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Abstract

In environmental exposure studies, it is common to observe a portion of exposure measurements to 

fall below experimentally determined detection limits (DLs). The reverse Kaplan-Meier (RKM) 

estimator, which mimics the well-known Kaplan-Meier estimator for right-censored survival data 

with the scale reversed, has been recommended for estimating the exposure distribution for the 

data subject to DLs because it does not require any distributional assumption. However, the RKM 

estimator requires the independence assumption between the exposure level and DL and can lead 

to biased results when this assumption is violated. We propose a kernel-smoothed nonparametric 

estimator for the exposure distribution without imposing any independence assumption between 

the exposure level and DL. We show the proposed estimator is consistent and asymptotically 

normal. Simulation studies demonstrate that the proposed estimator performs well in practical 

situations. A colon cancer study is provided for illustration.

Keywords

detection limits; left-censored data; environmental exposure; kernel smoothing; nonparametric 
estimator

1. Introduction

In environmental exposure studies, one fundamental question is to estimate distributions of 

environmental chemicals, such as trace elements and pesticides, in a certain population. 

However, it is very common to observe a portion of exposure measurements to fall below 

experimentally determined detection limits (DLs). A detection limit (DL) is “a threshold 

below which measured values are not considered significantly different from a blank signal, 

at a specified level of probability” [1]. Therefore, the exposure level of a chemical for a 

*Correspondence to: Li Chen, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center and Department of 
Biostatistics, College of Public Health, University of Kentucky, Lexington, USA. Tel: 859-323-2005. 
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sample is only reported when its value is not less than the DL and otherwise is reported as a 

less than value or non-detect. The DL itself can depend on the mass/volume of the analyzed 

sample and/or on the mass/volume of adjustment factors such as lipid content. The 

laboratory may report a common DL for all samples or different DLs for different samples. 

When the latter occurs, it is mostly because the mass/volume of the obtained sample and/or 

any adjustment factor differs for each individual, and the exposure level and DL may be 

associated in this case. For example, in the colon cancer study measuring trace element 

accumulation in toenails [2], we observed a statistically significant association between the 

exposure level and DL in Appalachian cancer cases for at least 6 trace elements (Table 4). 

This may be because trace elements can cause adverse effects on metabolism and therefore 

lead to slow growth rate of toenails [3]. As a result, toenail samples obtained from 

individuals with high exposure to trace elements tend to have low masses, and thus high 

DLs. Conversely, a higher toenail mass results in a lower DL (i.e., a better ability to detect 

low levels of metal accumulation). In this situation, the exposure level and DL are positively 

associated whereas both are negatively associated with the toenail sample mass.

Ad hoc methods, such as substituting DL, DL/2, or DL/√2 for the value below a DL, are 

widely used in environmental science literature to estimate the exposure distribution for the 

data subject to DLs. However, these methods have no theoretical basis and are ill-advised 

unless relatively few measures fall below DLs [4; 5]. To appropriately account for values 

below DLs, parametric models for left-censored data, such as the lognormal model [1], can 

be used since the data subject to DLs can also be treated as left-censored data [1]. But these 

parametric methods can lead to markedly biased results when the parametric form of the 

exposure distribution is misspecified [1; 5]. Recently nonparametric methods have received 

increasing attention because they do not require distributional assumptions, and thus may be 

a safer choice for data analysis. The reverse Kaplan-Meier (RKM) estimator, which mimics 

the Kaplan-Meier (KM) estimator for right-censored survival data with the scale reversed, 

has been recommended [6]. Note that both the RKM estimator and the aforementioned 

parametric methods require the independence assumption between the exposure level and 

DL. To our knowledge, there are no appropriate statistical methods available to deal with the 

case when the exposure level and DL are associated.

