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VISUAL ABSTRACT

Sexton, T.R. et al. J Am Coll Cardiol Basic Trans Science. 2018;3(4):435–49.

HIGHLIGHTS

� As expected, ticagrelor reduced ex-vivo

ADP-induced aggregation in patients with

pneumonia compared with placebo.

� Ticagrelor reduced platelet–leukocyte

interactions as well as plasma interleukin-

6 within 24 h in patients with pneumonia

compared with placebo.

� Ticagrelor acutely altered NETosis

biomarkers, whereas placebo had no

effect.

� Ticagrelor improved lung function and

reduced need for supplemental oxygen in

patients with pneumonia compared with

placebo.

All authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’ in-

stitutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit

the JACC: Basic to Translational Science author instructions page.
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SUMMARY

Despite treatment advances for sepsis and pneumonia, significant improvements in outcome have not been

realized. Antiplatelet therapy may improve outcome in pneumonia and sepsis. In this study, the authors show

that ticagrelor reduced leukocytes with attached platelets as well as the inflammatory biomarker interleukin

(IL)-6. Pneumonia patients receiving ticagrelor required less supplemental oxygen and lung function tests

trended toward improvement. Disruption of the P2Y12 receptor in a murine model protected against inflam-

matory response, lung permeability, and mortality. Results indicate a mechanistic link between platelets,

leukocytes, and lung injury in settings of pneumonia and sepsis, and suggest possible therapeutic approaches to

reduce complications.(Targeting Platelet-Leukocyte Aggregates in Pneumonia With Ticagrelor [XANTHIPPE];

NCT01883869) (J Am Coll Cardiol Basic Trans Science 2018;3:435–49) Published by Elsevier on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

S epsis is a complex syndrome of dysregulated
host responses to infection that results in or-
gan damage and carries a substantial risk of

mortality. Pneumonia is a leading cause of sepsis
and is the most common fatal infection acquired in
hospitals. Despite advances in treatments, such as
antibiotic therapy and intensive care, significant
improvement in mortality rates remains elusive (1).
Additionally, there is increasing awareness of the
burden of cardiovascular complications in patients
hospitalized with pneumonia (2–9). Novel treatment
strategies in this high-risk patient population are
needed.

In addition to an integral role in hemostasis,
platelets contribute to inflammatory and immune re-
sponses. Platelets alter properties of endothelial cells
and leukocytes, release soluble pro- and anti-
inflammatory mediators, internalize microorganisms,
and bind and sequester pathogens. Platelet activation
and sequestration in pulmonary tissue is a key feature
in inflammatory or infectious states such as sepsis and
acute respiratory distress syndrome (10–12). Recent
evidence suggests that antiplatelet therapy may
improve outcomes in patients hospitalized with
pneumonia. A retrospective, cohort study to evaluate
the effects of antiplatelet therapy on the incidence
and severity of community-acquired pneumonia
(CAP) reported trends toward reduced instances of
mechanical ventilation, mortality, and the composite
endpoint of death in CAP inpatients (13). Similarly, an
observational study of 224 hospitalized CAP patients
showed lower use of intensive care unit care in pa-
tients receiving antiplatelet agents for at least 6
months compared with unmatched controls (14). A
study of 615 patients consecutively admitted to med-
ical and surgical intensive care units found that use of
antiplatelet agents was associated with reductions in

mortality and attenuation in thrombocyto-
penia (15). More recently, a post hoc analysis
on the PLATO (Platelet Inhibition and Patient
Outcomes) trial, in which 18,624 patients
presenting with acute coronary syndrome
were randomized to receive standard of care
with the adenosine diphosphate receptor
P2Y12 antagonist clopidogrel or ticagrelor,
which provides stronger and more consistent
P2Y12 antagonism than clopidogrel, revealed
that ticagrelor was associated with lower
mortality in patients with subsequent pul-
monary events or sepsis (16). In addition,
ticagrelor was able to decrease the absolute
risk of ischemic events compared with clopi-
dogrel in patients enrolled in the PLATO trial
that had a history of chronic obstructive pul-
monary disease (COPD) (17).

Taken together, these observations sug-
gest that antiplatelet therapy may improve outcomes
in ambulatory patients with pneumonia, and poten-
tially in sepsis. The mechanism for a beneficial effect
could be multifactorial. Platelet activation is associ-
ated with worse cardiovascular outcomes in patients
with pneumonia (2). Platelet activation results in
adhesion, the expression of cell surface receptors,
and the release of small molecules that can promote
thrombosis and amplify the immune response. Spe-
cifically, platelet activation results in expression of
P-selectin, increases platelet–leukocyte aggregates,
and triggers the formation of neutrophil extracellular
DNA nets. Platelet–leukocyte aggregates predict
mortality in severe sepsis (18), and DNA nets asso-
ciate with severity of sepsis and septic organ
dysfunction (19). In animals, platelets and neutro-
phils accumulate in lungs in models of sepsis, during
both bacterial and viral infection (20). Furthermore,

AB BR E V I A T I O N S

AND ACRONYM S

ADP = adenosine diphosphate

CAP = community-acquired

pneumonia

CI = confidence interval

COPD = chronic obstructive

pulmonary disease

dsDNA = doubled-stranded

DNA

HAP = hospital-acquired

pneumonia

ELISA = enzyme-linked

immunosorbent assay

FEV-1 = forced expiratory

volume in 1 s

IL = interleukin

IQR = interquartile range

Kfc = capillary filtration

coefficient

LPS = lipopolysaccharide

LTA = light transmission

aggregometry

MPO = myeloperoxidase

MVV = maximum ventilation

velocity

NE = neutrophil elastase

NET = neutrophil extracellular

trap

OR = odds ratio

PRP = platelet-rich plasma

TNF = tumor necrosis factor

TRAP = thrombin receptor

activating peptide

WT = wild-type

J A C C : B A S I C T O T R A N S L A T I O N A L S C I E N C E V O L . 3 , N O . 4 , 2 0 1 8 Sexton et al.
A U G U S T 2 0 1 8 : 4 3 5 – 4 9 Ticagrelor in the Setting of Pneumonia and Sepsis

437

https://clinicaltrials.gov/ct2/show/NCT01883869
http://creativecommons.org/licenses/by-nc-nd/4.0/


antiplatelet therapy decreases platelet–leukocyte ag-
gregates and reduces lung injury.

