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Novel Calibrated Short TR Recovery
(CaSTRR) Method for Brain-Blood
Partition Coefficient Correction
Enhances Gray-White Matter
Contrast in Blood Flow
Measurements in Mice
Scott W. Thalman1,2, David K. Powell1,3 and Ai-Ling Lin1,3,4,5*

1 F. Joseph Halcomb III, MD Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States,
2 Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States, 3 Magnetic Resonance Imaging
and Spectroscopy Center, University of Kentucky, Lexington, KY, United States, 4 Department of Pharmacology
and Nutritional Sciences, University of Kentucky, Lexington, KY, United States, 5 Department of Neuroscience, University
of Kentucky, Lexington, KY, United States

The goal of the study was to develop a novel, rapid Calibrated Short TR Recovery
(CaSTRR) method to measure the brain-blood partition coefficient (BBPC) in mice.
The BBPC is necessary for quantifying cerebral blood flow (CBF) using tracer-based
techniques like arterial spin labeling (ASL), but previous techniques required prohibitively
long acquisition times so a constant BBPC equal to 0.9 mL/g is typically used
regardless of studied species, condition, or disease. An accelerated method of BBPC
correction could improve regional specificity in CBF maps particularly in white matter.
Male C57Bl/6N mice (n = 8) were scanned at 7T using CaSTRR to measure BBPC
determine regional variability. This technique employs phase-spoiled gradient echo
acquisitions with varying repetition times (TRs) to estimate proton density in the brain
and a blood sample. Proton density weighted images are then calibrated to a series
of phantoms with known concentrations of deuterium to determine BBPC. Pseudo-
continuous ASL was also acquired to quantify CBF with and without empirical BBPC
correction. Using the CaSTRR technique we demonstrate that, in mice, white matter
has a significantly lower BBPC (BBPCwhite = 0.93± 0.05 mL/g) than cortical gray matter
(BBPCgray = 0.99 ± 0.04 mL/g, p = 0.03), and that when voxel-wise BBPC correction is
performed on CBF maps the observed difference in perfusion between gray and white
matter is improved by as much as 14%. Our results suggest that BBPC correction
is feasible and could be particularly important in future studies of perfusion in white
matter pathologies.

Keywords: arterial spin labeling, brain-blood partition coefficient, cerebral blood flow, gray-white matter contrast,
magnetic resonance imaging
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INTRODUCTION

Arterial spin labeling (ASL) is a non-invasive, quantitative
magnetic resonance imaging (MRI) technique used to measure
cerebral blood flow (CBF) in a wide variety of human conditions.
A growing number of studies are using ASL to measure perfusion
in a variety of preclinical murine models including, aging
(Parikh et al., 2016; Hoffman et al., 2017), Alzheimer’s disease
(Abrahamson et al., 2013; Lin et al., 2013, 2015), ischemic injury
(Pham et al., 2010; Struys et al., 2016; Liu et al., 2017), traumatic
brain injury (Foley et al., 2013), and vascular dementia (Hattori
et al., 2016). This technique is based on using magnetically labeled
protons on water molecules in the blood as a tracer substance
to measure perfusion. As in other tracer-based techniques, in
order to accurately quantify perfusion it is necessary to determine
the partition coefficient of the tracer, which is in this case the
relative solubility of water in the brain tissue vs. the blood.
The brain-blood partition coefficient (BBPC) is tissue-specific
and varies with age, species, pathology, and particularly with
brain region (Herscovitch and Raichle, 1985; Kudomi et al.,
2005; Leithner et al., 2010; Hirata et al., 2011). Thus the BBPC
must be measured directly, and while MRI is well suited to
measure water content in the brain, the current techniques to
do so have prohibitively long acquisition times (Roberts et al.,
1996; Leithner et al., 2010). Because of this, it is standard
practice in ASL quantification to assume a BBPC value of
0.9 mL/g based on desiccation experiments performed on ex vivo
human brain tissue (Herscovitch and Raichle, 1985; Alsop et al.,
2015). This global average value is used for all regions of the
brain, all ages and pathologies, and is even adopted when
performing ASL in mice (Muir et al., 2008; Lei et al., 2011;
Chugh et al., 2012; Gao et al., 2014).

