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SHORT REPORTS
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Abstract

Feeding preference is critical for insect adaptation and survival. However, little is known

regarding the determination of insect feeding preference, and the genetic basis is poorly

understood. As a model lepidopteran insect with economic importance, the domesticated

silkworm, Bombyx mori, is a well-known monophagous insect that predominantly feeds on

fresh mulberry leaves. This species-specific feeding preference provides an excellent

model for investigation of host-plant selection of insects, although the molecular mechanism

underlying this phenomenon remains unknown. Here, we describe the gene GR66, which

encodes a putative bitter gustatory receptor (GR) that is responsible for the mulberry-spe-

cific feeding preference of B. mori. With the aid of a transposon-based, clustered regularly

interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease

(Cas9) system, the GR66 locus was genetically mutated, and homozygous mutant silkworm

strains with truncated gustatory receptor 66 (GR66) proteins were established. GR66

mutant larvae acquired new feeding activity, exhibiting the ability to feed on a number of

plant species in addition to mulberry leaves, including fresh fruits and grain seeds that are

not normally consumed by wild-type (WT) silkworms. Furthermore, a feeding choice assay

revealed that the mutant larvae lost their specificity for mulberry. Overall, our findings pro-

vide the first genetic and phenotypic evidences that a single bitter GR is a major factor

affecting the insect feeding preference.

Author summary

The molecular mechanism underlying species-specific feeding preference in insects is

poorly understood. The silkworm, Bombyx mori, is a typical monophagous plant-eating
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insect, but the genetic basis for its famous mulberry-specific feeding preference is

unknown. Here, we identify gustatory receptor 66 (GR66) as a determinant of the silk-

worm’s mulberry-specific monophagy. GR66-mutant larvae generated by clustered regu-

larly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9

nuclease (Cas9) acquired new feeding activity and showed the ability to feed on various

plant species that are not normally consumed by the wild-type (WT) animals; a two-

choice assay demonstrated that the mutant larvae had lost their feeding preference for

mulberry. Our genetic and phenotypic evidence therefore demonstrates that GR66 is a

major factor affecting the feeding preference of the silkworm.

Introduction

Chemosensory processes, including olfaction and gustation, are critical for host-plant selection

in phytophagous insects [1,2]. Olfaction is responsible for host orientation, and gustation plays

a central role in host selection [3,4]. Insect gustatory receptors (GRs), as well as olfactory

receptors (ORs), therefore play critical roles in determining insect feeding preference. Most

insect GRs are expressed exclusively in gustatory receptor neurons (GRNs) and transmit sig-

nals through GRNs to regulate insect feeding behaviors [5,6]. Insect GRs are known to recog-

nize sugars, bitter compounds, and nonvolatile pheromones [7,8]. In Drosophila melanogaster,
GR5a and GR66a are found in different populations of GRNs [5]. GR5a-positive GRNs

respond to various sugars, and GR66a-positive GRNs respond to many bitter compounds

[9,10]. In the butterfly, Papilio xuthus, a GR was reported to be involved in host-plant recogni-

tion for oviposition [11]. In addition, GRs are also required for the detection of CO2, nutrients,

light, and temperature [12–14]. Large numbers of insect GRs have been identified in many

insect species [15–24]. However, most GRs have not been functionally characterized, and the

roles played by these GRs in insect feeding preferences remain unclear.

Based on the host-plant selection range, the feeding preferences of phytophagous insects

are classified as monophagous, oligophagous, and polyphagous. Lepidoptera, the largest line-

age of phytophagous insects, includes many important agricultural and forest pests that exhibit

high diversity in terms of feeding preference. The domesticated silkworm, Bombyx mori, is a

beneficial lepidopteran insect that has been a major contributor to silk production for thou-

sands of years. One of the main characteristics of B. mori is its monophagous feeding prefer-

ence, and silkworm larvae predominantly feed on fresh mulberry leaves (Morus alba L.).

Several polyphagous silkworm mutant strains that feed on the leaves of various plants that are

rejected by normal silkworms have been reported [25,26]. Genetic analysis of one representa-

tive strain, Sawa-J, revealed that a major recessive gene on the polyphagous (pph) locus was

potentially responsible for this change in feeding preference [27]. However, the molecular

mechanism underlying the monophagous feeding preference of B. mori is unknown, and

whether GR genes are involved the feeding preference of silkworm remains to be determined.

Recently, a complete set of 76 GR genes was identified in B. mori [28]. Among these genes,

only three sugar GRs were functionally characterized [29–31], whereas most of the GRs

remained functionally identified, including 66 putative bitter GRs [28].