To explore the possibility that platelets underpin
adverse events in pneumonia and sepsis and that
potent antiplatelet therapy may attenuate the end-
organ or cellular and tissue complications of a dysre-
gulated immune response, we evaluated the effect of
the direct-acting P2Y12 antagonist ticagrelor on
biomarkers of cardiovascular outcomes in a double-
blinded, placebo-controlled randomized trial in
patients diagnosed with pneumonia. We then per-
formed mechanistic studies of ticagrelor on
endotoxemia-associated mortality in mice. Our find-
ings support a role for platelets as a link between
adverse outcomes in pneumonia and sepsis, and
provide mechanistic insight into potential beneficial
actions of potent antiplatelet therapy in pneumonia.

METHODS AND MATERIALS

PATIENTS AND STUDY DESIGN. XANTHIPPE (Exam-
ining the effect of Ticagrelor on Platelet Activation,
Platelet-Leukocyte Aggregates, and Acute Lung
Injury in Pneumonia is an investigator-designed and
initiated trial) (NCT01883869) was approved by the
institutional review board at the University of Ken-
tucky. All subjects provided written informed consent
before participation. The XANTHIPPE trial enrolled
patients admitted to the University of Kentucky
hospitals with a diagnosis of pneumonia between
March 26, 2014, and June 10, 2016. Patients were
enrolled within 48 h of diagnosis of either CAP or
hospital-acquired pneumonia (HAP), which was
defined as pneumonia occurring in a patient with any
hospital admission in the previous 3 months. Com-
plete inclusion and exclusion criteria can be found in
Table 1. Demographics of all enrolled patients are
presented in Table 2. Patients that were taking a P2Y12

TABLE 1 Inclusion and Exclusion Criteria

Inclusion criteria

Men or nonpregnant women 18 yrs of age or older

Subjects must be willing and able to give informed consent

Diagnosis of CAP or HAP within 48 h of diagnosis or presentation to hospital

Subjects must have new radiographic finding(s) consistent with pneumonia and at
least 2 of the following signs:

� Cough
� Fever
� Hypothermia
� Purulent sputum production or respiratory secretion
� Total WBC count >10,000/mm3, or >15% band forms, regardless of total

peripheral white count; or leukopenia with total WBC <4,500/mm3

� Auscultatory findings on pulmonary examination of rales and/or evidence
of pulmonary consolidation (dullness on percussion, bronchial breath
sounds, or egophony)

� Hypoxemia
� Increase in dyspnea and/or tachypnea (>20 breaths/min)

Exclusion criteria

Contraindication to ticagrelor (hypersensitivity of reaction to ticagrelor or
another P2Y12 antagonist)

Active or suspected major bleeding history

Platelet count <100,000/mm3 or International normalized ratio >1.5

Surgery within 30 days or anticipated major surgery

Oral anticoagulant that cannot be stopped

Inability or unwillingness of treating physician to reduce dose of aspirin to 100 mg

Fibrinolytic therapy in the last 24 h

Increased risk of bradycardic events—2nd or 3rd degree heart block, bradycardia
induced syncope—unless pacemaker in place

Underlying immunodeficiency (HIV, neutropenia, receiving immunomodulating
reagents, active hematologic malignancy, functional or anatomic asplenia,
and hypogammaglobunemia)

Concomitant therapy with CYP3A inducer; rifampin/rifampicin, phenytoin,
carbamazepine

Pregnancy or lactation

Active treatment for cancer

Acute, decompensated congestive heart failure

Participation in another investigational drug or device study in the last 30 days

Inability to administer enteric medication

CAP ¼ community-acquired pneumonia; HAP ¼ hospital-acquired pneumonia; WBC ¼ white blood
count.

TABLE 2 Baseline Characteristics of XANTHIPPE Subjects

Placebo Ticagrelor p Value

Demographics

Men 14 (47) 13 (43) 1.000

Women 16 (53) 17 (57) 1.000

Age, yrs 55.1 � 16.0 56.6 � 15.9 0.705

Caucasian 28 (93) 29 (97) 1.000

African American 2 (7) 1 (3) 1.000

Medical history

Hypertension 15 (50) 23 (77) 0.060

History of smoking 21 (70) 23 (77) 0.771

Diabetes 9 (30) 8 (27) 1.000

COPD 17 (57) 16 (53) 1.000

Medication on admission

Aspirin 7 (23) 8 (27) 1.000

P2Y12 inhibitor 4 (13) 7 (23) 0.506

Antibiotics on enrollment

Levofloxacin 8 (27) 14 (47) 0.180

Azithromycin 7 (23) 2 (7) 0.146

Ceftriaxone 5 (17) 5 (17) 1.000

Vancomycin 8 (27) 10 (33) 0.779

Levaquin 6 (20) 4 (13) 0.731

Cefepime 3 (10) 4 (13) 1.000

Penicillin 1 (3) 0 (0) 1.000

Zosyn 3 (10) 1 (3) 0.612

Doxycycline 1 (3) 2 (7) 1.000

Peracillin/tazobactam 2 (7) 1 (3) 1.000

Clindamycin 1 (3) 0 (0) 1.000

Metronidazole 1 (3) 3 (10) 0.612

Acyclovir 0 (0) 1 (3) 1.000

Aztreonam 0 (0) 1 (3) 1.000

Values are n (%) or mean � SD. p Values for the qualitative variables were
calculated using Fisher’s exact test. p Values for quantitative variables were
calculated with a 2-sample Student’s t-test.

