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HDAC Regulates transcription 
at the outset of Axolotl tail 
Regeneration
s. Randal Voss1, Larissa V. ponomareva2, Varun B. Dwaraka1, Kaitlin e. pardue1, 
Nour W. Al Haj Baddar1, A. Katherine Rodgers1, M. Ryan Woodcock1,3, Qingchao Qiu1, 
Anne Crowner1, Dana Blichmann1, shivam Khatri1 & Jon s. thorson2

tissue regeneration is associated with complex changes in gene expression and post-translational 
modifications of proteins, including transcription factors and histones that comprise chromatin. 
We tested 172 compounds designed to target epigenetic mechanisms in an axolotl (Ambystoma 
mexicanum) embryo tail regeneration assay. A relatively large number of compounds (N = 55) inhibited 
tail regeneration, including 18 histone deacetylase inhibitors (HDACi). In particular, romidepsin, an 
FDA-approved anticancer drug, potently inhibited tail regeneration when embryos were treated 
continuously for 7 days. Additional experiments revealed that romidepsin acted within a very narrow, 
post-injury window. Romidepsin treatment for only 1-minute post amputation inhibited regeneration 
through the first 7 days, however after this time, regeneration commenced with variable outgrowth 
of tailfin tissue and abnormal patterning. Microarray analysis showed that romidepsin altered early, 
transcriptional responses at 3 and 6-hour post-amputation, especially targeting genes that are 
implicated in tumor cell death, as well as genes that function in the regulation of transcription, cell 
differentiation, cell proliferation, pattern specification, and tissue morphogenesis. Our results show 
that HDAC activity is required at the time of tail amputation to regulate the initial transcriptional 
response to injury and regeneration.

Wound healing processes are rapidly activated after injury to prevent infection and repair damaged tissues1. In 
contrast to mammals, highly regenerative salamanders repair damaged tissues without scarring and are capable 
of regenerating appendages and organs2. While many aspects of wound healing are conserved among organisms, 
critical differences in early wound healing processes may explain scar-free healing and competence for regener-
ation3. Open wounds in salamanders are rapidly closed by epidermal cells that migrate from the basal layer of 
the epidermis4. Macrophages infiltrate the injury site5 and presumably release molecules that prevent infection, 
including reactive oxygen species (ROS) and antibacterial proteins. These cells clear the injury site of debris, and 
dying and senescent cells6, change the nature of the extracellular matrix, and release cytokines that induce cellular 
and molecular changes among infiltrating and surviving cells, including changes in gene expression. The diversity 
of the early transcriptional response suggests that regeneration in salamanders requires simultaneous expression 
of wound-healing and developmental genes7,8.

Although there have been few studies to date [but see9], injury cues likely act through epigenetic mecha-
nisms that alter chromatin structure and properties of proteins that function in transcriptional regulation and 
cell signaling10. These epigenetic mechanisms include DNA methylation and various chemical modifications of 
histones, including acetylation-deacetylation [reviewed by11]. Regions of the genome with high levels of DNA 
methylation and/or low levels of histone acetylation are characterized by compacted chromatin and transcrip-
tional repression, while low levels of DNA methylation and/or high levels of DNA acetylation are characterized 
by open chromatin and transcriptional activation. Because genomic data have been lacking until recently12,13, 
few studies have examined epigenetic mechanisms during salamander regeneration. Yakushiji et al.14 found that 
sonic hedgehog (shh), an essential limb patterning gene, is expressed during limb regeneration in regeneration 
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competent Xenopus tadpoles and axolotls, but not during stages of development when Xenopus are refractory 
to regeneration. Expression of shh was correlated with a lower methylation status of the shh promoter region and 
histone modifications15, thus implicating epigenetic regulation. Building on this work, Hayashi et al.16 showed 
that histone modifications are important for regulating genes that maintain intrinsic limb-cell identities during 
Xenopus limb bud regeneration. Aguilar and Gardiner17 examined transcriptional changes of dnmt3 during axo-
lotl limb regeneration, a methyltransferase that mediates de novo methylation of cytosine residues in DNA. They 
found that nerve signaling transiently downregulated dnmt3 in basal keratinocytes of the early wound epidermis, 
suggesting a decrease in methylation status and an associated de-repression of genes (e.g. sp9) necessary for the 
formation of a specialized wound epidermis that is required for blastema formation. Taylor and Beck18 used 
valproic acid (VPA) to reduce histone deacetylase (HDAC) activity and inhibit tail regeneration in Xenopus and 
axolotl embryos. Interestingly, they found that pre-treatment of Xenopus embryos with VPA prior to tail ampu-
tation did not inhibit regeneration, nor did VPA treatment administered after 6-hours post amputation (6 hpa). 
Their results suggested that HDAC activity is required sometime within the first 6 hours of injury to trigger the 
re-expression of developmental genes, although no transcriptional data were presented to support this hypoth-
esis. Tseng et al.19 also used VPA and trichostatin A to inhibit Xenopus tadpole tail regeneration. They observed 
spatially aberrant expression of developmental genes (at 24 hpa) that are required for tail regeneration (notch1, 
bmp2), consistent with the idea that HDAC activity is required during regeneration to regulate gene expression. 
While these few studies show that DNA methylation and HDAC activity are essential for amphibian appendage 
regeneration, much remains to be learned about these and other mechanisms of epigenetic regulation.

