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Abstract

The direct action of bacterial lipopolysaccharides (LPS) endotoxin was shown to

enhance synaptic transmission and hyperpolarize the membrane potential at low

doses, but block glutamatergic receptors and decrease observable spontaneous

events at a high dosage. The dosage effects are LPS type specific. The

hyperpolarization is not due to voltage-gated potassium channels or to activation

of nitric oxide synthase (NOS). The effects are induced directly by LPS,

independent of an immune response.

Keywords: Immunology, Neuroscience, Physiology, Zoology

1. Introduction

Gram-negative bacterial septicaemia infects humans as well as other animals. The

immunological response to bacterial infection will activate various cascades of

defence cytokines and antibody formation [1]. Two common bacterial strains that

cause septicaemia in mammals are Pseudomonas aeruginosa (P. a.) and Serratia

marcescens (S. m.) [2, 3, 4, 5]. The induced cytokines and defence response to

the surface antigens on bacteria account for some of the immune response, but
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lipopolysaccharides (LPS), which are secreted from the bacteria, can have direct ef-

fects on cells, in addition to stimulating an immune response. When bacteria are

lysed either by the body’s own defence or by therapeutic treatments, LPS can surge

and trigger a reaction independent of the immune response. The direct action of LPS

and the immune induced response are complex. The mechanisms responsible for the

neurological effects induced by septicaemia, including mental confusion and in some

cases coma, are still debated [6, 7, 8].

Thus, it is important to tease apart the direct actions of LPS from the immune

response. Isolated tissue preparations offer the ability to assess the effect of LPS

directly without the compounding variables found within a host. The exposure

of frog cholinergic neuromuscular junctions (NMJs) to LPS revealed an increase

in the occurrence of spontaneous quantal responses but reduced the evoked

amplitude of the excitatory postsynaptic junction potentials (EJPs) at doses as

low as 10 mg/ml of lyophilized LPS from Salmonella typhimurium. LPS was

proposed to cause a Ca2þ leak, leading to an increase in spontaneous quantal

responses, but block the voltage-gated calcium channels, leading to a reduced

evoked response [9]. There has yet to be direct confirmation that Ca2þ leaks in

the presynaptic nerve terminal following LPS exposure or that the voltage-gated

channels are directly blocked. It is unlikely that the nicotinic postsynaptic receptors

were blocked since an increase in frequency of spontaneous EJPs (mEJPs) was

observed. In contrast, the only study of glutamatergic synapses at a NMJ was

performed on crayfish, which revealed an increase in the amplitude of the EJPs

after exposure to LPS (S. m.; 2 mg/ml) [10].

However, an increase in spontaneous quantal events was also found in this prepara-

tion [10]. The crayfish NMJ is different from the frog NMJ in that the evoked re-

sponses in the muscle fibres are graded and non-spiking, so the enhanced EJP

amplitudes are due to an increase in synchronized vesicular fusion. The increase

in spontaneous events and the enhanced evoked responses suggest increased Ca2þ

loading induced by LPS. Previous studies of frog NMJ did not directly measure

Ca2þ levels within the presynaptic nerve terminal and did not address whether the

rise in Ca2þ was due to internal release of Ca2þ from the ER or from an extracellular

source.

The NMJs of crayfish and larval Drosophila melanogaster are similar in their

pharmacological profile [11, 12]. Even though the neurotransmitter at the larval

NMJ is glutamate, the genetic tools available in Drosophila have provided a

detailed understanding of synaptic homeostasis and the biochemistry involved in

synaptic function as a model for most chemical synapses [11]. The purpose of

this study was to determine the direct effects of LPS on glutamatergic synaptic

transmission.
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2. Results

Stimulating a segmental nerve in the 3rd instar at 0.5 Hz evokes prominent EJPs in

muscle 6 (Fig. 1). Alterations in amplitude of synaptic responses occurred during

exposure to LPS from S. m. and P. a. in a dose-dependent manner. Treatment

with LPS from S. m. at 100 mg/ml produced varied responses in EJP amplitudes

(Fig. 2A). Whereas treatment with LPS from P. a. significantly increased EJP ampli-

tude (P ¼ 0.02, paired T-test) among preparations despite a collective average

percent decrease due to a few of the 16 preparations having a pronounce decrease

in amplitude (Fig. 2C). The frequency of spontaneous quantal events did not system-

atically increase for either LPS exposure as was reported for glutamatergic crayfish

