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A growing body of evidence indicates that biomarkers of cardiovascular risk may be
related to cerebral health. However, little is known about the role that non-fasting
lipoproteins play in assessing age-related declines in a cerebral biomarker sensitive
to vascular compromise, white matter (WM) microstructure. High-density lipoprotein
cholesterol (HDL-C) is atheroprotective and low-density lipoprotein cholesterol (LDL-C)
is a major atherogenic lipoprotein. This study explored the relationships between
non-fasting levels of cholesterol and WM microstructure in healthy older adults.
A voxelwise and region of interest approach was used to determine the relationship
between cholesterol and fractional anisotropy (FA). Participants included 87 older adults
between the ages of 59 and 77 (mean age = 65.5 years, SD = 3.9). Results indicated
that higher HDL-C was associated with higher FA in diffuse regions of the brain
when controlling for age, sex, and body mass index (BMI). HDL-C was also positively
associated with FA in the corpus callosum and fornix. No relationship was observed
between LDL-C and FA. Findings suggest that a modifiable lifestyle variable associated
with cardiovascular health may help to preserve cerebral WM.

Keywords: high-density lipoprotein, white matter, fornix, cholesterol, aging

INTRODUCTION

Elevated levels of cholesterol are linked to atherosclerotic and cerebrovascular disease (Yaghi
and Elkind, 2015). Hypercholesterolemia, high levels of low-density lipoprotein cholesterol
(LDL-C), and dyslipidemia, low levels of high-density lipoprotein cholesterol (HDL-C), are
associated with a number of neurological pathologies (Anstey et al., 2008; Crisby et al., 2010; Ward
et al., 2010; Segatto et al., 2014). LDL-C is considered to be the major atherogenic lipoprotein
(Young and Parthasarathy, 1994). HDL-C is known to play a role in reverse transport of free
cholesterol (Genest et al., 1999; Von Eckardstein and Assmann, 2000), and is atheroprotective
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(Stein and Stein, 1999). A plethora of research demonstrates
that proper regulation of lipoproteins preserves vascular health.
However, less is known about the relationship between
cholesterol and neuroimaging measures of neuronal health, or
white matter (WM) microstructure.

Divergent associations have been reported between serum
lipoprotein levels and WM microstructure in healthy adults
(Williams et al., 2013; Lou et al., 2014; Warstadt et al.,
2014). Inverse relationships between fasting LDL-C and WM
microstructure (fractional anisotropy; FA) have been reported in
young adults (Lou et al., 2014) and in a sample of middle-aged
and older adults (Williams et al., 2013). An absence of a
relationship has also been reported when using non-fasting
adolescent LDL-C values to predict young adulthood FA values
(Warstadt et al., 2014). However, Warstadt et al. (2014) did
observe a relationship between non-fasting adolescent HDL-C
and FA in young adulthood. Finally, Williams et al. (2013) report
both positive and negative relationships between FA and fasting
HDL-C in a sample of middle-aged and older adults. Discrepant
findings are likely due to heterogeneous age groups, across
and within sample populations, differences in neuroimaging
methodology, cultural and lifestyle variables, and a collection of
fasting and non-fasting lipid levels.

Recent evidence supports the use of non-fasting lipid
biomarkers when assessing cardiovascular risk (Driver et al.,
2016; Mora, 2016; Nordestgaard et al., 2016a,b). Non-fasting
HDL-C levels may be more clinically relevant as they best
approximate the atheroprotective benefits of lifestyle behaviors.
Low levels of HDL-C are associated with deleterious changes
in cognition, gray matter (GM) and WM (Crisby et al., 2010;
Ward et al., 2010). HDL-C also helps to prevent the deleterious
effects of β-amyloid (Aβ) deposition (Koudinov et al., 2001;
Robert et al., 2017; Chernick et al., 2018). Thus, understanding
the relationship between HDL-C and brain structure will
provide a better understanding of how an atheroprotective
modifiable risk factor attenuates age-related declines in
WMmicrostructure.