In this paper, we utilize a two-step strategy and the kernel smoothing technique to develop a 

nonparametric consistent estimator for the exposure distribution allowing for the situation 

that the exposure level and DL are not independent. We first estimate the conditional 

exposure distribution given the DL by adding kernel weights into the RKM estimator and 

then obtain the average of the estimated conditional distributions over all DL values in the 

sample to estimate the marginal exposure distribution. The proposed method does not 

require any independence assumption between the exposure level and DL and any 

distributional assumption about the exposure level. In Section 2, we propose the estimator 

and show that it is consistent and converges weakly to a Gaussian process. In Section 3, the 

results of several simulation studies are reported to compare the performance of the 

proposed estimator to both the RKM estimator and a parametric estimator assuming a 

lognormal exposure distribution. In Section 4, a colon cancer study is provided for 

illustration. Finally, Section 5 contains discussions and some extensions.
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2. Methods

Let T̃ and D be random variables for the exposure level and DL, respectively, and F(·) be the 

cumulative distribution function (CDF) of the exposure level. Let T = max(T̃, D) and δ = I(T̃ 

≥ D). Here δ indicates whether T is an exposure level value or a DL value. For data subject 

to DL, only (T, δ, D) are observable for each subject. Suppose the data consist of n 
replicates {(Ti, δi, Di): i = 1, ⋯, n}. Note that the method proposed below requires the DL to 

be known for each subject in the data.

It is useful to adopt the counting process notation. Analogous to the observed counting 

process and at-risk process for right censored survival data, we define two counting 

processes, Ni(t) = I(Ti ≤ t, δi = 1) and Yi(t) = I(Ti ≤ t), for the data subject to DLs. Then the 

RKM estimator can be rewritten as

(1)

where τn = mini=1,…,n{Ti}. In addition, when the smallest observation is uncensored, 

F̂
RKM(t) = 0 for t ∈ (0, τn). When the smallest observation is censored, F̂

RKM(t) is undefined 

for t ∈ (0, τn). This estimator mimics the KM estimator for right-censored survival data with 

the scale reversed. Similar to the independence assumption between the survival time and 

censoring time for the KM estimator, the RKM estimator requires the independence 

assumption between the exposure level and DL and is not a consistent estimator when this 

assumption is violated.

To develop a consistent estimator for the exposure distribution allowing for the association 

between the exposure level and DL, we propose a two-step strategy based on the statistical 

fact that F(t) = ED{F(t; D)}, where F(t; d) is the conditional CDF of the exposure level given 

the DL, i.e. F(t; d) = Pr(T̃ ≤ t | D = d), and ED is the expectation with respect to D. In the 

first step, we obtain a consistent estimator for the conditional CDF of the exposure level, 

denoted by F̂(t; d). Specifically, we estimate the conditional CDF by adding kernel weights 

into the RKM estimator in equation (1) such that subjects whose DL values closest to d 
receive the largest weights, i.e.

where K(·) is a kernel function, and h is a bandwidth such that nh → ∞ and nh4 → 0 as n 
→ ∞. For each value of d, all subjects contribute to the calculation of F̂(t; d) but with 

different weights depending on the difference between their DL values and d. In the second 

step, we estimate F(t) by the average of estimated conditional CDF values over all DL values 

in the sample, i.e. . Similar to the RKM estimator, the proposed 

Yang et al. Page 3

Stat Med. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimator F̂(t) is a right-continuous step function with jumps at uncensored observations. 

When the smallest observation is uncensored, F̂(t; d) = 0 and F̂(t) = 0 for t ∈ (0, τn). When 

the smallest observation is censored, F̂(t; d) and F̂(t) are undefined for t ∈ (0, τn). The above 

estimator for the conditional CDF borrows the idea of the kernel conditional KM estimator 

which added kernel weights into the KM estimator to estimate the conditional survival 

function for right-censored survival data [7]. In the following, the proposed estimator F̂(t) 
will be referred to as KRKM estimator. Through the above two-step strategy, in order for 

F̂(t) to be a consistent estimator for the marginal CDF of the exposure level, we only need 

the estimator for the conditional CDF given the DL to be a consistent estimator, which only 

requires the conditional independence between the exposure level and DL given the DL. 