Using highly regenerative axolotl embryos, we performed a chemical genetic screen using commercially avail-
able compounds that target protein activities associated with epigenetic regulation. We identified 55 chemicals 
that inhibited tail regeneration at 7-days post amputation (7 dpa), with the highest frequency of hits associated 
with histone deacetylase inhibitors. Focusing on a specific HDAC class I inhibitor, we show that 10 μM romidep-
sin potently inhibits tail regeneration at 7 dpa when only treating embryos for 1-minute post amputation (1 mpa). 
Romidepsin-treated embryos did commence regeneration after 7 dpa, however the resulting tails and especially 
the tailfins were abnormally patterned. Using microarray analysis, we show that romidepsin altered transcription 
at two early post-amputation time points (3 and 6 hpa), with a high number of affected genes predicted to func-
tion in transcriptional regulation. Our results show that HDAC activity is required at the time of tail amputation 
to regulate the initial transcriptional response to injury and regeneration.

Results
Chemical screen of epigenetic Compounds. Amputations were performed on axolotl embryos to 
remove 2 mm of distal tail tissue. Immediately after tail amputation, embryos were reared in the presence of 
chemicals (N = 172) that target epigenetic mechanisms (Supplementary Table 1). Seven-day post amputation 
embryos were scored for survival and the survivors were photographed. Typically, tail regeneration is completed 
in 7 days and at this time the regenerated tail tip approximates the shape of the pre-amputated tail (see control 
in Fig. 1). Six different deviations from a normally patterned tail were observed and classified as inhibitory out-
comes (Supplementary File 1; Supplementary Table 1). A total of 38 chemicals yielded inhibitory outcomes for 
3–4 replicate embryos in two separate trials at 10 μM; these chemicals were considered to reproducibly inhibit 
regeneration. No chemicals were found to cause more tissue growth than is typical of tail regeneration and 23 
chemicals caused the mortality of >2 embryos and were considered toxic. Of the remaining chemicals, we note 
that 17 chemicals that were scored non-inhibitory at 10 μM were found to be inhibitory at 20 μM. While the 
remaining chemicals were scored as non-inhibitory, they may prove to be valuable research tools with further 
optimization of dose. Eighteen of the regeneration inhibitory compounds antagonistically target HDACs and 8 
antagonistically target bromodomains of epigenetic reader proteins (BET, SMARCA, and BRPF1 families). The 
remaining compounds antagonistically target JAK1/2 (N = 8), aurora kinase (N = 6), poly ADP ribose polymer-
ase (N = 3), histone methyltransferases (N = 4), a sirtuin, and a lysine specific histone demethylase. We note that 
some of these chemicals have pleiotropic effects beyond the mechanisms that are listed above.

The HDAC inhibitors yielded a similar 7 dpa tail phenotype in embryos, characterized by either a small pro-
tuberance of somite tissue or no somite tissue at the position of the midline, and no or little tailfin outgrowth 
(Fig. 1). The commonality of this phenotype among HDACi-treated embryos suggested inhibition of a similar 
regeneration mechanism. Indeed, the HDACi identified from the screen target class I and II HDACs with varying 
specificity. HDACi that inhibit other HDAC classes did not pass the criteria of complete inhibition of regenera-
tion. This included VPA, which was previously reported to quantitatively inhibit axolotl tail regeneration18. Given 
the high hit rate for HDACi from our screen, we focused subsequent experiments on romidepsin and belinostat, 
two FDA approved anti-cancer drugs20,21.

