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Summary

UV radiation is a major environmental risk factor for the development of melanoma by causing 

DNA damage and mutations. Resistance to UV damage is largely determined by the capacity of 

melanocytes to respond to UV injury by repairing mutagenic photolesions. The nucleotide 

excision repair (NER) pathway is the major mechanism by which cells correct UV photodamage. 

This multi-step process involves the basic steps of damage recognition, isolation, localized strand 

unwinding, assembly of a repair complex, excision of the damage-containing strand 3′ and 5′ to 

the photolesion, synthesis of a sequence-appropriate replacement strand and finally ligation to 

restore continuity of genomic DNA. In melanocytes, the efficiency of NER is regulated by several 

hormonal pathways including the melanocortin and endothelin signaling pathways. Elucidating 

molecular mechanisms by which melanocyte DNA repair is regulated offers the possibility of 

developing novel melanoma-preventive strategies to reduce UV mutagenesis, especially in UV-

sensitive melanoma-prone individuals.
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Melanoma

We and others have been interested in the mechanisms by which melanocytes regulate 

genomic stability through UV resistance and DNA repair because of the clear implications 

to melanoma, a malignancy whose incidence has been increasing for decades. Whereas one 

in every 1,500 Americans developed melanoma in the 1930’s, now almost one in fifty are 

affected by the disease)(Eggermont et al., 2014). According to the National Cancer 

Institute’s Surveillance, Epidemiology and End Results (SEER) program, over 75,000 

Americans were diagnosed with melanoma and the disease killed over 10,000 in 2016 alone. 

Though it accounts for less than 10% of all skin cancers, melanoma is responsible for over 

three quarters of all deaths by skin cancer (Shenenberger, 2012). It is likely that the 

increasing incidence of melanoma is multifactorial involving an aging population, better 

detection and awareness and more occupational and recreational UV exposure. Melanoma 

incidence peaks in the fifth decade of life, but it can afflict patients of any age, even 

children. In fact, it is the second most common cancer in young adults between the ages of 

15 and 29. Overall, it is estimated that over a million Americans alive today will be 

diagnosed with melanoma at some point in their lives (Geller et al., 2013). Although 

significant therapeutic advances have been made over the last decade by targeted therapy 

against the MAP kinase cascade and by immune checkpoint blockade, the majority of 

patients with advanced melanoma still die of their disease. Therefore, there is a great unmet 

need to understand the molecular mechanisms of melanoma susceptibility and to develop 

rational preventive strategies to reduce incidence of disease, particularly in individuals with 

an accumulation of identified risk factors.

Ultraviolet Radiation (UV) and its effects on DNA

Abundant epidemiologic and molecular data identify UV as a major environmental risk 

factor for melanoma (Berwick et al., 2014). Many melanomas derive from nevi on sun-

exposed areas of the body (Dodd et al., 2007; Sober, 1987; Valiukeviciene et al., 2007), 

melanoma incidence correlates with living in UV-rich climates (Lee and Scotto, 1993) and 

lifetime risk of melanoma increases with exposure to UV through tanning bed use 

(Schulman and Fisher, 2009; Weinstock and Fisher, 2010). A UV-melanoma link is 

strengthened by molecular studies that support the concept that UV exposure drives 

melanomagenesis. Melanoma carries a high somatic mutational burden and the 

overwhelming majority of mutations are characteristic “UV-signature” transitional mutations 

in adjacent pyrimidines (Hodis et al., 2012; Lawrence et al., 2013). Moreover, UV-signature 

mutational burden correlates with melanoma tumor progression (Shain et al., 2015), 

suggesting that UV drives many stages of melanoma development.

UV causes two main types of DNA injury. First, UV damages DNA through the production 

of free radicals and subsequent oxidative injury to nucleotide bases. Second, UV promotes 

covalent changes between pyrimidines directly through absorption of UV energy by cytosine 

and thymine. UV-induced DNA damage interferes with transcription, replication and 

genomic stability. Oxidative injury is recognized and repaired by the base excision repair 

pathway in which lesion-specific glycosylases recognize and remove damaged bases from 

the DNA backbone to generate apurinic sites that are subsequently filled in by polymerases 
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using the undamaged sister strand as a template. While oxidative lesions can be mutagenic 

and have been implicated in melanoma development and progression, we will focus our 

discussion on covalent UV photolesions and their repair since transitional pyrimidine 

mutations caused by covalent UV-induced pyrimidine photolesions represent the most 

common somatic mutations in melanoma (Hodis et al., 2012; Lawrence et al., 2013) and 

correlate with disease progression (Shain et al., 2015).

