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C/D-box snoRNAs form methylating and non-methylating 
ribonucleoprotein complexes: Old dogs show new tricks

Marina Falaleeva1, Justin R. Welden1, Marilyn J. Duncan2, and Stefan Stamm1,*

1University Kentucky, Institute for Biochemistry, Lexington, KY, USA

2University Kentucky, Department of Neuroscience, Lexington, KY, USA

Abstract

C/D box snoRNAs (SNORDs) are an abundantly expressed class of short, non-coding RNAs that 

have been long known to perform 2′-O-methylation of rRNAs. However, approximately half of 

human SNORDs have no predictable rRNA targets, and numerous SNORDs have been associated 

with diseases that show no defects in rRNAs, among them Prader-Willi syndrome, Duplication 

15q syndrome and cancer. This apparent discrepancy has been addressed by recent studies 

showing that SNORDs can act to regulate pre-mRNA alternative splicing, mRNA abundance, 

activate enzymes, and be processed into shorter ncRNAs resembling miRNAs and piRNAs. 

Furthermore, recent biochemical studies have shown that a given SNORD can form both 

methylating and non-methylating ribonucleoprotein complexes, providing an indication of the 

likely physical basis for such diverse new functions. Thus, SNORDs are more structurally and 

functionally diverse than previously thought, and their role in gene expression is under-

appreciated. The action of SNORDs in non-methylating complexes can be substituted with 

oligonucleotides, allowing devising therapies for diseases like Prader-Willi syndrome.

Keywords

alternative splicing; obesity; Prader-Willi syndrome; RNA methylation; RNA processing; RNA 
therapy; SNORD; snoRNA

The classic picture of snoRNAs

Small nucleolar RNAs are a highly expressed class of non-coding RNAs

Small nucleolar RNAs (snoRNAs) are an abundantly expressed class of non-coding RNAs 

(ncRNA) that accumulate in the nucleolus. They are about 60–300 nucleotides (nt) long and 

based on conserved sequence elements, snoRNAs are classified either as C/D box or H/ACA 

box. C/D box snoRNAs (SNORDs) contain C (RUGAUGA, R=purine) and D (CUGA) 

boxes, which are usually present in duplicates (C′ and D′ boxes) and up to two antisense 
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boxes hybridizing to the RNA target [1]. SNORDs are flanked by two termini that form a 

stem in the final SNORD ribonucleoprotein complex (SNORNP) (Figure 1A).

snoRNAs are highly expressed. For example, a typical mammalian cell contains an 

estimated 200,000 copies of SNORD3, and 20,000 copies of SNORD13/14 [2, 3], which 

compares to estimated 200,000 mRNA molecules in a cell [4]. snoRNAs are one of the 

longest and best studied ncRNAs, as their high expression allowed their sequencing using 

RNase-mapping in 1979 [5], shortly after Sanger sequencing became available [6].

Human SNORDs are located in introns and form ribonucleoprotein complexes through a 
multistep assembly process

Almost all of the currently known 267 human SNORDs are located in introns, with the 

exception of SNORD3@ (@ indicating all four human SNORD3 genes, see Box 1 for 

SNORD nomenclature), SNORD8, SNORD13, and SNORD118 (U8) that are controlled by 

their own promoters [7, 8]. The intronic localization connects SNORD biogenesis with the 

pre-mRNA processing of their hosting genes. After the splicing reaction, the introns are 

released as lariats, which are opened up by the debranching enzyme and are subsequently 

degraded through exonuclease where XRN1/2 acts on the 5′ end and the RNA exosome at 

the 3′ end [9, 10]. The close connection between pre-mRNA splicing and SNORD 

biogenesis is reflected by a distance requirement for SNORDs that are located around 33–40 

nt upstream of the branch point, which was shown using biochemical studies on a few 

SNORDs [11,12]. SNORDs escape degradation by associating with proteins in a snoRNP 

precursor, where the stem-termini forming a dsRNA stem that protects from exonucleases 

(Figure 1B). Proteomic studies deciphered the snoRNP assembly pathway for human U3 

snoRNA [13]. Central for the assembly is the R2TP complex (named after the yeast proteins 

ATPases Rvb1 and Rvb2 (named after E.Coli DNA repair enzyme ruvB), Pih1 (Protein 

interacting with Hsp90) and Tah1 (TPR-containing protein associated with Hsp90) [14]. 

TheR2TP complex acts like a chaperone allowing the formation of complexes between 

proteins and snoRNA.

The R2TP complex components RUVBL1 and RUVBL2 associate with the SNORD core 

proteins NHP2L1 (15.5k, SNU13) pre-bound to NUFIP and ZNHIT3, and NOP58 in an 

ATP-dependent manner, which releases PIH1D1 and RPAP3. This protein complex 

associates with the SNORD and fibrillarin, removing ZNHIT3. In a further maturation step, 

a second molecule of fibrillarin, as well as NOP56 enters the complex, removing the 

adaptors ZNHIT6 and NUFIP. Unloading of RuvBL1/2, leads to further rearrangement and 

generated the final snoRNP complex (Figure 1C). The components of this system are 

conserved from human to yeast, where it was shown that the R2TP components PIH1D1 and 

RPAP3 shuttle between cytosol and nucleus using the Crm1 and Kap121 export/import 

systems [15], which is regulated by the nutritional status of the cells via the mTOR pathway 

[15] (Figure 1D).