Previous studies have determined a wide range of BBPC
values in the human brain, particularly between relatively
lipophilic white matter (0.82 mL/g) and hydrophilic gray matter
(0.99 mL/g) (Bothe et al., 1984; Herscovitch and Raichle, 1985;
Iida et al., 1989). Yet even among gray matter regions the BBPC
can vary as much as 20% (Iida et al., 1989). Measurements in
non-human primates have demonstrated lower BBPC values than
humans with an even greater regional variability (Kudomi et al.,
2005). An MRI study of BBPC in mice reported an average
BBPC of 0.89 mL/g with little regional variability among gray
matter regions of interest, but no white matter BBPC values
were reported (Leithner et al., 2010). Because ASL has inherently
low signal-to-noise ratio and the resolution requirements of
scanning mouse brains are particularly high, it is necessary that
the quantification methods introduce as little error as possible.
Failure to correct for intra-subject regional variability as well as
inter-subject variability in BBPC may result in a loss of sensitivity
to perfusion deficits when using ASL. This is especially true
when studying white matter regions which have both lower
perfusion and lower BBPC.

In this study, we used a calibrated short TR recovery
(CaSTRR) MRI sequence to measure proton density. This
protocol is similar to one used previously by Leithner et al. (2010)
to measure BBPC in mice, but has been modified to greatly
reduce the acquisition time. Proton density was determined

for the brain tissue as well as a fresh sample of each mouse’s
blood placed adjacent to the animal’s head in order to calculate
BBPC. Then cerebral perfusion was measured using a pseudo-
continuous ASL (pCASL) technique to compare CBF maps that
were uncorrected to maps that were corrected for regional BBPC.
Particular attention was given to the white matter region of
interest in the corpus callosum.

MATERIALS AND METHODS

All animal experiments were performed in accordance with
NIH guidelines and approved by the University of Kentucky
Institutional Animal Care and Use Committee (Approval
number #2014-1264). Male C57Bl/6N mice aged 12 months
(n = 8) were acquired from the National Institute of Aging
colony. MRI experiments were performed using a 7T MR
scanner (Clinscan, Brüker BioSpin, Germany) at the MRI and
Spectroscopy Center at the University of Kentucky. Mice were
anesthetized using a 4% mixture of isoflurane with air for
induction and then maintained using 1.2% isoflurane such that
the respiration rate was kept within 50–80 breaths/min. Rectal
temperature was also monitored continually and maintained at
37± 1◦C using a water-heated bed.

While under anesthesia a fresh blood sample was taken
from the facial vein and sealed in a glass capillary tube with
ethylenediaminetetraactetate (EDTA) as an anticoagulant. This
sample was then placed adjacent to the head of the mouse in order
to measure the proton density of the blood (Figure 1A).

Both CaSTRR and pCASL images were acquired consecutively
in a single imaging session. Because the CaSTRR acquisitions and
the pCASL acquisitions require different receiver coils, a custom
3-D printed nose was developed to accommodate both a birdcage
style volume coil and a phased-array surface coil so that the
coils could be changed without disturbing the orientation of the
mouse. This nose cone also facilitated the placement of phantoms
adjacent to the head of the mouse.

Mice were scanned with a series of five phantoms placed
alongside their head in the scanner (Figure 1A). The phantoms
contained a mixture of deuterium oxide with distilled water such
that the water contents of the phantoms were 60, 70, 80, 90, and
100% distilled water (Leithner et al., 2010). The phantoms were
also doped with 0.07 mM gadobutrol (Gadavist, Bayer Healthcare
Pharmaceuticals, Whippany NJ, United States) such that the
longitudinal relaxation rate (T1) was similar to the T1 of brain
tissue (∼1.6 s at 7T) (Rohrer et al., 2005).

