve a minimum power 

of 80% (actual power = 80.4%) for detecting a change in the specificity of a screening 

measure from .50 to .80, based on a target significance level of p < .05 (actual p = .041; 

Bujang & Adnan, 2016). Therefore, the present sample did not meet 80% power for 

sensitivity analyses, but the sample size exceeded the minimum for specificity analyses. 

Accordingly, the point-estimates for screening sensitivity should be interpreted with 

consideration to the 95% confidence intervals. However, it is notable that the current 

sensitivity result for the ECAS Language subscore parallels sensitivities to confrontation 

naming and semantic comprehension impairments in a recent report, although this study 

may have been similarly underpowered (N = 30; Pinto-Grau et al., 2017). 

4.4.2 Assessment 

The current language assessment battery was constructed using objective tests 

with consideration to available standardization data and psychometric properties. 

Nonetheless, the limitations of the broader language assessment literature also apply to 

the current assessment. Currently available language tests rarely fulfil recommended 

psychometric standards (Spreen & Risser, 2003). Researchers have called attention to 

common weaknesses among language tests such as small standardization samples with 

limited descriptions and sometimes neglected report of psychometric properties (Harry & 
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Crowe, 2014; Klein & Buchanan, 2009; Skenes & McCauley, 1985; Spreen & Risser, 

2003). However, test properties have improved some with later battery editions and the 

development of contemporary batteries (Goodglass et al., 2001; Stern & White, 2003). 

The current study also aimed to provide a comprehensive language assessment. 

Nonetheless, certain abilities were partially addressed or not assessed. For example, the 

assessment included a test of verb processing (i.e., KDT) but did not include verb naming 

or verb fluency. Evaluation of semantic knowledge was embedded within several tests, 

without evidence of impairment, though a primary test was not included. Syntax 

comprehension was also assessed but expressive syntax was not due to lack of 

assessment tools with standardization data. Notably, adult normative standardization data 

collection is underway for the Curtiss-Yamada Comprehensive Language Evaluation 

(CYCLE; Curtiss & Yamada, 2004; personal communication, May 2018), a promising 

battery that may be useful in future ALS/MND research. Researchers have also 

emphasized the need for a standardized tool to assess different confrontation naming 

categories and error types (Harry & Crowe, 2014). 

As previously mentioned, the study design focused on language dysfunction but 

did not include detailed assessment of other cognitive domains. Poor performance on 

complex comprehension tasks included in the battery (e.g., MAE-3 Token Test, BDAE-3 

Complex Ideational Material, and Reading Comprehension Sentences & Paragraphs) 

could result from various cognitive difficulties such as problems with syntax 

comprehension, attention, working-memory, short-term memory, motor planning, or 

global cognitive functioning (Strauss et al., 2006). Therefore, poor language performance 
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secondary to other impairments cannot be ruled out. Likewise, screening specificities are 

uncertain for broader cognitive impairments in MND. 

4.5 Future Research 

Regarding the cognitive profile of MND, the present language dysfunction pattern 

mirrors some previous research (Rakowicz & Hodges, 1998), though additional 

replication is warranted. Further evaluation of expressive language, particularly grammar, 

is also needed. Future research is needed to assess whether language dysfunction and 

executive dysfunction reflect distinct MND cognitive phenotypes, or whether these 

impairments evolve together. Research is also needed to evaluate the longitudinal course 

of language dysfunction in MND, neurodegeneration underlying MND cognitive 

phenotype(s), and potential relationships with disease progression and prognosis. Yet 

most crucial, is the fundamental need for psychometrically sound language tests with 

robust standardization data, as language assessment is becoming increasingly important 

in MND research. 

Regarding brief screening for language dysfunction in MND, one challenge is that 

numerous types of language impairments exist. However, screens might capitalize on the 

most common language impairments in this patient population to increase sensitivity and 

overall accuracy. The present results suggest that naming and syntax comprehension may 

be fruitful screening targets for future research. 

4.6 Conclusion 

In conclusion, the present study provides new insight to the cognitive profile of 

MND with a focus on language. Results suggest the nature of language dysfunction in 

MND is characterized by prominent difficulties with syntax comprehension and/or word 
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retrieval (confrontation naming), though other impairments can occur. Previous research 

implicates a wide network of brain regions associated with language dysfunction in 

MND. In the present MND sample, 19.5% met Strong and colleagues (2017) 

MND/ALSci criteria for language impairment. Half of these individuals also met criteria 

for executive verbal fluency impairment (Strong et al., 2017). Varied cognitive 

impairments in MND may represent different disease phenotypes. However, brief 

screening for language impairments remains challenging. The targeted screening tool for 

language dysfunction in MND (ECAS Language subscore) offered limited classification 

of broad language impairments in the present MND sample (sensitivity 50%, specificity 

70%, PPV 29%, NPV 85%), highlighting the need for additional research in this area. 

  



 

 90 

90
 

 REFERENCES 

Abrahams, S., Goldstein, L. H., Simmons, A., Brammer, M., Williams, S. C. R., 
Giampietro, V., & Leigh, P. N. (2004). Word retrieval in amyotrophic lateral 
sclerosis: a functional magnetic resonance imaging study. Brain, 127(7), 1507-
1517. 

 
Abrahams, S., Leigh, P. N., Harvey, A., Vythelingum, G. N., Grise, D., & Goldstein, L. 

H. (2000). Verbal fluency and executive dysfunction in amyotrophic lateral 
sclerosis (ALS). Neuropsychologia, 38(6), 734-747. 

 
Abrahams, S., Newton, J., Niven, E., Foley, J., & Bak, T. H. (2014). Screening for 

cognition and behaviour changes in ALS. Amyotrophic Lateral Sclerosis and 
Frontotemporal Degeneration, 15(1-2), 9-14. 

 
Agarwal, S., Highton-Williamson, E., Caga, J., Matamala, J. M., Dharmadasa, T., 

Howells, J., ... & Hodges, J. R. (2018). Primary lateral sclerosis and the 
amyotrophic lateral sclerosis–frontotemporal dementia spectrum. Journal of 
Neurology, 265(8), 1819-1828. 