The described assembly pathway has been determined for SNORD3@, which are expressed 

under their own promoters, but given the similarity between snoRNP complexes, it is likely 

that intronic SNORDs follow a similar pathway. The knock-down of R2TP components in 
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yeast changes expression of several snoRNAs, suggesting that the general features of this 

pathway are conserved [16].

Intronic SNORDs use additional factors for maturation, for example, IBP160 (intron binding 

protein 160kd) that interacts with U2snRNP measures the distance between intron branch-

point, likely allowing for a folding of the SNORD [12]. Another factor is the spliceosome 

component Prp43p that is associated with SNORDs, possibly helping to recycle SNORDs 

during rRNA processing [17] and whose loss leads to extended SNORD ends upon deletion 

[18].

snoRNP structureThe SNORD-ribonucleoprotein complex positions the methylase 
fibrillarin towards the target RNA

The final snoRNP consists of two molecules NHP2L1 (15.5k, SNU13) bound to the RNA 

kink-turn formed by the C/D box interactions [19], one molecule of NOP56 and NOP58 

bridging these structures and two molecules of fibrillarin [13], reviewed in [20] (Figure 1E). 

Detailed insight into SNORD complexes came from cryo-EM and NMR based structural 

studies from archaeal SNORDs [21, 22], demonstrating that NHP2L1 (15.5k, SNU13) binds 

to the two RNA kinks formed by the interaction between the C and D and C′ and D′ boxes, 

forming a bipartite structure. These two domains are connected by NOP56 and NOP58, 

which is one molecule NOP5 in archaea. NOP5 stabilizes the binding of the methylase 

fibrillarin in this complex through direct interaction. The assembled SNORNPs form dimers, 

likely in a parallel orientation where the stems of the two monomers interact [22].

The SNORD RNA has two functions in this arrangement: first, it provides the scaffold for 

the RNP complex, by forming two RNA kink structures which locate 15.5/NHP2L1 and by 

forming a double stranded terminal stem that protects the RNA from further exonucleic 

cleavage. Secondly, two elements of the SNORD, known as antisense boxes are not covered 

with proteins and are thus free to interact with target RNAs. The antisense boxes recognize 

sequences in target RNAs resulting in the fifth nucleotide upstream of the D or D′ box 

being 2′-O-methylated by the methylase fibrillarin [1], which is properly positioned in the 

complex. The antisense boxes in eukaryotes vary in length (10–21 nt), but only a maximum 

of 10 nt can be used for modifications, due to the structure of the snoRNP [23]. With a few 

exceptions, such as the targeted U6 snRNA [24], SNORDs modify ribosomal RNAs at 

around 100 sites. Most of these modifications are constitutive and play a role in rRNA 

folding and translational fidelity [25]. However, some rRNA sites are only partially 

methylated and some SNORDS exhibit sequence complementarity to rRNAs without a 

resulting modification, which suggests additional functions for SNORDs [26,27]. A few 

SNORDs including SNORD3@ and U8 and U13 direct pre-rRNA cleavage [28]. In 

SNORD3@, the interaction with rRNA is mediated by SNORD3-specific sequences 

upstream of the C box [29].
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Diseases caused by snoRNA loss indicate new functions

orphan snoRNAsHalf of the known SNORDs are orphan, as they have no known target

The structure and targeting properties of SNORNPs allowed the identification of their likely 

targets through sequence comparisons using the known 2′-O-methylation sites of rRNA 

(Figure 1E). However, a target could be identified for only half of the known SNORDs. The 

remaining SNORDs were thus considered “orphan” [8, 30], suggesting that they might have 

other functions than 2′-O-methylation. The association of changes in SNORD expression 

with numerous diseases, where there were no obvious defects in ribosomal function, 

supports the concept that SNORDs mediate additional functions beyond rRNA methylation.

Loss of SNORD expression is critical for Prader-Willi syndrome (PWS)

Genetic defects in the 15q11.2-q13.1 regions provide some of the most striking examples of 

SNORDs functioning outside rRNA methylation. Due to imprinting, only the paternal allele 

of the 15q11.2-q13.1 region is expressed. Loss of the paternal allele, either through a 

deletion of the paternal allele or through uniparental disomy of the mother’s allele leads to 

Prader-Willi syndrome (PWS). PWS is one of the most frequent genetic causes of morbid 

obesity and intellectual disability in humans. It has a frequency of about 1:10,000–1:30,000 

individuals. In early infancy, PWS is characterized by severe hypotonia, which improves in 

later infancy and is followed by excessive eating (hyperphagia), leading to morbid obesity 

when untreated. PWS subjects further show low growth hormone levels, short stature, 

hypogonadism, a characteristic behavior with temper tantrums, manipulative behavior and 

obsessive-compulsive symptoms [31].

The imprinted region lost in PWS contains four protein-coding genes and six orphan 

SNORDs located in the 3′ UTR of the bicistronic SNURF-SNRPN gene. SNURF-SNRPN 

encodes the SNRPN protein, a member of the SmB protein family that forms spliceosomal 

snRNPs, and the nuclear SNURF (SNRPN upstream reading frame) protein of unknown 

function. The 3′ UTR of this transcript hosts six orphan SNORDs, each flanked by two non-

coding exons: SNORD107, -64, 108, -109a, -116 (29 copies falling into five distinct classes) 

and -115 (47 almost identical copies) (Figure 2A). The SNORDs are predominantly 

expressed in the brain, but can also be detected at lower levels in peripheral tissues [32]. The 

brain specificity increases towards 3′ end of the SNRPN-SNURF transcript and SNORD115 

can be detected only in neurons.