Since it is true that the exposure level and DL are independent given the DL, the KRKM 

estimator is consistent without requiring any independence assumption between the 

exposure level and DL. We show in Appendix A that √n{F̂(t) − F(t)} converges weakly to a 

zero-mean Gaussian process and is asymptotically equivalent to the process 

, where

(2)

The above theoretic result does not require the kernel function to have any special shape. But 

numerically, because the kernel function appears in the denominator of the proposed 

estimator, standard kernel functions, such as Gaussian kernel with fixed standard deviation 

and Triangular kernel, can produce extremely small kernel weights and thus cause unstable 

results. Therefore, to ensure computational stability, we suggest using the following 

modified Silverman kernel [8], which is flatter and less likely to produce extremely small 

kernel weights,

For the bandwidth, we suggest using σ̂n−1/3, where σ̂2 is the sample variance of the DL. This 

choice satisfies the conditions that nh → ∞ and nh4 → 0 as n → ∞. Based on the formula 

in (2), the variance of the KRKM estimator can be estimated by , where ξ̂i(t) 
is obtained by replacing F(·; Di) and F(·) by F̂(·; Di) and F̂(·). The log-log transformed 95% 

confidence intervals for F(t) can then be calculated as that for the survival function in 

survival analysis. This will be referred to as formula-based variance estimation method. 

Another approach to estimate the variance is to use the bootstrap method. Similar log-log 

transformed 95% confidence intervals can be obtained. This approach will be referred to as 

bootstrap-based variance estimation method. The formula-based variance estimation method 

is computationally faster than the bootstrap-based method, but may underestimate the 
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variance and thus yield poor coverage probabilities at the points below which there are few 

observations, as shown in simulation studies of Section 3.

We have implemented the proposed methods in an R package called “KENDL”, which is 

now available at the Comprehensive R Archive Network. (https://cran.r-project.org/web/

packages/KENDL/index.html).

3. Simulation studies

To assess the performance of the proposed KRKM estimator under the situation that the 

exposure level and DL are associated, we mimicked the cadmium (Cd) and nickel (Ni) data 

in Appalachian cases from the colon cancer study in Section 4. We generated the DL for 

each trace element based on their empirical distributions in the data and the exposure level 

for each trace element from the lognormal regression model: log(T̃) = μ + βlog(D) + σε, 

where ε follows a standard normal distribution. The parameters μ, β, σ are estimated based 

on the data for each trace element, which are −3.05, 0.42, and 1.21 for Cd (setting 1) and 

0.16, 0.34, and 1.62 for Ni (setting 2). The non-detect rate of the simulated data is 76% and 

25% for the above two settings, respectively. We compared the KRKM estimator, with both 

bootstrap-based and formula-based variance estimation, to the RKM estimator and the 

parametric estimator assuming a lognormal distribution for the exposure level. The latter two 

estimators were obtained from NADA R package. Note that the NADA package has an error 

in reporting the RKM estimator for the CDF, which is described below. Let t(1) < ⋯ < t(m) be 

the ordered unique uncensored exposure values. The RKM estimator at a given uncensored 

exposure value t(i), i.e. F̂
RKM(t(i)), should be the NADA-reported CDF estimate at t(i+1). 