 
Agency for Healthcare Quality and Research (2015). Use the Teach-Back Method: Tool 

#5. Retrieved from https://www.ahrq.gov/professionals/quality-patient-
safety/quality-resources/tools/literacy toolkit/healthlittoolkit2-tool5.html  

 
Ash, S., Menaged, A., Olm, C., McMillan, C. T., Boller, A., Irwin, D. J., ... & Grossman, 

M. (2014). Narrative discourse deficits in amyotrophic lateral 
sclerosis. Neurology, 83(6), 520-528. 

 
Ash, S., Olm, C., McMillan, C. T., Boller, A., Irwin, D. J., McCluskey, L., ... & 

Grossman, M. (2015). Deficits in sentence expression in amyotrophic lateral 
sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16(1-
2), 31-39. 

 
Bak, T. H., & Hodges, J. R. (2004). The effects of motor neurone disease on language: 

further evidence. Brain and Language, 89(2), 354-361. 
 
Bak, T. H., O' Donovan, D. G., Xuereb, J. H., Boniface, S., & Hodges, J. R. (2001). 

Selective impairment of verb processing associated with pathological changes in 
Brodmann areas 44 and 45 in the motor neurone disease–dementia–aphasia 
syndrome. Brain, 124(1), 103-120. 

 
Bambini, V., Arcara, G., Martinelli, I., Bernini, S., Alvisi, E., Moro, A., ... & Ceroni, M. 

(2016). Communication and pragmatic breakdowns in amyotrophic lateral 
sclerosis patients. Brain and Language, 153, 1-12. 

 



 

 91 

91
 

Barona, A., Reynolds, C. R., & Chastain, R. (1984). A demographically based index of 
premorbid intelligence for the WAIS-R. Journal of Consulting and Clinical 
Psychology, 52(5), 885-887. 

 
Beeldman, E., Govaarts, R., Raaphorst, J., De Haan, R., Pijnenburg, Y., Schmand, B., & 

De Visser, M. (2016). A Cognitive Screening Tool for ALS Patients: The ALS-
FTD-Cog, Preliminary Results (P6. 213). Neurology, 86(16 Supplement), P6-213. 

 
Beeldman, E., Raaphorst, J., Klein, T. M., de Visser, M., Schmand, B. A., & de Haan, R. 

J. (2016). The cognitive profile of ALS: A systematic review and meta-analysis 
update. Journal of Neurology, Neurosurgery, & Psychiatry, 87(6), 611-616. 

 
Benatar, M., Wuu, J., Andersen, P. M., Atassi, N., David, W., Cudkowicz, M., & 

Schoenfeld, D. (2018). Randomized, double-blind, placebo-controlled trial of 
arimoclomol in rapidly progressive SOD1 ALS. Neurology, 90(7), e565-e574. 

 
Benson, D. F., & Ardilla, A. (1996). Aphasia: A clinical perspective. New York, NY: 

Oxford University Press. 
 
Benton, A. L., & Hamsher, K. D., & Sivan, A. B. (1994). Multilingual aphasia 

examination- Third edition. Lutz, FL: Psychological Assessment Resources Inc. 
 
Bezdicek, O., Majerova, V., Novak, M., Nikolai, T., Ruzicka, E., & Roth, J. (2013). 

Validity of the Montreal Cognitive Assessment in the detection of cognitive 
dysfunction in Huntington's disease. Applied Neuropsychology: Adult, 20(1), 33-
40. 

 
Bujang, M. A., & Adnan, T. H. (2016). Requirements for Minimum Sample Size for 

Sensitivity and Specificity Analysis. Journal of Clinical & Diagnostic 
Research, 10(10), YE01-YE06. 

 
Brooks, B. L., Sherman, E. M., Iverson, G. L., Slick, D. J., & Strauss, E. (2011). 

Psychometric foundations for the interpretation of neuropsychological test results. 
In M. R. Schoenberg & J. G. Scott (Eds.), The little black book of 
neuropsychology (pp. 893-922). Boston, MA: Springer. 

 
Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). El Escorial revisited: 

revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic 
Lateral Sclerosis and Other Motor Neuron Disorders, 1(5), 293-299. 

 
Caselli, R. J., Windebank, A. J., Petersen, R. C., Komori, T., Parisi, J. E., Okazaki, H., ... 

& Stein, S. D. (1993). Rapidly progressive aphasic dementia and motor neuron 
disease. Annals of Neurology, 33(2), 200-207. 



 

 92 

92
 

Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., ... & 1A 
complete listing of the BDNF Study Group. (1999). The ALSFRS-R: a revised 
ALS functional rating scale that incorporates assessments of respiratory function. 
Journal of the Neurological Sciences, 169(1-2), 13-21. 

 
Chiò, A., Logroscino, G., Hardiman, O., Swingler, R., Mitchell, D., Beghi, E., Traynor, 

B.G., & Eurals Consortium. (2009). Prognostic factors in ALS: a critical review. 
Amyotrophic Lateral Sclerosis, 10(5-6), 310-323. 

 
Cobble, M. (1998). Language impairment in motor neurone disease. Journal of the 

Neurological Sciences, 160, S47-S52. 
 
Consonni, M., Catricalà, E., Dalla Bella, E., Gessa, V. C., Lauria, G., & Cappa, S. F. 

(2016). Beyond the consensus criteria: multiple cognitive profiles in amyotrophic 
lateral sclerosis?. Cortex, 81, 162-167. 

 
Curtiss, S., & Yamada, J. (2004). The Curtiss-Yamada Comprehensive Language 

Evaluation: The CYCLE. Baltimore, MD: A Fine Line. 
 
Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., & Damasio, A. (2004). Neural 

systems behind word and concept retrieval. Cognition, 92(1-2), 179-229. 
 