In addition to SNORDs, the Prader-Willi critical region generates five different snoRNA-

related IncRNAs (sno-IncRNAs) consisting of the introns surrounded by one copy of 

SNORD116 on both 5′- and 3′-end. The function and generation of these sno-lncRNAs 

remains to be determined [33].

Microdeletions affecting SNORD116 identified in six individuals recapitulate several 

features of PWS in a PWS-like phenotype that can be clinically hard to detect. Comparing 

all microdeletions identifies a region containing SNORD116 and SNORD 109, suggesting 

that the loss of these SNORDs plays a central role in PWS disease etiology [34–38] (Figure 

2A).
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The gene dosage of SNORDs in this region can not only be modified by deletion, but also 

doubled through duplications of the 15q11.2-q13.1 regions. Paternal interstitial duplications 

of 15q11.2-q13.1 double the SNORD gene doses, leading to Duplication 15q syndrome 

(Dup15q). Paternal duplications show variable penetrance for autism, in which they may be 

asymptomatic or associated with phenotypes ranging from anxiety and sleep disturbance 

[39] to developmental delay [40]. Similarly, mice overexpressing SNORD115 show autistic 

features [41], illustrating that SNORD expression levels must be under tight control to 

prevent disease.

The complex phenotypes associated with alterations in SNORD expression in the 15q11.2-

q13.1 region reveal the physiological importance of SNORDs and raise the question of their 

molecular function.

Changes of SNORD expression in many types of cancers

Changes in SNORD expression are also observed in several forms of cancer [42, 43]. For 

example, the chromosomal translocation breakpoint involved in some B-cell lymphomas is 

located in the non-protein coding gene SNHG5 (small nucleolar RNA host gene 5). SNHG5 

harbors SNORD50A which methylates C(2848) of 28S rRNA [44] and is lost in numerous 

breast and prostate cancer cell lines and primary tumors [45–47]. The ncRNA gene GAS5 

(growth arrest specific 5) regulates cell survival, possibly by sequestering glucocorticoid 

hormone receptors. GAS5 harbors 10 SNORDs, whose expression is highly associated with 

cancer prognosis [48–52] and SNORD78 from this cluster is a biomarker for lung cancer 

[53]. Similarly, the non-protein coding gene SNHG1 hosts SNORD-27, -25, -30, and -31 

(Figure 2B). Loss of these SNORDs mark the progression of smoldering multiple myeloma, 

which cannot be explained through their predicted roles in rRNA methylation [54]. It is 

known that the localization and function of the R2TP complex that is necessary to form 

snoRNPs (Figure 1B, D) is regulated by the mTOR pathway [15] and likely altered in cancer 

[14, 55], which could affect snoRNP formation, but the molecular role of these SNORDs in 

cancer cannot be explained by their action on rRNA.

Some SNORDs mediate Lipotoxic stress and influence cholesterol trafficking

Another unexpected role of SNORDs was unveiled in a screen aimed at identifying factors 

that mediate lipotoxicity, the physiological response to lipid overload in non-adipose tissues, 

which is caused by obesity. When non-adipose cells are stimulated by high lipid 

concentration, they activate a stress response that involves activation of NADPH oxidase, 

leading to mitochondrial dysfunction and finally cell death. Surprisingly, deletion of the 

SNORDs -32a, 33, 34, and 35a prevents this lipotoxicity [56]. These four SNORDs, rather 

than the ribosomal protein L13A (RPL13A) in which they are located, mediate the blockade 

of lipotoxcity. Unexpectedly, this study also found that three of these SNORDS accumulate 

in the cytosol after treatment with fatty acids [56]. A later study using RNAseq analysis 

found that 94/119 expressed SNORDs can be detected in the cytosol after drug-induced 

lipotoxcicty [57] and that the cytosolic accumulation of SNORDs is mediated by NADPH 

oxidases through an unknown mechanism [57]. As well as lipotoxicity, SNORDs participate 

in other processes, including glucose tolerance and cholesterol trafficking. Mice with a 

specific knock down of SNORD32A, 33, 34 and 35a that did not alter expression of the 
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protein encoded by the hosting genes RPL13A exhibited an increased systemic glucose 

tolerance and glucose-mediated insulin secretion [58]. Thus lack of these SNORDs 

promotes the clearance of circulating glucose possibly caused by decreased production of 

reactive oxygen species [58]. Using a similar screening system SNORD60 was found to act 

in intracellular cholesterol trafficking, which is independent of its suggested function in 

ribosomal RNA methylation [59]. SNORDs 32A, 33, 34, 35a and 60 are predicted to 

methylate ribosomal RNAs, but their role in lipotoxic stress and cholesterol trafficking, as 

well as their cytosolic function suggests additional functions. SNORD33 is also selectively 

increased in the serum of subjects with non-small cell lung carcinoma [60], but a possible 

link to lipotoxcicity remains to be determined. It is well established that reactive oxidative 

species activate mTOR signaling [61], which regulates the snoRNP assembly factors of the 

R2TP complex (Figure 1D), providing a mechanistic link between reactive oxidative species 

and snoRNP formation.

The expression of some SNORDs oscillates in circadian rhythm

Deep sequencing (RNA-seq) of Drosophila brains collected at multiple timepoints during 

the day and night identified transcripts that exhibit 24-hour profiles [62]. As well as 

identifying robust daily oscillations in a large number of genes, similar to previous 

microarray studies, this study revealed that ~10% of the cycling genes are ncRNAs including 

snoRNAs. SNORDs in seven dUhgs (drosophila U22 host genes) exhibited oscillations that 

peaked during the light phase and appeared to be driven by light [62]. The majority of the 

Uhgs SNORDs are predicted to target rRNAs, although some of them are orphan. Because 

not all SNORDs exhibited a daily rhythm, those that do may have specialized functions 

related to daily rest-activity rhythms. If so, such a function might echo the proposed role of 

alterations in SNORDS in human diseases with the alterations in daily rest-activity rhythms. 