The biological functions of most insect GRs are poorly understood, especially those of non-

drosophilid insects, due to the lack of reverse genetic approaches for the study of these insect

species. This is especially true for lepidopteran species, because RNA interference functions

with variable efficiency in many species [32]. Recent advances in the development of targeted

genomic manipulation tools provide great benefits for functional genomic research of
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lepidopteran insects. These genomic manipulation tools—including zinc-finger nucleases

(ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly

interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease

(Cas9) system—have been extensively used to generate targeted mutations at single or multiple

sites in many organisms in vitro and in vivo [33–35]. Among these tools, the CRISPR/Cas9

system is the most extensively used mutagenesis system due to its high mutagenic efficiency

and simple procedure. Among lepidopteran insects, the CRISPR/Cas9 system has been suc-

cessfully established in B. mori [36–38], Spodoptera litura [39], Plutella xylostella [40], and

Helicoverpa armigera [41].

In the current study, we investigated the genetic basis for the feeding preference towards

mulberry exhibited by silkworm. We mutated the GR66 gene, which encodes a putative bitter

GR, in B. mori using the Cas9/small guide RNA (sgRNA) system. Homozygous GR66 mutant

larvae exhibited expanded diets, indicating that the GR66 gene is responsible for mulberry-spe-

cific feeding behavior in the silkworm. Acquiring new feeding activity in the silkworm will

contribute to modern sericulture as well as to the understanding of the molecular mechanisms

of insect–host interactions.

Results

Tissue-specific expression and cell localization of GR66
It was reported that there are 76 putative GRs distributed on 16 of the 28 chromosomes of B.

mori [28]. Among these genes, only one putative bitter GR gene, GR66, was identified as being

located on the third chromosome. The genomic locus of this gene is within the putative pph
locus of the polyphagous Sawa-J silkworm strain [27]. This finding indicates that GR66 might

be the candidate gene for the pph locus and could be involved in the feeding preference of silk-

worm. We first investigated the relative mRNA levels of GR66 in different larval tissues using

quantitative real-time PCR (qRT-PCR). It has been reported that most insect GRs are localized

in the taste sensilla of the larval mouthparts [28,42] (Fig 1A). As expected, GR66 was predomi-

nantly expressed in larval maxillae (Fig 1B). The open reading frame (ORF) of the GR66 gene

contains 1,140 base pairs and encodes a 380-amino-acid polypeptide. Bioinformatic analysis

revealed that the GR66 protein consists of seven transmembrane domains with an intracellular

N terminus, which is distinct from the structures of members of the G-protein-coupled recep-

tor (GPCR) family (Fig 2B). We further investigated the cellular localization of this protein via

transfection of an enhanced green fluorescent protein (EGFP)-fused GR66 expression plasmid

into mammalian 293T cells. The results showed that the protein is localized on the cell mem-

brane (Fig 1C).

Establishment of GR66 homozygous mutant lines

To investigate the potential involvement of GR66 in the feeding preference of silkworm, we

genetically ablated GR66 using a transposon-based, Cas9/sgRNA-mediated mutagenesis sys-

tem [37]. Two independent transgenic lines were established by transposon-mediated germ-

line transformation. One transgenic line expressed Cas9 under the control of the germ-cell–

specific promoter Bmnos [37], and the other line expressed two sequence-specific sgRNAs tar-

geting GR66 (Fig 2A) under the control of the BmU6 promoter [38]. Each line also expressed

an IE1 promoter-derived fluorescent marker (EGFP in the Cas9-expressing line or DsRed2 in

the sgRNA-expressing line) to facilitate the screening of positive individuals from the embry-

onic stage [37]. In the F1 hybrids between the Cas9 and sgRNA lines, somatic mutagenesis was

identified by PCR-based analysis and subsequent sequencing. Mutants were generated at a sin-

gle site or both sites (S1A Fig), indicating that successful mutagenesis was induced by the
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Fig 1. GR66 expression in tissues and cellular localization of GR66. (A) Scanning electron micrographs of first-instar heads. The

area inside the white box is enlarged on the right. (B) Relative mRNA levels of BmGR66 in Bombyx mori tissues as determined by

qRT-PCR. Total RNA was isolated from the antennae, labra, mandibles, maxillae, labia, thoracic legs, and midguts. The RNA was

converted to cDNA, which was used as a template to quantify BmGR66 mRNA levels using Bmrp49 as a reference gene. The data

shown was the mean ± SEM (n = 3). Underlying data can be found in S1 Data. (C) Photographs of HEK293T cells expressing the

EGFP-GR66 fusion protein and stained with DAPI. n = 32. Scale bars: 10 μm. cDNA, complementary DNA; EGFP, enhanced green
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transgenic CRISPR/Cas9 system. Somatic mutants of GR66 showed no deleterious phenotype

compared with the wild-type (WT) animals, indicating that knocking out GR66 did not inter-

fere with silkworm development and fertility. To obtain heritable, nontransgenic, homologous

mutants to assess feeding preference, a series of crossing strategies and PCR-based screening

experiments were performed (S1B Fig) as described previously [43]. Finally, two independent

homozygous lines with truncated GR66 proteins were established (S2 Fig). One mutant line

(ΔGR66-1) had a 929-bp genomic DNA deletion at the GR66 locus, resulting in a 180-bp

fluorescent protein; FITC, fluorescein isothiocyanate; GR66, gustatory receptor 66; HEK293T, human embryonic kidney 239T; Ls,

lateral sensilla; Mp, maxillary palp; Ms, medial sensilla; qRT-PCR, quantitative real-time PCR; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3000162.g001