De Marchi, F., Tondo, G., Sarnelli, M. F., Corrado, L., Solara, V., D’Alfonso, S., ... & 

Mazzini, L. (2019). A case of progressive non-fluent aphasia as onset of 
amyotrophic lateral sclerosis with frontotemporal dementia. International Journal 
of Neuroscience, 129(7), 719-721. 

 
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system 

(D-KEFS). San Antonio, TX: Psychological Corporation. 
 
Dronkers, N. F., Ivanova, M. V., & Baldo, J. V. (2017). What do language disorders 

reveal about brain–language relationships? from classic models to network 
approaches. Journal of the International Neuropsychological Society, 23(9-10), 
741-754. 

 
Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. F. A. B. (2000). The FAB: A frontal 

assessment battery at bedside. Neurology, 55(11), 1621-1626. 
 
Elamin, M., Phukan, J., Bede, P., Jordan, N., Byrne, S., Pender, N., & Hardiman, O. 

(2011). Executive dysfunction is a negative prognostic indicator in patients with 
ALS without dementia. Neurology, 76(14), 1263-1269. 

 
Elamin, M., Pinto-Grau, M., Burke, T., Bede, P., Rooney, J., O’Sullivan, M., ... & Vajda, 

A. (2017). Identifying behavioural changes in ALS: validation of the Beaumont 
Behavioural Inventory (BBI). Amyotrophic Lateral Sclerosis and Frontotemporal 
Degeneration, 18(1-2), 68-73. 



 

 93 

93
 

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible 
statistical power analysis program for the social, behavioral, and biomedical 
sciences. Behavior Research Methods, 39(2), 175-191. 

 
Flaherty-Craig, C., Brothers, A., Dearman, B., Eslinger, P., & Simmons, Z. (2009). Penn 

State screen exam for the detection of frontal and temporal dysfunction 
syndromes: application to ALS. Amyotrophic Lateral Sclerosis, 10(2), 107-112. 

 
Floris, G., Borghero, G., Chiò, A., Secchi, L., Cannas, A., Sardu, C., ... & Marrosu, M. G. 

(2012). Cognitive screening in patients with amyotrophic lateral sclerosis in early 
stages. Amyotrophic Lateral Sclerosis, 13(1), 95-101. 

 
Freitas, S., Simões, M. R., Alves, L., Duro, D., & Santana, I. (2012). Montreal Cognitive 

Assessment (MoCA): Validation study for frontotemporal dementia. Journal of 
Geriatric Psychiatry and Neurology, 25(3), 146-154. 

 
Garcia-Willingham, N. E., Roach, A. R., Kasarskis, E. J., & Segerstrom, S. C. (2018). 

Self-Regulation and Executive Functioning as Related to Survival in Motor 
Neuron Disease: Preliminary Findings. Psychosomatic Medicine, 80(7), 665-672. 

 
Goodglass, H., Kaplan, E., & Barresi, B. (2001). Boston diagnostic aphasia examination- 

Third Edition. The assessment of aphasia and related disorders. Philadelphia, PA: 
Lippincott Williams & Wilkins. 

 
Gordon, P. H., Goetz, R. R., Rabkin, J. G., Dalton, K., Mcelhiney, M., Hays, A. P., 

Marder, K., Stern, Y., & Mitsumoto, H. (2010). A prospective cohort study of 
neuropsychological test performance in ALS. Amyotrophic Lateral Sclerosis, 
11(3), 312-320. 

 
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. 

E. E. A., ... & Manes, F. (2011). Classification of primary progressive aphasia and 
its variants. Neurology, 76(11), 1006-1014. 

 
Gorno-Tempini, M. L., Dronkers, N. F., Rankin, K. P., Ogar, J. M., La Phengrasamy, B. 

A., Rosen, H. J., & Johnson, J. K. (2004). Cognition and Anatomy in Three 
Variants of Primary Progressive Aphasia. Annals of Neurology, 55(3), 335-346. 

 
Graham, N. L., Patterson, K., & Hodges, J. R. (2004). When more yields less: Speaking 

and writing deficits in nonfluent progressive aphasia. Neurocase, 10(2), 141-155. 
 
Graves, R. E. (1997). The Legacy of the Wernicke‐Lichtheim Model. Journal of the 

History of the Neurosciences, 6(1), 3-20. 
 
Grossman, M., Anderson, C., Khan, A., Avants, B., Elman, L., & McCluskey, L. (2008). 

Impaired action knowledge in amyotrophic lateral sclerosis. Neurology, 71(18), 
1396-1401. 



 

 94 

94
 

Hammer, E. M., Häcker, S., Hautzinger, M., Meyer, T. D., & Kübler, A. (2008). Validity 
of the ALS-Depression-Inventory (ADI-12): A new screening instrument for 
depressive disorders in patients with amyotrophic lateral sclerosis. Journal of 
Affective Disorders, 109(1), 213-219. 

 
Harry, A., & Crowe, S. F. (2014). Is the Boston Naming Test still fit for purpose?. The 

Clinical Neuropsychologist, 28(3), 486-504. 
 
Heaton, R. K., Miller, S. W., Taylor, M. J., & Grant, I. (2004). Revised comprehensive 

norms for an expanded Halstead-Reitan Battery: Demographically adjusted 
neuropsychological norms for African American and Caucasian adults. Lutz, FL: 
Psychological Assessment Resources, Inc. 

 
Hodges, J. R., Salmon, D. P., & Butters, N. (1991). The nature of the naming deficit in 

Alzheimer's and Huntington's disease. Brain, 114(4), 1547-1558. 
 
Hoops, S., Nazem, S., Siderowf, A. D., Duda, J. E., Xie, S. X., Stern, M. B., & 

Weintraub, D. (2009). Validity of the MoCA and MMSE in the detection of MCI 
and dementia in Parkinson disease. Neurology, 73(21), 1738-1745. 

 
Jefferies, E., Patterson, K., & Ralph, M. A. L. (2008). Deficits of knowledge versus 

executive control in semantic cognition: Insights from cued naming. 
Neuropsychologia, 46(2), 649-658. 

