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Abstract

Four cyclopentenone-containing ansamycin polyketides (mccrearamycins A–D), and six new 

geldanamycins (Gdms B–G, including new linear and mycothiol conjugates), were characterized 

as metabolites of Streptomyces sp. AD-23-14 isolated from the Rock Creek underground coal 

mine acid drainage site. Biomimetic chemical conversion studies using both simple synthetic 

models and Gdm D confirmed that the mccrearamycin cyclopentenone derives from benzilic acid 

rearrangement of 19-hydroxy Gdm, and thereby provides a new synthetic derivatization strategy 

and implicates a potential unique biocatalyst in mccrearamycin cyclopentenone formation. In 

addition to standard Hsp90α binding and cell line cytotoxicity assays, this study also highlights 

the first assessment of Hsp90α modulators in a new axolotl embryo tail regeneration (ETR) assay 

as a potential new whole animal assay for Hsp90 modulator discovery.

Mining for geldanamycins

Six new geldanamycins (Gdms) and four new ring-contracted cyclopentenone macrolactams are 

reported as metabolites of an abandoned Kentucky coal mine-associated microbe. A biosynthetic 

pathway via benzilic acid rearrangement is proposed and an axolotl embryo tail regeneration assay 

is utilized to assess the Hsp90 inhibitory activities of the metabolites.

Keywords

ansamycin; axolotl; biomimetic synthesis; Hsp90; regeneration
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Geldanamycin (Gdm)-type polyketides are prototypical microbial benzoquinone ansamycin 

anticancer agents that target the N-terminal ATP-binding domain of heat shock protein 90 

(Hsp90; Figure 1A).[1] While a number of elegant and efficient Gdm synthetic and 

biosynthetic production and derivatization strategies have been developed,[2] C-17 semi-

synthetic Gdm modification was a key to both first (tanespimycin/17-AAG[3] and orally 

bioavailable alvespimicin/17-DMAG)[4] and second (retaspimycin hydrochloride/IPI-504)[5] 

generation analogues advanced to the clinic (Figure 1A), the latter of which displayed 

improved solubility and reduced hepatotoxicity.[6] More recent medicinal chemistry efforts 

have focused on C-19 substitution to prohibit non-specific alkylation (a putative contributor 

to non-selective toxicity), analogues of which were found to opportunistically favor the cis-

amide conformer observed in the Gdm-Hsp90 ligand-bound complex.[7] As part of a 

microbial natural products discovery effort from coal-mining-associated environments in 

Kentucky, USA,[8] herein we describe the isolation and structure elucidation of six new Gdm 

analogues (1–6), and four unprecedented ring-contracted cyclopentenone macrolactams 

(mccrearamycins A–D, 7–10) from the Rock Creek (McCreary County) underground coal 

mine acid drainage isolate Streptomyces sp. AD-23-14 (Figure 1B). Biomimetic studies 

using both simple synthetic models and isolated Gdm analogues revealed the ortho-quinone 

to undergo a facile benzilic acid rearrangement to provide the ring-contracted 

cyclopentenone scaffold, presenting both a new synthetic strategy and implicating the role of 

a potential novel biocatalyst for ansamycin ring contraction. In addition to expanding 

Hsp90α inhibitor SAR, these studies also highlight the first assessment of Hsp90α 
modulators in a new axolotl (Ambystoma mexicanum) embryo tail regeneration (ETR) 

assay.[9]

Gdms B–G (1–6) were characterized as new Gdm analogues (including mycothiol conjugate 

2 and linear Gdms 5–6) based on NMR, MS, and comparison with literature precedent (see 

Figure 1 and the Supporting Information). While 7–10 also shared the signature spectral 

features of Gdm 19-membered macrolactams (Figures S2–S4), they notably lacked 

indicators of the corresponding Gdm 1,4-benzoquinone. Key HMBC correlations [for 

example, for 7, from a nitrogen-bearing CH (δH = 5.12 ppm, 20-H) to C-16 (δC = 116.2 

ppm), C-17 (δC = 177.0 ppm) and C-18 (δC = 71.1 ppm), and from 18-OH (δH = 6.16 ppm) 

to C-17 and C-18] implicated an unprecedented alternative cyclopentenone ring (Figure 1B) 

in 7–10. Determination of C-18 substitution (MSH in 7; methyl formate in 8–10) relied on 

HMBC correlations (Figures S2 and S3). The relative configurations of 7–10 were 

established through NOESY (Figures S3 and S4) where many observed modifications 

paralleled those of corresponding Gdm analogues. Namely, like 3 (Gdm D), hydration of the 

8 C-4/C-5 double bond was observed, and similar to 6 (Gdm G), 9 and 10 were also 

identified as N-20-acyl (2-hydroxy-acetate) linear metabolites (Tables S1 and S4, Figures 

S2–S4). These cumulative analyses established 7–10 as new ring-contracted cyclopentenone 

macrolactams and thus were named mccrearamycins A–D in reference to the structural 

novelty and the producing strain3s point of origin.

