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ABSTRACT OF THESIS 
 
 

Hadoop-EDF: Large-scale Distributed Processing of Electrophysiological Signal Data  
in Hadoop MapReduce 

 
 

             The rapidly growing volume of electrophysiological signals has been generated for 
clinical research in neurological disorders. European Data Format (EDF) is a standard 
format for storing electrophysiological signals. However, the bottleneck of existing signal 
analysis tools for handling large-scale datasets is the sequential way of loading large EDF 
files before performing an analysis. To overcome this, we develop Hadoop-EDF, a 
distributed signal processing tool to load EDF data in a parallel manner using Hadoop 
MapReduce. Hadoop-EDF uses a robust data partition algorithm making EDF data parallel 
processable. We evaluate Hadoop-EDF’s scalability and performance by leveraging two 
datasets from the National Sleep Research Resource and running experiments on Amazon 
Web Service clusters. The performance of Hadoop-EDF on a 20-node cluster improves 27 
times and 47 times than sequential processing of 200 small-size files and 200 large-size 
files, respectively. The results demonstrate that Hadoop-EDF is more suitable and effective 
in processing large EDF files. 
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CHAPTER 1.  Introduction 

Increasingly large amounts of electrophysiological signal data have been produced 

by the neuroscience research community at an unprecedented scale. Such 

electrophysiological signal data include electroencephalogram (EEG), electrocardiogram 

(ECG), and electromyography (EMG), which play a significant role in advancing research 

for neurological disorders such as sleep apnea detection [1], sleep stage scoring [2], 

epilepsy seizure detection [3, 4, 5], and Parkinson’s disease diagnosis [6, 7].   

European Data Format (EDF) [8] is the most widely used file format for storing and 

exchanging electrophysiological signals. However, existing signal analysis algorithms and 

tools load and process EDF files in a sequential way (before performing analysis), which 

is time-consuming and inefficient when a large number of EDF files in varying sizes need 

to be analyzed. There is a lack of efficient, distributed EDF processing and analysis tools 

for handling large volumes of electrophysiological signal data. 

In this paper, we introduce Hadoop-EDF, a scalable and distributed signal processing 

tool to read and process EDF data in a parallel manner on a cluster of compute nodes (i.e., 

in a cloud computing way). Hadoop-EDF lays the foundation for developing and deploying 

distributed signal analysis algorithms and tools in the cloud.  

The main contribution of Hadoop-EDF is its robust data partition or splitting 

algorithm which makes the EDF data parallel processable. To develop Hadoop-EDF, we 

leverage Hadoop, a well-known open-source framework using the MapReduce parallel 

model for processing and analyzing large-scale datasets [9]. Hadoop uses the Hadoop 

Distributed File System (HDFS) [10] to store and manage data. HDFS offers data 
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replication as back up and parallel file operation to support reliable storage and fast access 

to large volumes of data.  

We test Hadoop-EDF by leveraging large-scale datasets provided by the National 

Sleep Research Resource (NSRR) [11, 12], one of the largest electrophysiological signal 

data resources recently made available to the research community. NSRR contains over 4 

TB of de-identified signal and clinical data of over 26,000 subjects collected from over 10 

sleep research studies or clinical trials funded by the US National Institutes of Health. 
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CHAPTER 2. Methods 

2.1 Parallel Processing of Electrophysiological Signal Data 

Figure 2.1 shows the overall MapReduce workflow of Hadoop-EDF to process raw, 

binary signal data in EDF to the JavaScript Object Notation (JSON) format [13], a 

lightweight data-interchange format easily adaptable for performing data analysis. Firstly, 

we extract EDF header information to obtain the signal metadata information. Then we 

split signal data into segments and make the segment size close to the blocksize of HDFS. 

In the mapping phase, every map task converts a segment of raw data to the actual values 

of channels, meanwhile separating these transformed values by channels. In the reducing 

phase, channel values are partitioned by fragments, where a fragment consists of data 

records corresponding to a specific duration period (e.g., 1 second or 30 seconds). The final 

output are fragment-indexed data records for each channel in JSON format.  

 
Figure 2. 1 Workflow of Hadoop-EDF 
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2.1.1 Hadoop-EDF: EDF Input Split 

EDF is a simple and flexible format for exchange and storage of multichannel 

biological and physical signals [14]. An EDF signal file contains two parts: header 

information and signal data records in a contiguous set of samples recorded from all 

channels as shown in Figure 2.2. The header information includes EDF header describing 

the basic patient's information and signal header consisting of the related signal metadata. 