 
Jelsone-Swain, L., Persad, C., Burkard, D., & Welsh, R. C. (2015). Action processing and 

mirror neuron function in patients with amyotrophic lateral sclerosis: An fMRI 
study. PLoS One, 10(4), e0119862. 

 
Jeste, D. V., Palmer, B. W., Appelbaum, P. S., Golshan, S., Glorioso, D., Dunn, L. B., ... 

 & Kraemer, H. C. (2007). A new brief instrument for assessing decisional 
capacity for clinical research. Archives of General Psychiatry,64(8), 966-974. 

 
Johns, M. W. (1991). A new method for measuring daytime sleepiness: The Epworth 

sleepiness scale. Sleep, 14(6), 540-545. 
 
Kamminga, J., Leslie, F. V., Hsieh, S., Caga, J., Mioshi, E., Hornberger, M., ... & Burrell, 

J. R. (2016). Syntactic comprehension deficits across the FTD-ALS continuum. 
Neurobiology of Aging, 41, 11-18. 

 
Klein, L. A., & Buchanan, J. A. (2009). Psychometric properties of the pyramids and 

palm trees test. Journal of Clinical and Experimental Neuropsychology, 31(7), 
803-808. 

 
Leslie, F. V., Hsieh, S., Caga, J., Savage, S. A., Mioshi, E., Hornberger, M., ... & Burrell, 

J. R. (2015). Semantic deficits in amyotrophic lateral sclerosis. Amyotrophic 
Lateral Sclerosis and Frontotemporal Degeneration, 16(1-2), 46-53. 



 

 95 

95
 

Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological 
assessment. New York, NY : Oxford University Press. 

 
Libon, D. J., McMillan, C., Avants, B., Boller, A., Morgan, B., Burkholder, L., ... & 

Grossman, M. (2012). Deficits in concept formation in amyotrophic lateral 
sclerosis. Neuropsychology, 26(4), 422-429. 

 
Long, Z., Irish, M., Piguet, O., Kiernan, M. C., Hodges, J. R., & Burrell, J. R. (2019). 

Clinical and neuroimaging investigations of language disturbance in 
frontotemporal dementia–motor neuron disease patients. Journal of Neurology, 
266(4), 921-933. 

 
Lulé, D., Burkhardt, C., Abdulla, S., Böhm, S., Kollewe, K., Uttner, I., ... & Ludolph, A. 

C. (2015). The Edinburgh Cognitive and Behavioural Amyotrophic Lateral 
Sclerosis Screen: A cross-sectional comparison of established screening tools in a 
German-Swiss population. Amyotrophic Lateral Sclerosis and Frontotemporal 
Degeneration, 16(1-2), 16-23. 

 
Mackinnon, A. (2000). A spreadsheet for the calculation of comprehensive statistics for 

the assessment of diagnostic tests and inter-rater agreement. Computers in 
Biology and Medicine, 30(3), 127-134. 

 
Marshall, R. J. (1989). The predictive value of simple rules for combining two diagnostic 

tests. Biometrics, 1213-1222. 
 
Massman, P. J., Sims, J., Cooke, N., Haverkamp, L. J., Appel, V., & Appel, S. H. (1996). 

Prevalence and correlates of neuropsychological deficits in amyotrophic lateral 
sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 61(5), 450-455. 

 
McKenzie, D. P., Vida, S., Mackinnon, A. J., Onghena, P., & Clarke, D. M. (1997). 

Accurate confidence intervals for measures of test performance. Psychiatry 
Research, 69(2-3), 207-209. 

 
Migliaccio, R., Boutet, C., Valabregue, R., Ferrieux, S., Nogues, M., Lehéricy, S., ... & 

Teichmann, M. (2016). The brain network of naming: A lesson from primary 
progressive aphasia. PloS one, 11(2), e0148707. 

 
Miller, Z. A., Mandelli, M. L., Rankin, K. P., Henry, M. L., Babiak, M. C., Frazier, D. T., 

... & Graff-Radford, N. R. (2013). Handedness and language learning disability 
differentially distribute in progressive aphasia variants. Brain, 136(11), 3461-
3473. 

 
Mitrushina, M., Boone, K. B., Razani, J., & D'Elia, L. F. (2005). Handbook of normative 

data for neuropsychological assessment. New York, NY: Oxford University 
Press. 

 



 

 96 

96
 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. 
D. (2000). The unity and diversity of executive functions and their contributions 
to complex “frontal lobe” tasks: A latent variable analysis. Cognitive 
Psychology, 41(1), 49-100. 

 
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, 

I., ... & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A 
brief screening tool for mild cognitive impairment. Journal of the American 
Geriatrics Society, 53(4), 695-699. 

 
National Institute for Health and Care Excellence, NICE (2016). Clinical Guideline 

NG42. Motor neurone disease: assessment and management. Retrieved from 
www.nice.org.uk/guidance/ng42  

 
Niven, E., Newton, J., Foley, J., Colville, S., Swingler, R., Chandran, S., ... & Abrahams, 

S. (2015). Validation of the Edinburgh Cognitive and Behavioural Amyotrophic 
Lateral Sclerosis Screen (ECAS): A cognitive tool for motor disorders. 
Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16(3-4), 172-
179. 

 
Novais-Santos, S., Gee, J., Shah, M., Troiani, V., Work, M., & Grossman, M. (2007). 

Resolving sentence ambiguity with planning and working memory resources: 
Evidence from fMRI. NeuroImage, 37(1), 361-378. 

 
Osborne, R. A., Sekhon, R., Johnston, W., & Kalra, S. (2014). Screening for frontal lobe 

and general cognitive impairment in patients with amyotrophic lateral 
sclerosis. Journal of the Neurological Sciences, 336(1), 191-196. 

 
Oskarsson, B., Quan, D., Rollins, Y. D., Neville, H. E., Ringel, S. P., & Arciniegas, D. B. 