The similarities between Gdms and mccrearamycins from Streptomyces sp. AD-23-14 

implicated Gdms as potential mccrearamycin progenitors (Scheme 1). In addition, while 

NOESY firmly established the cyclopentenone C-18/C-20 relative trans-configuration in 7, 
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the key 1H NMR resonance for 18-OH was lacking for 8–10. For further validation, a model 

study was pursued to assess cyclopentenone formation via ring contraction of a 19-OH Gdm 

progenitor (Scheme 1) reminiscent of the classical cyclohexanone to cyclopentane-1-

carboxylate benzilic acid rearrangement.[10] While the corresponding Gdm rearrangement is 

unprecedented, the analogous Hooker oxidation rearrangement of hydroxynaphthoquinones 

to indane carboxylic acids served as related precedent.[11] For this study, the synthesis of the 

Gdm model surrogate 2-hydroxyquinone 21 (Scheme 2) commenced with aryl lithiation–

alkylation of benzyl methyl ether 12. DDQ-mediated oxidation of 13 followed by hydroxy-

directed iodination provided phenol 15. The iodide was then treated with copper powder in 

basic medium to provide catechol 16, which was selectively methylated by Me2SO4. 

Methoxymethyl protection of the remaining phenolic hydroxyl followed by Baeyer–Villiger 

oxidation produced the key intermediate 18. Consistent with challenges associated with 

hexasubstituted benzene syntheses,[12] amination, amidation, and nitration of 18 directly, or 

of corresponding halogenated derivatives using transition-metal catalysts, failed to give 

desired aniline 19 or amide 20. However, azo coupling with sulfanilic acid,[13] followed by 

dithionite reduction, gave aniline 19 in 62% yield. Sequential acetylation, hydrolysis, 

oxidation, and deprotection furnished template 21 in 73% yield, and methylation of 21 
further afforded the corresponding 2-methoxy quinone 22 as an additional comparator.

Consistent with the impact of CuCl2 on benzilic acid rearrangement stereoselectivity and 

yield,[14] evaluation of the putative 21 benzilic acid rearrangement in the presence of 

transition metal salts and various other known benzilic acid rearrangement promoters 

revealed CoCl2 to afford the best overall yield and stereoselectivity (Table 1). Single-crystal 

X-ray diffraction of the isolated product 23 further established the relative C-2/C-3 trans-

configuration (Table 1 and S7, CCDC 1496415), consistent with the signature 23 2-OH to 3-

CH NOE and corresponding 18-OH to 20-CH NOE of mccrearamycin A (7). A putative 

mechanism for Co2+-assisted benzilic acid rearrangement is depicted in Scheme 1. 

Consistent with this mechanism, the substitution of CH3OH with CD3OD as solvent led to 

selective isotopic label incorporation in 25 (entry 18, Table 1). Importantly, the 2-methoxy 

model 22 and the prototypical Hooker reaction substrate lawsone failed to give the desired 

benzilic acid rearrangement under the optimized conditions (Scheme S1).

To probe the relevance to mccrearamycins, this biomimetic model study was subsequently 

extended to the corresponding 19-hydroxy-substituted Gdm D (3). Remarkably, reaction of 3 
under the same optimized conditions led to 50% conversion to mccrearamycin B (8; entry 

19, Table 1 and Figures S6–S8). The established stereoselectivity of the model reaction 

implicates an 8 cyclopentenone C-18/C-20 trans-configuration identical to that of 7 and 23. 

Comparison of select 13C NMR chemical shifts in mccrearamycins B–D (8–10) to that of 

the trans- and cis-configured models (23 and 24, respectively) provide further support of a 

common benzilic acid rearrangement-derived C-18/C-20 trans-configuration in all of the 

mccrearamycins (Table S5). Subsequent indirect mccrearamycin absolute configuration 

assignment was accomplished through electronic circular dichroism (ECD) analysis. 

