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Estimation of Exposure Distribution Adjusting for Association
between Exposure Level and Detection Limit
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Chenbe”
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Abstract

In environmental exposure studies, it is common to observe a portion of exposure measurements to
fall below experimentally determined detection limits (DLs). The reverse Kaplan-Meier (RKM)
estimator, which mimics the well-known Kaplan-Meier estimator for right-censored survival data
with the scale reversed, has been recommended for estimating the exposure distribution for the
data subject to DLs because it does not require any distributional assumption. However, the RKM
estimator requires the independence assumption between the exposure level and DL and can lead
to biased results when this assumption is violated. We propose a kernel-smoothed nonparametric
estimator for the exposure distribution without imposing any independence assumption between
the exposure level and DL. We show the proposed estimator is consistent and asymptotically
normal. Simulation studies demonstrate that the proposed estimator performs well in practical
situations. A colon cancer study is provided for illustration.

Keywords

detection limits; left-censored data; environmental exposure; kernel smoothing; nonparametric
estimator

1. Introduction

In environmental exposure studies, one fundamental question is to estimate distributions of
environmental chemicals, such as trace elements and pesticides, in a certain population.
However, it is very common to observe a portion of exposure measurements to fall below
experimentally determined detection limits (DLs). A detection limit (DL) is “a threshold
below which measured values are not considered significantly different from a blank signal,
at a specified level of probability” [1]. Therefore, the exposure level of a chemical for a

"Correspondence to: Li Chen, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center and Department of
Biostatistics, College of Public Health, University of Kentucky, Lexington, USA. Tel: 859-323-2005.
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sample is only reported when its value is not less than the DL and otherwise is reported as a
less than value or non-detect. The DL itself can depend on the mass/volume of the analyzed
sample and/or on the mass/volume of adjustment factors such as lipid content. The
laboratory may report a common DL for all samples or different DLs for different samples.
When the latter occurs, it is mostly because the mass/volume of the obtained sample and/or
any adjustment factor differs for each individual, and the exposure level and DL may be
associated in this case. For example, in the colon cancer study measuring trace element
accumulation in toenails [2], we observed a statistically significant association between the
exposure level and DL in Appalachian cancer cases for at least 6 trace elements (Table 4).
This may be because trace elements can cause adverse effects on metabolism and therefore
lead to slow growth rate of toenails [3]. As a result, toenail samples obtained from
individuals with high exposure to trace elements tend to have low masses, and thus high
DLs. Conversely, a higher toenail mass results in a lower DL (i.e., a better ability to detect
low levels of metal accumulation). In this situation, the exposure level and DL are positively
associated whereas both are negatively associated with the toenail sample mass.

Ad hoc methods, such as substituting DL, DL/2, or DL/V2 for the value below a DL, are
widely used in environmental science literature to estimate the exposure distribution for the
data subject to DLs. However, these methods have no theoretical basis and are ill-advised
unless relatively few measures fall below DLs [4; 5]. To appropriately account for values
below DLs, parametric models for left-censored data, such as the lognormal model [1], can
be used since the data subject to DLs can also be treated as left-censored data [1]. But these
parametric methods can lead to markedly biased results when the parametric form of the
exposure distribution is misspecified [1; 5]. Recently nonparametric methods have received
increasing attention because they do not require distributional assumptions, and thus may be
a safer choice for data analysis. The reverse Kaplan-Meier (RKM) estimator, which mimics
the Kaplan-Meier (KM) estimator for right-censored survival data with the scale reversed,
has been recommended [6]. Note that both the RKM estimator and the aforementioned
parametric methods require the independence assumption between the exposure level and
DL. To our knowledge, there are no appropriate statistical methods available to deal with the
case when the exposure level and DL are associated.

In this paper, we utilize a two-step strategy and the kernel smoothing technique to develop a
nonparametric consistent estimator for the exposure distribution allowing for the situation
that the exposure level and DL are not independent. We first estimate the conditional
exposure distribution given the DL by adding kernel weights into the RKM estimator and
then obtain the average of the estimated conditional distributions over all DL values in the
sample to estimate the marginal exposure distribution. The proposed method does not
require any independence assumption between the exposure level and DL and any
distributional assumption about the exposure level. In Section 2, we propose the estimator
and show that it is consistent and converges weakly to a Gaussian process. In Section 3, the
results of several simulation studies are reported to compare the performance of the
proposed estimator to both the RKM estimator and a parametric estimator assuming a
lognormal exposure distribution. In Section 4, a colon cancer study is provided for
illustration. Finally, Section 5 contains discussions and some extensions.