Through direct absorption of UV energy, the C5/C6 bond in pyrimidines (cytosines and 

thymines) is vulnerable to disruption. When this bond breaks between adjacent pyrimidines, 

abnormal bonds may form between the two bases to form cyclopyrimidine dimers (CPDs) or 

[6,4]-photoproducts (6-4PPs). Each of these covalent lesions distorts the double helix, 

interferes with transcription and replication and promotes base mispairing and mutagenesis. 

Since UV photodamage affects adjacent pyrimidines, its causality in mutagenesis can be 

determined by the presence of “UV signature” dipyrimidine transitional mutations (e.g. CC-

to-TT) throughout the genome and in cancer-relevant genes. Tumors that are driven by UV 

mutagenesis such as malignant melanoma of the skin, squamous cell carcinoma of the skin 

and basal cell carcinoma of the skin are rich in UV signature mutations (Wikonkal and 

Brash, 1999).

In addition to the initial CPD burden that occurs from UV photon-induced nucleotide 

changes in DNA, CPDs may continue to accumulate in melanocytes several hours after UV 

exposure ends. The mechanism responsible for “dark photodimer” formation was recently 

elucidated by Brash and colleagues and involves melanin as a redox energy transfer moiety. 

Thus, melanin acts as a substrate for UV-induced reactive oxygen and nitrogen species, and 

its chemiexcitation creates a quantum triplet state with the equivalent energy of a UV photon 

and the ability to break the C5/C6 bond in adjacent pyrimidines to yield CPDs (Premi et al., 

2015). Indeed, a large percentage of total UV-induced CPDs may develop through melanin 

chemiexcitation and delayed CPD formation. The discovery of dark photodimers is an 

important insight into melanocyte UV damage and resistance. Because many of the 

regulatory mechanisms that optimize melanocyte DNA repair may themselves be stimulated 

by UV (and therefore activated some time after UV exposure), they may be particularly 

relevant to the repair of dark photodimers in melanocytes.

Nucleotide Excision Repair (NER) and Xeroderma Pigmentosum (XP)

Nucleotide excision repair (NER) is the process by which cells repair helical-distorting DNA 

damage including CPDs and 6-4PPs. NER-targeted lesions, which promote physical 

deformities in the double helix, are detected either when they interfere with transcription 

(through stalling of RNA polymerase) which initates transcription-coupled NER (TC-NER), 

or when they are identified by damage sensing proteins that initiate global genomic NER 

(GG-NER). Although TC-NER and GG-NER differ in damage recognition, subsequent steps 

converge into one repair pathway (Fig 1). NER involves the action of over 30 proteins that 

process damage in a sequential series of reactions that can be summarized as follows: 1) 

DNA damage recognition, 2) recruitment of structural repair proteins, 3) DNA unwinding, 

4) assembly of a pre-incision complex, 5) 3′-5′ dual strand incision, 6) removal of a short 

oligonucleotide harboring the photodamage, 7) gap-filling using the sister strand as a 
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template and finally 8) DNA ligation (Scharer, 2013). NER is a damage-repairing 

mechanism of high fidelity that restores DNA to its pre-injured state and in this way is 

critical for resistance of melanocytes to UV-induced carcinogenesis.

The importance of NER in melanoma resistance is best illustrated by considering the natural 

history of xeroderma pigmentosum (XP), a rare UV hypersensitivity syndrome caused by 

homozygous defects in any of several genes associated with the NER pathway (XPA through 

XPG and DNA polymerase eta (POLH) (Giordano et al., 2016). XP typically manifests very 

early in life, the defining characteristics are sunlight-induced changes in cutaneous 

pigmentation and dry parchment-like skin. During childhood, pigment changes, 

telangiectasias and atrophy occur on UV-exposed skin. XP patients with defects in 

complementation groups A, B, D and G have hypersensitivity to UV with UV-induced 

inflammation (sunburns) occuring after minimal sun exposure, whereas groups C, E and 

variant do not. In the most serious cases, pre-malignant lesions such as actinic keratosis and 

fully malignant UV-induced cancers develop with great frequency. XP patients are up to 