Therefore, we corrected this error by letting F̂
RKM(t(i)) be the NADA-reported CDF estimate 

at t(i+1). For any t ∈ [t(i), t(i+1)), we set F̂
RKM(t) equal to F̂

RKM(t(i)) since F̂
RKM(.) is a right-

continuous step function. Table 1 summarizes the results for the above three estimators of 

F(t) at t = 1st, 2nd and 3rd quartiles based on 1000 replicates and 500 bootstraps for both 

settings. The proposed KRKM estimator with the bootstrap-based variance estimation 

performs very well except for t = 1st quartile in setting 1: the biases are small and the 

confidence intervals have proper coverage probabilities. At t = 1st quartile in setting 1, the 

coverage probability is lower than the nominal value due to the very high non-detect rate of 

76%. Compared to the bootstrap-based variance estimation, the formula-based variance 

estimation for the KRKM estimator is computationally faster. But at the points below which 

there are few observations, e.g. t = 1st and 2nd quartiles in setting 1, the formula-based 

variance estimation tends to underestimate the variance and thus yield poor coverage 

probabilities. In contrast to the KRKM estimator, the RKM estimator has large biases and 

poor coverage probabilities, especially when the sample size increases, due to its inability to 

account for the association between the exposure level and DL. Likewise, the lognormal 

estimator also has large biases and low coverage probabilities, resulting from not accounting 

for the association between the exposure level and DL and possibly misspecified exposure 

distribution. To further unravel the impact of not accounting for the association between the 

exposure level and DL for the lognormal estimator, we considered additional simulations 

where the DL for each trace element was generated from a lognormal distribution with 

parameters estimated from the colon cancer data. Under this scenario, the marginal 

distribution of the exposure level is guaranteed to follow a lognormal distribution so that the 
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parametric distribution is correctly specified for the lognormal estimator. However, as shown 

in Table 2, the lognormal estimator still yields large biases and poor coverage probabilities.

To compare the performance of the KRKM, RKM and lognormal estimators under the 

situation that the exposure level and DL are independent, we adopted the above set-up but 

set β = 0. The non-detect rate of the simulated data is 78% and 31% for the two settings, 

respectively. Table 3 summarizes the results for the KRKM, RKM and lognormal estimators 

of F(t) at t = 1st, 2nd and 3rd quartiles based on 1000 replicates and 500 bootstraps. For all 

the estimators, the biases are very small, the variance estimators are accurate and the 

confidence intervals have proper coverage probabilities. The KRKM estimator obtains 

comparable results as the RKM estimator when the exposure level and DL are independent. 

The lognormal estimator yields slightly smaller variances than the KRKM and RKM 

estimators, which is expected since the exposure level and DL are independent and the 

exposure distribution is lognormal under this set-up.

4. Example

Kentucky has the nation's highest colon cancer incidence rate [10]. Appalachian Kentucky, 

which has a unique geology that contains high-quality bituminous coal naturally rich in trace 

elements, has an even higher rate of colon cancer compared to other regions of the state. A 

case-control study was conducted to explore the association between environmental 

exposures to trace elements such as arsenic (As), chromium (Cr) and nickel (Ni) and colon 

cancer and whether exposures to these trace elements contribute to the elevated colon cancer 

rate in Appalachian Kentucky [11; 2]. For this purpose, 274 colon cancer cases and 253 

controls were selected from 23 contiguous rural counties in Kentucky (Appalachian region) 

and Jefferson County, the largest, most urban county in Kentucky (non-Appalachian region). 

Among 247 subjects from the Appalachian region, 145 were cases and 102 were controls; 

among 280 from the non-Appalachian region, 129 were cases and 151 were controls. 

Toenail samples from these subjects were collected, and the concentrations of 12 trace 

elements were measured as markers of long-term environmental exposures to these trace 

elements. The DL varies from one subject to another for these trace element concentrations 

as a function of the toenail mass. For illustration purposes, we only focus on the 

Appalachian region. The proportion below the DL is over 20% for most trace elements and 

is as high as 79% and 83% for Cd in Appalachian cases and controls, respectively (Table 4).