Fig 2. CRISPR/Cas9-mediated knockout and comparison among WT and mutants. (A) Schematic depiction of the GR66 locus and

sgRNA targeting sites. The sgRNA targeting sites, namely, TS1 and TS2, are located on the sense strand of exon-3 and the antisense

strand of exon-4, respectively. The sgRNA targeting sequence is shown in black, and the PAM sequence is shown in red. (B)

Comparison of gene structure among the WT and two homozygous mutant lines. Left, exon-intron structure of GR66. The 3´

fragment of exon 3, the third intron and the 5´ fragment of exon 4 were excised in both homozygous mutant lines. In ΔGR66-2,

excision of the sequences caused frameshift mutations. The dotted red line indicates the premature termination codon. Right,

transmembrane domain predictions of GR66 for the WT and two homozygous mutant lines. In WT, the GR66 protein consists of

seven transmembrane domains, an intracellular N terminus and an extracellular C terminus. In ΔGR66-1, the truncated protein

consists of six transmembrane domains, and the N terminus and C terminus are both extracellular. In ΔGR66-2, the truncated protein

consists of only five transmembrane domains. The orientation of the N terminus and C terminus are the same in WT. CRISPR/Cas9,

clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease; GR66, gustatory receptor 66; PAM,

protospacer adjacent motif; sgRNA, small guide RNA; WT, wild type.

https://doi.org/10.1371/journal.pbio.3000162.g002
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deletion in the ORF and to a truncated 319-aa protein, which was 60 aa shorter than WT

GR66 protein (S2 Fig). The other mutant line (ΔGR66-2) had a 931-bp genomic deletion at the

GR66 locus, resulting in a 182-bp deletion in the ORF and to a 312-aa protein, which was 67 aa

shorter than the WT GR66 protein (S2 Fig). The truncated GR66 proteins of the ΔGR66-1 and

ΔGR66-2 mutants contained only six or five transmembrane domains, respectively (Fig 2B).

Because the truncated proteins did not have all seven transmembrane domains that are essen-

tial for the function of the membrane proteins [44,45], we presumed that both mutants lacked

GR66 functions.

Feeding behavior in GR66 mutant silkworms

Consistent with the transgenic somatic mutants, homologous GR66 mutant silkworms were

fully viable and fertile. We first used homozygous ΔGR66-2 newly moulted fifth-instar larvae

to assess feeding behavior. After 24 h of starvation treatment to facilitate feeding sensitivity,

both WT and homozygous GR66-2 mutant larvae were provided various food sources for 24 h

(Fig 3A–3E), and then, the increase in weight and number of droppings were recorded (Fig 3G

and 3H). The leaves of Mongolian oak (Quercus mongolica Fisch. ex Ledeb.), fruits of apple

(Malus domestica) and pear (Pyrus spp.), and seeds of soybean (Glycine max) and corn (Zea
mays) were subjected to analysis. Mulberry leaves were also used as a control. Both WT and

mutant larvae ate the mulberry leaves and exhibited normal development (Fig 3A and S1

Movie). Leaves of Mongolian oak are known food sources of Chinese oak silkworm, Antherea
pernyi, but are not consumed by B. mori. The ΔGR66-2 larvae ate the oak leaves (Fig 3B and S2

Movie), and droppings were observed (Fig 3H), but the body weights did not increase signifi-

cantly (Fig 3G). The ΔGR66-2 larvae exhibited a 15.96% weight increase with approximately

seven droppings per larva after feeding on apple, whereas the WT animals did not attempt to

consume apple, and no droppings were observed (Fig 3C, 3G and 3H and S3 Movie). Further-

more, we found that the ΔGR66-2 larvae could also feed on pear (Fig 3D and S4 Movie), which

belongs to the same family as apple, namely, Rosaceae. A 25.47% weight increase was observed

for ΔGR66-2 larvae, whereas no significant increase was observed for WT animals (Fig 3G and

3H). The ΔGR66-2 larvae could feed on both fresh soybean and corn, with a 10.56% and

14.08% increase in weight, respectively, whereas no significant weight increase was observed

for WT animals (Fig 3E–3H, S5 Movie and S6 Movie). After feeding, the larvae were dissected

to confirm food digestion, and the results showed that the midguts were filled with the residues

of the indicated foods (Fig 3A’–3F’). Additionally, the Mongolian oak leaf residue diffused into

the anterior part of the midguts (Fig 3B’), indicating that Mongolian oak leaves could not be

digested well. This finding also explained why the body weight did not increase significantly

(Fig 3G). A similar result was obtained when the ΔGR66-1 mutant line was subjected to analy-

sis (S3 Fig). Notably, none of the larvae could survive the entire fifth-instar stage when reared

on food other than mulberry (S4 Fig), indicating that B. mori mostly adapted to mulberry

leaves during long-term cultivation.