For instance, the recorded patient id, date, time, the number of records, duration of a data 

record, number of signals, channel label and other channel information stored in ASCII. 

Following the header record, each of the subsequent data records contains 'duration' 

seconds of 'ns' signals (where ‘ns’ is the number of signals), with each signal being 

represented by the specified number of samples (in the header). Each sample value is stored 

as a 2-byte integer in 2's complement format. Sequential reading of such duration-based 

structure of data records makes it difficult to access random signal fragments and extract 

data for a specific channel, especially for large EDF files. 
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Figure 2. 2 European Data Format [14] 

 
Our Hadoop-EDF is a parallel approach to split and process EDF files in a distributed 

way, as well as tranform duration-based data records to channel-based. Such channel-based 

data records make it easier and more efficient for acquiring, visualizing, analyzing, and 

sharing signal data. Before splitting data records, we need to extract the header information 

(i.e., EDF header and signal header). Regarding the data records, its length is fixed. Due to 

the individualized data structure of EDF files including header information stored in ASCII 

and signal data records stored in 2 byte's complement integer, we found that the length of 

data records are fixed. For each duration, the total number of samples can be obtained by 

summing up the number of samples for all signals (see Equation (1)). Therefore, the total 

number of bytes of data records per duration equals the number of records times the total 

number samples times 2.  

TotalSamples = ∑ NumberOfSamples34
567 																															Equation	2.1 

TotalBytes = NumberOfRecords ∗ TotalSamples ∗ 2										Equation	2.2 
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Moreover, in order to fully utilize the resource of block on HDFS and reduce the 

overhead of network transmission, we need to make the split's size close to the HDFS block 

size. Thus, each chunk or segment is composed of data records within certain duration 

periods and the data records of each duration period are complete and unsplittable. 

To avoid the influence of the unbalanced data for different mapper nodes, we 

partition signal data in average size of EDF files to the different segments based on the 

header information and the block size of HDFS. We split the EDF file from end of the 

header information. For example, an EDF file's size is around 1.63GB which contains 

11,776 bytes of header information, 37,914 data records, the number of samples for 45 

channels is [512, 512, …512], then the total number of samples equals 23,040 calculated 

by Equation (1).As we have known, signal values are represented as a 2-byte Integer, so 

the total bytes for the signal values of this EDF file are 1,706,130KB. We assumed that the 

default block size of HDFS is 64MB (this is customizable), the number of segments for 

splitting this EDF file can be obtained by Equation (3) as 27 when rounding up to the 

integer. Thus, the number of records for each segment equals the total number of records 

divided by number of segments. Here, each of the first 26 segments contains 1,405 data 

records, and the last segment contains 1,384 data records. 

NumberOfSegments =
TotalBytes
BlockSize 																																											Equation	2.3 

NumberOfRecordsOfSegment =
NumberOfRecords
NumberOfSegments 							Equation	2.4 

 

2.1.2 Hadoop-EDF: Map and Reduce 

Figure 2.3 illustrates the data flow of Hadoop-EDF in details. The first step is to 

extract header information used to split EDF files to multiple segments. In the next step, 
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we sent these segments to the mapper node as key-value pairs. Each mapper node only 

receives the part of EDF file called segment here. The input key of the Mapper node is set 

as file name, start record, and number of records contained in a segment, and the input 

value is the corresponding binary data of the segment by customizing input (key, value) 

pairs. Additionally, in the mapping phase we need to obtain the real signal values which 

can be computed from the original binary data. In the meanwhile, we reorganize these real 

signal values from one segment based on channel. The output key of mapper node is the 

composite key which contains the natural key consisting of file name, channel label and 

the relative data records information, and the second key which is start data record of the 

segment. The composite key's purpose is not only to satisfy the requirement of shuffling 

phase with the natural key, but also make the fragments be output in the ascending order. 

The output value is the transformed channel values from the certain segment. For shuffling 

phase, the output value with a common key will be grouped to the same reducer node. The 

last step iterates the values from different mapper nodes, partition these values by fragment 

which is the duration of data record, and output these fragments based on the same channel 

in JSON format which is an effective and useful format for querying the certain fragment 

by searching key.  