(2010). Using the Frontal Assessment Battery to identify executive function 
impairments in amyotrophic lateral sclerosis: a preliminary experience. 
Amyotrophic Lateral Sclerosis, 11(1-2), 244-247. 

 
Papeo, L., Cecchetto, C., Mazzon, G., Granello, G., Cattaruzza, T., Verriello, L., ... & 

Rumiati, R. I. (2015). The processing of actions and action-words in amyotrophic 
lateral sclerosis patients. Cortex, 64, 136-147. 

 
Patterson, K., Graham, N., Ralph, M. A. L., & Hodges, J. (2006). Progressive non-fluent 

aphasia is not a progressive form of non-fluent (post-stroke) aphasia. 
Aphasiology, 20(9), 1018-1034. 

 
Phukan, J., Elamin, M., Bede, P., Jordan, N., Gallagher, L., Byrne, S., ... & Hardiman, O. 

(2012). The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a 
population-based study. Journal of Neurology, Neurosurgery & Psychiatry, 83(1), 
102-108. 

 



 

 97 

97
 

Pinto-Grau, M., Burke, T., Lonergan, K., McHugh, C., Mays, I., Madden, C., ... & 
Pender, N. (2017). Screening for cognitive dysfunction in ALS: validation of the 
Edinburgh Cognitive and Behavioural ALS Screen (ECAS) using age and 
education adjusted normative data. Amyotrophic Lateral Sclerosis and 
Frontotemporal Degeneration, 18(1-2), 99-106. 

 
Pinto-Grau, M., Hardiman, O., & Pender, N. (2018). The study of language in the 

amyotrophic lateral sclerosis-frontotemporal spectrum disorder: a systematic 
review of findings and new perspectives. Neuropsychology Review, 28(2), 251-
268. 

 
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature 

Reviews Neuroscience, 8(5), 393-402. 
 
Pringle, C. E., Hudson, A. J., Munoz, D. G., Kiernan, J. A., Brown, W. F., & Ebers, G. C. 

(1992). Primary lateral sclerosis: clinical features, neuropathology and diagnostic 
criteria. Brain, 115(2), 495-520. 

 
Raaphorst, J., Beeldman, E., Schmand, B., Berkhout, J., Linssen, W. H., van den Berg, L. 

H., ... & Papma, J. M. (2012). The ALS-FTD-Q: A new screening tool for 
behavioral disturbances in ALS. Neurology, 79(13), 1377-1383. 

 
Raaphorst, J., de Visser, M., Linssen, W. H., de Haan, R. J., & Schmand, B. (2010). The 

cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotrophic 
Lateral Sclerosis, 11(1-2), 27-37. 

 
Rohrer, J. D., Knight, W. D., Warren, J. E., Fox, N. C., Rossor, M. N., & Warren, J. D. 

(2008). Word-finding difficulty: a clinical analysis of the progressive aphasias. 
Brain, 131(1), 8-38. 

 
Rakowicz, W. P., & Hodges, J. R. (1998). Dementia and aphasia in motor neuron disease: 

an underrecognised association?. Journal of Neurology, Neurosurgery & 
Psychiatry, 65(6), 881-889. 

 
Sanofi-Aventis (2010). Rilutek (riluzole) package insert. Bridgewater, NJ: Sanofi-

Aventis. 
 
Seelen, M., van Doormaal, P. T., Visser, A. E., Huisman, M. H., Roozekrans, M. H., de 

Jong, S. W., ... & van den Berg, L. H. (2014). Prior medical conditions and the 
risk of amyotrophic lateral sclerosis. Journal of Neurology, 261(10), 1949-1956. 

 
Shao, Z., Janse, E., Visser, K., & Meyer, A. S. (2014). What do verbal fluency tasks 

measure? Predictors of verbal fluency performance in older adults. Frontiers in 
Psychology, 5(772), 1-10. 

 



 

 98 

98
 

Skenes, L. L., & McCauley, R. J. (1985). Psychometric review of nine aphasia tests. 
Journal of Communication Disorders, 18(6), 461-474. 

 
Smith-Seemiller, L., Franzen, M. D., Burgess, E. J., & Prieto, L. R. (1997). 

Neuropsychologists' practice patterns in assessing premorbid intelligence. 
Archives of Clinical Neuropsychology, 12(8), 739-744. 

 
Spreen, O., & Risser, A. H. (2003). Assessment of aphasia. New York, NY: Oxford 

University Press. 
 
Streiner, D. L. (2003). Diagnosing tests: Using and misusing diagnostic and screening 

tests. Journal of Personality Assessment, 81(3), 209-219. 
 
Stern, R. A., & White, T. (2003). Neuropsychological assessment battery. Lutz, FL: 

Psychological Assessment Resources Inc. 
 
Strauss, E., Sherman, E. M., & Spreen, O. (2006). A Compendium of neuropsychological 

tests: Administration, norms, and commentary (3rd ed.). New York, NY: Oxford 
University Press. 

 
Strong, M. J., Abrahams, S., Goldstein, L. H., Woolley, S., Mclaughlin, P., Snowden, J., 

... & Rosenfeld, J. (2017). Amyotrophic lateral sclerosis-frontotemporal spectrum 
disorder (ALS-FTSD): Revised diagnostic criteria. Amyotrophic Lateral Sclerosis 
and Frontotemporal Degeneration, 18(3-4), 153-174. 

 
Strong, M. J., Grace, G. M., Freedman, M., Lomen-Hoerth, C., Woolley, S., Goldstein, L. 

H., ... & Bruijn, L. (2009). Consensus criteria for the diagnosis of frontotemporal 
cognitive and behavioural syndromes in amyotrophic lateral sclerosis. 
Amyotrophic Lateral Sclerosis, 10(3), 131-146. 

 
Strong, M. J., Grace, G. M., Orange, J. B., & Leeper, H. A. (1996). Cognition, language, 

and speech in amyotrophic lateral sclerosis: a review. Journal of Clinical and 
Experimental Neuropsychology, 18(2), 291-303. 