For example, patients with Prader-Willi syndrome or Duplication 15q syndrome exhibit 

alterations in daily sleep-wake cycles and in sleep architecture [31, 39, 63].

SNORDs as biomarkers for diseases and physiological changes

A subset of SNORDs change their expression in aging in C. elegans, [64]. In humans, 

alteration of cardiac SNORD expression is associated with the tetralogy of Fallot, a frequent 

congenital malformation of the heart [65]. SNORDs could further be markers of diseases, as 

SNORD3A is the RNA most strongly overexpressed in blood of Creutzfeldt-Jacob patients, 

as well as in mouse models of prion disease [66]. SNORD33, SNORD66 and SNORD76 or 

their fragments can also be detected in blood, where they may serve as biomarkers for non-

small cell lung carcinoma [60]. The possible functionality of these SNORDs was tested in a 

proof of principle experiment, in which the addition of synthetic SNORD fragments to cell 

culture media led to an increase of several transcription factors and mRNAs involved in the 

innate immune response [67].

Similarly, SNORD126 is up-regulated in hepatocellular carcinoma and colorectal cancer and 

upregulates genes involved in the PI3-AKT pathway [68]. Osteoarthritis is the most common 

degenerative disease of the joints, characterized by joint cartilage breakdown that affects 

about 4% of the population. SNORD116 is up-regulated in posttraumatic osteoarthritis 

mouse models and horses with natural developed osteoarthritis, the latter show a four 
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hundred fold increase [69]. Smaller changes were observed for SNORD18, -49A, -58, -21, 

-27, -90 and 11.

Collectively, these reports suggest a role of SNORDs outside rRNA modification, as no 

defects in translation or general protein synthesis were associated with the diseases.

SNORDs form non-methylating ribonucleic protein complexes and are 

precursors for shorter RNAs

Understanding the role of SNORDs outside rRNA modification proved to be extremely 

difficult, predominantly because RNA targets cannot be bioinformatically predicted for most 

orphan SNORDs. Novel SNORD functions were indicated by genome wide RNA profiling 

of diseases that showed deregulation of numerous SNORDs, but gave little mechanistic 

insights [70–73] [65] [69]. A few SNORDs were analyzed in great detail using mostly 

transfection studies [74–76] and even transgenic mice [58, 77, 78], which gave insight in to 

physiological processes. Mechanistical insight has come from detailed biochemical analysis 

[79] and the development of new techniques identifying RNA:RNA interactions [80]. These 

diverse studies used human and mouse system and support the novel concept of SNORDs 

acting in non-methylating ribonucleic protein complexes, outlined here.

Since SnoRNA precursors contain complementary sequences, for example the future stems 

that inhibit degradation by exonucleases (Figure 1B). It is thus not surprising that some 

SNORDs are recognized by proteins binding to dsRNAs.

SNORD expressing units are precursors for miRNAs

miRNAs are generated from nuclear pri-miRNAs characterized by a stem-loop structure that 

is cut by the dsRNase drosha [81], leading to the export of a pre-miRNA into the cytosol, 

where it is further cleaved by dicer to 21 nt long miRNAs that are loaded onto argonaute 

proteins. The sequencing of RNAs associated with argonaute proteins that bind miRNAs 

revealed that several snoRNAs, both H/ACA and C/D box snoRNAs give rise to miRNAs 

[76, 82–85], previously reviewed in [70, 71]. Several studies showed a correlation between 

SNORD-derived miRNAs and diseases, for example cancer [55, 86]. Most of the studies rely 

solely on sequencing data, and thus the underlying biological mechanism and biological 

relevance of SNORD-derived miRNAs is unclear. However, several SNORD-derived 

miRNAs are associated with argonaute proteins, suggesting that they are functional in gene 

regulation [85].

SNORDs activate protein kinase R

The second dsRNA-binding protein identified to bind to SNORDs was protein kinase RNA-

activated (PKR). PKR contains a double strand RNA binding domain whose activation of 

viral dsRNAs is well established. However, lipotoxic stress caused by palmitic acid also 

activates PKR and unexpectedly, SNORDs and H/ACA snoRNAs were found associated 

with activated PKR, suggesting that under metabolic stress conditions SNORDs mediate a 

stress response to PKR [87]. SNORDs associated with PKR included SNORD50A and 50B 

that are lost in some forms of cancer [45, 46]. SNORD50A/B were also found to directly 
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bind to K-Ras, which decreases G-protein binding and subsequently the activity of K-ras 

[88]. The loss of SNORD50A/B expression is thus predicted to increase Ras-ERK1/ERK2 

signaling which could promote tumor formation. It is possible that in addition, PKR 

activation contributes to this process.

SNORDs can be precursors of piRNAs

SNORDs can also give rise to piRNAs, abundant 26–31 nt long non coding RNAs associated 

with PIWI proteins. The biogenesis of piRNAs is independent of DICER, and likely requires 

single stranded RNA [89]. One of these snoRNA-derived piRNAs, piR30840, works in 

nuclear-exosome mediated degradation of interleukin-4 pre-mRNA by recruitment of Ago4/

Piwil4 to an intronic site [90].