 
Figure 2. 3 Illustrative diagram of data flow for Hadoop-EDF 
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Figure 2.4 shows our Hadoop-EDF MapReduce algorithm (Algorithm 1) in detail, 

implemented using four steps to process EDF files in parallel. At the beginning, we split 

EDF files and output EDF header and signal header using EDFFileInputFormat class (line 

1). In this period, firstly we used the “GetSplits” function to extract and convert header 

record, then output them in JSON format and return splits information (lines 2 to 5). We 

then customized “EDFFileRecordReader” class (line 6) to define the input (key, value) 

pairs. Firstly, we need to obtain the start position, the length of input split, the number of 

bytes in each record and bytes in header (lines 7 to 9). Then, using the function 

“NextKeyValue” to define the current key as (file name, start record, number of records 

for the split) and define the current value as the buffer which contains the corresponding 

bytes of this split given by start position, split length and an empty buffer (lines 10 to 16).  
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Figure 2. 4 Hadoop-EDF MapReduce Algorithm 
Then, we used the MapReduce framework to process signal records in a distributed 

way. In the map stage, each mapper Loads distributed cache file including header 

information used to generate channel values (lines 19 to 21). Then each mapper generates 

the main key and second key which is used to mark the order of the split channel values 

(line 22). Thus, in the sorting and shuffling phase, the same channel label will be grouped 

into the same reducer. In the reduce stage, each reducer receives these split channel values 

in ascending order of the start record (line 24). We set up multiple output which is used to 

output many files in terms of the file name and channel label other than outputting all of 

results into one file (lines 25 to 27). Each reducer divides these channel values to fragments 
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where each fragment consists of the data records for one duration, for instance, 10 sample 

values (lines 28 to 30). 

2.2 Sequential Processing of Electrophysiological Signal Data 

In order to perform a through performance evaluation of our Hadoop-EDF algorithm 

in parallel, we also implemented a sequential algorithm for processing EDF files (see 

Algorithm 2 in Figure 2.5) to compare. We converted the header record of EDF file from 

the binary data to the text representation and output them in JSON format which is 

convenient to be searched (lines 3-5). For each channel, we generated signal header and 

signal values containing fragment index and the corresponding fragment values in JSON 

format (lines 6-18). Finally, we obtained EDF header, signal header and signal data records. 

 

Figure 2. 5 Algorithm for sequential processing of EDF files 
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CHAPTER 3. Experiment 

3.1 Experiment Datasets 

In order to test the scalability and performance of our Hadoop-EDF parallel 

programming algorithm, we leveraged two NSRR datasets with varying sizes of EDF files 

and ran experiments on Amazon Web Service (AWS) with customized configuration of 

compute nodes in a cluster. We experimented on different numbers of nodes in AWS 

clusters (6, 10, 15, and 20) and different numbers of EDF files (50, 100, 150 and 200) to 

perform a thourough evaluation.  

The performance of Hadoop-EDF was evaluated by processing EDF data of 400 

subjects from two NSRR datasets: Childhood Adenotonsillectomy Trial (CHAT) and Sleep 

Heart Health Study (SHHS). We consider the file size as an important factor when 

performing evaluation, and randomly selected two sets of evaluation datasets (one in large 

size, and the other in small size). The total size of 200 large EDF files from CHAT is 118 

GB, the size distribution of individual files varies from 400MB to 1.7GB. Another 200 

EDF files of small size is 10 GB in total, the individual file size for most of the small files 

is 60MB.  

3.2 Experiment Setup on AWS 

The experiments of the parallel computing were performed on AWS Elastic 

MapReduce (EMR) with open-source Hadoop 2.8.4 version. We used AWS compute nodes 

with configuration m5.2xlarge (8 vCore, 32GB memory, EBS only storage). To fairly 

compare the difference between the sequential program and the parallel computing of 

Hadoop-EDF, the sequential program was executed on an Elastic Compute Cloud (EC2) 

instance whose configuration is same as that of an instance for parallel computing (one 
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node). However, we encountered the error with running out of memory when we processed 

large EDF files. Therefore, we had to use an r5.2xlarge instance with 64 GB memory to 

run the large EDF files. This also shows the limitation of processing large-scale EDF files 

sequentially. Our Hadoop-EDF approach is able to avoid the out of memory issue by 

splitting files into multiple parts and process those partial files in a distributed way. The 

other configurations of that instance are similar to m5.2xlarge. This issue coincidentally 

proves the limitation of sequentially processing multiple, large EDF files and the 

significance of Hadoop-EDF. It is noted that it is less practical to solve this issue by simply 

increasing the memory's size to process more large EDF files.  