The CaSTRR proton density measurements were acquired
using a 39 mm birdcage transmit/receive coil to ensure the
most uniform coil sensitivity profile possible. To measure the
proton density a series of image stacks was acquired using a
phase-spoiled, fast low-angle shot gradient echo (FLASH-GRE)
sequence with varying repetition times (TR = 125, 187, 250, 500,
1000, 2000 ms) (Figure 1B). The shortest possible echo time
(TE = 3.2 ms) was used to minimize T2

∗ decay. In order to
improve signal to noise, multiple averages were taken for the
images with TR = 125 ms (4 averages), 187 ms (4 averages) and
250 ms (2 averages). Image matrix parameters were as follows:
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FIGURE 1 | Explanation of the calibrated short repetition time recovery (CaSTRR) imaging protocol to measure BBPC. (A) One CaSTRR acquisition showing the
placement of blood and gadolinium doped phantoms in relation to the head of the mouse. (B) A representative series of FLASH-GRE images used for the CaSTRR
method. (C) A representative signal recovery curve from a single voxel of brain tissue located in the cortex region of interest (circles) along with the exponential
regression used to estimate the relative proton density of the voxel (line). (D) A representative map of relative proton density derived from the voxel-wise signal
recovery curves. (E) The final BBPC map calculated as the ratio of proton density in the brain to the average proton density of the blood phantom and corrected for
the density of brain tissue.

field of view = 2.8 cm × 2.8 cm, matrix = 256 × 256, in-plane
resolution = 0.11 mm × 0.11 mm, slice thickness = 1 mm,
number of slices = 10, flip angle = 90◦, acquisition time = 17 min
(Leithner et al., 2010).

Brain-blood partition coefficient maps were calculated in a
voxel-wise manner by first fitting the signal recovery curve
(Figure 1C) to the mono-exponential equation S = M0

∗[1 –
e∧(TR/T1)] to yield a map of M0 (Figure 1D). Next the M0 map
was normalized to the respective phantom series by fitting a linear
regression to the average M0 value in each phantom. Finally,
the proton density in each voxel of the brain was compared to
the average proton density of the blood ROI using the equation
BBPC = M0,brain/(M0,blood

∗ 1.04 g/mL) (Figure 1E; Roberts et al.,
1996; Leithner et al., 2010).

For pCASL acquisitions, paired control and label images
were acquired using a four-channel phased-array surface
receive coil for increased signal to noise, and a whole body
volume transmit coil to improve the tagging efficiency of the
blood (Lin et al., 2013). Image pairs were acquired in an
interleaved fashion with a train of Hanning window-shaped
radiofrequency pulses of duration/spacing = 200/200 µs, flip
angle = 25◦ and slice-selective gradient = 9 mT/m, and a
labeling duration = 2100 ms. The images were acquired by
2D multi-slice spin-echo single shot echo planar imaging with
FOV = 1.8 cm × 1.3 cm, matrix = 128 × 96, in-plane
resolution = 0.14 mm × 0.14 mm, slice thickness = 1 mm, 6
slices, TE/TR = 20/4000 ms, label duration = 1600 ms, post-
label delay = 0 s, and averages = 120. A separate, unlabeled
acquisition with TR = 10 s and averages = 6 was used to

normalize for the receiver coil profile. Total acquisition time for
pCASL was 9 min.

When analyzing the CBF maps, the two centermost slices
containing the hippocampus were selected for analysis. The
brain regions of the CaSTRR and pCASL images were isolated
independently using an automated skull-stripping algorithm
and then co-registered using an intensity based registration
algorithm. The quantitative CBF maps were calculated from the
pCASL images according to the equation (Alsop et al., 2015):

CBF(mL/g/min) =
60 ∗ BBPC ∗ e(PLD/T1,blood)

2 ∗ α ∗
(

1− e(LD/T1,blood)
) ∗ Ctl− Lbl

M0

where PLD is post-label delay, LD is label duration,
T1,blood is the longitudinal relaxation of blood (2.2 s at
7T), and α is label efficiency (0.85) (Alsop et al., 2015).
For standard CBF maps the BBPC was assumed to be a
constant 0.9 mL/g. Then a corrected CBF map was calculated
by using the CaSTRR derived BBPC maps in place of the
assumed constant.