COPD ¼ chronic obstructive pulmonary disease.
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antagonist upon enrollment were not included on the
analysis of flow cytometry, platelet function,
biomarker analysis, and spirometry.

The XANTHIPPE trial was a double-blind study in
which subjects were randomized to placebo or tica-
grelor (180-mg loading dose followed by 90 mg twice
a day) for up to 7 days or until discharge from the
hospital. Randomization and drug distribution were
performed by the Investigational Drug Service at the
University of Kentucky. Blood samples were collected
at baseline just before administration of the loading
dose of study medication and at approximately 24
and 48 h following the initial study dose. An addi-
tional blood sample was taken on day of discharge or
day 7, whichever came first. Study follow-up occurred
daily while admitted to the hospital and at 30 days
after enrollment.

The primary efficacy endpoint of XANTHIPPE was
the change in platelet–leukocyte aggregates (defined
as the percentage of leukocytes with attached plate-
lets) from baseline to 24 h following the initial dose of
study medication. Secondary endpoints included
change in platelet function, change in biomarkers
associated with inflammation and thrombosis, and
lung function as determined by bedside spirometry.
Rates of serious adverse events and/or rehospitali-
zation within 30 days of enrollment were determined
by patient follow-up, by clinic or phone call, as well as
by review of electronic medical records.

FLOW CYTOMETRY. Platelet–leukocyte aggregates
were determined by flow cytometry as previously
described (21). Briefly, fresh whole blood collected in
hirudin blood tubes (Diapharma, West Chester, Ohio)
and incubated with the leukocyte-specific allophy-
cocyanin (APC)-conjugated anti-CD11b/Mac-1 (BD
Biosciences, San Jose, California) and platelet-specific
fluorescein isothiocyanate (FITC)-conjugated anti-
CD42b (BD Biosciences) for 15 min at room tempera-
ture while protected from light. Samples were fixed
and red blood cells were lysed using FACS Lysing
Solution (BD Biosciences). Flow cytometry was per-
formed at the core facility at the University of Ken-
tucky. Leukocytes (50,000/gate) were identified by
the CD11b-positive signal compared with the isotype
control. Platelet–leukocyte aggregates were identified
by the subset of CD11b-positive cells that were also
CD42b positive as compared with the isotype control.
FlowJo software version 10 (TreeStar, Ashland, Ore-
gon) was used to analyze samples. Patients that were
taking a P2Y12 antagonist upon enrollment were
excluded from analysis.

PLATELET AGGREGATION AND PLASMA BIOMARKERS.

Ex vivo platelet aggregation using platelet-rich

plasma (PRP) and whole blood was performed as
previously described (22). Aggregation with PRP pre-
pared from citrated blood was determined using a
light transmission aggregometer (Chrono-log Corp.,
Havertown, Pennsylvania). PRP was incubated at 37�C
for 2 min before treatment with thrombin receptor
activating peptide (TRAP) or adenosine diphosphate
(ADP) to final concentrations of 15 mmol/l and 5 mmol/l,
respectively. Maximal aggregation and slope within
the first 5 min were calculated using the AGGROLINK
software (Chrono-log Corp.). For multiplate imped-
ance analysis, blood was collected in hirudin tubes
and incubated at 37�C for 3 min before the addition of
agonist. The area under the curve after 6 min of
agonist was recorded with the Multiplate system
(Roche, Basel, Switzerland). Patients that were taking
a P2Y12 antagonist upon enrollment were excluded
from platelet aggregation analysis.

Plasma for biomarker analysis was collected
from citrate-theophylline-adenosine-dipyridamole
(CTAD)-anticoagulated blood that was supplemented
with ethylenediaminetetraacetic acid (EDTA) (final
concentration of 10 mmol/l) before centrifugation at
3,000 g for 10 min. Plasma was aliquoted, flash
frozen, and stored at �80�C. Tumor necrosis factor
(TNF)-a, IL-6, IL-1b, IL-10, and sCD40L analytes were
measured with a MAGPIX multiplex reader using a
Milliplex MAP Kit (Millipore, Burlington, Massachu-
setts). Angiopoietin-1, angiopoietin-2, ELA-2, ENA-78,
NAP-2, and platelet factor (PF)-4 analytes were
measured using DuoSet enzyme-linked immunosor-
bent assay (ELISA) kits (R&D Systems, Minneapolis,
Minnesota). Patients taking a P2Y12 antagonist upon
enrollment were excluded from biomarker analysis.

Neutrophil extracellular traps (NET) were measured
by ELISA using anti-myeloperoxidase (MPO) (part
842842 from R&D Systems) for capture and bio-
tinylated anti-neutrophil elastase (NE) (Ab79962 from

TABLE 3 Clinical Characteristics of XANTHIPPE Patients

Placebo Ticagrelor p Value

Pneumonia

CAP 21 (70) 17 (57) 0.422

HAP 9 (30) 13 (43) 0.422

Blood counts

Baseline platelet count 248 � 74 283 � 85 0.094

24-h platelet count 263 � 94 291 � 97 0.324

Baseline WBC 12.04 � 5.18 12.13 � 5.83 0.951

24-h WBC 10.72 � 5.10 12.91 � 6.02 0.183

Values are n (%) or mean � SD. p Values for the qualitative variables were
calculated using Fisher’s exact test. p Values for quantitative variables were
calculated with a 2-sample Student’s t-test.