2000 times more likely to develop melanoma and typically far earlier in life than melanomas 

develop in the general (non-XP) population (Bradford et al., 2011). As with sporadic 

melanomas, XP-associated melanomas frequently demonstrate “UV signature mutations” 

(Daya-Grosjean, 2008), clearly indicating the importance of UV in their causality and of 

NER in resistance against melanomas. Indeed, evidence is accumulating that inherited 

polymorphisms in NER genes that affect DNA repair are an important melanoma risk factor 

in the general population (Li et al., 2013; Xu et al., 2015). Please see the following excellent 

recent reviews for more detail about NER (DiGiovanna and Kraemer, 2012; Marteijn et al., 

2014; Sancar et al., 2004; Scharer, 2013; Wood, 2010).

Melanocyte interactions in the skin

Through cellular dendritic projections, epidermal melanocytes interact with up to thirty or 

more keratinocytes, fibroblasts and other skin cells (e.g. immune cells) in what has been 

termed the “epidermal unit” (Nordlund, 2007). There is abundant evidence to suggest a rich 

intercellular communication between cell types within the epidermal unit that regulates skin 

homeostasis and responses to UV injury (Cario-Andre et al., 2000; Gilchrest et al., 1996; 

Jimbow et al., 1991; Kawaguchi et al., 2001; Paus et al., 1999; Schiller et al., 2004; 

Scholzen et al., 2000; Virador et al., 2002). Keratinocytes, which make up the great majority 

of cells in the epidermis, influence melanocyte physiology by contact-dependent interactions 

and by contact-independent means via secretion of growth factors and regulators that act in a 

paracrine manner on melanocytes through specific ligand-receptor interactions (Imokawa et 

al., 1997; Imokawa et al., 1992; Jamal and Schneider, 2002; Kadekaro et al., 2005; Rousseau 

et al., 2007). Although NER can be augmented by cell-autonomous pathways such as 

autophagy (Qiang et al., 2016), we will focus our discussions on the regulation of 

melanocytic NER by the melanocortin and endothelin hormonal signaling pathways.

Melanocortin 1 receptor (MC1R)

The melanocortin 1 receptor (MC1R) is a Gs protein-coupled receptor located in the 

melanocyte extracellular membrane (recently reviewed (Wolf Horrell et al., 2016)). 
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Spanning the membrane seven times, the MC1R transmits ligand-receptor interactions to the 

cytoplasm through its association with adenylyl cyclase and production of the second 

messenger cAMP (Garcia-Borron et al., 2014). MC1R signaling regulates many aspects of 

melanocyte growth and differentiation. MC1R-directed increases in cAMP stimulate 

melanin production (Abdel-Malek et al., 2000; D'Orazio et al., 2006), increase cellular 

antioxidant levels (Kadekaro et al., 2003), protect melanocytes against apoptosis (McGill et 

al., 2002), stimulate growth (Suzuki et al., 1999) and augment the efficiency of NER (Abdel-

Malek et al., 2009; Bohm et al., 2005; Hauser et al., 2006; Jarrett et al., 2014; Jarrett et al., 

2015; Kadekaro et al., 2010; Song et al., 2009; Swope et al., 2014). Loss-of-function 

polymorphisms in MC1R are common, particularly in fair-skinned and sun-sensitive 

individuals (Valverde et al., 1995). Because MC1R stimulates the production of UV-

protective eumelanin in the skin, MC1R defects result in an under-melanized epidermis 

which allows more UV radiation to penetrate the skin (D'Orazio et al., 2006; Suzuki et al., 

1999). MC1R signaling defects also favor the production of pheomelanin, which blocks UV 

radiation much less effectively than eumelanin, promotes free radical formation (Hill et al., 

1997) and contributes to melanomagenesis (Mitra et al., 2012). A less eumelanized 

phenotype may have been selected in populations that migrated out of UV-rich equatorial 

regions to more polar climates in order to maximize UV-mediated vitamin D production and 

avoid rickets (Jablonski and Chaplin, 2013). These same MC1R polymorphisms, however, 

are carried by millions of individuals now living in UV-rich locations and clearly increase 

lifetime melanoma risk (Box et al., 2001; Kennedy et al., 2001; Pasquali et al., 2015; 

Valverde et al., 1996).