Specifically, comparison of the ECD spectra of 8 in MeOH to the theoretical ECD spectra 

[generated using time-dependent density functional theory (TDDFT)][8a,15] for two possible 

Wang et al. Page 4

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2018 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



isomers of 8 (8a: 4R, 6S, 7S, 10S, 11R, 12S, 14R, 18S, 20S and 8b: 4R, 6S, 7S, 10S, 11R, 

12S, 14R, 18R, 20R), revealed that of 8a as providing the best spectral match (Figure S9).

Based on the established mechanism of Gdm and related analogues, all of the isolated 

compounds were evaluated in standard Hsp90α inhibition[8b] and cancer cell line (human 

non-small cell lung A549) cytotoxicity assays (Table S7). This cumulative analysis revealed 

the parental prototypes (Gdm, reblastatin, and 17-O-demethyl-reblastatin) to afford greatest 

Hsp90α inhibition (IC50s of 5–30 nM) with notably divergent corresponding cytotoxicities 

(Gdm IC50 1 nM, reblastatin IC50 0.7 μM, and 17-O-demethyl-reblastatin IC50 > 50 μM), 

suggesting the oxidation state and substitution pattern contribute to differences in cellular 

uptake and/or alternative cytotoxicity mechanisms consistent with prior Gdm SAR 

studies.[7a,16] Similar to that of the parental prototypes, the corresponding cytotoxicity of the 

new Streptomyces sp. AD-23-14 metabolites did not correlate with Hsp90α inhibitory 

potential in some cases.

Streptomyces sp. AD-23-14 metabolites were also evaluated using a highly regenerative 

salamander model, the Mexican axolotl (Ambystoma mexicanum).[17] Previous 

transcriptional studies found hsp90aa1 to be significantly upregulated 12 hours after axolotl 

limb and tail amputation, suggesting a role for Hsp90 in tissue regeneration.[9] To investigate 

this further, we used the axolotl embryo tail regeneration (ETR) assay[9b] to test Gdm for an 

inhibitory effect on tail regeneration. Tail-amputated axolotl embryos were incubated in 

microtiter plates in the absence (vehicle control, DMSO) or presence of 10 μM agent (Gdm, 

reblastatin, 7-O-demethyl-reblastatin, and 1–10) and imaged on day 1 (pre-treatment) and 

day 7. An initial single dose screen revealed Gdm to completely inhibit tail regeneration 

with no effect observed for all of the other test agents. Subsequent studies revealed a clear 

dose-response for Gdm, with developmental abnormalities and toxicity observed at the 

highest dose (10 μM), inhibition of regeneration at intermediate doses, and no effect on 

regeneration at the lowest dose (0.1 μM; Figure 2).

In summary, metabolic profiling led to the discovery of new Gdm analogues and a set of 

cyclopentenone macrolactams. The development and implementation of a cobalt-mediated 

benzilic acid rearrangement served as a key feature in mccrearamycin structure validation 

and highlights the potential synthetic utility in the context of 2-hydroxyquinone-containing 

complex natural products. That cyclopentenone formation requires distinct conditions may 

also implicate a unique biosynthetic pathway. These metabolites, together with the parental 

prototypes, also served as a test set to assess the impact of Hsp90 inhibitors in vivo using an 

axolotl ETR assay. While developmental abnormalities have been observed in many 

organisms (including zebrafish administered Gdm[18]) when Hsp90 activity is reduced below 

critical levels,[19] our results demonstrate that Gdm can be administered at a dose that blocks 

regeneration without overtly affecting development. This study implicates Gdm as a useful 

reagent to probe the role of Hsp90 in axolotl tail regeneration and suggests low dose Gdm 

could be used in a sensitized, ETR chemical genetic screen to identify new Hsp90 

modulators.
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Figure 1. 
A) Chemical structures of representative Gdm-type ansamycins and B) new compounds 

isolated from Streptomyces sp. AD-23-14. The unique cyclopentenone ring structure of 

mccrearamycins A–D is highlighted in red.
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Figure 2. 
The impact of [Gdm] on axolotl embryo tail regeneration as determined by the ETR assay 

(*p <0.005, **p <0.0001, n =4; #: 3 axolotls were dead at day 7; A: DMSO control; B: 0.1 

μM; C: 1 μM; D: 2.5 μM; E: 5 μM; F: 10 μM).
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Scheme 1. 
Proposed metal (M2+)-mediated benzilic acid rearrangement of the Gdm hydroxyquinone to 

afford the mccrearamycin cyclopentenone.
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Scheme 2. 
Synthesis of templates 21 and 22.
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