Regions of interest encompassing the superior neocortex,
corpus callosum, and hippocampus were drawn manually on
each analyzed slice. BBPC, uncorrected CBF, and corrected CBF
values were averaged for each region of interest. Gray-white
contrast was determined for each slice as the absolute difference
of average CBF values in gray and white matter regions of
interest. All analysis was performed with in-house written scripts
in Matlab (Mathworks, Natick, MA, United States).
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TABLE 1 | Mean partition coefficient and perfusion values by region.

Regional Values Neocortex Hippocampus Corpus Callosum

BBPC (mL/g) 0.99 ± 0.04 0.95 ± 0.04 0.93 ± 0.05

CBF, uncorrected
(mL/g/min)

2.81 ± 0.4 2.90 ± 0.6 1.44 ± 0.3

CBF, corrected
(mL/g/min)

3.09 ± 0.5 3.07 ± 0.7 1.51 ± 0.4

Gray-White Perfusion
Contrast

Neocortex vs. Corpus Hippocampus vs. Corpus

1CBFUncorrected

(mL/g/min)
1.39 ± 0.4 1.46 ± 0.4

1CBFCorrected

(mL/g/min)
1.59 ± 0.5 1.54 ± 0.4

Contrast improvement
(%, 95% CI)

14.2%, 9.6–18.8% 5.8%, 1.4–10.1%

Statistical analysis was performed using SPSS (IBM, Armonk,
NY, United States). All data are expressed as mean ± standard
deviation. Group comparisons were assessed using one- and two-
way analysis of variance with Tukey’s post hoc test. Values of
p< 0.05 were considered statistically significant.

RESULTS

Corpus Callosum Demonstrates
Reduced BBPC Compared to Neocortex
The average BBPC values in the neocortex, corpus callosum,
and the hippocampus were determined for each mouse and the
average of all mice is reported in Table 1. The highest BBPC
value was observed in the neocortex (µCtx = 0.99 ± 0.04 mL/g)
which was significantly higher than the corpus callosum
(µCC = 0.93 ± 0.05 mL/g, p = 0.035), and also higher than the
hippocampus, though not significantly (µHC = 0.95 ± 0.4 mL/g,
p = 0.17) (Figures 2, 3).

Corpus Callosum Also Demonstrates
Lower Perfusion Than Surrounding Gray
Matter
Elevated perfusion in gray matter regions was observed relative
to the corpus callosum in both uncorrected CBF maps and

maps with voxel-wise BBPC correction (Figure 4). In the
uncorrected maps the hippocampus demonstrated the greatest
perfusion (2.90 ± 0.6 mL/g/min) followed by the neocortex
(2.81 ± 0.4 mL/g/min) with significantly less perfusion in the
corpus callosum (1.44 ± 0.3 mL/g/min, p < 0.001). However,
when the maps were corrected for BBPC the perfusion in the
neocortex was highest (3.09 ± 0.5 mL/g/min) followed by the
hippocampus (3.07 ± 0.7 mL/g/min) with significantly less
perfusion again in the corpus callosum (1.51 ± 0.4 mL/g/min,
p< 0.001). None of the regions demonstrated significant changes
in average CBF values due to BBPC correction (corrected vs.
uncorrected CBF, pCtx = 0.31, pCC = 0.66, pHC = 0.61).

The Difference in Perfusion Between
Gray and White Matter Is Greater in
Corrected CBF Maps Than Uncorrected
Maps
When perfusion in gray matter regions is compared to the
white matter of the corpus callosum for each mouse, the average
difference in perfusion for the neocortex is 1.39 ± 0.4 mL/g/min
in the uncorrected maps, but it is 1.59 ± 0.5 mL/g/min in
the BBPC corrected maps, this constitutes a 14.2% increase in
contrast between these regions (95% CI = 9.6–18.8%). For the
hippocampus the difference in perfusion is 1.46 ± 0.4 mL/g/min
in the uncorrected maps and 1.54 ± 0.4 mL/g/min in the
corrected maps, or a 5.8% improvement (95% CI = 1.4–10.1%)
(Figure 5 and Table 1).