We and others have reported that MC1R defects also impair NER and melanocyte genomic 

stability. The integrity of the melanocyte genome is diminished when MC1R signaling is 

sub-optimal because NER is blunted (Hauser et al., 2006; Jarrett et al., 2014; Jarrett et al., 

2015; Swope et al., 2014). Thus, MC1R signaling problems result in an undermelanized 

epidermis permissive of UV entry and impaired melanocyte NER. MC1R-defective 

individuals are at higher risk of melanoma because their epidermal melanocytes accumulate 

more UV mutations over time. Indeed, Robles-Spinoze and coworkers recently reported that 

melanomas isolated from individuals harboring germline loss-of-function MC1R variants 

had 42% more somatic mutations than melanomas from MC1R-intact persons and that the 

overwhelming majority of these mutations were UV signature changes (Robles-Espinoza et 

al., 2016). Therefore, because MC1R signaling protects melanocytes from UV damage in a 

number of ways (Rouzaud et al., 2005; Scott et al., 2002), inherited MC1R defects clearly 

increase melanoma susceptibility (Kadekaro et al., 2010; Song et al., 2009).

MC1R (cAMP) signaling and NER

The melanocortin signaling axis promotes melanocyte genomic stability by positioning the 

cell to better cope with UV damage (Kadekaro et al., 2010). MC1R-mediated production of 

eumelanin is accomplished largely through transcriptional upregulation of pigment enzyme 

gene expression through CREB (cAMP responsive binding element) and MITF 

(microphthalmia) (Busca and Ballotti, 2000). As a result, there is a delay of several hours 

between MC1R-mediated cAMP increases and increased eumelanin production (Yamaguchi 

and Hearing, 2009). MC1R signaling also promotes expression of key DNA repair proteins 

Jarrett et al. Page 5

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in a transcription-dependent manner. For example, MITF loss, which mimics blunted MC1R 

signaling, reduced the expression of many DNA repair factors including XPA, RPA, DNA 

ligase I, DNA polymerase delta (Pol δ) (Strub et al., 2011) and XPAB1 (April and Barsh, 

2006). These studies suggest that MC1R and MITF are needed to maintain optimal levels of 

a variety of DNA repair factors in melanocytes. In contrast, MC1R-enhanced DNA repair 

appears to involve both delayed and more immediate mechanisms, allowing melanocytes to 

augment their repair capacity in a much quicker and responsive manner after UV exposure 

than pigment up-regulation.

Elegant work from the Abdel-Malek lab first demonstrated that the melanocortin signaling 

axis controls melanocyte DNA repair (Kadekaro et al., 2005). Her group showed that UV 

exposure activated the DNA damage sensors ataxia telangiectasia mutated (ATM) and Rad3 

related (ATR), ATM, and DNA-PK (Kadekaro et al., 2012; Swope et al., 2014) and that 

melanocortin-enhanced DNA repair was influenced by increased levels of XPC and H2AX, 

potentially promoting the formation of DNA-repair complexes (Swope et al., 2014). Other 

components of the UV DNA damage repair response also are impacted by MC1R and 

include the NR4As superfamily of nuclear receptors which are recruited to sites of nuclear 

DNA damage together with XPC and DDB (Smith et al., 2008).

Our group discovered a molecular mechanism by which melanocytes require as little as 

15-30 minutes of cAMP stimulation to augment NER (Jarrett et al., 2014), linking MC1R/

cAMP signaling to NER through the ATR protein (Fig. 2) (Jarrett and D'Orazio, 2016). ATR 

is a non-dispensable Ser/Thr kinase in the same family as ATM and DNA-dependent protein 

kinase (DNA-PK). ATR is essential for cell survival; without it, cells undergo “mitotic 

catastrophe” during replication. ATR is important for damage signaling (Cimprich and 

Cortez, 2008), replication integrity (Cliby et al., 1998) and genomic maintenance and repair 

(Auclair et al., 2008). We determined that the critical molecular event linking MC1R 

signaling to enhanced NER in melanocytes is a non-canonical activation of ATR via 

phosphorylation by cAMP-dependent kinase (protein kinase A; PKA) (Jarrett et al., 2014). 