Initial Microarray Analysis of HDACi Treatment. A microarray analysis was performed to identify 
changes in gene expression that would provide mechanistic insights about HDACi inhibition of regeneration. 
Estimates of gene expression were compared between treated (romidepsin and belinostat) and untreated control 
embryos at the time of amputation, and then at 12, 24, 48, and 72 hpa. Genes were identified as significantly differ-
ently expressed if they met statistical (moderated t-test, FDR <0.05) and fold change criteria (1.5-fold difference) 
in relation to control embryos (Supplementary Table 2). For each post-amputation time point analyzed, more 
significant genes were identified for romidepsin-treated embryos than for belinostat-treated embryos. For exam-
ple, at 12 hpa 1275 and 1015 genes were identified as significant for romidepsin and belinostat treated embryos, 
respectively. More significant genes were identified at later post-amputation time points for romidepsin treated 
embryos, with 4584 genes identified at 72 hpa. In contrast, the number of significant genes plateaued at 48 hpa 
for belinostat treated embryos; still, 1442 genes were identified as significant at 72 hpa. Thus, while both HDACi 
profoundly altered gene expression, romidepsin affected more genes. However, we note that genes identified as 
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significant in the romidepsin treatment, but not the belinostat treatment, mostly exhibited correlated patterns 
of expression, as did genes that were identified as significant in the belinostat treatment, but not the romidepsin 
treatment (Fig. 2). This suggests that romidepsin and belinostat affect transcription of the same gene targets, but 
romidepesin is more potent in affecting transcriptional output at the concentration tested. Thus, while romidep-
sin and belinostat induced similar, directional changes in gene expression during axolotl tail regeneration, the 
magnitude of gene expression change was greater for romidepsin-treated embryos. This reveals an interesting 
facet of HDAC regulation of gene expression in the axolotl embryo model– it is potentially dose dependent and 
titratable using HDACi.

temporal Analysis of HDACi treatment. In the initial chemical screen, embryos were treated con-
tinuously with compounds for 7 dpa. To determine the critical window within which romidepsin inhibits 
regeneration, embryos were treated for varying lengths of time post-amputation (Supplementary Table 3). By 
systematically decreasing the treatment time, we found that a 1 mpa treatment with 10 μM romidepsin (but not 
10 μM belinostat) reproducibly yielded a non-regenerative phenotype at 7 dpa. We note that a 0.5 uM romidepsin 
treatment did not inhibit regeneration, nor did a 10 uM romidepsin pre-treatment for 24 hrs prior to amputation. 

Figure 1. Romidepsin (Romi) and other class I and class II HDACi yielded a similar tail morphology at 7 dpa, 
consistent with inhibition of regeneration. The vertical, yellow dashed lines show where tails were amputated.

https://doi.org/10.1038/s41598-019-43230-6
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Thus, the inhibitory effect of romidepsin coincided with tissue injury and required a dose ≥1.0 μM. Interestingly, 
the length of time that embryos were treated with romidepsin (1 mpa-7 dpa) did affect regenerative potential after 
7 dpa. Regeneration of tail fin tissue was variable and abnormal, with less tissue regeneration and more extreme 
patterning defects associated with longer post-amputation treatment times. For example, individuals that were 
treated for only 1 mpa regenerated more tissue by 21 dpa than individuals that were treated continuously for 3 or 
24 hpa (Fig. 3). In particular, individuals that were only treated for 1 mpa exhibited more tailfin regeneration and 
outgrowths of tailfin tissue along the distal tail tip. Although 1 mpa treated embryos exhibited abnormal tail pat-
terning, the length of regenerated spinal cord within these tails was not different from control embryos at 21 dpa 
(N = 12; Student’s t-test, p = 0.74). These results suggest that romidepsin specifically affected tailfin outgrowth 
and tailfin outgrowth is necessary for spinal cord regeneration.