DISCUSSION

Using CaSTRR imaging we were able to produce high quality
BBPC maps suitable for voxel-wise correction of perfusion
measurements much faster than previous demonstrated. We
determined that the average BBPC in the neocortex was
0.99 ± 0.04 mL/g and in the hippocampus the BBPC was
0.95 ± 0.4 mL/g. We also determined the BBPC in the white
matter structure of the corpus callosum to be 0.93 ± 0.05 mL/g
which has not previously been reported in mice. We also found
significantly lower CBF in the corpus callosum than the neocortex
and the hippocampus. Finally, when CBF maps were corrected
for regional variability in BBPC the gray-white matter contrast
was improved by as much as 14%.

FIGURE 2 | A representative map of blood-brain partition coefficient (A) demonstrates elevated BBPC in the neocortex relative to the corpus callosum and
hippocampus (µCtx = 0.99 ± 0.04 mL/g, µCC = 0.93 ± 0.05 mL/g, µHc = 0.95 ± 0.04 mL/g). Maps of the uncorrected (B) and BBPC-corrected (C) cerebral blood
flow (CBF) demonstrate the improved contrast between gray matter in the neocortex (top) and hippocampus (bottom) and the white matter in the corpus callosum
(middle). While only one side is shown, regions of interest were drawn bilaterally and applied equally to all three maps.
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FIGURE 3 | Quantitative analysis of BBPC demonstrates significantly higher
BBPC in the neocortex relative to the corpus callosum (µCtx = 0.99 ±
0.04 mL/g, µCC = 0.93 ± 0.05 mL/g, p = 0.035), while the hippocampus had
a BBPC of µHc = 0.95 ± 0.04 mL/g (∗ indicates p < 0.05).

FIGURE 4 | The gray matter regions of the neocortex
(µuncorrected = 2.81 ± 0.4 mL/g/min, µcorrected = 3.09 ± 0.5 mL/g/min) and
hippocampus (µuncorrected = 2.90 ± 0.6 mL/g/min, µcorrected = 3.07 ± 0.7
mL/g/min) demonstrate significantly higher CBF than the white matter corpus
callosum (µuncorrected = 1.44 ± 0.3 mL/g/min, µcorrected = 1.51 ± 0.4
mL/g/min) in both the uncorrected and BBPC-corrected CBF maps
(∗∗∗ indicates p < 0.001).

The significant reduction in the acquisition time of BBPC
maps to only 17 min increases the feasibility of including such
a scan during an ASL protocol. We were also able to perform
a voxel-wise correction due in part to the custom nose cone
designed to immobilize the mouse’s head while receiver coils are
changed. The result of this correction is improved sensitivity to
regional perfusion differences in CBF. This study acquired high
resolution BBPC maps as was done in previous studies, but those
maps had to be down-sampled by 22% to match the resolution
of the pCASL acquisition when calculating CBF. This means
that further gains could be made in either acquisition time or
signal to noise ratio by acquiring CaSTRR images at the same
resolution as the ASL image. Furthermore, since the original
BBPC mapping technique was adapted to use in mice from a

FIGURE 5 | BBPC correction increased the degree of contrast between gray
matter regions and the corpus callosum as measured by the absolute
difference in CBF between the two regions. Contrast between the neocortex
and corpus callosum was improved by 14.2% (95% CI = 9.6–18.8%,
1CBFuncorrected = 1.39 ± 0.4 mL/g/min, 1CBFcorrected = 1.59 ± 0.5
mL/g/min) and between the hippocampus and corpus callosum by 5.8%
(95% CI = 1.4–10.1%, 1CBFuncorrected = 1.46 ± 0.4 mL/g/min,
1CBFcorrected = 1.54 ± 0.4 mL/g/min) (∗ indicates p < 0.05, ∗∗ indicates
p < 0.01).

previously established technique in humans, CaSTRR imaging
should be rapidly translatable back to the clinical setting (Roberts
et al., 1996). In fact, a recently published study on healthy human
volunteers demonstrated that an alternative method of correcting
CBF maps for BBPC variability also resulted in increased contrast
between gray and white matter (Ahlgren et al., 2018). This is
consistent with our study and highlights the potential benefit of
BBPC correction.