When cAMP levels are induced either through melanocortin signaling or pharmacologically 

via adenylyl cyclase activation (e.g. by forskolin) or phosphodiesterase inhibition (e.g. by 

rolipram), PKA is stimulated to phosphorylate ATR on Serine 435 (S435). However, instead 

of activating ATR to stop proliferation by Chk1 phosphorylation and cell cycle checkpoint 

blockade (ATR’s canonical role in cell damage responses), PKA-mediated phosphorylation 

of ATR on S435 promotes binding of ATR with the key NER factor XPA and together, ATR-

pS435 and XPA co-localize with UV photodamage in the nucleus (Jarrett et al., 2014). More 

recently, we identified A kinase anchoring protein 12 (AKAP12) as the critical molecular 

scaffold that facilitates PKA-mediated ATR phosphorylation on S435 (Jarrett et al., 2016). 

Like other AKAPs, AKAP12 is a bipartite protein able to bind the regulatory subunits of 

PKA through a conserved amphipathic protein interaction domain. It also binds relevant 

PKA-target proteins (in this case ATR) thereby scaffolding the PKA-ATR interaction. 

Mutating either AKAP12’s PKA binding sequence or AKAP12’s ATR binding region 

prevents PKA-mediated ATR phosphorylation and NER enhancement. As a result, there is 

persistence of UV photodamage in the genome and higher rates of UV mutagenesis (Jarrett 

et al., 2016).
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We have also gained insights into the mechanism by which the PKA-ATR-XPA pathway 

enhances NER. XPA is known to interact with a variety of NER factors, including TFIIH, 

RPA, XPC-RAD23B, DDB2, ERCC1-XPF and PCNA (Bunick et al., 2006; Gilljam et al., 

2012; Li et al., 1994; Nocentini et al., 1997; Park et al., 1995; Wakasugi et al., 2009; You et 

al., 2003). We measured XPA’s interactions with potential NER binding partners in UV-

irradiated melanocytes treated either with vehicle control or with forskolin to raise cAMP 

levels. Whereas XPA’s interactions with XPB, XPC and XPD were unaffected by cAMP 

stimulation, it’s binding to XPF, ERCC1 and RPA were increased as determined by co-

immunoprecipitation (Jarrett et al., 2016). Since XPF and ERCC1 function together to carry 

out the 5′ incision step of NER, we reasoned that cAMP stimulation may enhance the strand 

incision step 5′ to UV photodamage. To test this, we used conventional “bubble cutting” 

assays to test cAMP’s effect on 3′ and 5′ strand incision. Whereas, 3′ incision was 

unaffected by cAMP stimulation, forskolin promoted accelerated and enhanced 5′ strand 

incision, leading us to conclude that the MC1R-ATR-AKAP12-XPA DNA repair signaling 

axis augments NER through more efficient strand incision 5′ to sites of photodamage 

(Jarrett et al., 2016). Many more insights remain to be elucidated in this process, including 

mechanisms of cytoplasmic transport of AKAP12-ATR-pS435 complex, how the large 

complex is imported into the nucleus (AKAP12 and ATR both have molecular weights in the 

250 kDa range which excludes their nuclear entry by diffusion alone), how the complex 

associates with XPA once in the nucleus and how it targets UV photolesions.

Endothelin signaling and NER

Melanocyte growth and differentiation are regulated by many more signaling pathways than 

the melanocortin pathway (Swope and Abdel-Malek, 2016). One of the best characterized is 

the endothelin signaling axis. Endothelins were originally described as endothelial cell-

derived vasoactive peptides (Yanagisawa et al., 1988). There are three endothelins expressed 

in humans, each encoded by a separate gene (Inoue et al., 1989). Endothelins play a major 

role in melanocyte development and skin homeostasis. Endothelins stimulate melanocyte 

proliferation and pigment production (Yada et al., 1991) and are secreted by keratinocytes in 

a UV-dependent manner (Imokawa et al., 1992; Yohn et al., 1993). Indeed, signaling by 

endothelins through the endothelin B receptor (ETBR) is necessary for melanocyte 

development and defects lead to pigment phenotypes (Baynash et al., 1994; Hosoda et al., 

1994) due to defective neural crest maturation (Shin et al., 1999). ETBR signaling, which is 

mediated through intracellular calcium (Kang et al., 1998), regulates melanocyte dendricity 

(Hara et al., 1995), migration (Horikawa et al., 1995), E-cadherin expression (Jamal and 

Schneider, 2002), apoptosis (Eberle et al., 2002; Kadekaro et al., 2005), secretion of 

chemokines (Mangahas et al., 2005) and most recently, DNA repair (von Koschembahr et 

al., 2015).