Romidepsin treatment from 0–3 hpa significantly affected gene expression at 3 and 6 hpa.  
Given the large number of genes identified as differentially expressed at 12 hpa and the result that 1 mpa treat-
ment with romidepsin inhibited tail regeneration, we performed a second microarray analysis of two earlier, 
post-injury time points – 3 and 6 hpa. Using statistical and fold change criteria, a total of 128 and 239 probesets 
detected significantly higher gene expression in romidepsin-treated embryos at 3 and 6 hpa respectively, while 56 
and 191 probesets detected significantly higher gene expression in control embryos at 3 and 6 hpa respectively. 
(Supplementary Table 4; Fig. 4). Thus, consistent with the first microarray experiment, the number of significant 
genes discovered increased with post-amputation time. There was considerable overlap among the genes iden-
tified at 3 and 6 hpa. Of the 184 significant genes identified at 3 hpa, 132 were also identified as significant at 6 
hpa and all of these genes showed the same directional change. Furthermore, preliminary analyses showed that 
shared versus unique genes between the 3 and 6 hpa lists tended to enrich the same gene ontology terms. Thus, all 
non-redundant genes that were identified as significant at either 3 or 6 hpa were used for gene ontology enrich-
ment analysis using Panther22. Genes that were expressed (on average) more highly in control embryos enriched 
relatively few Gene Ontology (GO) terms associated with the regulation of metabolism, mRNA processing, and 
oxygen binding (Supplementary Table 5). We also note that 33 of these genes (agxt2l1, calhm1, ccnb1, coq10b, ctgf, 
ctsl2, cyp26a1, cyp26b1, dnajc10, fbxo5, has2, hpx, klf10, krt17, lep, lypd6, mas1, mmp1, mmp19, mmp2, mmp3, 
nfil3, nov, pdlim7, phlda2, pthlh, r3hdml, rnf24, socs1, tgif1, tmem92) were identified as differently expressed 
24–168 dpa when blocking WNT signaling and tail regeneration using this same tail amputation assay23. This 
strongly suggests that HDAC activity is associated with proper Wnt signaling and the transcriptional regulation 
of key regeneration genes. For example, leptin (lep) is highly expressed in regenerating hearts and fins of zebrafish 
and may act as a general trigger of tissue regeneration24. Of the genes that were expressed more highly in control 
embryos, lep exhibited the greatest expression difference between control and treated embryos.

A large number of gene ontology terms were significantly enriched by genes that were more highly expressed 
in romidepsin-treated embryos. In fact, the number of gene ontology terms that were identified (N = 298) 
exceeded the number of genes that were submitted for the enrichment analysis (N = 242). This result is explained 
by the very large number of transcription factors and signaling molecules in the gene list, and the diverse roles 

Figure 2. (A) Differentially expressed probe sets (N = 6,540) were clustered hierarchically using Pearson 
correlation as a distance metric. (B) The correlation of average fold change between romidepsin and belinostat 
samples. The magnitude of the correlation coefficients is represented by the intensity of blue, dark being 
highly correlated, and by the shape of ellipses, with narrow being highly correlated. These panels show that 
rombidepsin and belinostat induced similar, directional changes in gene expression but the magnitude of the 
expression differential (relative to controls) was greater for romidepsin-treated embryos.
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the genes play in regulating RNA polymerase II mediated transcription. For example, 110 genes that were more 
highly expressed in romidepsin-treated embryos encode proteins that positively or negatively regulate gene 
expression (Table 1). These genes regulate diverse biological processes including cell differentiation, cell pro-
liferation, pattern specification, and tissue morphogenesis. Overall, romidepsin altered the expression of key 
transcriptional regulators, signaling factors, and patterning molecules, thus implicating HDAC as an important 
regulator of regeneration-associated transcriptional responses immediately after injury.

Romidepsin treatment from 0–1 mpa significantly affected gene expression at 3 hpa. To fur-
ther validate effects of romidepsin on gene expression, we treated embryos for 1 mpa with romidepsin and used 
microarray analysis to test for gene expression differences at 3 hpa. We found that 208 of the 227 genes identified 
as significantly differentially expressed when treated with romidepsin for 0–3 hpa, also exhibited a statistically 

Figure 3. Examples of tail regeneration at 21 dpa. (a–e) Individuals that were treated with 10 μM romidepsin 
for 3 hpa. (f–j) Individuals that were treated with 10 μm romidepsin for 24 hpa. (k) An individual that was not 
treated with romidepsin. The arrows indicate the spinal cord (sc), lateral line (ll), and cartilaginous rod in the 
tail regenerate. The red hatched-line shows the position of the amputation plane. (l–r) Individuals that were 
treated with 10 μm romidepsin for 1 mpa.