For both small EDF files and large EDF files, we did 32 experiments on these two 

type of files, every time we used 6, 10, 15 and 20 nodes to process a certain number of 

files. Totally, these experiments were repeated 3 times to get the average running time.  
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CHAPTER 4. Results 

4.1 The Performance Comparison of Parallel Computing and Sequential Processing for 

Small EDF Files 

Figure 4.1 demonstrates that the performance comparison between parallel 

computing of Hadoop-EDF and sequential processing for small EDF files. From these 

experiment results, we observe that the execution time of processing 50, 100, 150, 200 

small files are decreasing obviously when we applied the Hadoop-EDF method. 

Meanwhile, the performance of Hadoop-EDF improves better with increasing number of 

EDF files. The sizes of these files range from 2.7 GB to 10.7GB. The running time of 200 

small EDF files was reduced to 4.3 minutes from approximately 2 hours taken on the 

sequential program when they were performed on 20 nodes. The performance of Hadoop-

EDF is up to 26 times faster than the sequential program. 

 

Figure 4. 1 The Performance Comparison of Hadoop EDF and Sequential Processing for 
Small EDF Files 
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4.2 The Performance Comparison for Large EDF Files 

Figure 4.2 displays the performance comparison between parallel computing of 

Hadoop-EDF and sequential processing for multiple, large EDF files. The execution time 

declines quickly when we used the parallel algorithm of Hadoop-EDF. Especially the 

running time of 200 large EDF files was reduced to 24 minutes from almost 20 hours when 

they were executed on 20 nodes. The performance of Hadoop-EDF is up to 47 times faster 

than the sequential program. Hadoop-EDF has better performance with the increasing 

number of files. 

 
Figure 4. 2 The Performance Comparison of Hadoop EDF and Sequential Processing for 

Large EDF Files 
4.3 Scalability of Hadoop-EDF 

Figure 4.3 shows that the scalability of the parallel algorithm of Hadoop-EDF. The 

performance of Hadoop-EDF improves when the number of nodes increases. It can be seen 

that the experiments performed on large EDF files showed better performance than the 

small EDF files. Because the small file's size is not up to the default block size of HDFS, 

we still need a map task to process them or even if they are split to different segments but 
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each of them may not utilize the whole HDFS block, so they waste the extra resources of 

the block and need more map and reduce tasks to process. But for large EDF files, we split 

them into segments that are close to the HDFS block size, which makes them make a better 

use of the entire block and save unnecessary map and reduce tasks. From this experiment 

results, we know that the parallel computing of Hadoop-EDF is more suitable for 

processing multiple, large EDF files. 

 

Figure 4. 3 Scalability of Hadoop-EDF 
4.4 Factor of Increased Speed for Hadoop-EDF in Comparison to Sequential 

Processing 

Figure 4.4 displays the performance of Hadoop-EDF with parallel computing is 47.8 

times faster than the sequential processing 200 large files, which proves that 20 nodes 

perform best. It also shows the consistency of this approach with the same number of nodes 

performing the different number of EDF files.  
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Figure 4. 4 Factor of Increased Speed for Parallel Computing in Comparison to 

Sequential Processing 
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CHAPTER 5. Discussions 

With the growing demand for using numerous EDF files for clinical research, there 

is a need to apply the MapReduce framework to process large-scale electrophysiological 

signal data in a distributed way. Our Hadoop-EDF has been developed to meet this need 

and has the following key features:  

• Scalability: The performance of this approach improves with increasing 

number of compute nodes. 

• Fast accessibility: It is fast and convenient to access part of signal values, even 

the concrete certain data record by querying key. 

• Flexibility: The output JSON format is suitable for retrieving, sharing, 

visualizing, sequential and parallel computing. 

Our comparative experiments show the scalability and good performance of Hadoop-

EDF with large signal datasets. Hadoop-EDF is a significant basic step for making EDF 

signal data parallel processable and could be further extended to accelerate data analysis 

for other medical and clinical studies using large-scale bio-signal data, such as epilepsy 

seizure detection, heart rate variability calculation, and sleep stage analysis.  