Abbreviations as in Table 1.
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Abcam, Cambridge,Massachusetts) for detection.MPO
and NE are in complex with chromatin in NETs. Sam-
ples were calibrated to a serial dilution of serum and
assigned arbitrary units based on detected signal.
Quant-iT Picogreen kits (Thermo Fisher Scientific,
Waltham, Massachusetts) were used to measure
doubled-stranded DNA (dsDNA) in plasma.
SPIROMETRY. Spirometry was performed following
American Thoracic Society/European Respiratory
Society guidelines (23) at the patient bedside using
a CareFusion MicroLoop spirometer (Vyaire Medical,
Mettawa, Illinois). Relaxed spirometry, forced
spirometry, and maximum ventilation velocity
(MVV) were performed at baseline (before drug
randomization), 24 h after dosage, and day of
discharge on subjects that were able and willing to
perform.

MOUSE STUDY. Mice deficient in P2Y12 were gener-
ated as described previously (24). Littermate wild-
type (WT) mice from heterozygous breeding were
used as controls. The mice were bred and maintained
in the University of Kentucky Animal Care Facility
following institutional and National Institutes of
Health guidelines after approval by the Animal Care
Committee.

WT and P2ry12�/� male mice (8 to 10 weeks of age)
were fed placebo, clopidogrel (25 mg/kg body weight
per 24 h), or ticagrelor (10, 25, 50 mg/kg body weight,
per 12 h) by oral gavage. Two h later, the animals were
injected intraperitoneally with lipopolysaccharide
(LPS) (0111:B4, 10 mg/kg in 200 ml, Sigma Aldrich, St.
Louis, Missouri). Mice were assessed every 12 h for 5
days. Blood was collected at the indicated time points
after LPS injection, and plasma was prepared by

FIGURE 1 Ticagrelor Reduces Ex Vivo ADP-Induced Platelet Aggregation in Pneumonia Patients

Maximum platelet aggregation was measured by light transmission aggregometry in PRP in response to 5 mmol/l ADP (A) and 15 mmol/l TRAP (C). Area

under the curve values in the Multiplate assay are shown with ADP (B) or TRAP (D) as an agonist. Patients randomized to placebo are represented by open

circles and patients randomized to ticagrelor are represented by filled circles. A significant difference between groups on the change from baseline to 24 h

is indicated by an asterisk. ADP ¼ adenosine diphosphate; AU ¼ arbitrary units; BL ¼ baseline; LTA ¼ light transmission aggregometry; TRAP ¼ thrombin

receptor activating peptide
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centrifugation. TNF-a and IL-6 were measured by
ELISA assay (eBioscience, San Diego, California).

DETERMINATION OF PULMONARY MICROVASCULAR

PERMEABILITY. Lungs were isolated 6 h after injec-
tion of LPS and microvessel capillary filtration coef-
ficient (Kfc) was measured as described previously
(23). In brief, after 20-min equilibration perfusion to
establish an isogravimetric condition, the outflow
pressure was rapidly elevated by 10 cm of H2O for 20
min. In response to the pressure increase, lung
preparations gained weight due to net fluid accumu-
lation. Lungs were dissected free of nonpulmonary
tissue, and lung dry weight was determined. Kfc was
calculated from the slope of the weight change
normalized to the pressure change and lung dry
weight.

STATISTICAL ANALYSES. Baseline and clinical char-
acteristics in Tables 2 and 3 were compared between
the 2 groups using Student’s t-test and Fisher’s exact
test. For the repeated-measures data in the platelet
aggregation, platelet–leukocyte aggregate assays, and
for non-IL biomarkers (sCD40L, TNF-a, ENA-78, NAP-
2, and PF-4), we fitted a linear mixed-effects model to
compare groups at day 1, at day 2, and on change from
day 1 to day 2. Logarithmic transformation was
applied to some non-normally distributed data. For
the IL-6, IL-10, and IL-1b biomarkers, we compared
groups at day 1, at day 2, and on change from day 1 to
day 2 using Mann-Whitney rank sum tests. Linear
regression was used to determine the relationship
between baseline platelet–leukocyte aggregates and
change at 24 h. For comparison of baseline bio-
markers of treatment groups to healthy controls, a
Mann-Whitney rank sum test was used. The MPO-NE
assay measurements were non-normally distributed
with some negative values so a logarithmic trans-
formation was inappropriate. To contrast MPO-NE
assay measurements between the ticagrelor group
and the placebo group, we used non-parametric rank
sum tests with a Bonferroni correction for multiple
comparisons. The Picogreen assay measures were
analyzed using the parametric mixed-modelling
approach with unstructured covariance and a Tukey
correction for multiple comparison. To assess the ef-
fects of ticagrelor on lung function, for each patient,
we first computed differences between baseline and
24-h lung function measurements and then con-
trasted mean lung function differences between the
ticagrelor group and the placebo group by a 2-sample
Student’s t-test with unequal variances. To evaluate
the effects of P2Y12 antagonists across doses as well as
changes over time, appropriate contrasts were
considered. For multiple group comparison with a

continuous response variable, we performed a 1-way
analysis of variance. Relationships between mortal-
ity and P2Y12 antagonists were analyzed using the log-
rank test. To explore the role of P2Y12 receptor in mice
treated with either a placebo or with the P2Y12 an-
tagonists (ticagrelor or clopidogrel), Cox proportional
hazards models were employed. To examine whether
P2Y12 antagonism (ticagrelor or clopidogrel) affects
pulmonary microvascular permeability, Kfc were