Figure 4. Hierarchical clustering of probe sets (N = 482) expressed differentially at 3 and 6 hpa between 
romidepsin-treated and control embryos. Expression profiles are shown for a few of the many regulatory genes 
that were discovered to be differentially expressed.

https://doi.org/10.1038/s41598-019-43230-6
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significant difference at 3 hpa when only treated for 1 mpa (Supplementary Table 4). Moreover, the correlation 
of fold change for these genes between the 0–3 hpa and 0–1 mpa treatments was r = 0.94. These results show that 
romidepsin potently, rapidly, and reproducibly affected gene expression at the time of amputation injury.

Analysis of dividing cells. Romidepsin is an FDA approved anticancer drug that blocks cell cycle progres-
sion in some types of tumor. To determine if romidepsin similarly affects cells during axolotl tail regeneration, we 
quantified and compared the number of dividing cells between control and romidepsin-treated embryos at 3 hpa. 
Dividing cells were identified by EdU, a thymidine analogue which is incorporated into DNA during S-phase. 
Many EdU positive cells were observed, indicating abundant cell proliferation in these developing embryos and 
no global effect of romidepsin on cell cycle entry (Fig. 5A). The number of EdU positive cells within 200 μm of 
the amputation plane did not differ significantly between control and romidepsin-treated embryos (Student’s 
t-test. p = 0.56), and there were no apparent differences for other regions of the tail (Fig. 5B,C). Thus, while acute 
romidepsin treatment inhibited tail regeneration at 7 dpa, it did not significantly decrease the number of dividing 
cells at an early post-amputation time point.

Discussion
We performed a chemical genetic screen of amphibian appendage regeneration focusing on chemicals that mod-
ify epigenetic mechanisms. Fifty-five chemicals were found to inhibit axolotl tail regeneration, with HDACi rep-
resented highly among this group. HDACs remove acetyl groups from lysine amino acid residues that comprise 
proteins [reviewed by25]. HDACs target a diversity of proteins but are best known for the removal of acetyl groups 
from lysine tails of histones. Histone deacetylation relaxes the structure of chromatin and makes DNA more 
accessible to proteins and RNAs that regulate gene expression. Typically, HDAC activity is associated with the 
activation of gene expression, however deacetylation of regulatory proteins can activate or repress transcription. 
We also identified 8 compounds that antagonistically target bromodomain-containing proteins that act as readers 
of ε-N-lysine acetylation marks that affect transcriptional regulation [reviewed by26]. Thus, 47% of the chemicals 
that were identified in our screen (26 of 55) are associated with epigenetic writing and reading of lysine acetyla-
tion, and both mechanisms are known to affect the transcriptional regulation of similar gene targets. If a study of 
bromodomain inhibitors using the axolotl embryo model yielded parallel results, it would further establish that 
cancer and tissue regeneration share mechanisms of epigenetic regulation.

In cancer studies where bromodomain and HDAC inhibitors have been studied most, both mechanisms 
have been shown to increase the expression of cdkn1b and txnip in tumor cells to induce cell cycle arrest27–30. 
Accordingly, there is great interest in developing bromodomain and HDAC inhibitors as combinatorial therapeu-
tics as these compounds target similar genes and elicit similar biological effects31. We similarly observed increased 
expression of cdkn1b and txnip in romidepsin-treated embryos, but did not observe fewer dividing cells relative 
to controls at 3 hpa, as would be expected if romidepsin induced cell cycle arrest. However, if romidepsin only 
affected cell cycle entry of a small number of cells necessary for regeneration, it would be difficult to identify these 
against the backdrop of abundant cell proliferation in rapidly developing embryos. It would similarly be difficult 
to identify changes in cellular differentiation and cell death for a small number of essential cells. Interestingly, 