WM microstructure declines with age (Madden et al.,
2004; Johnson et al., 2013), and non-modifiable variables,
such as APOEε4+ carrier status, have detrimental effects on
WM microstructure. The corpus callosum, cingulum, inferior
longitudinal fasciculus (ILF), and internal capsule represent WM
tracts sensitive to APOEε4+ carrier status (Cavedo et al., 2017)
and demonstrate declines in early Alzheimer’s disease (AD)
pathology (Xie et al., 2006; Sydykova et al., 2007; Teipel et al.,
2007; Tsao et al., 2014; Lee et al., 2016). Significant gaps remain in
the literature regarding the relationship between non-modifiable
variables, such as APOE status, and modifiable lifestyle variables,
such as cholesterol (Anstey et al., 2017). This study focuses on the
relationship between a modifiable lifestyle variable, cholesterol,
and WMmicrostructure across these sensitive regions.

Another WM tract that is sensitive to aging and
neurodegeneration is the fornix (Stadlbauer et al., 2008b;
Yasmin et al., 2009; Michielse et al., 2010; Sullivan et al., 2010).
The fornix is a bi-directional pathway to, from, and between
hippocampi. It is comprised of cholinergic inputs, and a diversity
of efferent pathways to subcortical and prefrontal regions.

The fornix plays a critical role in episodic memory (Douet
and Chang, 2015). Fornix microstructure is associated with
memory performance (Rudebeck et al., 2009; Zahr et al., 2009;
Fletcher et al., 2013), and represents a non-invasive biomarker
of preclinical AD (Nowrangi and Rosenberg, 2015). Thus,
the fornix also warrants selective attention in determining
the protective or deleterious effects of serum lipoproteins on
WMmicrostructure.

In the present study, we used diffusion tensor imaging (DTI)
to determine the relationship between serum cholesterol and
WM microstructure. HDL-C was of primary interest due to its
long-standing predictability of cardiovascular disease (Rahman
et al., 2018), but WM-LDL-C relationships were also considered.
Specifically, we explored potential relationships between HDL-C,
LDL-C and WM microstructure using a voxelwise and a region
of interest approach. WM regions that were previously shown
to be sensitive to aging, carrier status and AD were of primary
interest (Madden et al., 2004; Stadlbauer et al., 2008a; Michielse
et al., 2010; Cavedo et al., 2017).

MATERIALS AND METHODS

Participants
A total of 87 (34 males; mean age = 65.5, SD = 3.9) right-
handed subjects were included in this analysis. Participant data
were combined across two different neuroimaging studies at the
University of Kentucky. Informed consent was obtained from
each participant under an approved University of Kentucky
Institutional Review Board protocol. Participants met all criteria
for participating in a magnetic resonance imaging (MRI)
study. Exclusion for the MRI study included history of a
major head injury and/or concussion, neurological disorder
(e.g., stroke, seizure), a major psychiatric condition (e.g.,
depression), uncontrolled hypertension or diabetes mellitus,
reported psychotropic drug use, or the presence of metal
fragments and/ormetallic implants that could cause bodily injury
or disrupt the magnetic field. Mini Mental State Examination
(MMSE) scores determined that all participants were cognitively
healthy at the time of testing (mean = 29.0, SD = 1.1,
minimum = 25).

Blood Draws
Venipuncture was used to collect all non-fasting blood samples.
Samples were collected from the antecubital area of the arm.
Samples were placed into four vacuum tubes. Two sample tubes
(3.0 mL with Lithium Heparin, and 3.0 mL with EDTA) were
sent to UK Healthcare Clinical Laboratory for Basic Metabolic
Panel, Lipid Panel, and Hematocrit. Lipid profile analyses were
performed by the University of Kentucky Center for Clinical
and Translational Science Biomarker Analytics Lab. The Roche
Cobas 8000 analyzer (Roche Diagnostics, Mannheim, Germany)
was used to determine cholesterol levels.

Diffusion Tensor Imaging Acquisition
Data were acquired on a 3T TIM Siemens scanner at
the University of Kentucky’s MRI and Spectroscopy Center.
A 32-channel head coil was used. Whole brain diffusion tensor
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TABLE 1 | Demographic data and lipoprotein levels.