Stat Med. Author manuscript; available in PMC 2018 August 15.
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2. Methods

Let 7and D be random variables for the exposure level and DL, respectively, and A:) be the
cumulative distribution function (CDF) of the exposure level. Let 7= max(7, D)and §= T
> D). Here & indicates whether 7'is an exposure level value or a DL value. For data subject
to DL, only (7, &, D) are observable for each subject. Suppose the data consist of 7
replicates {(7; &, D): /=1, ---, n}. Note that the method proposed below requires the DL to
be known for each subject in the data.

It is useful to adopt the counting process notation. Analogous to the observed counting
process and at-risk process for right censored survival data, we define two counting
processes, N{f) = (T;< t, §;=1) and YD = (T;< ), for the data subject to DLs. Then the
RKM estimator can be rewritten as

A B B f}’_lde(S)} ~
FRKM(t)_H{l —Z?:%(S) JE > Ty, 0

s>t

where z,=ming; . A 7} Inaddition, when the smallest observation is uncensored,
lfRKM(t) =0 for € (0, ;). When the smallest observation is censored, lf,qKM(t) is undefined
for t€ (0, z,). This estimator mimics the KM estimator for right-censored survival data with
the scale reversed. Similar to the independence assumption between the survival time and
censoring time for the KM estimator, the RKM estimator requires the independence
assumption between the exposure level and DL and is not a consistent estimator when this
assumption is violated.

To develop a consistent estimator for the exposure distribution allowing for the association
between the exposure level and DL, we propose a two-step strategy based on the statistical
fact that H§) = Ep{Ht, D)}, where At d) is the conditional CDF of the exposure level given
the DL, i.e. At d) = PAT< t| D= a), and Epis the expectation with respect to D. In the
first step, we obtain a consistent estimator for the conditional CDF of the exposure level,
denoted by /3(r, a). Specifically, we estimate the conditional CDF by adding kernel weights
into the RKM estimator in equation (1) such that subjects whose DL values closest to d
receive the largest weights, i.e.

. Y K{(Dj — d)/h}dN; (s)
Fta)=]] |1 " K{(Dj — d)/h}Y(s) |’

s>t

Z Tn,

where K{(-) is a kernel function, and # is a bandwidth such that 71— oo and n/f* — 0as n
— oo, For each value of g, all subjects contribute to the calculation of /3(1‘, d) but with
different weights depending on the difference between their DL values and 4. In the second
step, we estimate A9 by the average of estimated conditional CDF values over all DL values

in the sample, i.e. F(t)ITle;lF(tDi). Similar to the RKM estimator, the proposed
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estimator /3(17 is a right-continuous step function with jumps at uncensored observations.
When the smallest observation is uncensored, At @) = 0 and A4 = 0 for t€ (0, z,,). When
the smallest observation is censored, /3(1‘, d) and Rt) are undefined for ¢€ (0, z,). The above
estimator for the conditional CDF borrows the idea of the kernel conditional KM estimator
which added kernel weights into the KM estimator to estimate the conditional survival
function for right-censored survival data [7]. In the following, the proposed estimator Rt)
will be referred to as KRKM estimator. Through the above two-step strategy, in order for
A to be a consistent estimator for the marginal CDF of the exposure level, we only need
the estimator for the conditional CDF given the DL to be a consistent estimator, which only
requires the conditional independence between the exposure level and DL given the DL.
Since it is true that the exposure level and DL are independent given the DL, the KRKM
estimator is consistent without requiring any independence assumption between the
exposure level and DL. We show in Appendix A that \/n{lf(t) — A b} converges weakly to a
zero-mean Gaussian process and is asymptotically equivalent to the process

“1/2 " o
n~V2y (1), where

57jI(Ti > t) 1
é_i t)=F t;Di —F@it)—F t;Di .
(t)=F(t:D;) - F(t) - F( >{ } o

F(T;Di)  F(max(T;,t);D;)