arid4a elf3 ino80b mxi1 sfrs17a

atmin emx1 insig1 notch1 sgk1

bc11b emx2 insm1 nr2f1 smad7

bcor en2 irf1 nr2f2 sostdc1

btg1 fam46C jag1 nr4a1 sox8

c14orf4 fos jag2 nrarp sp7

casz1 foxc1 jund onecut2 spen

cbx4 fzd8 klf4 osr1 tbx15

cbx8 gtd2b klf5 ovol2 tfap2a

cby1 hes5 lbh pck1 tmem100

cdc6 hey1 lefty1 per1 trak1

cdkn1b hoxa3 lmx1b pkp1 tsc22d3

cited2 hoxb9 lrrc14 pnrc1 tshz1

cyr61 hoxc10 mafb prickle1 txnip

dact1 hoxc8 maml2 rara znf250

ddit3 hspa8 med7 rbm24 znf281

dll1 htf4 meis1 rbm38 znf300

dlx6 id1 meis2 rg9mtd1 znf510

dnajb5 id2 mn1 rgma znf703

ebf2 ift57 myc rgmb znf750

ebf3 ing1 mycn ror2 znf777

efna1 ing2 myf5 sfrp2 znf821

Table 1. Genes (N = 110) associated with transcriptional regulation that were expressed more highly in 
romidepsin-treated embryos at 3 or 6 hours-post amputation.
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Luchenko et al.32 found that romidepsin similarly induced histone acetylation across 18 different human cell lines, 
but not cell death. They speculated that only cells primed for apoptosis undergo cell death in response to global 
changes in acetylation. It will be important in future studies to identify the cells that are affected by romidepsin 
treatment and determine if the effects of romidepsin are cell type and/or cell context specific during axolotl tail 
regeneration.

In addition to genes that are typically dysregulated in cancer cells after HDACi treatment, we observed 
changes in axolotl genes that regulate transcription and developmental signaling pathways (e.g. smad7, bmp2, 
id1, id2, notch1, jag1, dll1, prickle1, dact1, myc, mycn, ngfr, hes5, meis2, sox8, foxc1, lefty1, spry1). Transcriptional 
changes that alter the wound-healing environment or fundamental signaling pathways might induce changes 
in progenitor cells that are non-permissive for regeneration. For example, gene expression changes suggest that 
TGFβ signaling was attenuated. Smad7, a negative inhibitor of smad2/3 signaling, was up-regulated at 3 hpa in 
romidepsin-treated axolotls, while klf10, a negative inhibitor of smad7, was down-regulated. Also, inhibitors of 
canonical (dact1) and non-canonical Wnt signaling, (prickle1), TGFβ signaling (smad7), BMP signaling (sostdc1), 
and FGF signaling (spry1) were also upregulated at 3 hpa. All of these pathways are essential for regeneration of 
tail appendages in amphibians and zebrafish23,33–35. We also observed changes in the expression of genes that func-
tion in proximal-distal patterning during appendage development and regeneration. Genes implicated in retinoic 
acid (RA) metabolism and signaling (abca1, aqp3, cyp26a1, cyp26b1, dhrs3, ezh2, fgfr2, klf4, lep, meis1, meis2, 

Figure 5. Romidepsin treatment does not affect cell proliferation at 3 hpa. (A) Embryo tail images showing 
EdU and DAPI staining at 3 hpa for control (DMSO) and treatment groups (Romi 0–1 mpa, and Rmoi 0–3 hpa). 
Scale bar = 200 μ. (B) Representative image for the 200 μ area of the tail tip used for cell counts and calculations. 
(C) EdU quantification for embryos treated with DMSO (N = 6) and Romidepsin for 0–1mpa (N = 6) and 0–3 
hpa (N = 6). Error bars are standard deviations of the mean.
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osr1, pck1, rdh10), which are typically associated with proximal patterning of anterior-posterior morphogenetic 
fields [reviewed by36], were dysregulated in romidepsin-treated embryos; and homeotic genes (hoxa3, hoxb9, 
hoxc8, hoxc10) that define medial spatial positions of the developing vertebrate body axis were upregulated. These 
expression patterns suggest that HDACi activated proximal patterning genes in the distal tip of the regenerating 
tail, as this is where tissue was collected for gene expression analyses.

Although axolotl embryos treated with romidepsin for 1 mpa did not show signs of tissue regeneration at 
7 dpa, they subsequently regenerated abnormally patterned tails. Because these individuals were capable of regen-
erating distal tailfin tissue, other tissues within the tail also regenerated. For example, the amount of spinal cord 
tissue that regenerated between control and 1 mpa romidepsin treated embryos was not significantly different at 
21 dpa, even though the tails of the later were abnormally patterned. These results suggest that romidepsin affects 
progenitor cells in the tailfin mesenchyme, perhaps by arresting growth, or by inducing death or differentiation. It 
is possible that the 1 mpa treatment was not sufficiently long to affect all of these cells and thus tailfin regeneration 
was delayed and not completely inhibited at 21 dpa. The small outgrowths of tailfin along the distal margin of the 
tails is supportive of this idea as these regions may contain progenitor cells that were not affected by romidepsin 
treatment, and within these foci became nested with sufficient proximal-distal patterning information to facilitate 
local outgrowths.