Subjects Age Height (m) Weight (kg) HDL (mg/dL) LDL (mg/dL) BMI (kg/m2)

n = 87 65.5 (3.9) 1.69 (0.10) 77.3 (16.3) 64.9 (20.1) 103.9 (36.7) 26.87 (4.7)
Female n = 53 65.4 (4.1) 1.64 (0.07) 69.8 (12.2) 72.1 (18.9) 103.1 (34.9) 26.02 (4.3)
Male n = 34 65.9 (3.8) 1.78∗∗ (0.07) 88.9∗∗ (15.0) 53.6∗∗ (16.6) 105.1 (39.8) 28.20∗ (5.0)

Abbreviations: m, meters; kg, kilograms; HDL, high-density lipoprotein; LDL, low-density lipoprotein; mg/dL, milligrams per deciliter; BMI, body mass index. Note: values are means
and values in parentheses are SD. ∗P < 0.05; ∗∗P < 0.0001.

images were acquired with 60 non-collinear encoding directions
(b = 1,000 s/mm2) and eight images without diffusion weighting
(b = 0 s/mm2, b0), using an axial double refocused spin echo EPI
sequence (TR = 8,000 ms, TE = 96 ms, FOV = 224 mm, 52 slices,
2 mm isotropic resolution). All b0 images were collected at the
beginning of the sequence.

Diffusion Tensor Imaging Preprocessing
and Analysis
All DTI data were processed and analyzed using the Functional
MRI of the Brain (FMRIB) software library (FSL v5.0.10).
Raw images were pre-processed to correct for motion and
residual eddy current distortion using a 12-parameter affine
alignment to the corresponding b0 image via FSL’s eddy_correct
command. A three-dimensional volume with no diffusion was
generated using the nodif command, and a brain mask was
generated using FMRIB’s brain extraction tool (BET v2.1) to
exclude non-brain voxels from further consideration (Smith
et al., 2006). Default BET settings were adjusted if brain tissue
was erroneously misclassified as skull. Next, FMRIB’s Diffusion
Toolbox (FDT v3.0) was used to fit the diffusion tensor and
calculate FA.

Registration of FA images into MNI152 space and subsequent
voxel-wise analyses followed a series of procedures known as
Tract-Based Spatial Statistics (TBSS v1.2; Smith et al., 20061),
as described in our previous work (Gold et al., 2010; Johnson
et al., 2012). Briefly, the first step in this process was to
remove likely outliers from the fitted tensor by eroding brain
edge artifacts and zeroing the end slices. Second, all subjects’
FA images were aligned to the FMRIB58_FA_1 mm template
using a nonlinear registration approach based on free-form
deformations and B-Splines (Rueckert et al., 1999). FA datasets
were then affine registered and resampled to 1 × 1 × 1 mm
MNI152 space. All subsequent processing was carried out in this
standardized space.

All MNI-transformed FA images were then averaged to
generate a mean FA image that was used to create a common
WM tract skeleton. This skeleton then reached threshold at an
FA value of 0.2 in order tominimize partial voluming effects after
warping across subjects. Each participant’s aligned FA image was
subsequently projected onto the FA skeleton, in order to account
for residual misalignments between participants after the initial
nonlinear registration.

Region of interest masks were created to isolate WM tracts
using validated DTI templates. First, the fornix cluster was
isolated from the JHU-ICBM-labels-1 mm image using fslmaths.

1http://www.fmrib.ox.ac.uk/fsl/tbss/

The Fornix_FMRIB_FA1mm.nii.gz template (Brown et al., 2017)
was then added to this mask to generate a more inclusive fornical
ROI. Next, corpus callosum, cingulum, and internal capsule
masks were generated by combining each segmental component
into a single image. Each mask was then binarized using the
-bin option. Finally, the ILF mask was isolated from the JHU
WM Tractography Atlas using fslmaths. All masks were then
multiplied by the mean FA skeleton mask in order to generate
skeletonized versions of each ROI. Each mask was substituted
for the mean_FA_skeleton_mask in subsequent nonparametric
permutation analyses (Randomise, FSL).