We first examine the independence assumption between the exposure level and DL for each 

trace element using the following three methods. In the first method, we fitted a lognormal 

accelerated failure time (AFT) model [12] with the left-censored exposure level as the 

outcome and the log-transformed DL as a covariate. Under this model, the independence 

assumption between the exposure level and DL was examined by testing whether the 

coefficent is equal to 0. The Pearson's correlation coefficient between the exposure level and 

DL (both log-transformed) was estimated by , where β̂, σ̂ are the estimators 

of the coefficient and scale parameters in the lognormal AFT model and  is the sample 

variance of log(D). In the second method, the Pearson's correlation coefficient between the 

exposure level and DL (both log-transformed) and the corresponding p-value were 
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calculated based on the “clikcorr” R package, which assumes a bivariate normal distribution 

for the two variables and uses a profile likelihood method [13]. In the third method, the 

nonparametric Kendall's tau correlation coefficient [14] and the corresponding p-value were 

calculated based on the “cenken” function in the NADA R package [9]. The results based on 

the above three methods are reported in Table 4. The results from the first two parametric 

methods are vey close for all trace elements except for Cd in controls, where the non-detect 

rate is as high as 83%. For colon cancer cases, there is a statistically significant association 

between the exposure level and DL for all 12 trace elements based on the two parametric 

methods. The nonparametric Kendall's tau method, which appears more conservative, 

identifies 6 trace elements with a significant association between the exposure level and DL. 

For controls, there is only one trace element showing a significant association between the 

exposure level and DL based on the three methods.

We then use the trace element Ni to demonstrate our proposed KRKM estimator, comparing 

to the RKM estimator and the parametric estimator. For cases, the Ni level ranges from 0.02 

to 624.4 and the DL ranges from 0.004 to 24.84; for controls, the Ni level ranges from 0.04 

to 39.37 and the DL ranges from 0.01 to 38.38. Table 4 shows that for Ni there is a 

signifcant association between the exposure level and DL for cases but no signficant 

association for controls. We estimated the exposure distributions of Ni level for cases and 

controls, respectively. The lognormal distribution was selected for the distributions of Ni for 

both cases and controls by the Akaike information criterion (AIC) [15] among a number of 

candidate distributions, including normal, lognormal, Weibull and loglogistic. Figure 1 

displays the CDF estimates for colon cancer cases and controls based on the KRKM, RKM 

and lognormal estimators, and Figure 2 displays the differences in CDF estimates between 

the KRKM estimator and the latter two estimators along with 95% confidence limits. These 

figures show that the RKM estimator significantly overestimates the CDF for the Ni level 

between 0.21 and 5.29 compared to the proposed KRKM estimator for cancer cases. This 

may be because of the significant association between the exposure level and DL. In 

contrast, there is no significant difference between the two estimators for controls, which 

may be because of the insignificant association between the exposure level and DL. As a 

result, the RKM estimator significantly underestimates the difference between the cases and 

controls compared to the KRKM estimator. Figures 1 and 2 also show remarkable difference 

between the lognormal and KRKM estimators for cases, most likely due to a combination of 

imperfect fit of the lognormal distribution and the significant association between the 

exposure level and DL. The difference between these two estimators is smaller for controls.

5. Discussion

We have developed a consistent nonparametric estimator for the exposure distribution 

without requiring any independence assumption between the exposure level and DL. Our 

proposed estimator outperforms the RKM estimator and the parametric estimator when the 

exposure level and DL are associated because the latter two estimators are not consistent in 

that situation. In the case of a common DL, our estimator reduces to the RKM estimator; and 

in the case of varying DLs but the exposure level and DL are independent, our estimator can 

obtain comparable results as the RKM estimator. Thus, our estimator provides a unified 

nonparametric approach for estimating the exposure distribution regardless of whether the 
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exposure level and DL are independent or not and whether the association between the 

exposure level and DL is linear, curvilinear, or step function, etc. Therefore, the user does 

not have to test whether the exposure level and DL are associated before using our method, 

which is an advantage over the RKM method whose validity depends on the test results.