Abdel-Malek and co-workers recently found that endothelin 1 (ET1), functioning through 

ETBR signaling, decreases the burden of UV photoproducts in irradiated melanocytes (von 

Koschembahr et al., 2015). Pretreating melanocytes with ET1 reduced UV photoproduct 

load over time, consistent with an augmentation of NER, but also at “time zero” 

immediately after UV exposure, raising the possibility that ET1 priming may protect cells 

from accumulating UV photodamage even before repair can occur. Intriguingly, ET1 
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treatment was independent of MC1R function, since it was not associated with cAMP 

changes and could protect melanocytes from UV damage even when cells expressed loss-of-

function MC1R isoforms (von Koschembahr et al., 2015). Our group independently 

confirmed that ET1 treatment does not impact cellular levels of ATR-pS435 (Jarrett et al., 

2015), suggesting that NER enhancement by endothelin signaling is distinct from that 

mediated by MC1R signaling and cAMP stimulation. Rather, ET1 activated JNK and p38 

signaling pathways and was calcium dependent since ET-1 mediated JNK activation and 

ATF2 phosphorylation were blocked by the Ca2+ chelator BAPTA. JNK signaling was 

critical to ET1-mediated melanocyte UV resistance since its inhibition blocked ET1-

mediated reductions in CPD’s and sensitized melanocytes to UV-mediated apoptosis. 

Mechanistically, the authors found that ET1 accelerated clearance of XPC, an NER factor 

involved in lesion recognition, from foci of photodamage. They interpreted these data to 

indicate that endothelin signaling improved XPC function to accelerate lesion recognition 

(von Koschembahr et al., 2015).

Melanoma prevention through enhanced DNA repair

Epidermal melanocytes are long-lived cells at risk of environmental UV exposure because of 

their position in the skin. While it is surprising that melanocytes wouldn’t always be 

optimally positioned to efficiently deal with UV DNA damage, we and others have 

documented that melanocytic NER is inducible by specific molecular pathways including 

melanocortin and endothelin signaling. Each of these pathways, when intact and activated by 

appropriate ligands (e.g. α-MSH and ET1, respectively) boosts melanocytic NER above 

baseline levels. This insight offers potential therapeutic opportunities for melanoma 

prevention by reducing UV mutagenic burden (Fig 3).

Regarding MC1R/cAMP signaling, there are two fundamental ways to achieve enhanced 

melanocyte NER in the skin. First, if MC1R signaling is intact, it may be possible to target 

melanocytes by taking advantage of the specificity of melanocortin interactions with MC1R. 

In the skin, most agree that MC1R expression is limited to melanocytes. Therefore 

melanocortin analogues (Abdel-Malek et al., 2009; Cho et al., 2005; Ruwe et al., 2009; Yang 

et al., 2009) would be expected to target melanocytes without much off-target effect. While 

targeting approaches that limit cAMP induction to melanocytes is important because of the 

potential for off-target effects, this approach may not benefit individuals harboring loss-of-

function mutations in MC1R since signaling through their MC1Rs is blunted. Since these 

persons are among those of highest risk of melanoma in the general population (Kennedy et 

al., 2001; Valverde et al., 1996), a broader therapeutic strategy may be needed such as 

topical application of agents that increase cAMP levels in skin cells either through adenylyl 

cyclase activation or phosphodiesterase inhibition both of which have been validated in an 

Mc1r-defective UV-sensitive animal model of the fair-skinned human with respect to 

pigmentation (Amaro-Ortiz et al., 2013; D'Orazio et al., 2006; Khaled et al., 2010; Spry et 

al., 2009). Indeed, we have already shown in proof-of-principle pre-clinical experiments that 

topical application of forskolin enhanced clearance of UV photodamage in the skin (Jarrett 

et al., 2014).
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Another potential strategy for enhancing melanocytic NER, even in MC1R-defective 

individuals, may be to take advantage of the endothelin signaling axis. If therapies can be 

developed to target the endothelin pathway in epidermal melanocytes, NER may be 

enhanced irrespective of MC1R status. Clearly much more research is needed to understand 