FIGURE 2 Ticagrelor Reduces Platelet–Leukocyte Aggregates

The percentage of leukocytes with attached platelets for each subject is plotted at

baseline (BL) and at 24 h in patients given placebo (A, open circles) and ticagrelor

(A, filled circles). A significant difference between groups on the change from baseline to

24 h is indicated by an asterisk. Delta change of platelet–leukocyte aggregates at 24 h

(compared with baseline) is represented for patients randomized to placebo (B, open

circles and top dashed line) and ticagrelor (B, filled circles and bottom dashed line).
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contrasted using 1-way analysis of variance with a
Tukey adjustment for multiple comparison. Statisti-
cal analysis was executed on SAS versions 9.3 and 9.4
(SAS Institute, Cary, North Carolina), SigmaPlot
version 13.0 (Systat Software, San Jose, California)
and R version 3.2.3 (R Project for Statistical
Computing, Vienna, Austria). Graphs in figures were
generated in SigmaPlot version 13.0.

RESULTS

TICAGRELOR MODULATES INFLAMMATORY

RESPONSE IN PATIENTS HOSPITALIZED WITH

PNEUMONIA. To evaluate the effect of the direct
acting P2Y12 antagonist ticagrelor in pneumonia, we
randomized patients hospitalized within 48 h of
diagnosis to receive placebo or ticagrelor for up to 7
days. Table 2 lists demographic and baseline charac-
teristics of patients enrolled in the XANTHIPPE trial.
The average age was 55.1 � 16.0 years in the placebo
group (53% female) and 56.6 � 15.9 years in the tica-
grelor group (57% female). There were no significant
differences in history of hypertension, smoking his-
tory, diabetes, and COPD between the 2 groups. There
was no significant difference between the 2 groups
with regard to aspirin use before enrollment. There
were no significant differences in antibiotic treatment
at the time of enrollment between the 2 groups.
Twenty-one subjects were diagnosed with CAP in the
placebo arm (70%) and 17 subjects in the ticagrelor
arm (57%) (Table 3). At 30 days, there were a total of 7
rehospitalizations (4 in the placebo group and 3 in the
ticagrelor group) and 3 deaths (3 in the placebo group
and 0 in the ticagrelor group). No major bleeding
occurred in any of the patients.

No significant differences in platelet or white blood
cell counts were observed in the 2 groups at baseline
or at 24 h after intervention (Table 3). At baseline,

maximum ADP- and TRAP-induced platelet aggrega-
tion were similar in the 2 groups (Figure 1). At 24 h,
patients randomized to ticagrelor had lower ADP-
induced aggregation as measured by light trans-
mission aggregometry [LTA] (Figure 1A) and multiple
electrode impedance assay (Figure 1B). No significant
differences were observed between the groups at 24 h
in aggregation induced by the PAR1 agonist TRAP by
LTA (Figure 1C) or multiple electrode impedance assay
(Figure 1D). Consistent with the effects of ticagrelor,
the change in ADP-induced aggregation from baseline
to 24 h was significantly different between subjects
assigned to placebo and ticagrelor (p ¼ 0.0065 [LTA]
and p < 0.0001 [impedance assay]). No significant
difference was noted for TRAP-induced aggregation
(p ¼ 0.1283 [LTA] and p ¼ 0.2937 [impedance assay]).

Local inflammatory events mediated by leukocytes
and platelets have been proposed to underlie acute
lung injury, and circulating platelet–leukocyte het-
erotypic cell aggregates increase in animal models of
lung injury (25). Therefore, we determined whether
ticagrelor altered platelet–leukocyte aggregates in
patients with pneumonia. No difference in platelet–
leukocyte aggregates in placebo and ticagrelor
groups was present at baseline (Figure 2A). Between
baseline and 24 h after drug administration, a sig-
nificant difference in the change in heterotypic cell
aggregates was observed in the placebo and ticagrelor
groups (p ¼ 0.0244). The percentage of leukocytes
with attached platelets declined from a median of
49.65% (interquartile range [IQR]: 36.00% to 55.73%)
at baseline to 37.90% (IQR: 23.93% to 46.35%) at 24 h
after ticagrelor; whereas in subjects randomized to
placebo, the median percentage of leukocytes with
attached platelets was 41.30% (IQR: 31.35% to
60.85%) at baseline and increased to 52.20% (IQR:
40.40% to 66.30%) at 24 h. Interestingly, the magni-
tude of the response to ticagrelor depended on the

TABLE 4 Biomarkers

Healthy Plasma

Ticagrelor Placebo

Day 1 Day 2 Day 1 Day 2

NAP-2 295 (228–333) 291 (156–533) 355 (213–676) 148 (95–404) 186 (115–337)

ENA-78 52.55 (40.42–64.38) 48.9 (32.8–87.5) 50.0 (39.8–102.5) 39.4 (31.0–76.2) 46.2 (35.7–73.6)

PF-4 273 (224–325) 225 (119–339) 232 (136–419) 248 (121–360) 291 (179–362)

IL-10 3.08 (1.81–4.17) 3.76 (0.00–16.38) 4.40 (1.70–16.35) 4.67 (1.39–20.59) 3.15 (0.00–35.28)

IL-6 0.82 (0.77–2.03) 19.25 (3.20–42.52)* 3.20 (1.80–14.19)* 8.53 (0.99–17.74)* 9.93 (2.00–37.33)†

TNF-a 6.86 (4.66–8.08) 8.02 (4.19–18.69) 9.36 (5.76–23.02) 9.98 (5.62–16.66) 8.76 (6.40–21.44)

IL-1b 0.64 (0.42–0.86) 0.60 (0.04–2.30) 1.00 (0.28–2.44) 0.62 (0.00–2.93) 0.62 (0.00–7.54)

sCD40L 57.2 (35.03–77.61) 111.6 (50.0–255.4) 140.2 (81.0–239.6) 95.5 (53.5–211.5) 142.3 (66.4–217.5)

Values are median (interquartile range) in pg/ml. *Day 1 value is significantly different from healthy plasma (Mann-Whitney rank sum test). †Significant difference between the 2
treatment groups in the change from baseline to 24 h (linear mixed modeling or Mann-Whitney rank sum test).
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percentage of leukocytes with attached platelets at
baseline, with larger responses to ticagrelor
(Figure 2B) observed in individuals with more
platelet–leukocyte aggregates at baseline.