The above theoretic result does not require the kernel function to have any special shape. But
numerically, because the kernel function appears in the denominator of the proposed
estimator, standard kernel functions, such as Gaussian kernel with fixed standard deviation
and Triangular kernel, can produce extremely small kernel weights and thus cause unstable
results. Therefore, to ensure computational stability, we suggest using the following
modified Silverman kernel [8], which is flatter and less likely to produce extremely small
kernel weights,

—Jul

Nau

81n(7§—|—§)|

N

e

1
IZlze

K(u)=

]

Jul :
V2 sin(7§+%)|du

For the bandwidth, we suggest using o7 1/3, where &2 is the sample variance of the DL. This
choice satisfies the conditions that 77— oo and n/* — 0 as n— ©o. Based on the formula

in (2), the variance of the KRKM estimator can be estimated by nﬂz:l:lf?(t), where £(#)
is obtained by replacing A; D) and A) by R Dj)) and A:). The log-log transformed 95%
confidence intervals for A§ can then be calculated as that for the survival function in
survival analysis. This will be referred to as formula-based variance estimation method.
Another approach to estimate the variance is to use the bootstrap method. Similar log-log
transformed 95% confidence intervals can be obtained. This approach will be referred to as
bootstrap-based variance estimation method. The formula-based variance estimation method
is computationally faster than the bootstrap-based method, but may underestimate the

Stat Med. Author manuscript; available in PMC 2018 August 15.
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variance and thus yield poor coverage probabilities at the points below which there are few
observations, as shown in simulation studies of Section 3.

We have implemented the proposed methods in an R package called “KENDL”, which is
now available at the Comprehensive R Archive Network. (https://cran.r-project.org/web/
packages/KENDL/index.html).

3. Simulation studies

To assess the performance of the proposed KRKM estimator under the situation that the
exposure level and DL are associated, we mimicked the cadmium (Cd) and nickel (Ni) data
in Appalachian cases from the colon cancer study in Section 4. We generated the DL for
each trace element based on their empirical distributions in the data and the exposure level
for each trace element from the lognormal regression model: log(7) = u+ plog(D) + oe,
where e follows a standard normal distribution. The parameters 4, B, o are estimated based
on the data for each trace element, which are —3.05, 0.42, and 1.21 for Cd (setting 1) and
0.16, 0.34, and 1.62 for Ni (setting 2). The non-detect rate of the simulated data is 76% and
25% for the above two settings, respectively. We compared the KRKM estimator, with both
bootstrap-based and formula-based variance estimation, to the RKM estimator and the
parametric estimator assuming a lognormal distribution for the exposure level. The latter two
estimators were obtained from NADA R package. Note that the NADA package has an error
in reporting the RKM estimator for the CDF, which is described below. Let 41y < - < {;) be
the ordered unique uncensored exposure values. The RKM estimator at a given uncensored
exposure value £, i.e. ﬁRKA,,(z‘(,)) should be the NADA-reported CDF estimate at £1).
Therefore, we corrected this error by letting FRKMI‘(,)) be the NADA-reported CDF estimate
at {+1). For any £€ [, {1)), we set FRKM(t) equal to FRKM(I‘(,)) since FRKM) is a right-
continuous step function. Table 1 summarizes the results for the above three estimators of
A at t= 1st, 2nd and 3rd quartiles based on 1000 replicates and 500 bootstraps for both
settings. The proposed KRKM estimator with the bootstrap-based variance estimation
performs very well except for = 1st quartile in setting 1: the biases are small and the
confidence intervals have proper coverage probabilities. At = 1st quartile in setting 1, the
coverage probability is lower than the nominal value due to the very high non-detect rate of
76%. Compared to the bootstrap-based variance estimation, the formula-based variance
estimation for the KRKM estimator is computationally faster. But at the points below which
there are few observations, e.g. £= 1st and 2nd quartiles in setting 1, the formula-based
variance estimation tends to underestimate the variance and thus yield poor coverage
probabilities. In contrast to the KRKM estimator, the RKM estimator has large biases and
poor coverage probabilities, especially when the sample size increases, due to its inability to
account for the association between the exposure level and DL. Likewise, the lognormal
estimator also has large biases and low coverage probabilities, resulting from not accounting
for the association between the exposure level and DL and possibly misspecified exposure
distribution. To further unravel the impact of not accounting for the association between the
exposure level and DL for the lognormal estimator, we considered additional simulations
where the DL for each trace element was generated from a lognormal distribution with
parameters estimated from the colon cancer data. Under this scenario, the marginal
distribution of the exposure level is guaranteed to follow a lognormal distribution so that the

Stat Med. Author manuscript; available in PMC 2018 August 15.
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parametric distribution is correctly specified for the lognormal estimator. However, as shown
in Table 2, the lognormal estimator still yields large biases and poor coverage probabilities.