Feeding preference of GR66 mutants

To further investigate the feeding preference of GR66 mutants, we performed a two-choice

assay in prestarved fifth-instar larvae. Given a choice between mulberry leaves and Mongolian

oak leaves, the WT larvae exhibited a strong preference for mulberry leaves and did not

attempt to eat Mongolian oak leaves (Fig 4A and 4A’). In contrast, the ΔGR66 larvae exhibited

similar feeding preferences for both mulberry leaves and Mongolian oak leaves (Fig 4B, 4B’,

4C and 4C’). In addition, a commercial artificial diet containing mulberry leaf powder and

another artificial diet that lacked mulberry leaf (1:1 ratio of soybean powder to corn powder)

A determining factor for insect feeding preference
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Fig 3. The feeding preference of the ΔGR66-2 line was expanded. The newly moulted fifth-instar larvae of ΔGR66-2 after 24 h of

starvation ate mulberry leaves (A), Mongolian oak (B), apple (C), pear (D), soybean (E), and corn (F). (G) ΔGR66-2 fed on apple, pear,

soybean, and corn showed a significant increase in weight when compared to WT animals fed on the same materials. The midguts of

ΔGR66-2 after 24 h of starvation showed that the animals ate mulberry leaves (A’), Mongolian oak (B’), apple (C’), pear (D’), soybean

(E’), and corn (F’). Scale bars: 50 mm in A, A’, B, B’, C, C’, D, D’, E, E’, F, and F’. (G) ΔGR66-2 fed on apple, pear, soybean, and corn

showed a significant increase in weight when compared to WT animals fed on the same materials. The WT and ΔGR66-2 larvae fed on

Mongolian oak did not show an increased body weights after 24 h of feeding. (H) Number of droppings (per larva) from larvae fed on

mulberry, Mongolian oak, apple, pear, soybean, and corn at 24 h after initiation of feeding. The data shown were the mean ± SEM

(n = 18 silkworms). The asterisks indicated significant differences as calculated by a two-tailed t-test: ns (not significant), ���P< 0.001.

Underlying data can be found in S1 Data. GR66, gustatory receptor 66; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3000162.g003
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were also used for a two-choice assay. Similar to the previous result, the WT larvae exhibited a

strong preference for the artificial diet containing mulberry (Fig 4D and 4D’), whereas the

ΔGR66 larvae exhibited similar feeding preferences for both artificial diets (Fig 4E, 4E’, 4F and

4F’). These results revealed that the GR66 mutant larvae had lost their specificity for mulberry,

suggesting that GR66 is required for the mulberry-specific feeding preference of B. mori. In

addition, we performed two-choice feeding assays with neonate larvae. Both the WT and

GR66 mutant neonate larvae exhibited a strong preference for the artificial diet containing

mulberry (S5 Fig). Although this phenotypic consequence remained to be elucidated, we spec-

ulated that food choice of neonate larvae are also strongly affected by ORs, because olfaction is

responsible for host orientation [46].

Response of GR66 mutants to sweet and bitter stimuli

Most insect GRs are located in the taste sensilla of the larval mouthparts, and it has been reported

that the medial sensilla are responsible for sweet taste perception and lateral sensilla are responsi-

ble for bitter taste perception in Lepidoptera [28]. To investigate whether GR66 mutants exhibit

altered responses to different tastes, electrophysiological recording analysis on contact chemo-

sensilla was performed on taste sensilla, including the medial and lateral styloconic sensilla of

fifth-instar larvae in the ΔGR66-2 line. We first investigated two sweet stimulants, namely,

sucrose and myo-inositol, in the lateral sensilla. No difference was detected between WT and

GR66 mutants at a concentration of 10 mM, indicating that GR66 depletion was irrelevant for

the perception of these two sweet stimuli (S6A and S6B Fig). We subsequently investigated two

Fig 4. Two-choice assays with newly moulted fifth-instar larvae. The newly moulted fifth-instar larvae of WT after 24 h of starvation

released between mulberry leaves and Mongolian oak leaves after 0 (A) and 1 h (A’). The newly moulted fifth-instar larvae of ΔGR66-2
after 24 h of starvation released between mulberry leaves and Mongolian oak leaves after 0 (B) and 1 h (B’). The newly moulted fifth-

instar larvae of ΔGR66-1 after 24 h of starvation released between mulberry leaves and Mongolian oak leaves after 0 (C) and 1 h (C’). The

newly moulted fifth instar larvae of WT after 24 h of starvation released between an artificial diet with mulberry leaf powder and an

artificial diet with a 1:1 ratio of soybean powder to corn powder after 0 (D) and 1 h (D’). The newly moulted fifth instar larvae of ΔGR66-
2 after 24 h of starvation released between an artificial diet with mulberry leaf powder and an artificial diet with a 1:1 ratio of soybean

powder to corn powder after 0 (E) and 1 h (E’). The newly moulted fifth-instar larvae of ΔGR66-1 after 24 h of starvation released

between an artificial diet with mulberry leaf powder and an artificial diet with a 1:1 ratio of soybean powder to corn powder after 0 (F)

and 1 h (F’). Scale bars: 20 mm in A, A’, B, B’, C, C’, D, D’, E, and E’. Each assay was performed in triplicate (technical replicates). WT,

wild-type.

https://doi.org/10.1371/journal.pbio.3000162.g004
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bitter substances, namely, caffeine and salicin, in the medial sensilla at a concentration of 10

mM. The results showed that the electrophysiological response to these two substances was not

affected by GR66 depletion (S6C and S6D Fig). We further tested the response to caffeine and

salicin at different concentrations, and similar results were obtained (S6E and S6F Fig). These

results indicated that the GR66 mutants did not exhibit altered responses to these typical sweet

or bitter substances. Other compounds in mulberry leaves, especially the potential ligands of

GR66, remain to be identified.