We have utilized a two-step strategy and kernel smoothing technique along with a special 

feature of data subject to DLs, i.e. the DL is observable for each subject, to completely 

eliminate the independence assumption between the exposure level and DL. In contrast, the 

consistent estimators developed based on similar two-step strategies for the marginal 

survival function for right-censored survival data need to find a set of covariates and require 

the independence assumption between the censoring time and survival time conditional on 

those covariates [16; 17]. In our approach, we take advantage of the data characteristic that 

the DL is observable for each subject and utilize the DL as the conditioning covariate. As a 

statistical fact, the independence assumption between the DL and exposure level given the 

DL automatically holds. Therefore, our estimator is free of any independence assumption 

between the exposure level and DL.

In survival analysis, another approach dealing with dependent censoring for estimating the 

survival function is the inverse probability of censoring weighting (IPCW) KM estimator 

[18; 19]. This weighted version of the KM estimator assigns a weight, inversely proportional 

to an estimate of the conditinal survival function of the censoring time given a set of 

covariates, to each subject. Under the condition that the censoring time and survival time are 

independent given that set of covariates, the IPCW KM estimator is consistent. By 

borrowing this idea, one can construct an IPCW RKM estimator for the exposure 

distribution by adding subject-specific weights, proportional to each subject's conditional 

CDF of the DL given a set of covariates, in the RKM estimator. The consistency of this 

estimator requires that the exposure level and DL are independent given that set of 

covariates. However, it is not possible to use the IPCW method with DL as the covariate to 

obtain an estimator free of any independence assumption between the exposure level and 

DL. The conditional CDF of the DL, given DL, can only take values 0 or 1 and thus cannot 

be used as an inverse weight.

A key issue in our two-step strategy is how to estimate the conditional CDF of the exposure 

level given the DL for the data subject to DL. To address this issue, we have added kernel 

weights into the RKM estimator. The use of the kernel technique assures our estimator is 

purely nonparametric and free of any distributional assumption. Importantly, our estimator 

does not suffer the curse of dimensionality of the kernel method because we only need to 

condition on a one-dimensional variable, i.e. the DL, for estimating the conditional CDF. In 

addition, our estimator is robust to the choice of bandwidth. Besides the bandwidth of σ̂n−1/3 

presented in the paper, we also conducted simulation studies using several other bandwidths 

including σ̂n−7/24, σ̂n−2/5, and σ̂n−1/2, which yielded very similar results (data not shown). 

As an alternative to the kernel method, one can use a parametric AFT model with the left-

censored exposure value as the outcome and the DL as the covariate to estimate the 

conditional CDF. Additional simulation studies reveal that this alternative method performs 

well and has smaller variance than the proposed estimator when the model is correctly 

specified but can lead biased results when the model is misspecified (data not shown).

Yang et al. Page 8

Stat Med. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this paper, we highlight the critical need to account for the association between the 

exposure and DL and the consequences of ignoring it. This problem of association between 

the exposure and DL may sometimes be alleviated by improving the design of sample 

collection. For example, the association between the DL and the exposure level in the colon 

cancer study could have been reduced if toenail samples had been collected from multiple 

toes or at multiple time points to obtain larger samples and thus lower the DLs. Having equal 

DLs for all subjects would eliminate any association, and may be feasible in some settings 

but logistically difficult in others. In presence of varying DLs, appropriate statistical 

methods should be used to deal with the possible association between the exposure level and 

DL so that unbiased analysis results can be obtained.

There are at least two extensions of the proposed method. First, the proposed KRKM 

estimator requires the data come from a simple random sample of the underlying population. 

One can extend the proposed estimator to survey data by incorporating sampling weights. 

Second, our estimator can serve as the building block for a formal test to compare the 

exposure distributions between two groups by considering the cumulative weighted 

difference in CDF estimates for the two groups, analogous to the weighted KM statistics for 

right-censored data [20]. However, it will be more complex than the latter because the 

proposed KRKM estimator is more complicated than the KM estimator. Of further interest is 

to incorporate the adjustment of confounding factors in the comparison between two groups. 