SNORDs form non-methylating ribonucleoprotein complexes

SNORD115 was the first SNORD shown to regulate alternative splicing [75] and thus 

proteins associated with SNORD115 were the first to be analyzed, using direct pull down 

from total nuclear lysates [74] as well as pull downs from nuclear extracts fractionated 

through a density gradient [91]. Both approaches indicated that SNORD115 associates with 

proteins different from the canonical SNORD proteins: 15.5/NHP2L1, NOP56, NOP58 and 

fibrillarin (Figure 1E). SNORD115 associated with hnRNPs (A1, B1, A3, D0, hnRNPL2, 

ELAVL1), RNA helicases (DHX9, DDX), structural proteins (nucleolin, matrin3), and 

transcription factors (PURA). The number of these proteins and the broad distribution of 

SNORD115 complexes in glycerol gradients [91] suggested the presence of structurally 

diverse SNORD115-protein complexes.

Further insight into the composition of new SNORD complexes came from the analysis of 

HeLa nuclear extract fractionated under native conditions [79]. In this method nuclei are 

extracted using native salt conditions, which preserve higher order structure, and the extracts 

are subsequently separated on native glycerol gradients. Surprisingly, 29 SNORDs were 

found in nuclear fractions associated with the spliceosome, representing about 24% of the 

expressed SNORDs. Although most of these SNORDs have been previously shown to 

methylate rRNA, the nuclear fraction containing these SNORDs was devoid of fibrillarin, 

NOP58 and NOP56. A detailed analysis of SNORD27, predicted to perform the known 2′-

O-methylation of A27 in 18S RNA [92], revealed that SNORD27 associated with diverse 

RNA binding proteins (FUBP3, FUBP1, KHSRP, hnRNPQ, L, ELAVL1,) and RNA 

helicases DDX5, as well as proteins implicated in splicing (PRPF3, PRPF4, SFPQ), which is 

reflected in the ability of SNORD27 to change splice site selection. The biochemical 

separation of SNORDs from fibrillarin-containing fractions was further confirmed using 

RNase protection for SNORD2, 60 and 78 [79].

SNORDs can be subdivided into two groups based on the number of paired nucleotides 

downstream of k-turn motif – one group has long ends (snoRNAL) and the other one short 

ends (snoRNASH) [8]. The processing of snoRNAL were more sensitive to NOP58 

depletion, in contrast the processing of snoRNASH was affected by depletion of splicing 

factor RBFOX2. This additionally suggests that there is more than one processing pathway 

for SNORDs that could lead to generation of diverse RNPs.
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Thus, the protein complexes formed by SNORD can be biochemically separated into 

complexes that contain fibrillarin (methylating SNORDs) and lacking fibrillarin (non-

methylating SNORDs). Together, these data suggest that SNORDs form protein complexes 

that lack the methylase fibrillarin, which we refer to as non-methylating SNORNPs in 

addition to the well-known methylating SNORNPs containing 15.5/NHP2L1, NOP58, 

NOP56 and fibrillarin. Some SNORDs, like SNORD27, 2, 60 and 78 form both complexes 

and thus have dual functions [79]. SNORD3@ is atypical, because it is not an intronic 

SNORD, but shows that methylating SNORDs do not necessarily perform 2′-O-methylation. 

SNROD3@ cleaves pre-rRNA using an extra 5′ sequence, containing A and B boxes that 

aid in rRNA cleavage site recognition. SNORD3@ also forms a classic methylating 

SNORNP that is used for nuclear localization, but not targeting [29].

Some SNORDs form shorter RNAs, processed snoRNAs (psnoRNAs)

Within the methylating SNORD-ribonucleoprotein particle, the RNA is protected from 

degradation by the associated proteins and a terminal stem. However, such a protection 

might not be the case in heterogenous and more loosely formed non-methylating SNORDs. 

Deep sequencing experiment showed the presence of SNORD fragments with a medium 

length longer than 27 nt, which distinguishes them from miRNAs having a length 

distribution of 21–22 nt [93, 94]. Using a cloning technique allowing the identification of 

SNORD-fragments detected by RNase protection analysis, the presence of SNORD 

fragments, termed psnoRNA for processed snoRNA was further confirmed for mouse 

SNORD115 and SNORD116 [73, 74]. The analysis of the human transcriptome using 

RNAseq showed the expression of psnoRNAs for the human 115, 116, 113, 114 families and 

SNORDs- 50, 19, 32B, 123, 111, 72, 93, 23 and 85 [72, 73], listed in Supplemental Figure 1.

Non–methylation snoRNPs could explain the presence of psnoRNAs, as not the whole 

SNORD RNA is protected in a well-folded non-methylating complex from the actions of 

RNases, but only shorter fragments are protected by RNA binding proteins. Inspection of the 

SNORDs known to generate psnoRNAs shows that with the exception of SNORD 115 none 

of these SNORDs has all four C, C′ D and D′ boxes in full consensus (Supplemental 

Figure 1), which could impair proper snoRNP folding.

What are the functions of non-methylating SNORDs?

The formation of non-methylating SNORDs can explain mechanistically the influence of 

SNORDs on gene expression, which could contribute to diseases caused by SNORD loss. 

As described above, due to the double-stranded nature of SNORD precursors, SNORDs can 

activate protein kinase R and SNORD fragments can become part of argonaute proteins, 

acting as miRNAs.