The improved regional specificity of CBF maps that are
corrected for BBPC variability will be particularly relevant in the
study of white matter pathologies (Mutsaerts et al., 2014). There
is growing interest in vascular dysfunctions that accompany
commonly observed white matter pathologies like multiple
sclerosis (Bester et al., 2015; Sowa et al., 2015), white matter
hyperintensities (van Dalen et al., 2016), and schizophrenia
(Wright et al., 2014). The inherently low signal to noise of ASL
is exacerbated in white matter where there is far less perfusion
than gray matter. This means differences in perfusion will be even
more subtle and could be confounded by changes in BBPC. While
adding a second measurement to the CBF calculation with its
inherent noise may introduce more variability in the CBF maps,
the ability to account for significant differences in BBPC may
increase sensitivity when comparing groups or regions with small
perfusion differences.

It should be noted that the CaSTRR technique differs from the
one described by Leithner et al. (2010) in a few key aspects. The
primary difference is the choice to use logarithmically spaced TRs
and omit TRs longer than 2 s. This change reduced the acquisition
time by 87% from∼130 to 17 min. In previously published BBPC
results, phantoms consisted of pure H2O/D2O solutions with
very long T1 recovery times which necessitated long TRs (Roberts
et al., 1996; Leithner et al., 2010). By adding gadolinium to the
water phantoms we were able to reduce the T1 of the phantoms
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to approximately match the tissue thereby obviating the long TR
scans that accounted for the vast majority of scan time. It should
also be noted that Leithner et al. used 8–16 week old 129S6/SvEv
mice. We would expect younger mice to have a higher BBPC
than the 12 month-old mice used in our experiment, however, we
observed higher BBPC values in our C57Bl/6N mice than were
reported by Leithner et al. (2010). Future studies will need to
consider the possibility that BBPC could vary with genetic strain.

There are several limitations to this study. While previous
studies have used a uniform phantom to try and correct for the
field inhomogeneity, variations were typically less than 5% and
it is unlikely that the B1 field will be the same in a uniform
phantom as it is while scanning a mouse (Roberts et al., 1996;
Leithner et al., 2010). For this reason we chose not to perform
any post hoc field correction and instead assumed a uniform field
and receiver profile. More advanced field correction techniques
may be useful. Also this study did not include a comparison
to a post-mortem desiccation experiment. The standard BBPC
mapping technique has been shown to underestimate the BBPC
when compared to desiccation because a small fraction of water
in the brain tissue does not contribute to the MRI signal (Leithner
et al., 2010). Thus the overestimation of BBPC by CaSTRR
may compensate for this effect, though not because it is more
sensitive to this hidden water. Furthermore, regional analysis is
not possible with desiccation, so desiccation could not confirm
the regional differences observed by CaSTRR imaging. Finally the
gradient echo readout used to acquire CaSTRR images is sensitive
to susceptibility artifacts at air-tissue interfaces. This can be seen
as a signal loss adjacent to the ear canals, and in this study we
were forced to examine only those superior regions of the brain
that were not affected by this artifact. For studies involving deep
brain structures it may be necessary to separately acquire a B1
field map to correct for susceptibility variation.

In conclusion, the CaSTRR method produced maps of BBPC
in mice with quality comparable to the current standard method

while requiring far less acquisition time. This enables voxel-wise,
empirical correction of CBF maps for regional and inter-subject
variability in BBPC. These corrected CBF maps demonstrate
improved contrast between gray and white matter regions. With
growing interest in using ASL to measure white matter perfusion,
this technique may have considerable value in studying pre-
clinical models of white matter pathologies as well as potential
for rapid translation to use in human studies.
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