The effects of ticagrelor on other markers of
platelet activation and systemic plasma biomarkers of
inflammation were examined next. sCD40 ligand is
released from the platelet membrane during activa-
tion. Baseline plasma sCD40L levels in both the pla-
cebo and ticagrelor groups were similar to levels in
healthy controls and increased at 24 h irrespective of
randomization arm (Table 4). Of a series of inflam-
matory biomarkers, including IL-6, TNF-a, IL-1b,
IL-10, NAP-2, and ENA-78, only IL-6 was above
normal levels at baseline in the 2 groups. From
baseline to 24 h, IL-6 levels changed significantly
differently in the placebo and ticagrelor groups
(p ¼ 0.0226). In subjects randomized to ticagrelor,
median plasma IL-6 levels declined by 83% from
19.25 pg/ml at baseline to 3.20 pg/ml at 24 h.
No decrease was observed in the placebo group,
which had plasma IL-6 levels of 8.53 pg/ml at baseline
and 9.93 pg/ml at 24 h after randomization.

Platelets may also contribute to the formation of
NETs, protein-DNA complexes released from neutro-
phils that contain MPO and NE in complex with
chromatin. NETs facilitate pathogen clearance; how-
ever, their presence has also been associated with
sepsis and sepsis organ dysfunction. We therefore
measured the levels of MPO-NE complexes as a
marker of NETosis in XANTHIPPE patients up to 48 h
after placebo or ticagrelor. Somewhat surprisingly,
relative to the baseline values, a significant increase
in MPO-NE complexes was observed at 24 h (p ¼
0.0410) in the ticagrelor group. No significant change
occurred in the placebo group (Figure 3A). Circulating
ds-DNA quantified by the PicoGreen assay (Thermo
Fisher Scientific), did not significantly change at 24 h
after treatment in either group (Figure 3B), although a
near-significant reduction in dsDNA occurred in the
ticagrelor group at 48 h after therapy (p ¼ 0.0511).

The effects of ticagrelor on lung function and
supplemental oxygen requirements were assessed,
respectively, by bedside spirometry on patients
willing and able to perform the test and by patient
records. In patients not receiving a P2Y12 antagonist
at baseline, 10 of the patients randomized to tica-
grelor and 13 randomized to placebo were able to
perform spirometry tests at both baseline and 24 h. In
patients receiving ticagrelor, the mean tidal volume
increased by 0.205 l from baseline to 24 h, whereas
the change in the placebo group was only 0.008 l
(Figure 4A). The ticagrelor group also displayed a

mean increase of 0.185 l in forced expiratory volume
in 1 s (FEV-1) at 24 h, as compared with a mean 0.057-l
change in placebo patients (Figure 4B). Finally, MVV
decreased on an average by 1.51 l/min at 24 h in
ticagrelor patients, whereas MVV in the placebo
group increased by 2.31 l/min (Figure 4C). However,
none of the differences between ticagrelor-treated
patients and the placebo group were statistically
significant (change in tidal volume p value ¼ 0.187,
change in FEV-1 p ¼ 0.387, change in MVV p ¼ 0.447).
Ticagrelor patients did, however, have a significant
reduction away from supplemental oxygen (odds ra-
tio [OR]: 1.08, 95% confidence interval [CI]: 1.01 to

FIGURE 3 Ticagrelor and NETosis Biomarkers in Pneumonia Patients

The delta change at 24 and 48 h after dosing for the MPO-NE NETosis assay (A) and

circulating dsDNA (B) were measured in placebo patients (open circles) and ticagrelor

patients (filled circles) that had samples through 48 h after dosing. Significant changes

are indicated by an asterisk. dsDNA ¼ doubled-stranded DNA; MPO ¼ myeloperoxidase;

NE ¼ neutrophil elastase.
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1.15) compared with no change in placebo patients
(OR: 0.99; 95% CI: 0.95 to 1.04) (Figure 5).

P2Y12 RECEPTOR FUNCTION MODULATES

RESPONSE IN ACUTE INFLAMMATORY PRECLINICAL

MODELS. Our results indicate that ticagrelor has ef-
fects on systemic biomarkers of inflammation in pa-
tients with pneumonia. To explore the role of P2Y12

receptor function in an acute inflammatory model,
mice were treated with placebo, ticagrelor, or clopi-
dogrel before intraperitoneal LPS (10 mg/kg). Within
hours of LPS administration, plasma inflammatory
and anti-inflammatory cytokine levels increased. At 1
h in WT mice, plasma TNF-a levels were approxi-
mately 20-fold higher than baseline (Figure 6A).
Ticagrelor treatment at all doses reduced TNF-a at 1 h,
but this decrease was statistically significant only for
25 mg/kg dose (p < 0.01). Over longer times (2 to 8 h),
ticagrelor had no significant effect on reducing TNF-a
levels (Figure 6A). Ticagrelor elicited an increase in
IL-10 levels after LPS. At higher doses (25 and 50 mg/
kg), but not the lower dose (10 mg/kg), ticagrelor-
treated mice had increased IL-10 at all time points
compared with controls (p < 0.05 for all treatment
doses and times, except ticagrelor dose 50 mg/kg at
4 h; p ¼ 0.06) (Figure 6B). Clopidogrel had no sig-
nificant effect on TNF-a, but IL-10 levels were
elevated at 2 h and 8 h (p < 0.05 for both time
points).