1) Comparison with related work: A related work by Jayapandian et al. on processing 

electrophysiological signals using MapReduce framework has to preprocess, partition data 

to form a new "EDFSegment" data structure [15]. However, no EDF input split was 

developed in [15] and instead a preprocessing step was needed to sequentially partitioning 

data before sending the new data structure to the Hadoop framework. Our Hadoop-EDF 

allows EDF input split which is the key driver for accelerating the processing speed. 

Jayapandian et al.’s MapReduce framework was customized for processing signal data for 
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epilepsy research, while our Hadoop-EDF can be applied to any EDF datasets. In addition, 

our experiments are more thorough since we leveraged larger datasets (these datasets are 

from different studies) and considered file size as a factor for performance evaluation. 

Moreover, the performance of Hadoop-EDF is better than the system introduced in [15] 

according to the experiment results. 

To quantitatively compare the performance of Hadoop-EDF with the related work 

by Jayapandian et al [15], which did not parallelize the preprocessing step for splitting EDF 

segments, we performed an additional experiment to compare the two approaches. The 

main difference between these two parallel computing approaches is that Hadoop-EDF 

splits an EDF file to multiple segments, which each segment will be processed by one map 

task, and Jayapandian et al [15] did not split an EDF file to chunks, for which each whole 

EDF file will be processed by one map task.  

For this experiment, we implemented another parallel algorithm (Algorithm 3 in 

Figure 5.1) to process EDF files without splitting, so that one map task operates an entire 

EDF file. To achieve so, we use “WholeFileInputFormat” class to customize the special 

input format (line 1). We output the EDF header and signal header in JSON format to 

HDFS (line 3). We return false for the “ISSPLITable” method, so that the EDF file will 

not be split (line 4). “WholeFileRecordReader” class describes how to access the input file 

(line 6). Next, we initialize file split and job configuration information (lines 7 to 9). Then, 

we design the input key as the file name, and the input value as the corresponding whole 

input stream of the EDF file. Most importantly, the Mapper class receives the input (key, 

value) and outputs (key, value) (line 14). One map task processes the whole EDF file and 

converts the original binary data of signal records to physical values (line 16). Then, we 
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split the channel by fragments, output fragment index and fragment values for each channel 

(lines 17 to 19). 

 

Figure 5. 1 Algorithm for parallel processing without splitting EDF files to segments 
 

We ran the experiment on 6 nodes in AWS with the same configuration of those 

nodes for Hadoop-EDF, to process 50 large EDF files without splitting EDF file into 

multiple segments. Figure 5.2 exhibits the performance comparison between Hadoop-EDF 

and the parallel processing approach without splitting (in [15]) for processing the 50 large 

EDF files. The result shows that Hadoop-EDF performs more than two times faster than 

the approach without splitting EDF files (in [15]). The reason for Hadoop-EDF to achieve 

better performance lies in that the segment size is close to the default block size of HDFS 

(64 MB). Each map and reduce task only need to analyze a piece of the EDF file. However, 
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the parallel processing approach without splitting handles the whole large EDF file for each 

map task which takes more time than the Hadoop-EDF approach does.  

2) limitations: Hadoop-EDF has two limitations as mentioned previously. The 

mapper node is not fully utilized when processing small EDF files (a common limitation 

of Hadoop MapReduce framework), which may affect the performance of processing a 

large number of small files. The current version of Hadoop-EDF is more suitable to process 

large EDF files. In addition, regarding the processing of large EDF files, the minimum 

number of nodes required for processing 200 large EDF files (a total of 118.6 GB) were 6 

nodes in AWS, since the input dataset size was too large to be executed on a cluster with 

less than 6 nodes. 

 
Figure 5. 2 The performance comparison between Hadoop-EDF and the parallel 

processing approach without splitting 
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CHAPTER 6. Conclusion 

In this paper, we introduced Hadoop-EDF, a parallel approach in Hadoop 

MapReduce to process large volumes and high velocity of electrophysiological signal data 

in EDF, which aimed at addressing the computational challenge of traditional sequential 

way of processing EDF data. This approach demonstrates a great performance on 

computing signal data records and reduces the execution time dramatically. Meanwhile, it 

improves the performance of processing large-scale EDF files in a scalable way by 

increasing the number of nodes on AWS. In addition, the JSON format of the output files 

is flexible to query, acquire and share the partial signal values. Hadoop-EDF lays the 

foundation for further developing and deploying distributed signal analysis algorithms and 

tools in the cloud. 
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