[10] and cholinergic frog [9] NMJs. In fact, there was a significant decrease in the

frequency of spontaneous events after 10 min of exposure to LPS for both S. m.

and P. a (Fig. 2B and D; Wilcoxon Signed Rank Test, P < 0.005).

2.1. Changes in EJP amplitude is LPS dose-dependent

The rate of change in the amplitude of the evoked EJPs and mEJPs, as well as the

resting membrane potential, is rapid upon exposure to LPS from S. m. and P. a

(Figs 3 and 4). However, LPS from S. m. depressed synaptic transmission to a greater

Fig. 1. (A) 3rd instar larvae were filleted open and a (B) segmental nerve was stimulated while (C) EJPs

and mEJPs were recorded from m6 muscle fibres.
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Fig. 2. Comparison of LPS at 100 mg/ml from S. m. and P. a. The EJP amplitudes did not have a sig-

nificant change for exposure to S. m. (A). The EJP amplitudes significantly increased for P.a. exposure

(B; P ¼ 0.02, paired T-test). There is significant decrease in the frequency of spontaneous events after 10

min of exposure to LPS for both S. m. and P. a. (Fig. B and Fig. D; Wilcoxon Signed Rank Test,

P < 0.005).
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extent at 500 mg/ml (P < 0.001, paired T-test; Fig. 5A2) than LPS from P. a. at 500

mg/ml (Fig. 5B2). The LPS from either S. m. or P. a. rapidly hyperpolarized the

membrane potential (P < 0.001, paired T-test; Fig. 5A2 and B2).

The decrease in the amplitudes of the EJP is obviously not due to low frequency

synaptic depression, which is known to occur at these NMJs [13], since upon

removal the of the LPS the amplitude of the responses partially recovers (Figs.

3C, D and 4C, D).

It was possible to quantify the rate of spontaneous mEJPs during exposure to 100 mg/

ml LPS since the amplitudes did not decrease. However, since the amplitudes

decreased during exposure to 500 mg/ml LPS (S. m.), they could not be reliably

determined and compared to the exposure of LPS for P. a. at 500 mg/ml (Figs. 3C

Fig. 3. Representative trace for exposure to LPS from S.m. at 500 mg/ml and enlarged segments to high-

light the changes in amplitudes of the EJPs.
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and 4C). Within the 10-minute exposure to LPS of P. a., one preparation appeared to

display a short burst of mEJPs. In general, the frequency and amplitude of mEJPs

decreased with the reduction of the EJPs amplitude. The mEJPs were not detectable

in most of the preparations at 500 mg/ml since the size became so small and were lost

in the background noise. Thus, we did not report on the amplitudes and frequency

since it was obvious, they are gradually being lost in the background noise of the

recording with exposure to LPS. It is interesting the mEJPs and EJPs gradually re-

appear upon removing the LPS. Contrary to mEJPS, however, when evoked EJPs

drop to zero amplitude, it is appropriate to report this value, as it is known when

they should occur.

Increasing the concentration of P. a. LPS to 750 mg/ml produced an effect similar to

the treatment with 500 mg/ml of LPS from S. m.: it decreased the amplitude of EJPs

Fig. 4. Representative trace for exposure to LPS from P.a. at 500 mg/ml and enlarged segments to high-

light the changes in amplitudes of the EJPs.
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and mEJPs, and produced a pronounced hyperpolarization of the membrane poten-

tial (Fig. 5). EJPs quickly increased in amplitude after removal of the LPS, and addi-

tion of a saline-alone solution in the trials with S. m. at 500 mg/ml and with the P. a.

at 750 mg/ml. However, repeated flushing of the preparation with fresh saline after

exposure to LPS did not fully restore the amplitudes of evoked EJPs. The membrane

potential also approached basal levels and the observable occurrences of mEJPs re-

turned. The reoccurrences of mEJPs is likely due to an increased amplitude, as they

decreased gradually in amplitude upon exposure to LPS and gradually increase in

amplitude after removal of LPS.