In comparison to WT controls, mice lacking the
P2Y12 receptor (P2ry12�/�) were protected from death
from endotoxemia (p < 0.001) (Figure 6C). Ticagrelor,
but not clopidogrel, conferred protection in WT ani-
mals (p < 0.05) (Figure 6D) without an additive effect
in the P2ry12�/� background.

Endotoxemia causes an inflammatory reaction,
associated with disruption in endothelial barrier
function, enhanced permeability, and the develop-
ment of tissue edema. In the lung, this can manifest
as acute lung injury. To examine whether P2Y12

antagonism affects pulmonary microvascular perme-
ability, Kfc was measured in isolated perfused lung
preparations. Lungs from mice pre-treated with tica-
grelor at higher doses (25 and 50 mg/kg) displayed
lower Kfc after LPS treatment (p < 0.05) (Figure 6E),
suggesting that ticagrelor reduced LPS-induced pul-
monary capillary permeability. Conversely, ticagrelor
at a lower dose (10 mg/kg) and clopidogrel did not
yield a statistically significant reduction in Kfc levels.
Taken together, our findings in a preclinical model
indicate that ticagrelor can attenuate inflammation
and may protect against inflammation-associated
acute lung permeability, which could have a benefit
in patients with pneumonia.

FIGURE 4 Ticagrelor and Lung FunctionWithin 24 h in Pneumonia Patients

Lung function was tested in subjects willing and able to undergo spirometry

testing. Data were collected at baseline and at 24 h. Changes at 24 h from

baseline (midline in all 3 graphs) are shown for tidal volume (A), FEV-1 (B), and

MVV (C). Units reported are liters for tidal volume and FEV-1 (A, B) and liters

per minute for MVV (C). Data from patients randomized to placebo are

shown in the open boxes, whereas patients randomized to ticagrelor are

represented in the shaded boxes. Each box represents the interquartile range

(25% to 75%),whereas thewhiskers represent the full range of the data. The

vertical line in each interquartile range box represents the median value

(note that the median for the placebo group in C overlaps with the midline).

FEV-1¼ forced expiratory volume in 1 s; MVV¼maximum ventilation velocity.
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DISCUSSION

Pneumonia is one the most common causes of death
from infectious diseases worldwide. Left untreated, it
can lead to serious complications such as acute lung
injury and sepsis. Sepsis, a complex and poorly un-
derstood condition, carries a high mortality rate, and
current treatments are generally supportive. Here, we
identify the platelet P2Y12 receptor as a potential target
to prevent the complications of sepsis and for reducing
lung injury, and suggest that the P2Y12 antagonist
ticagrelor may be of clinical benefit in the treatment
of pneumonia. Taken together, these findings support
a novel mechanism to prevent life-threatening com-
plications of pneumonia andmay explain themortality
benefit observed in patients randomized to ticagrelor
in the PLATO trial (26).

Ticagrelor, but not clopidogrel, attenuated the
inflammatory response to LPS in mice by blunting
the increase in TNF-a and elevating IL-10 levels. The

elevation of IL-10 exclusively occurred at 25 and 50
mg/kg doses of ticagrelor and not at the lower 10
mg/kg dose indicating a threshold concentration of
ticagrelor must be achieved in order to elicit an anti-
inflammatory effect. Furthermore, there seems to be
a ceiling to IL-10 increase because we did not
observe higher levels in the 50 mg/kg dose compared
with the 25 mg/kg dose. Moreover, animals pre-
treated with ticagrelor or lacking P2Y12 receptors
were more likely to survive endotoxemia. Inflam-
mation and infections have been associated with
platelet activation and platelet–leukocyte hetero-
typic aggregate formation. Ticagrelor administration
to patients with pneumonia reduced platelet–
leukocyte aggregates in circulation and lowered IL-
6 levels, consistent with an anti-inflammatory ef-
fect. Given that platelet–leukocyte aggregates serve
as a sensitive in vivo marker of platelet activation,
and increase from a mean of approximately 19% to
34% in patients presenting with acute myocardial

FIGURE 5 Pneumonia Patients Taking Ticagrelor Became Less Reliant on Supplemental Oxygen

Supplemental oxygen requirements were recorded from patient records. Data were collected at the time closest to when the patient received

the study medication and 24 and 48 h following study dosage. Supplemental oxygen was recorded as none (room air), nasal cannula, and

high-flow (HF) devices and mechanical ventilation. Patients randomized to ticagrelor demonstrated a progression to room air and away from

supplemental oxygen (odds ratio [OR]: 1.08; 95% confidence interval [CI]: 1.01 to 1.15). Patients randomized to placebo did not change over

48 h after receiving the study dose (OR: 0.99; 95% CI: 0.95 to 1.04).
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FIGURE 6 Ticagrelor Reduces Inflammation, Increases Lung Function, and Protects Against Mortality in a Murine Sepsis Model

The concentrations of TNF-a (A) and IL-10 (B) at 0 h up to 8 h post-LPS injection are graphed for controlmice andmice treatedwith ticagrelor or

clopidogrel (AandB, reported asmeanwith bar indicating SE). Significant difference over the time course comparedwith the control is indicated

by an asterisk in A and B. Survival curves of wild-type (WT) mice and P2y12�/�mice injected with LPS are plotted in C, whereas D shows survival

curves of WT and P2y12�/�mice treated with clopidogrel or ticagrelor (T10) before LPS injection. Significance between mutant andWT (A) and