 
Talbot, P. R., Goulding, P. J., Lloyd, J. J., Snowden, J. S., Neary, D., & Testa, H. J. 

(1995). Inter-relation between" classic" motor neuron disease and frontotemporal 
dementia: neuropsychological and single photon emission computed tomography 
study. Journal of Neurology, Neurosurgery & Psychiatry, 58(5), 541-547. 

 
Taylor, L. J., Brown, R. G., Tsermentseli, S., Al-Chalabi, A., Shaw, C. E., Ellis, C. M., ... 

& Goldstein, L. H. (2013). Is language impairment more common than executive 
dysfunction in amyotrophic lateral sclerosis?. Journal of Neurology, 
Neurosurgery & Psychiatry, 84(5), 494-498. 

 
Thompson, M. L. (2003). Assessing the diagnostic accuracy of a sequence of tests. 

Biostatistics, 4(3), 341-351. 



 

 99 

99
 

Thurstone, L. L. (1938). Primary mental abilities. University of Chicago Press, Chicago, 
IL. 

 
Tsermentseli, S., Leigh, P. N., Taylor, L. J., Radunovic, A., Catani, M., & Goldstein, L. 

H. (2016). Syntactic processing as a marker for cognitive impairment in 
amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal 
Degeneration, 17(1-2), 69-76. 

 
Wechsler, D. (1981). Wechsler adult intelligence scale-revised manual. New York, NY: 

Psychological Corporation. 
 
Wittich, W., Phillips, N., Nasreddine, Z. S., & Chertkow, H. (2010). Sensitivity and 

specificity of the Montreal Cognitive Assessment modified for individuals who 
are visually impaired. Journal of Visual Impairment & Blindness, 104(6), 360-
369. 

Woolley, S. C., York, M. K., Moore, D. H., Strutt, A. M., Murphy, J., Schulz, P. E., & 
Katz, J. S. (2010). Detecting frontotemporal dysfunction in ALS: utility of the 
ALS Cognitive Behavioral Screen (ALS-CBS™). Amyotrophic Lateral 
Sclerosis, 11(3), 303-311. 

 
Yoshizawa, K., Yasuda, N., Fukuda, M., Yukimoto, Y., Ogino, M., Hata, W., ... & 

Higashikawa, M. (2014). Syntactic comprehension in patients with amyotrophic 
lateral sclerosis. Behavioural Neurology,  2014, 230578. 

 
York, C., Olm, C., Boller, A., McCluskey, L., Elman, L., Haley, J., ... & McMillan, C. 

(2014). Action verb comprehension in amyotrophic lateral sclerosis and 
Parkinson’s disease. Journal of Neurology, 261(6), 1073-1079. 

  



 

 100 

10
0 

Natasha Elsa Garcia-Willingham 
 

VITA 

EDUCATION 
 
2015 
 
 
2009 
 
 

M.S., Clinical Psychology, Neuropsychology Track 
University of Kentucky, Lexington, KY 
 
B.A., Psychology with Honors 
University of South Florida, Tampa, FL 

SCHOLASTIC AND PROFESSIONAL HONORS 
2018 
2016 
2015 
 
 
 
2015 
2013 
2011 
2010 
2009 

University of Kentucky Nominee for the APA Dissertation Research Fellowship 
Citation Poster at Annual Meeting of the American Psychosomatic Society 
Professional Student Mentored Research Fellowship through the National Center 
for Advancing Translational Sciences, Dean of the College of Medicine, via 
internal National Institutes of Health (NIH) grant (UL1TR000117), University 
of Kentucky 
American Psychosomatic Society, Minority Travel Award 
Lyman T. Johnson Fellowship 
Moffitt Cancer Center Scientific Retreat, Outstanding Poster Award 
Moffitt Cancer Center Scientific Retreat, Outstanding Poster Award 
University of South Florida Undergraduate Research Symposium, 1st place in 
the Behavioral Sciences Division 

 
PROFESSIONAL POSITIONS: RESEARCH 

  
July 2018-  
Present 
 
 
April 2018-  
Present 
 
 
 
 
July 2013-  
July 2017 
 
 
Jan 2017- 
Dec 2017 
 
 

Doctoral Candidate Researcher | Language Dysfunction in Motor 
Neuron Disease: Cognitive Features and Screening Sensitivity 
University of Kentucky, Departments of Psychology and Neurology 
 
Graduate Research Assistant | Associations among PTSD, Cognitive 
Functioning, and Health-Promoting Behaviors in OEF/OIF 
Veterans 
University of Kentucky, Department of Social Work, in collaboration 
with the Central Texas VAMC, Waco division 
 
Graduate Research Assistant | Psychoneuroimmunology Research 
Lab University of Kentucky, Department of Psychology 
 
Graduate Research Assistant | Ego Depletion Replication Project 
University of Kentucky, Department of Psychology, in collaboration 
with the University of Minnesota 



 

 101 

10
1 

Feb 2016- 
Nov 2016 
 
 
 
Aug 2011-  
June 2013 
 
 
Feb 2008- 
July 2011 

Graduate Research Assistant | Deep Brain Stimulation for 
Parkinson’s Disease: An Investigation of Post-Surgical Self-
Regulation and Cognitive Functioning 
University of Kentucky, Departments of Psychology and Neurology 
 
Clinical Research Coordinator | ALS Research Collaboration Lab 
University of Miami Miller School of Medicine, Department of 
Neurology 
 
Research Coordinator (promoted from Undergraduate Intern) | 
Tobacco Research and Intervention Program 
University of South Florida, Moffitt Cancer Center 
 

PROFESSIONAL POSITIONS: CLINICAL 
 
March 2015- 
May 2019 

Adult Assessment Extern | Jesse G. Harris Psychological Service 
Center 
University of Kentucky, Lexington, KY 
 