Fig. 5. Composite effects on the amplitude of EJPs and membrane potential during and after treatment

with 500 mg/ml S. m. and P. a. and 750 mg/ml LPS from P. a. LPS from either S. m. or P. a. depressed the

EJP amplitudes with 500 mg/ml (A2, B2) and P. a. for 750 mg/ml (C2) (P < 0.001, paired T-test). The

LPS from either S. m. or P. a. rapidly hyperpolarized the membrane potential at the (P < 0.001, paired

T-test).
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2.2. Membrane hyperpolarization

Even though the values of the resting membrane potentials vary among preparations,

the effect of LPS still results in a hyperpolarized response. LPS exposure to either

S. m. 500 mg/ml, or P. a. at 500 or 750 mg/ml, resulted in a more negative membrane

potential (Fig. 5A1, B1 and C1; P < 0.001, paired T-test). These muscle cells were

not voltage clamped in order to measure the effect on the membrane potential and the

varying degree in the effect on the EJP amplitude as would occur in intact animals.

Despite the hyperpolarization of the membrane induced by LPS from S. m. at 500

mg/ml or P. a. at 500 or 750 mg/ml, the EJPs became smaller and continued to

vary in amplitude (Fig. 5A2, B2 and C2; P < 0.001, paired T-test).

2.3. Potential mechanisms behind muscle hyperpolarization

The mechanism that induces hyperpolarization is not as readily explained. If LPS

induced calcium-activated potassium conductance, it would have to be specific to

the muscle fiber and not the presynaptic nerve terminal; otherwise, an increase in

the evoked EJP amplitude and an increase in the frequency of mEJPs would be ex-

pected to occur with any increased Ca2þ loading in the nerve terminal. It is possible

that LPS acts more prominent on the postsynaptic muscle by blocking glutamate re-

ceptors and hyperpolarization via some ionic mechanism such as a calcium-activated

potassium or chloride conductance, which may even occur simultaneously.

To examine if LPS induced a Ca2þ influx, a Ca2þ-free saline was added for

2 minutes prior to exposing the preparation to a Ca2þ-free saline containing LPS

(S. m., 500 mg/ml). The amplitude of the evoked EJPs rapidly dampened in Ca2þ-

free saline; however, LPS still resulted in a substantial hyperpolarization

(Fig. 6A). It was previously demonstrated that TEA (20 mM) blocks the calcium-

activated potassium channel in larval Drosophila muscle [14]. TEA (20 mM) did

not block LPS induction of hyperpolarization (Fig. 6B) and did not prevent the

reduction in the amplitude of the evoked EJPs during LPS exposure. Since LPS

has been shown to activate nitric oxide synthase (NOS) and induce hyperpolar-

ization in the membrane potential of rodent cardiac muscle, NOS induction was

examined. L-NAME inhibits NOS within 20e30 minutes in birds, rodents and

human tissue [15, 16, 17, 18] and treatment of Drosophila with L-NAME aided

the immune response to parasitoids [19]. Thus, the exposed NMJs were incubated

with L-NAME (1 mM) and TEA (20 mM) for 20 min prior to treatment with saline

containing L-NAME þ TEA þ LPS (S.m., 500 mg/ml), which still produced sub-

stantial hyperpolarization. To note the change under these conditions only sponta-

neous quantal vesicular activity and the resting potential is measured (Fig. 6C).