Discussion

Molecular mechanisms of host-plant selection in phytophagous insects remain to be eluci-

dated, and how GRs are involved in their feeding behaviors is poorly understood. To reveal

the molecular mechanism underlying mulberry-specific herbivory in B. mori, we genetically

ablated a putative bitter GR, GR66, via Cas9/sgRNA-mediated targeted mutagenesis. Homolo-

gous mutant larvae exhibited loss of mulberry specificity and the ability to feed on a wide

range of food sources, indicating that GR66 is a determinant of the monophagous feeding pref-

erence of B. mori.
Increasing numbers of insect GRs have been identified, and their critical roles in detection

of environmental stimulations have been reported [7–14]. In phytophagous insects, most

reported GRs belong to putative bitter GR subfamily and they are necessary in the recognition

of many plant secondary metabolites, which are normally bitter compounds [47]. In B. mori,
the subfamily of the bitter GRs contains up to 66 genes and is the largest subfamily among the

total 76 identified GRs in B. mori [28]. None of these putative bitter GRs had been functionally

elucidated until the current study on GR66. Our data strongly suggest that GR66 is a major fac-

tor affecting the feeding preference of silkworm, because mutation of this gene could change

the mulberry-specific herbivory of silkworm. We speculate that GR66 may serve as a feeding

inhibitor in B. mori. This finding explains why GR66 mutagenesis could result in the accep-

tance of an expanded range of host-plant materials by the larvae. In WT animals, GR66 is

active and inhibits the feeding behavior on nonhost materials, whereas certain compounds in

mulberry leaves directly or indirectly repress GR66 activity, leading to initiation of such feed-

ing behavior. Future validation of potential ligands of GR66 in mulberry leaves and identifica-

tion of food components that dictate host specificity will be critical for elucidation of this

species-specific feeding preference. In the current study, the ΔGR66 strains did not exhibit sig-

nificant electrophysiological differences in the selection of sweet or bitter substances, including

salicin. Our results were different from previously reported results for the polyphagous silk-

worm strain Sawa-J, which exhibited reduced sensitivity to the bitter compound salicin [26].

Because the pph locus in the Sawa-J strain has not been mapped to a single gene [26], the dif-

ferent electrophysiological phenotypes between the Sawa-J and ΔGR66-2 strains indicated that

the putative involvement of different or additional genes, such as the many other GR genes in

B. mori, should be taken into account to explain the monophagous feeding preference for mul-

berry. We presumed that the effects of these genes led to the Sawa-J strains and GR66 mutants

exhibiting different responses to salicin. Additionally, it is possible that GR66 mutagenesis did

not create completely null mutants (Fig 2), and truncated GR66 may still respond to salicin.

Mulberry leaves have been used as the only food source for mass rearing of silkworm for

thousands of years. Due to limitations associated with labor and land consumption and sea-

sonal cycles in the harvesting of fresh mulberry leaves, the development of silkworm strains

that can feed on cost-effective diets instead of mulberry leaves has been pursued. Conversion

of the monophagous silkworm to a polyphagous species by GR mutagenesis therefore provides

a promising approach for the development of alternative food sources for mass rearing of
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silkworm. Furthermore, lepidopteran insects include a large number of agricultural and forest

pests that exhibit high diversity in terms of feeding habits. Orthologous genes of GR66 or other

GRs in lepidopteran insects may play key roles in the species-specific feeding preferences of

these insects. Insect feeding preference is a very complicated biological process and is probably

more complex than determined by a single gene. Large numbers of insect GRs remains to be

functional elucidated, and they should also be considered to play important roles in feeding

preference. Elucidation of the critical role of GRs in insect feeding preference will provide

insights into the mechanisms underlying insect feeding behavior and insect–plant interactions,

facilitating the development of novel strategies for pest management.

Materials and methods

Silkworms

A multivoltine and monophagous silkworm strain, Nistari, was used in all the experiments.

Larvae were fed fresh mulberry leaves at 25˚C under standard conditions [48].