In addition, the function of SNORDs in non-methylating RNA:protein complexes is 

emerging. Glycerol gradient analysis shows a wide size distribution of non-methylating 

snoRNA-protein complexes [79,91], indicating their heterogeneity. The absence of the 

defined structures indicates that each part of the SNORD, not just the antisense boxes, is free 

to interact with other RNA molecules, which has been confirmed by detailed studies of 

SNORD:pre-mRNA interaction (Figure 2C–F).
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SNORDs bind to pre-mRNAs, regulating splice site selection

SNORD115 (previously called HBII-52) is an orphan SNORD expressed in the Prader-Willi 

critical region (Figure 2A). It shares an 18 nt sequence complementarity with the alternative 

exon Vb of the serotonin receptor 2C and promotes the inclusion of this exon [75] due to 

direct SNORD:mRNA interaction (Figure 2C). SHAPE assays showed that the serotonin 

receptor 2C pre-mRNA in this region forms a stable double stranded structure that 

sequesters the regulated splice site, causing exon skipping [95] (Figure 3A). A chemical 

screen identified pyrvinium pamoate as a substance that binds to this double-stranded region, 

changes the structure, which de-represses the regulated splice site [95]. Since SNORD115 

binds to the dsRNA structure, it likely acts through a similar structural change. The dsRNA 

of the serotonin receptor 2C pre-mRNA is stable enough to be A->I edited by ADAR2, 

which leads to exon activation by similarly disrupting the dsRNA area, which activates the 

regulated splice site [95,96]. SNORD115 has no influence of RNA editing, but changes the 

ratio between inclusion and skipping of a non-edited exon Vb into the serotonin receptor 

pre-mRNA through direct SNORD-pre-mRNA interaction.

Proof of principle experiments showed that SNORD115 can perform 2′-O-methylation of 

short artificial RNAs sent to the nucleolus by using reporter constructs driven by an RNA 

polymerase I promoter. SNORD115 can also influence editing of an RNA fragment 

corresponding to serotonin receptor 2C pre-mRNA when expressed under a RNA 

polymerase I promoter [97]. However, physiologically, the serotonin receptor 2C is 

controlled by a RNA polymerase II promotor and thus the endogenous transcripts are not 

associated with the nucleolus. SNORD115 knock out mice show a change in serotonin 

receptor 2C splicing, indicating that physiologically, SNORD115 changes splicing in the 

nucleoplasma [78].

SNORD27 has been known to methylate rRNA and the finding that it changes splice site 

selection similar to SNORD115 was thus surprising [79]. Bioinformatic prediction validated 

by mutational analysis showed that SNORD27 binds to the 5′ splice sites of the E2F7 

transcripts and most likely blocks U1 snRNP access, leading to exon skipping (Figure 2D). 

A similar effect was found for several exons that are only expressed in SNORD27’s absence, 

suggesting that repression of exons is a general function of SNORD27. Importantly, 

SNORD27 also regulates 2′-O-methylation of rRNA [44], indicating that the SNORD has a 

dual function in both rRNA modification, acting in a methylating snoRNP and in alternative 

splice site selection, acting in a non-methylating RNP [79].

A similar dual function has been reported for SNORD88C, which is predicted to guide 28S 

rRNA methylation [7], but also regulates the alternative splicing of the FGFR3 pre-mRNA 

[98], (binding sites indicated in Figure 2F).

SNORDs regulate gene expression by direct binding to RNA

A major impediment in understanding the interaction between non-methylating SNORDs 

and their target RNAs are the difficulties in determining the SNORD: target RNA 

interactions, as these interactions can occur across the whole SNORD molecule, not just the 

antisense boxes. Furthermore, RNA:RNA interactions are more promiscuous than 
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DNA:DNA interactions, allowing for example G:U base pairing and tolerating gaps. It is 

therefore not a surprise that the validation of bioinformatically predicted SNORD:pre-

mRNA interaction is poor. This problem has persisted now for over 20 years [99], preventing 

the understanding of orphan SNORD function. Recently, LiGation of interacting RNA and 

high-throughput sequencing (LiGR) was developed to detect RNA:RNA interaction [80]. In 

LiGR, RNAs are cross-linked with the psoralen derivative AMT (4′-Aminomethyl-

trioxsalen hydrochloride), a molecule selective for dsRNA, single stranded ends are trimmed 

with RNase R and the ligated RNAs sequenced. Using this method, an interaction between 

the orphan SNORD83B and three pre-mRNAs (NOP14, SRSF3 and RPS5) was detected. 

Knock-down of SNORD83B caused an increase of mRNA of these target genes, but not 

their pre-mRNA, suggesting that SNORD83B could regulate mRNA stability, (Figure 2E) 

[80]. Since the interaction between SNORD27 and E2F7 can be demonstrated by RNA pull 

down without crosslink [79] and was not detected using LiGR [80], it is likely that more 

SNORD-mRNA interaction exist.

A possible role of SNORDs in mRNA stability is also suggested by the overexpression of 

one copy of mouse SNORD116 in cells not expressing endogenous SNORD116, which 

changes the expression of about 200 mRNAs, but has no detectable influence on alternative 

splicing [100]. Thus, regulating mRNA stability, possibly similar to miRNAs [101] by 

competing with RNA stabilizing proteins, could be a more general function of non-

methylating SNORDs.

The comparison of these SNORDs acting in splice site selection and mRNA expression 

shows an emerging common mechanism: the SNORDs associate with various RNA binding 

proteins, likely forming diverse non-methylating snoRNPs. The sequence complementarity 

between target and SNORD RNA includes sequences outside the antisense boxes, which 

should be taken into account in any prediction programs (Figure 2F).