To compare the performance of the KRKM, RKM and lognormal estimators under the
situation that the exposure level and DL are independent, we adopted the above set-up but
set S=0. The non-detect rate of the simulated data is 78% and 31% for the two settings,
respectively. Table 3 summarizes the results for the KRKM, RKM and lognormal estimators
of A at £= 1st, 2nd and 3rd quartiles based on 1000 replicates and 500 bootstraps. For all
the estimators, the biases are very small, the variance estimators are accurate and the
confidence intervals have proper coverage probabilities. The KRKM estimator obtains
comparable results as the RKM estimator when the exposure level and DL are independent.
The lognormal estimator yields slightly smaller variances than the KRKM and RKM
estimators, which is expected since the exposure level and DL are independent and the
exposure distribution is lognormal under this set-up.

4. Example

Kentucky has the nation's highest colon cancer incidence rate [10]. Appalachian Kentucky,
which has a unique geology that contains high-quality bituminous coal naturally rich in trace
elements, has an even higher rate of colon cancer compared to other regions of the state. A
case-control study was conducted to explore the association between environmental
exposures to trace elements such as arsenic (As), chromium (Cr) and nickel (Ni) and colon
cancer and whether exposures to these trace elements contribute to the elevated colon cancer
rate in Appalachian Kentucky [11; 2]. For this purpose, 274 colon cancer cases and 253
controls were selected from 23 contiguous rural counties in Kentucky (Appalachian region)
and Jefferson County, the largest, most urban county in Kentucky (non-Appalachian region).
Among 247 subjects from the Appalachian region, 145 were cases and 102 were controls;
among 280 from the non-Appalachian region, 129 were cases and 151 were controls.
Toenail samples from these subjects were collected, and the concentrations of 12 trace
elements were measured as markers of long-term environmental exposures to these trace
elements. The DL varies from one subject to another for these trace element concentrations
as a function of the toenail mass. For illustration purposes, we only focus on the
Appalachian region. The proportion below the DL is over 20% for most trace elements and
is as high as 79% and 83% for Cd in Appalachian cases and controls, respectively (Table 4).

We first examine the independence assumption between the exposure level and DL for each
trace element using the following three methods. In the first method, we fitted a lognormal
accelerated failure time (AFT) model [12] with the left-censored exposure level as the
outcome and the log-transformed DL as a covariate. Under this model, the independence
assumption between the exposure level and DL was examined by testing whether the
coefficent is equal to 0. The Pearson's correlation coefficient between the exposure level and

DL (both log-transformed) was estimated by 3/ 1/ 5’2+&2 /&%, where ﬁ o are the estimators

of the coefficient and scale parameters in the lognormal AFT model and »7 is the sample
variance of log(D). In the second method, the Pearson's correlation coefficient between the
exposure level and DL (both log-transformed) and the corresponding p-value were

Stat Med. Author manuscript; available in PMC 2018 August 15.
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calculated based on the “clikcorr” R package, which assumes a bivariate normal distribution
for the two variables and uses a profile likelihood method [13]. In the third method, the
nonparametric Kendall's tau correlation coefficient [14] and the corresponding p-value were
calculated based on the “cenken” function in the NADA R package [9]. The results based on
the above three methods are reported in Table 4. The results from the first two parametric
methods are vey close for all trace elements except for Cd in controls, where the non-detect
rate is as high as 83%. For colon cancer cases, there is a statistically significant association
between the exposure level and DL for all 12 trace elements based on the two parametric
methods. The nonparametric Kendall's tau method, which appears more conservative,
identifies 6 trace elements with a significant association between the exposure level and DL.
For controls, there is only one trace element showing a significant association between the
exposure level and DL based on the three methods.