This same trend, in response to the pharmacological treatments, is observed in six

out of six preparations (P < 0.05; sign test).
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2.4. Membrane resistance

To examine if the hyperpolarization was due to an alteration in the input resistance of

the muscle fibre, changes in voltage responses to 0.2 nA current injection was

Fig. 6. Examining the mechanisms behind the hyperpolarization of the muscle membrane by LPS. (A) In

calcium-free saline, LPS induced hyperpolarization. (B) In blocking the Drosophila calcium-activated

potassium channel with TEA, the muscle was hyperpolarized upon exposure to LPS and TEA. (C) After

nitric oxide production was blocked with a 20-minute incubation with L-NAME and TEA, the muscle

membrane continued to be hyperpolarized upon exposure to TEA þ L-NAME þ LPS. To test this effect

only spontaneous quantal vesicular activity and the resting potential is shown.
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evaluated. Since the membrane potential showed rapid changes during LPS expo-

sure, a range of current steps was not feasible in order to obtain an I-V curve to calcu-

late membrane input resistance at given times of LPS exposure. The alternating

pulses ofþ and� current injections at 0.2 nA prior to LPS and during LPS revealed

no differences (N ¼ 6; not significant) in the voltage amplitude as shown in a repre-

sentative trail (Fig. 7).

3. Discussion

The significance of these findings is that we have shown that LPS decrease the

responsiveness of the glutamatergic receptors, potentially by blocking them. Using

the genetically amenable Drosophila model, this mechanism can be further studied

to determine how this occurs and if the binding is competitive or non-competitive.

LPS activates the innate immune response by binding to Toll-like receptor 4

(TLR4) known as the CD14/TLR4/MD2 receptor complex in mammals [20]. The

TLR4 receptors are highly conserved from primates to insects [21]. These receptors

are known to be located on cells and can act directly on cellular function without any

influence from a secondary immune response. In Drosophila melanogaster, where

the Toll receptor was discovered [22, 23], it does not appear LPS mediates its

response through the Toll receptor complex [24]. Rather, inDrosophila, the Immune

deficiency (Imd) signaling pathway, activated by the peptidoglycan proteins, is the

main cellular cascade stimulated by LPS [25, 26]. However, the expression profiles

for peptidoglycan receptors in the brain of insects has yet to be fully identified, nor

the effects on the physiology of organs, or the effects on synaptic transmission in the

central nervous system or at the NMJs.

BothP. a. and S. m. are known to play a role in septicaemia in humans and other mam-

mals [27, 28, 29, 30] but the direct action of LPS, from these bacterial strains, on neural

Fig. 7. Input resistance of the muscle fibre. With alternating positive and negative current injections (0.2

nA) before and during LPS exposure revealed no differences in the voltage amplitudes.
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tissue has not been fully investigated. It is known that LPS from S. m. is more potent

than from P. a. in inducing an immune response in mammals [31, 32, 33].

The slight increase in the EJP amplitude with acute exposure to LPS at 100 mg/ml but

a large decrease at 500 mg/ml maybe well be due to varying affinities to receptors

which mediate different cellular response or even off target effects from the proposed

IMD receptors responsibly for mediating the response to gram negative bacterial

LPS [25, 26]. It is known that low concentration of some compounds, such as endog-

enous ouabain, can be stimulatory to the Na-K ATP dependent pump where as high

concentrations are inhibitory [34]. Possibly this may also be occurring with LPS

induced responses.

Septic myocardial dysfunction in mammals by LPS is thought to occur due to sarco-

plasmic leaks leading to altered contractile properties [35]. Given that LPS increases

the number of spontaneous events at the crayfish and frog NMJs [9, 10], a similar

cellular responsemay explain the increase in the number of spontaneous events in those

preparations; however, this does not appear to be the case in larvalDrosophila NMJs.

Imaging the nerve terminals with Ca2þ indicators, such as with using a genetic variant

expressingGCaMP6 inDrosophila, would address this effect and other forms of Ca2þ

indicators could be used for motor neurons in the frog and crayfish preparations.

Given that NMJs are very plastic in regulating efficacy of synaptic transmission

throughout develop and with various activity profiles, it would not be surprising

with a systemic bacterial challenge that a synaptic homeostasis would attempt to

occur, particularly for the fast developing larval Drosophila [36, 37, 38, 39, 40].