Substitution of non-methylating SNORDs to combat human disease

The concept that SNORDs act in non-methylating protein complexes suggested therapeutic 

approaches for diseases caused by SNORD loss. Whereas a methylating SNORD complex 

has to be assembled during the splicing reaction from a large intron through several 

assembly steps (Figure 1B,C), it might be possible to substitute a non-methylating SNORD 

using an oligonucleotide that recapitulates the SNORD-mRNA interaction. The use of 

RNase-resistant modified oligonucleotides makes them independent from the binding of 

protecting proteins. This concept was first tested to influence alternative splicing of the 

serotonin receptor 2C, recapitulating the effect of SNORD115, the first SNORD shown to 

regulate splice site selection [102, 103].

The serotonin receptor 2C regulates food intake

The serotonin receptor 2C (5HT2C) regulates food uptake through its action on pro-

opiomelanocortin (POMC) neurons in the hypothalamus. Activation of the 5HT2C receptor 

leads to an increase of phospholipase C, which activates c-fos leading to POMC synthesis in 

these neurons. Alpha-melanocyte stimulating hormone (alpha-MSH), which is generated by 

processing of the POMC precursor, activates neurons in the paraventricular nucleus (PVN) 
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via melanocortin 4 receptors [104,105]. Activation of PVN neurons induces satiety, i.e. 

cessation of eating (Figure 3E). Knock-out mice lacking the 5HT2C receptor thus exhibit 

hyperphagia and are obese [106], whereas activation of the 5HT2C receptor using an agonist 

such as the FDA approved drug, lorcaserin, inhibits food intake [107]. Since patients with 

Prader-Willi syndrome do not express SNORD115, they show a dysregulation of 5HT2C 

alternative splicing, as observed in mouse models of this syndrome [78].

The activity of the serotonin receptor 2C is regulated by its RNA processing

The 5HT2C pre-mRNA undergoes both pre-mRNA editing and splicing of its exon Vb, 

which generates at least 25 proteins that respond differently to serotonin binding [108, 109] 

(Figure 3C, D). Skipping of exon Vb generates RNA1 encoding a truncated receptor 
5HT2C_tr that is expressed as a protein [103]. The 5HT2C_tr is localized intracellularly 

and through heterodimerization sequesters the full-length receptor inside the cell [103,110], 

decreasing the receptor’s activity. Exon Vb inclusion generates RNA2. RNA2 formation is 

promoted by SNORD115 [75], resulting in a non-edited full-length receptor 
5HT2C_FL_INI, with the amino acids INI in the second intracellular loop. Editing through 

ADAR2 at five sites also promotes exon Vb inclusion, leading to 32 RNA2 isoforms. The 

editing changes three amino acids, leading to 23 full-length, edited receptors, 
5HT2C_FL_ed. The non-edited 5HT2C_FL_INI is constituitvely active and shows the 

strongest response to serotonin, whereas the edited isoforms show a weaker response to 

serotonin binding and their constitutive activity decreases with increased editing, with 

5HT2C_FL_VGV having no constitutive activity [109, 111, 112]. Mouse models indicate 

that loss of the full length non-edited 5HT2C isoform causes hyperphagia [113], most likely 

because of the weak serotonin response of the edited receptors.

Central to this system is a stable secondary structure containing the alterative exon Vb that 

dictates the processing of the RNA [95, 96]. The default processing is skipping of Vb: exon 

Vb can be activated by disrupting this structure, either by the editing of guanosine to 

inosines, leading to full-length edited receptors, or by binding of SNORD115, which likely 

opens the dsRNA structure, leading to the non-edited full-length receptor (Figure 3A).

The truncated RNA1-encoded protein is localized in the intracellular membrane systems, 

likely the endoplasmic reticulum and Golgi and sequesters the full-length RNA2-encoded 

receptor [110]. Without RNA1, the full-length receptor is localized at the plasma membrane 

and throughout the cell [114]. Due to the sequestration, RNA1-encoded receptors reduce the 

presence of the full-length RNA2 receptor at the surface (Figure 3E). Thus, the RNA1/

RNA2 isoform-ratio, which is controlled by SNORD115, regulates 5HT2C receptor activity 

by determining the surface concentration of the active receptor [110]. Because the 

SNORD115-5HT2C target interaction has been worked out (Figure 2C), efforts to find a 

substitution for SNORD115 concentrated on this system.

SNORD115 can be substituted with an oligonucleotide

Using an oligo-walk [115], an oligonucleotide, oligo#5 that strongly promotes exon Vb 

inclusion in cell culture [103], similar to SNORD115 was identified. Oligo#5 was then 

tested in vivo, by injecting it into the 3rd ventricle of wild-type C57/Bl6 mice. This treatment 
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with oligo#5 increased 5HT2C_FL_INI and decrease RNA1 in the hypothalamic arcuate 

nucleus, as expected, and importantly, robustly reduced food intake. Thus, SNORD115 can 

be functionally substituted using an oligonucleotide, which further shows that a methylase is 

not necessary for SNORD115 action. The data also indicate that the ratio between the two 

5HT2C proteins: a full-length receptor containing exon Vb and a truncated receptor lacking 

it, is involved in the regulation of food intake. Since it is known that the full-length receptor 

heterodimerizes with other transmembrane receptors [116, 117], it is possible that this ratio, 

controlled by the non-methylating SNORD115 contributes to the formation of the complex 

Prader-Willi syndrome by affecting different receptor systems.