We then use the trace element Ni to demonstrate our proposed KRKM estimator, comparing
to the RKM estimator and the parametric estimator. For cases, the Ni level ranges from 0.02
to 624.4 and the DL ranges from 0.004 to 24.84; for controls, the Ni level ranges from 0.04
to 39.37 and the DL ranges from 0.01 to 38.38. Table 4 shows that for Ni there is a
signifcant association between the exposure level and DL for cases but no signficant
association for controls. We estimated the exposure distributions of Ni level for cases and
controls, respectively. The lognormal distribution was selected for the distributions of Ni for
both cases and controls by the Akaike information criterion (AIC) [15] among a number of
candidate distributions, including normal, lognormal, Weibull and loglogistic. Figure 1
displays the CDF estimates for colon cancer cases and controls based on the KRKM, RKM
and lognormal estimators, and Figure 2 displays the differences in CDF estimates between
the KRKM estimator and the latter two estimators along with 95% confidence limits. These
figures show that the RKM estimator significantly overestimates the CDF for the Ni level
between 0.21 and 5.29 compared to the proposed KRKM estimator for cancer cases. This
may be because of the significant association between the exposure level and DL. In
contrast, there is no significant difference between the two estimators for controls, which
may be because of the insignificant association between the exposure level and DL. As a
result, the RKM estimator significantly underestimates the difference between the cases and
controls compared to the KRKM estimator. Figures 1 and 2 also show remarkable difference
between the lognormal and KRKM estimators for cases, most likely due to a combination of
imperfect fit of the lognormal distribution and the significant association between the
exposure level and DL. The difference between these two estimators is smaller for controls.

5. Discussion

We have developed a consistent nonparametric estimator for the exposure distribution
without requiring any independence assumption between the exposure level and DL. Our
proposed estimator outperforms the RKM estimator and the parametric estimator when the
exposure level and DL are associated because the latter two estimators are not consistent in
that situation. In the case of a common DL, our estimator reduces to the RKM estimator; and
in the case of varying DLs but the exposure level and DL are independent, our estimator can
obtain comparable results as the RKM estimator. Thus, our estimator provides a unified
nonparametric approach for estimating the exposure distribution regardless of whether the

Stat Med. Author manuscript; available in PMC 2018 August 15.
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exposure level and DL are independent or not and whether the association between the
exposure level and DL is linear, curvilinear, or step function, etc. Therefore, the user does
not have to test whether the exposure level and DL are associated before using our method,
which is an advantage over the RKM method whose validity depends on the test results.

We have utilized a two-step strategy and kernel smoothing technique along with a special
feature of data subject to DLs, i.e. the DL is observable for each subject, to completely
eliminate the independence assumption between the exposure level and DL. In contrast, the
consistent estimators developed based on similar two-step strategies for the marginal
survival function for right-censored survival data need to find a set of covariates and require
the independence assumption between the censoring time and survival time conditional on
those covariates [16; 17]. In our approach, we take advantage of the data characteristic that
the DL is observable for each subject and utilize the DL as the conditioning covariate. As a
statistical fact, the independence assumption between the DL and exposure level given the
DL automatically holds. Therefore, our estimator is free of any independence assumption
between the exposure level and DL.

In survival analysis, another approach dealing with dependent censoring for estimating the
survival function is the inverse probability of censoring weighting (IPCW) KM estimator
[18; 19]. This weighted version of the KM estimator assigns a weight, inversely proportional
to an estimate of the conditinal survival function of the censoring time given a set of
covariates, to each subject. Under the condition that the censoring time and survival time are
independent given that set of covariates, the IPCW KM estimator is consistent. By
borrowing this idea, one can construct an IPCW RKM estimator for the exposure
distribution by adding subject-specific weights, proportional to each subject's conditional
CDF of the DL given a set of covariates, in the RKM estimator. The consistency of this
estimator requires that the exposure level and DL are independent given that set of
covariates. However, it is not possible to use the IPCW method with DL as the covariate to
obtain an estimator free of any independence assumption between the exposure level and
DL. The conditional CDF of the DL, given DL, can only take values 0 or 1 and thus cannot
be used as an inverse weight.