However, if LPS is blocking glutamate receptors, and still present systemically,

even the newly expressed receptors would be susceptible. If glutamate receptors

are compromised, there would likely be an attempt to enhance synaptic transmission

from the muscle to the motor neuron [39, 40]. In addition, it is yet unknown the full

extent to which LPS activates cytokine-like factors in Drosophila which could

impede homeostatic regulatory processes in attempting to maintain synaptic function.

Mechanistic explanation of the transit hyperpolarization remains unanswered. Since

the muscle input resistance is not altered during the hyperpolarization, the increasing

negative potential is not likely due to leaky membrane channels remaining open for

an ion. The equilibrium potential for Cl� in larval Drosophila body wall muscles is

more depolarized than the resting membrane potential [41]. So, if Cl� channels

opened, we would expect depolarization, also the same for Naþ and Ca2þ. It is a pos-

sibility that leak channels of Naþ are temporally closing with LPS exposure and the

membrane is driven to Ek equilibrium potential. With the injected alternating current

pulses, no change was measurable in the input resistance of the membrane, thus

perhaps an ionic pump is active. Although it would seem unlikely, if the Na-K

ATPase pumps were transitory hyperactivated this could explain the phenomenon

in the large hyperpolarization phase of the LPS response.
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The findings of this study may be applicable to treating septicaemia LPS-induced

neurological effects in mammals [42, 43]. In addition, the hyperpolarization of skel-

etal muscle in Drosophila may explain the hyperexcitability with enhanced driving

gradients or enhanced excitability by preventing the inactivation of voltage-gated ion

channels at rest and lowering the threshold. The effect may even result in the

inhibition of synaptic transmission. A revitalization of the investigation of the direct

effects of LPS on cellular function is on the horizon.

4. Methods

4.1. Larval Drosophila melanogaster

The Canton S (CS) strain of flies was used in all experiments. This strain has been

isogenic in the lab for several years andwas originally obtained from the Bloomington

Drosophila Stock Centre. Flies were raised on standard cornmeal-agar-dextrose-yeast

medium in vials kept at room temperature (22e23 �C)with a 12-hour light/dark cycle.

4.2. Electrophysiology in 3rd instar larvae

Fly saline haemolymph-like 3 (HL3) [44] was used (in mmol/L) 70 NaCl, 5 KCl,

20 MgCl2, 10 NaHCO3, 1 CaCl2, 5 trehalose, 115 sucrose, 25 N,N-bis(2-

hydroxyethyl)-2-aminoethane sulfonic acid (BES) and pH at 7.1 [46]. The EJPs

and spontaneous mEJPs were collected and analysed with LabChart 7.0 (ADInstru-

ments, USA) as previously detailed [39, 45].

LPS was dissolved in saline prior to use and was readily exchanged over the

dissected preparations during the recording of evoked EJPs and mEJPs. Exposure

to LPS for 10 minutes was used followed by changing the bathing saline 3 or 4 times

with fresh saline not containing LPS. The total volume of the chamber is only 1 ml

which is fully exchanged when switching the media. Two forms of LPS were used

(S. m. and P. a.). LPS and the chemicals used for saline were obtained from Sigma-

Aldrich (St. Louis, MO, USA). Acute 10-minute direct exposure of in situ NMJs to

saline containing LPS (S. m.) at 100 or 500 mg/ml was determined in preliminary

experiments to bracket a range from minor to prominent effects on synaptic transmis-

sion. The LD50 in rodents for LPS from S. m. is 650 mg/ml (10) (6 � 106 CFU-

colony-forming units, [46]). Thus, we chose to use a relatively high concentration

for D. melanogaster since they are likely exposed to gram-negative bacterial strains

in their native environment.

4.3. Statistical analysis

SigmaPlot (version 13.0) was used for graphing and statistical analysis. The electro-

physiological analysis is presented as raw values and percent change from control
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(saline) or from LPS exposure to washout. There is considerable variation among

baseline EJP frequency from preparation to preparation. Thus, raw values as well

as percent changes are used. The non-parametric sign test for trends was used for

testing significance (P � 0.05).
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