Scanning electron microscopy

Heads were excised from newly hatched first-instar larvae of B. mori. The excised heads were

washed in PBS and fixed with FAA solution (1:1:18 ratio of 37% to 40% formaldehyde to acetic

acid anhydride to 50% ethanol). The fixed samples were dehydrated via exposure to gradually

increasing concentrations of ethyl alcohol (50%, 60%, 70%, 80%, 90%, 95%, 100%) using a

rotary machine. The heads were dried in a critical-point dryer and then coated with platinum

prior to observation under a scanning electron microscope (JEOL).

qRT-PCR

Total RNA was isolated from the antennae, labra, mandibles, maxillae, labia, thoracic legs, and

midguts of third-day fifth-instar (L5D3) larvae using TRIzol reagent (Invitrogen). The RNA

was treated with DNase I (Invitrogen) to remove genomic DNA. One microgram of total RNA

was used to synthesize cDNA using the ReverAid First Strand cDNA Synthesis Kit (Fermen-

tas). Relative mRNA levels were determined by qRT-PCR using SYBR Green real-time PCR

master mix (TOYOBO). The PCR conditions used were as follows: initial incubation at 95˚C

for 1 min, followed by 40 cycles of 95˚C for 15 s and 60˚C for 1 min. The primers used for

qRT-PCR are listed in S1 Table. Another primer pair—namely, RP49-F and RP49-R (S1

Table)—was used as an internal control [48].

Molecular cloning and plasmid construction

The ORF of BmGR66 was PCR-amplified using cDNA synthesized from the total RNA isolated

from the maxillae at L5D3 as a template. The PCR products obtained were directly cloned into

the pcDNA-3.0 vector to generate GR66-pcDNA3.0. To detect the expression of BmGR66 in

human embryonic kidney 293T (HEK293T) cells, the ORF of GFP was cloned and incorpo-

rated in-frame upstream of BmGR66 with a flexible linker modifying the amino acids GGGGS.

To construct the transgenic CRISPR/Cas9 system, we used the activator line pBac[IE1-Ds-
Red2-Nos-Cas9] (Nos-Cas9), in which Cas9 was driven by a germ-cell–specific promoter, as

described previously [37]. The plasmid pBac[IE1-EGFP-U6-BmGR66-sgRNA] (U6-sgRNA),

used to express the sgRNA, was constructed as described previously [38]. The sgRNA targeting

sites were designed as GN19NGG. The primers used for plasmid construction are listed in S1

Table.
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Cell culture and transfection

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher

Scientific) supplemented with 10% fetal bovine serum (FBS) at 37˚C and 5% CO2. For receptor

localization analysis, HEK293T cells were seeded in 35-mm sterilized glass-bottom dishes and

incubated for 24 h. EGFP-GR66-pcDNA3.0 was transfected into HEK293T cells using Lipofec-

tamine 2000 (Invitrogen). After 24 h, the cells were fixed with 4% paraformaldehyde for 15 min

and finally incubated with DAPI for 10 minutes. The cells were visualized by fluorescence

microscopy on a Zeiss LSM 510 confocal laser scanning microscope attached to a Zeiss Axiovert

200 microscope using a Zeiss Plan-Apochromat 63×/1.40 NA oil immersion lens.

Germline transformation and mutagenesis analysis

Germline transformation of silkworm was performed as described previously [48]. For the

transgenic CRISPR/Cas9 system, the Nos-Cas9 line was crossed with the U6-sgRNA line, and

genomic DNA was extracted from the Nos-Cas9:U6-sgRNA as previously described [38]. Sub-

sequently, genomic PCR followed by sequencing was carried out to identify GR66 mutant

alleles.

Screening strategy and establishment of homozygous mutant strains

To establish a stable homozygous mutant line, the Nos-Cas9:U6-sgRNA (F1) were crossed with

the WT. For the F2 progeny that lacked fluorescence, PCR-based genotyping was performed

using genomic DNA extracted from adult legs as templates. Removal of legs did not interfere

with moth survival and fertility. Details regarding the crossing procedure are shown in S1 Fig.

Briefly, we backcrossed F1 somatic mutants with WT moths and used PCR to identify hetero-

zygous F2 mutant animals. The selected F2 mutants were backcrossed with WT moths again.

The progeny of this cross were approximately 50% heterozygotes and 50% WT animals. The

F3 heterozygous animals were then sib-mated. The progeny of this cross were approximately

25% homozygous mutants, 50% heterozygous mutants, and 25% WT animals. The F4 homo-

zygous mutants were then sib-mated to obtain 100% homozygous animals, which were used in

subsequent experiments.

Larval feeding behavior assay

Newly moulted fifth-instar larvae were starved for 24 h prior to conducting the behavioural

assay. After starvation, each larva was placed in a sterile culture dish separately. Different

plant-derived food materials, such as mulberry (M. alba), Mongolian oak (Q. mongolica Fisch.

ex Ledeb.), apple (M. domestica), pear (Pyrus spp.), soybean (G. max), and corn (Z. mays),
were placed in the culture dishes. After 24 h, the weights of larvae were recorded, and the num-

ber of droppings was counted. Two-choice feeding preference tests were performed using

plant leaves or artificial diets. Leaves of mulberry and Mongolian oak were placed on separate

sides of the container 2 cm away from the middle. A two-choice feeding assay with an artificial

diet containing mulberry leaf powder and an artificial diet that was 1:1 ratio of soybean powder

to corn powder was performed as described above. Twenty newly moulted fifth-instar larvae

after starvation for 24 h or a brood of neonate larvae were placed in the center. Photographs

were taken at 0 and 60 min after release.