A voxelwise multiple regression analysis was performed to
explore potential relationships between HDL-C, LDL-C and
FA. Age, sex, and body mass index (BMI) were included
as covariates of no interest in all analyses. In addition,
similar analyses were performed for each the cingulum, corpus
callosum, ILF, and internal capsule. A voxelwise permutation
nonparametric test (using 500 permutations) was employed
using a threshold-free cluster enhancement (TFCE), in order
to avoid the use of an arbitrary threshold in the initial cluster
formation. Results then reached threshold at P < 0.05 (corrected
for multiple comparisons).

RESULTS

Demographic and serum lipoprotein data are shown in Table 1.
There was a significant difference in height, weight, BMI
and HDL-C between sexes. Male participants were taller
(F(1,86) = 78.3, p < 0.0001), weighed more (F(1,86) = 40.6,
p < 0.0001), and had higher BMIs (F(1,86) = 4.6, p = 0.034).
Female participants had significantly higher serum HDL-C
values (F(1,86) = 20.1, p < 0.0001). LDL-C levels did not differ
between sexes (F(1,86) = 0.064, p = 0.801).

Figure 1 presents the results of the voxelwise analysis between
HDL-C and FA. After controlling for age, sex, and BMI, a
positive correlation was observed between HDL-C and diffuse
regions of the WM skeleton (1-p = 0.980; p = 0.020). HDL-C did
not demonstrate a negative relationship with FA (1-p = 0.820;
p = 0.18).

Figure 2 presents the scatter plot illustrating the relationship
between HDL-C and FA. Axes represent standardized residuals
after regressing the variables of interest (HDL-C and FA) onto
age, sex, and BMI.

Figure 3 presents the results of the region of interest
analyses between HDL-C and FA in the corpus callosum. After
controlling for age, sex, and BMI, a positive correlation was
observed between HDL-C and FA in the corpus callosum
(1-p = 0.984; p = 0.016). Figure 4 presents the scatter plot
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FIGURE 1 | High-density lipoprotein cholesterol (HDL-C) is positively associated with fractional anisotropy (FA). Slices highlight the positive correlation observed
throughout the white matter (WM) skeleton after controlling for age, sex, and body mass index (BMI; Red-Yellow). The anatomic underlay used for illustration is the
MNI152 T1-weighted 1 mm brain. The registered average FA skeleton is represented in green. The numbers below each slice represent the respective, x, y, and z
coordinates in MNI space. The scale represents the minimum and maximum P-1 values that fall above 0.95.

illustrating the relationship between HDL-C and FA in the
corpus callosum. Axes represent standardized residuals after
regressing the variables of interest (HDL-C and FA) onto age, sex,
and BMI. HDL-C did not demonstrate a negative relationship
with FA in the corpus callosum (1-p = 0.046; p = 0.954).
Further, LDL-C did not show a relationship with FA in the
corpus callosum.

Figure 5 presents the results of the region of interest analyses
between HDL-C and FA in the fornix. After controlling for
age, sex, and BMI, a positive correlation was observed between
HDL-C and FA in the fornix (1-p = 0.998; p = 0.002). Figure 6
presents the scatter plot illustrating the relationship between
HDL-C and FA in the fornix. HDL-C did not demonstrate
a negative relationship with FA in the fornix (1-p = 0.060;
p = 0.940). Further, LDL-C did not show a relationship with FA
in the fornix.

No relationship was observed between HDL-C and WM
microstructure in the internal capsule (positive, 1-p = 0.812;

p = 0.188; negative, 1-p = 0.460; p = 0.540) or ILF (positive,
1-p = 0.908; p = 0.092; negative, 1-p = 0.018; p = 0.982).

DISCUSSION

The present study represents the first exploration of the
relationship between non-fasting HDL-C, LDL-C, and WM
microstructure in a homogeneous sample of community-
dwelling older adults. Our results build upon findings that
HDL-C may help to maintain the structural integrity of the aged
brain (Ward et al., 2010; de Bruijn et al., 2014). Specifically, we
found that HDL-C was associated withWMmicrostructure (FA)
in diffuse regions of the brain. We also observed a significant
relationship between HDL-C and WM microstructure in the
corpus callosum and fornix. The implications of these findings
are discussed below.