the feasibility of each of these different therapeutic strategies, but the key concept that has 

emerged from these studies is that it may be possible to reduce UV damage to epidermal 

melanocytes and lessen melanoma risk by augmenting melanocyte genomic stability by 

optimizing NER.
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Fig. 1. Overview of nucleotide excision repair (NER)
UV photodamage is repaired by the NER pathway, which can be subdivided into global 

genome NER (GG-NER) and transcription-coupled NER (TC-NER). GG-NER occurs 

anywhere in the genome and is initiated by recognition of a distorted double helix, as occurs 

with UV photoproduct formation. In GG-NER, XPC, stabilized in complex with RAD23B 

and enabled to recognize CPDs by UV-damage-binding protein 2 (DDB2), identifies sites of 

damage, binding to the strand opposite the photolesion. In contrast, TC-NER is initiated in 

actively transcribed genes by stalling of RNA polymerase at the photolesion and involves the 

CSA, CSB and XAB2 cofactors. TC-NER, which probably accounts for no more than 10% 

of total NER, differs from GG-NER only through initial lesion recognition; the pathways 

merge downstream into a common NER mechanism beginning with pre-incision complex 

formation. In both GG-NER and TC-NER, TFIIH (a multi-complex protein containing the 

XPB and XPD helicases as well as 8 other subunits) is recruited to the site of damage. Using 

its XPB and XPD helicase components, TFIIH unwinds the DNA around the photolesion, 

initiating strand separation to enable the recruitment of other NER factors to form a “pre-

incision complex”. XPA, replication protein A (RPA), XPG, XPF and ERCC1 are each 

recruited to the complex, and at some point, initiation factors exit the region. Next, there is 

incision of the photolesion-containing strand some distance away from the DNA lesion. 

Strand incision is accomplished by XPF-ERCC1 working in complex to cleave the strand 5′ 
to the damage and by XPG 3′ to the damage. Evidence suggests that 5′ strand cleavage 

may actually occur before 3′ strand cleavage and in fact, DNA polymerase may begin filling 

in the gap from the 5′ side before the 3′ incision step. After 5′ and 3′ strand incision, a 

24-32mer oligonucleotide harboring the photolesion is generated that is removed (associated 

with TFIIH) from chromatin. The resultant gap is then filled in by DNA polymerases 
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together with PCNA, RFC and RPA using the undamaged sister strand to ensure fidelity of 

repair. Finally DNA ligation is achieved by DNA ligases I, III or XRCC1 to complete the 

process.
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Fig. 2. MC1R-mediated NER augmentation by the AKAP12-ATR-XPA axis
In melanocytes, enhancement of NER by cAMP is dependent on a damage-dependent 

cytoplasmic interaction between ATR and PKA, scaffolded by AKAP12. If cAMP levels 

have been stimulated either through MC1R-agonist interactions or pharmacologically, 

cAMP-dependent protein kinase (PKA) is activated. Like other A-kinase anchoring proteins, 

AKAP12 is a bipartite molecule that brings together PKA with its appropriate 

phosphorylation targets (in this case ATR). PKA then phosphorylates ATR on S435 to 

stimulate ATR’s interaction with XPA in the nucleus. Traffic of ATR-pS435 to the nucleus 

happens in the context of AKAP12 binding, and nuclear translocation of the AKAP12-ATR-

p435S complex is dependent on ATR’s phosphorylation of AKAP12 on the S732 residue. 

Together, ATR, AKAP12 and XPA localize to sites of UV photodamage in chromatin. 

cAMP accelerates NER by enhancing 5′ strand incision, a molecular event mediated by 

XPF-ERCC1. In this way, MC1R/cAMP signaling improves cellular ability to repair UV 

photodamage, resulting in lowered rates of UV mutagenesis and improved genomic stability.
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Fig. 3. UV-preventive strategies based on enhancing NER in melanocytes
Discovering that melanocyte NER can be regulated by the MC1R/cAMP and ETBR/Ca++ 

signaling pathways introduces the opportunity to reduce UV-mediated mutagenesis and 

carcinogenesis by enhancing melanocyte genomic stability to reduce UV mutational burden 

over time. Potential approaches would include targeting the MC1R and ETBR signaling 

pathways by agonistic mimics, inhibitors of antagonist ligands and downstream induction of 

intracellular signaling mediators.
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