Electrophysiological recording

Tip recordings for insect contact chemosensilla were performed on the medial and lateral sty-

loconic sensilla of fifth-instar B. mori larvae as described previously with some modification
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[49, 50]. Heads with the first thoracic segments were cut from newly hatched fifth-instar larvae

that were starved for 24 h. An AgCl-coated silver loop was inserted into each head until pres-

sure caused the mouthparts to open, and then the loop was connected to a copper miniconnec-

tor, which served as the recording electrode. A recording glass electrode filled with the

stimulus solution was brought in contact with the tip of the styloconic sensillum under a dis-

secting microscope. Responses were recorded from both the medial and lateral styloconic sen-

silla on both sides of the head. Stimuli lasted 1 s and were separated by an interval of 3 min to

allow for recovery and to minimize adaptation. The tip diameter size of the stimulating elec-

trode was approximately 50 μm, which is suitable for stimulation of single styloconic sensilla.

Action potentials (spikes) generated during the first second after stimulus onset were amplified

by the amplifier (Syntech Taste Probe DTP-1; Hilversum, the Netherlands) and filtered (A/D-

interface, Syntech IDAC-4; Hilversum, the Netherlands). The electrophysiological signals were

recorded and analyzed with the aid of spike analysis programs for insect data (SAPID) Tools

software, version 16.0 [51], as well as Autospike version 3.7 software (Syntech, Hilversum, the

Netherlands). Solutions of sucrose, myo-inositol, caffeine, and salicin dissolved in 2 mM KCl

were used as stimulants in the electrophysiological experiments. For each stimulant and corre-

sponding sensillum responsive to the stimulant, 15 WT and mutant larvae that hatched from 3

to 5 different rearing batches were tested. A solution of 2 mM KCl served as a control. Data are

presented as the means ± standard error of the means (SEMs).

Statistical analysis

All the experiments in this study were performed with at least three replicates. All the data are

expressed as the mean ± SEM. The differences between groups were examined by either two-

tailed Student t-test or two-way ANOVA. Statistically significant differences are indicated by

asterisks.

Supporting information

S1 Fig. Deletions in GR66 caused by CRISPR/Cas9 and an experimental diagram for gener-

ation of the homozygous mutant lines. (A) Genomic mutagenesis induced by the transgenic

CRISPR/Cas9 system. Various deletion mutations of TS1 and TS2 were detected in heterozy-

gous Nos-Cas9:U6-sgRNA offspring. The numbers in brackets in the middle of each sequence

refer to the 1,403-bp interspace fragment that was found between the targeting sites. The PAM

sequence is shown in red. (B) The strategy for generation of a homozygous mutant using the

transgenic CRISPR/Cas9 system. (1) Preblastoderm silkworm embryos were injected with the

transgenic plasmids Nos-Cas9 or U6-sgRNA to produce two transgenic silkworm lines. (2) Sub-

sequently, the two transgenic lines were hybridized to produce founder animals (F1), which

expressed both Cas9 and GR66 sgRNAs. (3) The F1 somatic mutant was backcrossed with WT

to obtain F2 progeny. The F2 progeny that lacked fluorescence and complete deletion events

were backcrossed with WT moths again to obtain F3 animals that were 50% heterozygotes and

50% WT animals. (4) The F3 heterozygous animals were then sib-mated to obtain F4 hybrids

that were 25% F4 homozygous mutants, 50% heterozygous mutants, and 25% WT animals. (5)

The F4 homozygous mutants were then sib-mated to obtain 100% homozygous F5 progeny,

which were used in subsequent experiments. Two GR66 allele mutant lines were established.

The sequence below shows the mutation event. The PAM sequence is shown in red. CRISPR/

Cas9, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9

nuclease; GR66, gustatory receptor 66; Nos-Cas9, pBac[IE1-DsRed2-Nos-Cas9]; PAM, protospa-

cer adjacent motif; sgRNA, small guide RNA; U6-sgRNA, pBac[IE1-EGFP-U6-BmGR66-sgRNA];
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WT, wild-type.

(TIF)

S2 Fig. Comparison of GR66 among WT, ΔGR66-1, and ΔGR66-2. (A) Genomic PCR of

GR66 of WT, ΔGR66-1, and ΔGR66-2. ΔGR66-1 had a 929-bp genomic DNA deletion, and

ΔGR66-2 had a 931-bp genomic DNA deletion at the GR66 locus. (B) RT-PCR of GR66 of WT,

ΔGR66-1, and ΔGR66-2. ΔGR66-1 had a 180-bp deletion, and ΔGR66-2 had a 182-bp deletion

in the ORF. (C) Amino acid sequence alignment of the GR66 protein in WT, ΔGR66-2, and

ΔGR66-2. ΔGR66-1 is 60 aa shorter than the WT GR66 protein. ΔGR66-2 is 67 aa shorter than

the WT GR66 protein. Identical amino acids are indicated with “�.” GR66, gustatory receptor

66; ORF, open reading frame; RT-PCR, reverse transcription-PCR; WT, wild-type.