Advancing age is associated with deleterious changes
in brain structure. This study focused on determining the
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relationship between a modifiable lifestyle variable, HDL-
C, and a neuroimaging marker of WM microstructure,
FA. We observed a positive association between HDL-
C and FA across a diffuse portion of the brain’s WM.
However, we did not observe a relationship between
LDL-C and WM microstructure. This supports previous
findings that adolescent LDL-C was not associated with
FA in young adulthood (Warstadt et al., 2014). Further,
it has been proposed that non-fasting levels of HDL-C
may be more diagnostically accurate for the assessment
of cardiovascular risk than non-fasting levels of LDL-C
(Fatima et al., 2016).

FIGURE 2 | The relationship between HDL-C and FA. Scatter plot illustrating
the relationship between HDL-C and WM microstructure as a result of the
whole-brain voxelwise analysis. The axes represent standardized residuals of
FA and HDL-C after controlling for age, sex, and BMI.

We also observed a significant relationship between HDL-C
and FA in the corpus callosum and fornix. These HDL-C-
FA relationships are of particular interest due to the role
the corpus callosum and fornix play in maintaining cognitive
function in healthy adults (Fletcher et al., 2013; Douet and
Chang, 2015; Huang et al., 2015; Zhang et al., 2015). Further,
corpus callosum and fornix microstructure are associated with
AD and AD pathology (Ardekani et al., 2014; Bachman et al.,
2014; Gold et al., 2014; Kantarci et al., 2017). For example,
Gold et al. (2014) observed a positive correlation between CSF
measures of Aβ and fornix WMmicrostructure, and Zhang et al.
(2015) observed that APOε4 carriers without cognitive decline
demonstrated inverse relationships between cognition and WM

FIGURE 4 | The relationship between HDL-C and FA. Scatter plot illustrating
the relationship between HDL-C and WM microstructure as a result of the
region of interest analysis in the corpus callosum. The axes represent
standardized residuals of FA and HDL-C after controlling for age,
sex, and BMI.

FIGURE 3 | HDL-C is associated with corpus callosum WM microstructure. Slices highlight the corrected positive association observed in the corpus callosum after
controlling for age, sex, and BMI (Blue-Light Blue). The anatomical is described in Figure 1. The corpus callosum skeleton mask used for the region of interest
analysis is represented in green. The numbers below each slice represent the respective x, y, z coordinates in MNI space. The scale represents the minimum and
maximum P-1 values that fall above 0.95.
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FIGURE 5 | HDL-C is associated with fornix WM microstructure. Slices highlight the corrected positive association observed in the corpus callosum after controlling
for age, sex, and BMI (Yellow). The anatomical is described in Figure 1. The fornix skeleton mask used for the region of interest analysis is represented in green. The
numbers below each slice represent the respective x, y, z coordinates in MNI space. The scale represents the minimum and maximum P-1 values that fall above 0.95.

FIGURE 6 | The relationship between HDL-C and FA. Scatter plot illustrating
the relationship between HDL-C and WM microstructure as a result of the
region of interest analysis in the fornix. The axes represent standardized
residuals of FA and HDL-C after controlling for age, sex, and BMI.

microstructure in the corpus callosum and fornix. Thus, findings
from this study suggest that higher levels of HDL-C may help to
preserve WM microstructure in tracts associated with cognition
in late adulthood.

The age-related homogeneity of our cohort builds on
previously reported relationships between HDL-C and WM in
young adults and in cognitively healthy mixtures of middle-aged
and older adults (Williams et al., 2013; Warstadt et al., 2014;
Ryu et al., 2017). For example, Warstadt et al. (2014) observed
that adolescent levels of non-fasting HDL-C were associated
with WM microstructure in young adulthood. However, fasting
HDL-C values have shown positive and negative relationships in
mixtures of middle-aged and older adults using a whole brain
approach (Williams et al., 2013). Middle-aged and older adult

samples have also demonstrated that poorer health is associated
with reduced WMmicrostructure (Power et al., 2017).