A key issue in our two-step strategy is how to estimate the conditional CDF of the exposure
level given the DL for the data subject to DL. To address this issue, we have added kernel
weights into the RKM estimator. The use of the kernel technique assures our estimator is
purely nonparametric and free of any distributional assumption. Importantly, our estimator
does not suffer the curse of dimensionality of the kernel method because we only need to
condition on a one-dimensional variable, i.e. the DL, for estimating the conditional CDF. In
addition, our estimator is robust to the choice of bandwidth. Besides the bandwidth of 77 1/3
presented in the paper, we also conducted simulation studies using several other bandwidths
including o7 724, a5, and o1/, which yielded very similar results (data not shown).
As an alternative to the kernel method, one can use a parametric AFT model with the left-
censored exposure value as the outcome and the DL as the covariate to estimate the
conditional CDF. Additional simulation studies reveal that this alternative method performs
well and has smaller variance than the proposed estimator when the model is correctly
specified but can lead biased results when the model is misspecified (data not shown).

Stat Med. Author manuscript; available in PMC 2018 August 15.
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In this paper, we highlight the critical need to account for the association between the
exposure and DL and the consequences of ignoring it. This problem of association between
the exposure and DL may sometimes be alleviated by improving the design of sample
collection. For example, the association between the DL and the exposure level in the colon
cancer study could have been reduced if toenail samples had been collected from multiple
toes or at multiple time points to obtain larger samples and thus lower the DLs. Having equal
DLs for all subjects would eliminate any association, and may be feasible in some settings
but logistically difficult in others. In presence of varying DLs, appropriate statistical
methods should be used to deal with the possible association between the exposure level and
DL so that unbiased analysis results can be obtained.

There are at least two extensions of the proposed method. First, the proposed KRKM
estimator requires the data come from a simple random sample of the underlying population.
One can extend the proposed estimator to survey data by incorporating sampling weights.
Second, our estimator can serve as the building block for a formal test to compare the
exposure distributions between two groups by considering the cumulative weighted
difference in CDF estimates for the two groups, analogous to the weighted KM statistics for
right-censored data [20]. However, it will be more complex than the latter because the
proposed KRKM estimator is more complicated than the KM estimator. Of further interest is
to incorporate the adjustment of confounding factors in the comparison between two groups.
Current literature [21; 22] considered logistic regression models with exposure(s) and
confounding factors as covariates and the disease status as the outcome and used the
maximum likelihood method to make inferences. However, these methods require the
independence assumption between the exposure level and DL. One possible approach to
account for the association between the exposure level and DL is to use multiple imputation
to impute exposure values below DLs based on our kernel-smoothed conditional CDF given
the DL. Since our kernel-smoothed conditional CDF is undefined in (0, z,) when the
smallest observation is censored, additional distributional assumptions are needed for that
region in order to perform the imputation under this situation.
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Appendix A

Weak convergence of Vi{ A - AH}

In this section, we prove the weak convergence of \/n{lf(z) — A} through the modern
empirical process theory. Let P, and P denote the empirical measure and the distribution
under the true model, respectively. For a measurable function Ffand measure Q, the integral

T fdQis abbreviated as Of Specifically, £ f (T, 9, D):n_lzz;f@, di, Di), AT, 8, D)
is the expectation of {7, &, D), and A7, 6, D)|D} is the conditional expectation of {7, &,
D) given D. We express Vi{ A} — A} as
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VA(Pa=P){F(£:D)}+ VAP{E (t:D)~F (1:D)}+ v/a(Pa—P)[F(D) - F(5D)}.  (3)

To study the second term in (3), we define

Rt

By some algebras we obtain A(¢, d) = -logHt, d), which is analogous to the conditional
cumulative hazard function in survival analysis but with the conditional survival function
replaced by the conditional CDF. We first study

=1 KH{(D; d)/h}dN( )
2= 1K{( —d)/h}Y(s) -

R(t,d)=/7°

Let M) = (T<t &=1)and Y() = (T< 1. We express Rt d) - Rt d) as

K{(D—d)/}s1(T>1) B 1(T>t B K{(D—d)/R}SI(T>1)