The temporal regulation of transcription factor complexes at the time of injury is probably essential for regen-
eration. Presumably, the genes that were activated at 3 and 6 hpa in romidepsin-treated embryos are normally 
repressed by HDAC activity after injury. Consistent with this inference, hdac1 expression was approximately 8–9 
at the time of amputation, which in terms of Affymetrix log2 normalized data, is a relatively high expression level. 
This suggests that class I HDAC activity is maintained at appreciable homeostatic levels within appendages to 
repress genes that would disrupt initial injury responses and the onset of regeneration transcriptional programs. 
This is consistent with the results of Tseng et al.19 who observed mis-expression of notch1 and bmp2 after HDACi 
treatment of amputated Xenopus tadpole tails at 24 hpa. In addition to these two genes, we identified multiple 
Notch (bhlhb2, cdkn1b, dll1, foxc1, hey1, hes5, jag1, jag2, krt19, lfng, mint/spen, myc, nov, nrarp, c8orf4, ovol2, 
rbm15, tmem100) and BMP (ctsl2, col2a1, cyr61, hes5, id1, id2, rgma, rgmb, ror2, sfrp2, sostdc1, smad7) pathway 
genes and gene targets that were dysregulated by romidepsin. Overall, many transcription factors, chromatin 
remodeling genes, and regulators of signaling pathways (e.g. Tgfβ, Wnt, FGF, BMP, Notch, and RA) were differ-
entially expressed at 3 hpa in romidepsin-treated embryos. HDAC activity at the time of tissue injury is critical for 
regulating an initial transcriptional response to injury that leads to a successful regenerative outcome.

HDAC-containing corepressor complexes are known to regulate the timing of transcription-mediated devel-
opmental events in anuran amphibians. For example, HDACs interact with thyroid hormone receptors (TRs) 
to regulate the proper timing of metamorphic transcriptional programs among different tissues and organs 
[reviewed by37]. Metamorphosis in amphibians is initiated when thyroid hormone (TH) reaches critical levels 
within cells and thus transcriptional output is dose-dependent. The binding of TH to TRs de-represses HDAC 
corepressor complexes and activates transcription. It is possible that regeneration-specific, signaling mechanisms 
may act to de-repress HDAC corepressor complexes during regeneration to regulate transcription temporally 
and spatially. In support of this hypothesis, we note that many of the genes that were expressed differently in 
response to romidepsin treatment were also identified in an experiment that used a chemical inhibitor to block 
WNT-ligand secretion23. Further temporal and spatial analyses of gene expression and regulation will be needed 
to rigorously test this hypothesis.

Methods
Animal procedures. The use of pre-feeding stage axolotls does not require a protocol approved by the 
Institutional Animal Care and Use Committee (IACUC) at University of Kentucky, however embryos used in 
this study were treated according to the same ethical standards that apply to feeding axolotls. Some of the axo-
lotl embryos were reared to feeding stages (>12 dph at 17–18 C) to image larval tail anatomy. These individu-
als were fed brine shrimp and cared for using standard axolotl husbandry protocols approved under IACUC 
protocol 2017–2580. Embryos (RRID:AGSC_100E) were obtained from the Ambystoma Genetic Stock Center 
(RRID:SCR_006372).

Chemical screen of epigenetic Compounds. The amphibian tail amputation assay was described pre-
viously23. Briefly, developmental stage 4238 axolotl embryos were manually hatched by removing the egg jelly and 
membrane, anesthetized in 0.02% benzocaine, and administered tail amputations with a razor blade to remove 
2 mm (~20% of the body length) of the distal tail tip. Axolotl embryos were then distributed into microtiter plates 
containing epigenetic targeting compounds from two libraries: (1) the Structural Genomics Consortium epi-
genetic chemical panel (N = 22); (2) the Selleckchem epigenetics compound library (N = 151). Chemicals were 
dissolved in DMSO and diluted to a stock concentration of 10 mM (0.1% DMSO). The initial screen tested 4 repli-
cate embryos per chemical at 10 μM. All chemicals that inhibited tail regeneration were tested again at 10 μM and 
chemicals were considered hits if both tests showed inhibition. Some chemicals that were not inhibitory at 10 μm 
were re-tested and found to be inhibitory at 20 μM. Embryos were imaged at the time of amputation and 7 dpa. 
Tail and spinal cord measurements were tested statistically using Student’s t-test. Embryo survival and distal tail 
shape were used to classify chemicals as toxic, inhibitory, or having no effect on tail regeneration.