P2Y12 antagonist treated and untreated (D) is indicated by an asterisk. Capillary filtration coefficients (KFC) are graphed for control mice and

mice treated with ticagrelor or clopidogrel (E, reported as mean with bar indicating SE). Significant differences between treatment group and

control are indicated by an asterisk. IL ¼ interleukin; LPS ¼ lipopolysaccharide; TNF ¼ tumor necrosis factor.
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infarction, the differences observed with ticagrelor
likely reflect a meaningful effect of platelet activa-
tion in pneumonia. These anti-inflammatory effects
of P2Y12 antagonism are consistent with those
observed in a rat model of LPS-induced sepsis in
which pre-treatment with clopidogrel reduced IL-6
and TNF-a (27), as well as a mouse model of
sepsis and acute lung injury in which clopidogrel-
treated and P2Y12-null mice were resistant to
sepsis-induced lung injury (28). These anti-
inflammatory effects of P2Y12 are also consistent
with retrospective clinical studies in which anti-
platelet drugs had a favorable effect on patients with
organ dysfunction (such as sepsis) and CAP
(14,15,29). However, in all of those studies, there was
no benefit of clopidogrel on mortality. Here, we
demonstrate, not only an anti-inflammatory effect of
ticagrelor apparently equal to or greater than that of
clopidogrel, but also improvement on survival in
LPS-treated mice. As a potent, direct-acting P2Y12

antagonist, ticagrelor may be particularly well suited
to reduce adverse events mediated by platelets in
the setting of inflammation. In the setting of acute
coronary syndrome, patients taking clopidogrel have
high on-treatment platelet reactivity that can be
overcome with ticagrelor (30,31). Although not yet
reported, a similar phenomenon may occur in other
inflammatory settings such as pneumonia and
sepsis. Additionally, by inhibiting the adenosine
transport ENT1, ticagrelor may have adenosine-
mediated effects that could promote vasodilation,
platelet inhibition, and modulate inflammation (32).
Although work in our lab has traditionally focused
on anti-inflammatory effects by reducing platelet–
leukocyte interactions, there is some evidence from
translational work that these platelet–leukocyte in-
teractions can be beneficial. In a study by Tunjung-
putri et al. (33), pro- and anti-inflammatory effects
of ticagrelor were observed in blood exposed to
Pam3CSK4 (TLR2-mediated) and LPS (TLR4-
mediated), respectively. Interestingly, in a study
investigating the effectiveness of the P2Y12 antago-
nist prasugrel in reducing coagulation and inflam-
mation in a human LPS model, prasugrel had no
effect on platelet–leukocyte aggregation (34). Thus,
it is possible that ticagrelor has unique effects on
platelet–leukocyte interactions.

During sepsis, endothelial dysfunction leads to
systemic capillary leak and multiple-organ failure.
The pulmonary microvessels are especially prone to

disruptions in integrity, and they may also be affected
in pneumonia-type infections. Sequestration of
platelets with leukocytes in pulmonary tissue is a key
feature in inflammatory or infectious states (35).
Activated platelets alone or neutrophil–platelet ag-
gregates may occlude small pulmonary vessels to
perpetuate local inflammation or line the endothe-
lium to contribute to leakage of plasma and cellular
components across a normally impermeable barrier
into the alveolar and interstitial spaces of the lung.
Through these and other mechanisms, platelet–
leukocyte interactions can disrupt lung endothelial
barrier function in sepsis and acute respiratory
distress syndrome (11,36). Our results suggest that
potent P2Y12 antagonism with ticagrelor can interrupt
key molecular signaling pathways responsible for
lung permeability.

In this work, we have shown both murine and
clinical measures that suggest improved lung func-
tion during sepsis and pneumonia following treat-
ment with ticagrelor. Furthermore, we observed a
baseline-dependent effect of ticagrelor on circu-
lating platelet–leukocyte aggregates following tica-
grelor treatment in pneumonia patients, although
this observation could be due, in part, to regression to
the mean. Patients with higher baseline platelet-
leukocyte aggregates also had greater reductions in
platelet-leukocyte aggregates following ticagrelor
treatment. These reductions in platelet–leukocyte
aggregates could possibly explain the improvements
observed in lung function in both our animal and
human models.
STUDY LIMITATIONS. The XANTHIPPE study was a
prospective study designed to target pneumonia
patients. Due to a combination of pneumonia pa-
tients having the capacity to consent as well as
exclusion criteria, the recruited population was less
sick than we had anticipated. We also acknowledge
that cecal ligation and puncture model of sepsis may
carry more clinical relevance than the endotoxin
model that was employed; however, the inflamma-
tory response to sepsis and the anti-inflammatory
effects of ticagrelor are likely similar between the 2
models.

ADDRESS FOR CORRESPONDENCE: Dr. Susan S.
Smyth, Gill Heart and Vascular Institute, 741 South
Limestone, University of Kentucky, BBSRB B345, Lex-
ington, Kentucky 40536. E-mail: ssmyt2@uky.edu.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Ticagre-

lor is commonly used in patients with acute coronary

syndrome. This work indicates a potential use for tica-

grelor to target inflammation and improve lung function

in the setting of pneumonia. The findings suggest the

possibility that ticagrelor could prevent complications of

sepsis, although larger-scale clinical studies are required.

TRANSLATIONAL OUTLOOK: Over the last decade, it

has become clear that platelets play vital roles that

extend well beyond hemostasis. In this work, the authors

demonstrate that targeting the platelet P2Y12 receptor

reduces platelet–leukocyte interactions, alters inflamma-

tory biomarkers, and can improve lung function in the

context of pneumonia and in experimental models of

sepsis. Preclinical models should provide additional

mechanistic insight into the benefits of antiplatelet

therapy beyond preventing the complications of athero-

sclerotic disease.
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