Current literature [21; 22] considered logistic regression models with exposure(s) and 

confounding factors as covariates and the disease status as the outcome and used the 

maximum likelihood method to make inferences. However, these methods require the 

independence assumption between the exposure level and DL. One possible approach to 

account for the association between the exposure level and DL is to use multiple imputation 

to impute exposure values below DLs based on our kernel-smoothed conditional CDF given 

the DL. Since our kernel-smoothed conditional CDF is undefined in (0, τn) when the 

smallest observation is censored, additional distributional assumptions are needed for that 

region in order to perform the imputation under this situation.
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Appendix A

Weak convergence of √n{F̂(t) − F(t)}

In this section, we prove the weak convergence of √n{F̂(t) − F(t)} through the modern 

empirical process theory. Let Pn and P denote the empirical measure and the distribution 

under the true model, respectively. For a measurable function f and measure Q, the integral 

∫fdQ is abbreviated as Qf. Specifically, , P{f(T, δ, D) 

is the expectation of f(T, δ, D), and P{f(T, δ, D)|D} is the conditional expectation of f(T, δ, 

D) given D. We express √n{F̂(t) − F(t)} as
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(3)

To study the second term in (3), we define

By some algebras we obtain R(t; d) = −logF(t; d), which is analogous to the conditional 

cumulative hazard function in survival analysis but with the conditional survival function 

replaced by the conditional CDF. We first study

Let N(t) = I(T ≤ t, δ = 1) and Y(t) = I(T ≤ t). We express R̂(t; d) − R(t; d) as

(4)

It's straightforward to show that the first term on the right side of (4) is equal to

By Lemma 1 and some algebras, the second term on the right side of (4) is equal to
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By Lemma 1 and the statistical fact that T̃ and D is independent given D, the third term on 

the right side of (4) can be shown to be O(h2). Therefore, we obtain that R̂(t; d) − R(t; d) is 

equal to

By the condition that √nh2 = op(1), the Duhamel equation and Lemma 1, we obtain that the 

second term on the right side of (3) is asymptotically equivalent to

where D* is a random variable with the same distribution as D, and PD* denotes expectation 

only respective to D*.

Similarly, we can verify that P{F̂(t; D) − F(t; D)}2 →p 0 uniformly for t ∈ [0, ∞] and that 

F̂(t; D), F(t; D) belong to a P- Donsker class. It then follows that the third term of (3) 

converges uniformly to zero in probability by Lemma 19.24 of[23].

Combining the aforementioned results, we conclude that √n(F̂(t) − F(t)) is asymptotically 

equivalent to the process

Lemma 1. Let fD (d) be the probability density function of D, then

Proof: We have

(5)
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Let g(x) = P[δI(T ≥ t) | D = x]fD(x). Using a simple transformation s = (x − d)/h and the 

Taylor expansion of g(d + sh) at d, we obtain the right side of (5) is equal to

(6)

Because ∫ K(s)ds = 1 and ∫ sK(s)ds = 0, we then obtain the first equation. Similarly, we can 

obtain the second equation.
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Figure 1. 
CDF estimates of Ni exposure distribution for colon cancer cases vs. controls in the 

Appalachian region based on the KRKM, RKM, and lognormal estimators. The solid curves 

pertain to the CDF estimates for cases and the dotted curves pertain to those for controls. 

The red curves are for the KRKM estimator, the blue curves are for the RKM estimator, and 

the green curves are for the lognormal estimator.
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Figure 2. 
Differences in CDF estimates of Ni exposure distribution between the RKM and KRKM 

estimators (upper panel) and between the lognormal and KRKM estimators (lower panel), 

along with 95% confidence limits. The solid curves are for the point estimates of 

differences, and the dotted curves are for the corresponding 95% bootstrapped confidence 

limits (CLs). The black curves pertain to the cases and the orange ones petain to the 

controls.
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