July 2017- 
July 2018 
 

Spinal Cord Unit Extern | Cardinal Hill Rehabilitation Hospital 
Lexington, KY 
 

Sept. 2014- 
Sept. 2017 

Adult Individual Therapist Extern | Jesse G. Harris Psychological 
Service Center 
University of Kentucky, Lexington, KY 
 

Sept. 2016- 
June 2017 

Neuropsychology Extern | Robley Rex Veterans Affairs Medical 
Center (VAMC) 
Louisville, KY 
 

Feb. 2017- 
April 2017 
 

Healthy Relationships Group Leader | Salvation Army Women’s 
Emergency Shelter 
Lexington, KY 
 

Sept. 2015-  
May 2016 

Neuropsychology Extern | Norton Neuroscience Institute 
Norton Healthcare, Louisville, KY 
 

Sept. 2015- 
Nov. 2015 
 

Mindfulness Group Co-leader | Jesse G. Harris Psychological 
Service Center 
University of Kentucky, Lexington, KY 
 

May 2014-  
May 2015 
 

Home Based Primary Care Psychology Extern | Lexington VAMC 
Leestown Division, Lexington, KY 

Aug. 2013-  
April 2014 

Psychological Assessment Extern | University of Kentucky 
Lexington, KY 



 

 102 

10
2 

 
PROFESSIONAL POSITIONS: TEACHING 
 
Aug. 2018- 
May 2019 
 
Nov. 13th, 2018 
 

Teaching Assistant | University of Kentucky 
Personality Psychology, undergraduate 300 level course 
 
Guest Lecturer | University of Kentucky 
Personality Psychology, undergraduate 300 level course 

 
PUBLICATIONS 
 
Wallace, E. R., Garcia-Willingham, N. E., Walls, B. D., Bosch, C. M., Balthrop, K. C., 

& Berry, D. T. R. (2019). A meta-analysis of malingering detection measures for 
attention-deficit/hyperactivity disorder. Psychological Assessment, 31(2), 265-
270. 

 
Garcia-Willingham, N. E., Roach, A. R., Kasarskis, E. J., & Segerstrom, S. C. (2018). 

Self-Regulation and Executive Functioning as Related to Survival in Motor 
Neuron Disease: Preliminary Findings. Psychosomatic Medicine, 80(7), 665-672. 

 
Combs, H. L., Garcia-Willingham, N. E., Berry, D. T. R., van Horne, C. G., & 

Segerstrom, S. C. (2018). Psychological functioning in Parkinson's disease post-
deep brain stimulation: Self-regulation and executive functioning. Journal of 
Psychosomatic Research, 111, 42-49. 

 
Scott, A. B., Reed, R. G., Garcia-Willingham, N. E., Lawrence, K. A., & Segerstrom, S. 

C. (2018). Lifespan Socioeconomic Context: Associations with Cognitive 
Functioning in Later Life. The Journals of Gerontology: Series B, 74(1), 113-125. 

 
Garcia, N. E., Morey, J. N., Kasarskis, E. J., & Segerstrom, S. C. (2017). Purpose in life 

in ALS patient–caregiver dyads: A multilevel longitudinal analysis. Health 
Psychology, 36(11), 1092-1104. 

 
BOOK CHAPTER  
 
Garcia, N. E., Bosch, C. M., Walls, B. D., & Berry, D. T. R. (2018). Assessment of 

feigned cognitive impairment using standard neuropsychological tests. In R. 
Rogers (Ed.) Clinical Assessment of Malingering and Deception (4th ed). 



 

 103 

10
3 

POSTERS 
 
Wallace, E. R., Balthrop, K. C., Brothers, S. L., Borger, T. N., Garcia-Willingham, N. 

E., Walls, B. D., & Berry, D. T. R. (2019). “Conners’ Adult ADHD Rating 
Scales–Self-Report: Long Version Infrequency Index validation and pilot 
comparison of administration formats.” Poster at the annual meeting of the 
International Neuropsychological Society, New York, NY. 

 
Lawrence, K. A., DeBeer, B. B., Garcia-Willingham, N. E., Meyer, E., Kimbrel, N. A., 

Gulliver, S. B. & Morissette, S. B. (2018). “Does PTSD Moderate the Association 
between Neuropsychological Functioning and Health Behaviors in Iraq and 
Afghanistan Veterans?” Poster at the annual meeting of the International Society 
for Traumatic Stress Studies, Washington, D.C. 

 
Wallace, E. R., Garcia-Willingham, N. E., Walls, B. D., Bosch, C. M., Balthrop, K., & 

Berry, D. T. R. (2018, February). “A meta-analysis of malingering detection 
measures for attention deficit/hyperactivity disorder.” Poster at the annual 
meeting of the International Neuropsychological Society, Washington, D.C. 

 
Garcia, N. E., Combs, H. L., Roach, A. R., Anderson, A. J., van Horne, C. G., Berry, D. 

T. R., & Segerstrom, S. C. (2017, February). “Wisconsin Card Sorting Test 
subscales in Parkinson’s disease and Amyotrophic Lateral Sclerosis.” Poster 
presented at the annual meeting of the International Neuropsychology Society, 
New Orleans, LA. 

 
Combs, H. L., Garcia, N. E., Berry, D. T. R., & Segerstrom, S. C. (2017, February). 

“Deep Brain Stimulation for Parkinson’s Disease: An Investigation of Post-
Surgical Self-Regulation and Executive Functioning.” Poster at the annual 
meeting of the International Neuropsychological Society, New Orleans, LA. 

 
Garcia, N. E., Roach, A. B., Kasarskis, E. J., & Segerstrom, S. C. (2016, March/ 2016, 

April). “Survival in Motor Neuron Disease: An Analysis of Executive Functioning 
and Behavior.” Poster presented at (1) the annual meeting of the American 
Psychosomatic Society Conference, Denver, CO, and (2) the University of 
Kentucky Center for Clinical and Translational Science Spring Conference, 
Lexington, KY. 