P [Pn[K{<Dfd>/h}Y<u)1|,,:T} P {—P{Y ip=ay _ |1D=d=(Pn—P ){Pn<K{<Dfd>/h}Y<u>|":T
_ p[El@—amstazoe - @-tmywi, )], (p[ ko-omaezo | p[ im0 | py
PORTD-0 /R (@] Pa KD I @) PIRA(D=d)/Y ()T, —P[Y<u>|D=d}|u —|P=

d)/RYSI(T>t)

)_

(P, P) { KO- dsirz )] _p (K{(D—d)/h}M(th)(Pn—P)[K«D—d)/h}Y(uﬂuZT

PRAD=/AY W)l PAR{(D-d)/h}Y (w)] Prict (D /R ()

u:T]

I _
- {P—{y u)(—|7£)>td}\ —|D dD +op(n=1/2)]

(4)

It's straightforward to show that the first term on the right side of (4) is equal to

Je° [(KA(D — d)/h}dN(w)]
" P[K{(D - d)/h}Y (u)]

By Lemma 1 and some algebras, the second term on the right side of (4) is equal to

K{(D — d)/h}Y (u)dR(u;d)
P[EA{(D — d)/h}Y (u)]

(Pn—P)J[° +O(h?).
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By Lemma 1 and the statistical fact that 7and D is independent given D, the third term on
the right side of (4) can be shown to be O(/?). Therefore, we obtain that /(% d) — R(Z d) is
equal to

v AN (w)+Y (u)dR(u;d)
(Po—P) (KHD ~ DN BR (D = a) /Ry ()

) +O(h2)—|—op(n_1/2).

By the condition that v/ = 0(1), the Duhamel equation and Lemma 1, we obtain that the
second term on the right side of (3) is asymptotically equivalent to

V(P = P) (Py, |
— F(t;d)K{(D — d)/h}f?;&?();{(g))flﬁg&i))]
(u)+Y (u)dR(u; D)

rrvwoy )

} | .= Vn(Pn=P)|

= Py e

where D* is a random variable with the same distribution as D, and Pp+ denotes expectation
only respective to D*.

Similarly, we can verify that P{/f(l‘, D) - Rt D)}? — p 0 uniformly for 7€ [0, co] and that
lf(t, D), Ht, D) belong to a P- Donsker class. It then follows that the third term of (3)
converges uniformly to zero in probability by Lemma 19.24 of[23].

Combining the aforementioned results, we conclude that VaA(A# — A2) is asymptotically
equivalent to the process

Vitpa = P) {F:D) - F (D) e T U0TosT D)

F(w;D)I(D < u)

n71/2n D) — ey JOLT =) 1
;{F(t,Dz) F(t) F(t,Dz){F(Ti;DD +1 F(max(Ti,t);Di)H'

Lemma 1. Let fp (d) be the probability density function of D, then

PIRE{(D — d)/W}SI(T > t)|=P{SI(T > H)|D=d}f,,(d)+O(h?)
PIhK{(D — d)/h}Y (u)|=P{Y (u)|D=d} £, (d)+O(h?)

Proof: We have

P(h Y K{(D—d)/h}SI(T > t)l=[h~ K {(z~d)/h}P[S](T > t)|D=a]f,(z)dx. (5)
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Let g(x) = ASKT= 0| D= X]fp(x). Using a simple transformation s= (x— @)/hand the
Taylor expansion of g{d + sh) at d, we obtain the right side of (5) is equal to

JK(s)g(d)ds+[sK(s)g (d)ds+O(h?). (g)

Because | K(s)ds=1and J sK(s)ds= 0, we then obtain the first equation. Similarly, we can
obtain the second equation.
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Figurel.

CDF estimates of Ni exposure distribution for colon cancer cases vs. controls in the
Appalachian region based on the KRKM, RKM, and lognormal estimators. The solid curves
pertain to the CDF estimates for cases and the dotted curves pertain to those for controls.
The red curves are for the KRKM estimator, the blue curves are for the RKM estimator, and
the green curves are for the lognormal estimator.
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Differences in CDF estimates of Ni exposure distribution between the RKM and KRKM
estimators (upper panel) and between the lognormal and KRKM estimators (lower panel),

along with 95% confidence limits. The solid curves are for the point estimates of

differences, and the dotted curves are for the corresponding 95% bootstrapped confidence

limits (CLs). The black curves pertain to the cases and the orange ones petain to the

controls.
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