(TIF)

S3 Fig. The feeding preference of the ΔGR66-1 line was expanded. The newly moulted fifth-

instar larvae of ΔGR66-1 after 24 h of starvation ate mulberry leaves (A), Mongolian oak (B),

apple (C), pear (D), soybean (E), and corn (F). (G) ΔGR66-1 fed on apple, pear, soybean, and

corn showed a significant increase in weight when compared to WT fed on the same materials.

Scale bars: 5 mm in A, B, C, D, E, and F. (G) ΔGR66-1 fed on apple, pear, soybean and corn

showed a significant increase in weight when compared to WT fed on the same materials. The

body weights of the larvae of WT and ΔGR66-1 fed on Mongolian oak did not show an

increase in weight after 24 h of feeding. (H) Number of droppings (per larva) from larvae fed

on mulberry, Mongolian oak, apple, pear, soybean, and corn at 24 h after initiation of feeding.

The data shown was the mean ± SEM (n = 18 silkworms). The asterisks indicated significant

differences as calculated by a two-tailed t-test: ns (not significant), ���P< 0.001. Underlying

data can be found in S1 Data. GR66, gustatory receptor 66; SEM, standard error of the mean;

WT, wild-type.

(TIF)

S4 Fig. Survival assays with ΔGR66-2 mutant neonate larvae. The data shown was the

mean ± SEM (n = 30 silkworms). Each assay was performed in triplicate. Underlying data can

be found in S1 Data. GR66, gustatory receptor 66; SEM, standard error of the mean.

(TIF)

S5 Fig. Two-choice assays with neonate larvae. The neonate larvae of WT released between

the artificial diet with mulberry leaf powder and the artificial diet with a 1:1 ratio of soybean

powder to corn powder after 0 (A) and 1 h (A’). The neonate larvae of ΔGR66-1 released

between the artificial diet with mulberry leaf powder and the artificial diet with a 1:1 ratio of

soybean powder to corn powder after 0 (B) and 1 h (B’). The neonate larvae of ΔGR66-2
released between the artificial diet with mulberry leaf powder and the artificial diet with a 1:1

ratio of soybean powder to corn powder after 0 (C) and 1 h (C’). Scale bars: 10 mm in A, A’, B,

B’, C, and C’. Each assay was performed in triplicate (technical replicates). GR66, gustatory

receptor 66; WT, wild-type.

(TIF)

S6 Fig. Electrophysiological responses to sucrose and myo-inositol in lateral sensilla and

caffeine and salicin in medial sensilla. (A) Representative spike traces of the lateral sensilla of

the indicated genotypes stimulated with 2 mM KCl, 10 mM sucrose, and 10 mM myo-inositol.

ΔGR66-2 mutant larvae responded normally to sucrose and inositol. (B) Electrophysiological

response frequencies of the lateral sensilla of the indicated genotypes stimulated with 10 mM

sucrose and 10 mM myo-inositol. (C) Representative spike traces of medial sensilla of the indi-

cated genotypes stimulated with 2 mM KCl, 10 mM caffeine, and 10 mM salicin. ΔGR66-2
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mutant larvae responded normally to sucrose and inositol. (D) Electrophysiological response

frequencies of the medial sensilla of the indicated genotypes stimulated with 10 mM caffeine

and 10 mM salicin. (E) Electrophysiological response frequencies of the medial sensilla of the

indicated genotypes stimulated with different concentrations of caffeine. (F) Electrophysiolog-

ical response frequencies of the medial sensilla of the indicated genotypes stimulated with dif-

ferent concentrations of salicin. The data shown were the mean ± SEM (n = 20 silkworms).

Significance was assessed by a two-tailed t-test: ns (not significant). Underlying data can be

found in S1 Data. GR66, gustatory receptor 66; SEM, standard error of the mean.

(TIF)

S1 Table. Primers used in this work.

(DOCX)

S1 Data. Numerical data used in the figures.

(XLSX)

S1 Movie. ΔGR66-2 mutant fifth-instar larva fed on leaves of mulberry. GR66, gustatory

receptor 66.

(AVI)

S2 Movie. ΔGR66-2 mutant fifth-instar larva fed on leaves of Mongolian oak. GR66, gusta-

tory receptor 66.

(AVI)

S3 Movie. ΔGR66-2 mutant fifth-instar larva fed on fruits of apple. GR66, gustatory recep-

tor 66.

(AVI)

S4 Movie. ΔGR66-2 mutant fifth-instar larva fed on fruits of pear. GR66, gustatory receptor

66.

(AVI)

S5 Movie. ΔGR66-2 mutant fifth-instar larva fed on seeds of soybean. GR66, gustatory

receptor 66.

(AVI)

S6 Movie. ΔGR66-2 mutant fifth-instar larva fed on seeds of corn. GR66, gustatory receptor

66.

(AVI)
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