 
Benatar, M., Carlile, R., Reyes, E., Hussain, S., Garcia, N. E., Andersen, P., Stanislaw, 

C., & Wuu, J. (2015, April). “Models of ALS Disease Onset and Progression: 
Insights from the Pre-fALS Study.” Annual meeting of the American Academy of 
Neurology, Washington, D.C. 

 



 

 104 

10
4 

Garcia, N. E., Kasarskis, E. J., & Segerstrom, S. C. (2015, March/ 2015, March). 
“Purpose in Life in ALS Patient-Caregiver Dyads: Effects of Disease 
Progression.” Poster presented at (1) the annual meeting of the American 
Psychosomatic Society, Savannah, GA, and (2) Kentucky Psychological 
Foundation Spring Academic Conference, Midway, KY. 

 
Garcia, N. E., & Segerstrom, S. C. (2014, March). “Five-Factor Personality Dimensions 

Correlate with Different Cognitive Abilities Among Older Adults.” Poster 
presented at the annual meeting of the American Psychosomatic Society, San 
Francisco, CA. 

 
Garcia, N. E., Combs, H. L., & Segerstrom, S. C. (2014, February). “Practice Effects 

and Longitudinal Change in Processing Speed and Executive Functioning Among 
Older Adults.” Poster presented at the annual meeting of the International 
Neuropsychology Society, Seattle, WA. 

 
Combs, H. L., Garcia, N. E., Segerstrom, S. C. (2014, February). “Age and IQ Moderate 

Practice Effects of Verbal  Memory Ability in Older Adults.” Poster at the 
annual meeting of the International Neuropsychology Society, Seattle, WA. 

 
Garcia, N. E., Ornduff, R. D., Oliver, J. A., Drobes, D. J., & Evans, D. E. (2011, 

February / 2011, March). “Effects of Nicotine versus Placebo on N-back 
Performance in Smokers.” Poster presented at (1) the annual meeting of the 
Society for Research on Nicotine and Tobacco, Toronto, ON. (2) Updated poster 
presented at the Moffitt Cancer Center Scientific Retreat, Tampa, FL. 

 
Ornduff, R. D., Garcia, N. E., Oliver, J. A., Drobes, D. J., & Evans, D. E. (2011, 

February). “Nicotine Effects on Vigilant Attention and Working Memory among 
Nonsmokers.” Poster at the annual meeting of the Society for Research on 
Nicotine and Tobacco, Toronto, ON. 

 
Ditre, J., Oliver, J. A., Garcia, N. E., Evans, D. E., & Drobes, D. J. (2010, October). 

“Emotional Reactivity and Divalproex: Independence of Autonomic and Somatic 
Systems.” Poster at the annual meeting of the Society for Psychophysiological 
Research, Portland, OR. 

 
Evans, D. E., Ornduff, R. D., Garcia, N. E., Park, J. Y., & Drobes, D. J. (2010, October). 

“An ERP index of Attentional Bias to Negative Affect Words among Smokers.” 
Poster presented at the annual meeting of the Society for Psychophysiological 
Research, Portland, OR. 

 



 

 105 

10
5 

Garcia, N. E., Oliver, J. A., Elibero, A., & Drobes, D. J. (2009, February / 2010, March). 
“Effects of Yoga and Cardiovascular Exercise on Cue Reactivity while 
Attempting Smoking Cessation.” Poster presented at (1) the University of South 
Florida Undergraduate Research Symposium, Tampa, FL. (2) Updated poster 
presented at the Moffitt Cancer Center Scientific Retreat Poster Session, Tampa, 
FL. 

 
 
Natasha Garcia-Willingham 


	LANGUAGE DYSFUNCTION IN MOTOR NEURON DISEASE: COGNITIVE FEATURES AND SCREENING SENSITIVITY
	Recommended Citation

	Title page
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.2 Cognitive Screening in Motor Neuron Disease
	1.3 Broad Cognitive Assessment Issues in Motor Neuron Disease
	1.4 Language Dysfunction in Motor Neuron Disease
	1.5 The Current Study
	1.5.1 Primary aims.
	1.5.2 Exploratory aim.


	CHAPTER 2: METHODS
	2.1 Participants
	2.1.1 A priori power analyses.
	2.1.2 Patient sample.
	2.1.3 Control sample.

	2.2 Data Collection Procedure
	2.2.1 Patient data collection.
	2.2.2 Control data collection.

	2.3 Assessment Construction and Description
	2.3.1 Unique psychometric issues for language tests.
	2.3.2 Defining impairment: Individual test level.
	2.3.3 Defining impairment: Diagnostic level.

	2.4 Measures
	2.4.1 Descriptive measures.
	2.4.2 Brief cognitive screens.
	2.4.3 Verbal fluency evaluation.
	2.4.4 Comprehensive language battery.

	2.5 Data Analyses
	2.5.1 Gold standard impairment classification.
	2.5.2 Cognitive screening operating characteristics.
	2.5.3 Cognitive screening interrelationships.


	CHAPTER 3: RESULTS
	3.1 Disease Characteristics
	3.2 Normative Data: Spoken vfi and KDT
	3.3 Comprehensive Assessment: Task-Level Impairments
	3.4 Comprehensive Language Assessment: Diagnostic Evaluation
	3.4.1 Characteristics by Language Impairment Status

	3.5 Cognitive Screening
	3.5.1 Cognitive screening: Detection of language impairments.
	3.5.2 Cognitive screening: Serial combinations.
	3.5.3 Cognitive screening: Convergent and discriminant validity.


	CHAPTER 4: DISCUSSION
	4.1 MND Cognitive Profile: Language Dysfunction
	4.1.1 Language characteristics.
	4.1.2 MND/ALSci subgroups.

	4.2 MND Cognitive Screening
	4.2.1 MND cognitive screening: Convergent and discriminant validity.

	4.3 Clinical Implications
	4.4 Limitations
	4.4.1 Sampling
	4.4.2 Assessment

	4.5 Future Research
	4.6 Conclusion

	REFERENCES
	VITA