The positive association observed between HDL-C and WM
microstructure across diffuse regions of the brain may help to
explain the positive relationship between high levels of HDL-C
and maintained cognition in adults with exceptional longevity
(Atzmon et al., 2002; Barzilai et al., 2006), including centenarians.
Further, low levels of HDL-C are associated with cognitive
impairment, including poor memory, in middle-aged and older
adult cohorts (van Exel et al., 2002; Singh-Manoux et al., 2008;
Song et al., 2012). Low levels of HDL-C are also associated
with reduced GM and WM health (Crisby et al., 2010; Ward
et al., 2010). Thus, this modifiable lifestyle variable may support
cognitive function via preserved structure, but future studies are
warranted to confirm causal relationships.

Several mechanisms offer insight into the potential physiology
behind our findings. HDL-C is atheroprotective and may help
to preserve WM health via vascular mechanisms. Many of the
atheroprotective benefits of HDL-C target the endothelium. For
example, HDL-C removes cholesterol from arterial walls (von
Eckardstein et al., 2001), increases endothelial nitric oxide (NO)
synthase activity (Drew et al., 2004), and induces vasorelaxation
(Nofer et al., 2004). Superior endothelial health is associated
with better WM microstructure (Johnson et al., 2017). In
addition to the efflux of cholesterol in arterial walls, HDL-C also
contributes to the efflux of cholesterol in neurons (Demeester
et al., 2000). Another potential mechanism is related to the ability
of sub-fractions of HDL-C to bind Aβ in CSF (Koudinov et al.,
2001). The cross-linking of HDL-C and Aβ in CSF may limit
the deposition of the Aβ in the brain. Our findings contribute to
the proposed neuroprotective attributes of a modifiable lifestyle
variable such as HDL-C.

However, non-modifiable variables, such as APOEε4 status
and sex, can also influence the relationship between cholesterol
and neuroimaging measures of WM (Willey et al., 2014; Cavedo
et al., 2017; Yin et al., 2018). For example, Willey et al. (2014)
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examined the association between lipid profiles and WM
hyperintensity volumes in a population-based cohort over the
age of 55. Findings demonstrate that greater WM hyperintensity
volume was associated with worsening of HDL-C over time,
and that APOEε4 carriers with total cholesterol >200 mg/dL
had a trend towards smaller WM hyperintensity volumes than
those with total cholesterol values <200 mg/dL. Yin et al. (2018)
also observed an interaction between HDL-C and sex, such that
HDL-C was inversely associated with WM lesions in females but
not males. This study controlled for sex differences but did not
collect data associated with APOEε4 status.

The present study has several caveats that highlight areas that
need further investigation. First, the cross-sectional nature of
our study limits the ability to draw causal conclusions about
HDL-C and WM microstructure. The relationship observed
in the present study serves to justify future longitudinal
designs to determine if improved HDL-C preserves WM
microstructure. Further, such longitudinal studies should
determine any cognitive benefits associated with HDL-C
and WM microstructure. Second, we did not control for
APOEε4 carrier status. As previously referenced, the relationship
between APOEε4 status, cholesterol, and WM health is complex
(Willey et al., 2014; Cavedo et al., 2017). Third, the relationship
between HDL-C and brain health can depend on a myriad
of factors (Hottman et al., 2014; Kontush, 2014; Koch and
Jensen, 2016; Power et al., 2017). Future studies should consider
lipoprotein genetic interactions, fasting levels of other serum
lipoproteins, race, and CSF biomarkers. For example, Aβ is
related to fornix WM microstructure (Gold et al., 2014), and
accumulation can lead to myelin breakdown (Xu et al., 2001).

In conclusion, our results demonstrate that non-fasting
HDL-C is positively correlated with WM microstructure in
diffuse regions of the brain and in WM regions demonstrating
inverse relationships with cognition in late adulthood.

The observed HDL-C-WM relationships were observed after
controlling for age, sex, and BMI, and highlight the relationship
between WM microstructure and modifiable lifestyle variables.
In addition, the novel examination of the relationship between
non-fasting HDL-C and WM microstructure allows for a
more accurate characterization of how circulating lipid levels
influence the structural integrity of the brain in late adulthood.
These findings motivate future longitudinal studies aimed
to determine if improving atheroprotective biomarkers,
through lifestyle modification, attenuates age-related declines in
WMmicrostructure.
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