Microarray analysis of romidepsin and belinostat. Three microarray experiments were performed. 
In the first experiment, 336 embryos were administered tail amputations (2 mm removed from distal tip with a 
razor blade) and placed into microtiter plates containing rearing water (40% modified Holtfreter’s Solution) and 
0.1% DMSO (controls) or rearing water with 10 μm romidepsin or 10 μm belinostat. Exactly 1 mm of the distal 
tail tip was removed from 24 embryos immediately after tail amputation to obtain Day 0 samples. Tissues from 8 
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embryos were pooled into a 1.5 ml tubes with 0.5 ml of RNA-later (Qiagen) to obtain three replicate pools. This 
tissue sampling and pooling procedure was used to create replicate pools of tissue for 12 hpa, 24 hpa, 48 hpa, and 
72 hpa. Four replicates were processed for all but 12 hpa control (3 replicates) and 12 hpa belinostat (2 replicates). 
In the second microarray experiment, the same tissue sampling design was followed to generate 3 replicates for 
0–3 hr romidepsin-treated and control embryos for each of 2 time points (3 and 6 hpa). In the third experiment, 
the same tissue sampling design was followed to generate 3 replicates for 0–1 mpa romidepsin-treated and control 
embryos at 3 hpa.

The tissue samples were maintained at 4 C in RNA later prior to RNA isolation using first the Trizol method 
and then a Qiagen minikit with on-the-column DNAse treatment of DNA. Microarray hybridization using an 
Ambystoma Affymetrix array39 was performed by the University of Kentucky Microarray Core Facility. The raw 
microarray data (.CEL files) were deposited in the GEO database (accession number GSE118515). GeneChips 
were normalized using the affy R package40 to accomplish robust multichip averaging (RMA)41. Differential 
expression analysis was conducted using the limma R package42. RMA normalized signal intensity values were 
fit to a linear model and empirical Bayes smoothing applied to standard errors. Moderated t-tests were per-
formed separately for each time point to identify probe sets that yielded significantly different average expression 
values as a function of treatment. These lists were further filtered using a false discovery rate of α = 0.05 and 
by requiring a 1.5-fold difference between treatment and control means. Hierarchical clustering of significant 
genes was performed using Pearson correlation as the distance metric. Optimal k parameters were selected by 
plotting the within-cluster sum of squares by k, varying from 1 through 10; the k aligning with the observed 
bend in the resulting plot was chosen as the k parameter. Heatmaps were constructed and visualized using 
ComplexHeatmap43. Graphs of probe signal intensities were visualized using ggplot244. Correlation plots were 
constructed with CorrPlot45 and ggplot2 using Pearson correlation.

HDACi treatment of embryos. Axolotl embryos were administered tail amputations and placed into micr-
otiter wells containing either rearing water and 0.1% DMSO, belinostat (10 μM) and 0.1% DMSO, or romidepsin 
(10 μM) and 0.1% DMSO. Embryos were initially treated for 7-days however shorter exposure times were also 
tested. For example, the briefest exposure time was for 1 mpa; after exposure, embryos were rinsed in 1 liter of 
rearing water before being placed into microtiter plates with 2 ml of rearing water. Embryos were imaged at 7 dpa 
and in some cases at later post-amputation times.

Cell proliferation assay. Embryos at stage 42 were anesthetized and 0.5 ul of 8 mM EdU (EdU click-iT) 
was microinjected into the intraperitoneal cavity. Then, 2 mm of the distal tail tip was amputated and embryos 
were treated with either 10 μM romidepsin (n = 6) or 0.04% DMSO (n = 6). Subsequent steps of the EdU staining 
methodology followed the protocol reported in Baddar et al.46. All EdU labeled cells within 200 μ of the amputa-
tion plane were counted as well as cells staining positive for DAPI, after normalizing for tissue area. Student’s t-test 
was used to assess statistical significance and t-statistics with P < 0.05 were considered statistically significant.

Data Availability
The raw microarray data (.CEL files) were deposited in the GEO database (accession number GSE118515).
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