Conclusion and outlook: snoRNAs can have multiple roles by forming 

different RNPs – a general role for ncRNAs?

The reviewed evidence shows that SNORDs have broader functions and more diverse 

properties than previously assumed. SNORDs not only form the well-studied methylating 

complexes, but in addition associate with hnRNPs and dsRNA binding proteins to form non-

methylating complexes. The compositional analysis of several non-methylating SNORD-

protein complexes showed a high degree of diversity, indicating multiple functions.

Similar to other processes in RNA biology, such pre-mRNA splicing, a balance between 

RNA elements adhering to consensus sequences, distance requirements and trans-acting 

protein factors likely dictates whether a SNORD forms a methylating or non-methylating 

ribonucleoprotein protein complex. A stronger divergence from the perfect consensus 

sequences likely favors non-methylating snoRNPs, which is reflected by the presence of 

psnoRNAs. For some SNORDs, the same SNORD expressing unit can form both 

methylating and non-methylating complexes, and this balance could be caused by 

modification of factors needed to form methylating snoRNA complexes.

Once a SNORD or its fragment becomes metabolically stable in a non-methylating SNORD 

complex it can acquire new functions by binding to other nucleic acids. As in the 

methylating snoRNP, the function of the RNA is twofold: it acts as a scaffold for the proteins 

and it binds to other nucleic acids via base-pairing. Studies of SNORD27 showed that its 

pre-mRNA targets are not evolutionary conserved, suggesting that SNORDs are acquiring 

new functions during evolution. Non-methylating SNORDs could also explain why some 

SNORDs accumulate in the cytosol under stress [56, 57]. For example, HuR/ELVAL1 was 

found bound to all non-methylating SNORD complexes analyzed so far. HuR/ELAVL1 

accumulates in the cytosol under oxidative stress condition [118] and thus could help 

transport associated non-methylating SNORDs out of the nucleus.

Due to the high expression of SNORDs –there are roughly as many SNORD3 transcripts as 

mRNA transcripts in a cell- SNORDs likely represent an important but underappreciated 

class of mRNA regulators.
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Abbreviations

ncRNA non-coding RNA

PKR protein kinase RNA

psnoRNA processed snoRNA

PWS Prader-Willi syndrome

SNORD C/D box snoRNA

snoRNA small nucleolar RNA

SNORNP SNORD ribonucleoprotein complex
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Box 1

Nomenclature of SNORDs

SNORDs have a confusing nomenclature, reflecting more than 30 years of research on 

these RNAs. The HUGO name is SNORD for small nucleolar RNA C/D box, followed 

by a unique number. Identical SNORDs made from different hosting genes are depicted 

with an @, such as SNORD3@. SNORDs in gene clusters have their position indicated, 

such as SNORD115-1. Historically, small nuclear RNAs were termed U for Uracil-rich, 

and given a number, such as U1, U2, U3, etc. Some of these small nuclear RNAs were 

later to be recognized as SNORDs, such as U3. Newly discovered snoRNAs were given 

consecutive numbers, which did not discriminate between C/D and H/ACA box 

snoRNAs. Sometimes these numbers have more meaning, for example U27 (now 

SNORD27) is predicted to guide methylation of A27 of the 18S rRNA. The numbers in 

SNORD and U names are usually the same, but there are exceptions, for example U8 is 

now SNORD118. Sequencing projects identified new SNORDs that were given names 

related to libraries, for example HBII-52, now SNORD115, was named after human brain 

library II, clone 52 and similarly MBII-52 stands for mouse brain library. Nomenclature 

questions can be best addressed by referring to the snoRNA database (www-

snorna.biotoul.fr) or the genecard database (http://www.genecards.org).
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Figure 1. 
Structure and formation of methylating snoRNP complexes. A: General structure of C/D box 

snoRNAs (SNORDs) Overall structure of a C/D box snoRNA. C, D: C and D boxes, with 

consensus sites indicated. Yellow circles indicate the stem termini, short regions that are 

complementary to each other. M: middle box, defined in some SNORDs acting in pre-

mRNA processing, AS: antisense box. B: Excision of intronic SNORDs. The SNORD (thick 

line flanked by circles depicting the termini) is located in an intron ≈33–40 nt upstream the 

branch point (bp). Boxes indicate the flanking exons. In the lariat the sequence between the 
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branchpoint and the SNORD is occupied by IBP160, which likely facilitates in folding the 

SNORD. The lariat structure is opened through the debranching enzyme and then degraded 

by exonucleases (red half circles). This RNA structure forms the SNORDRNP complex by 

interacting with proteins assembled by the R2TP complex. C: Formation of the snoRNP. 

Proteins associated with the mature snoRNP are shown in pink, the R2TP components 

RuvBL1/2 in gray and auxiliary factors in orange. The R2TP complex assembles with a 

preformed 15.5/NUFIP/ZNHIT3 complex, and NOP58 and ZHHIT6, which requires ATP 

bound to RuvBL1/2. This protein complex binds to the nascent snoRNA in a step that 

incorporates fibrillarin (Fib) and releases ZNHIT3. The snoRNP further matures due to the 

addition of the second fibrillarin molecule and NOP56, releasing ZHHIT6 and NUFIP. The 

RUVBL1/L2 complex catalyzes the final structural arrangements and is recycled as the 

R2TP complex after release of the mature snoRNA. Note that this pathway has been worked 

out for SNORD3@, which is not an intronic RNA, but one regulated by its own promoter 

and due to the sequence conservation, it is likely that intronic SNORDs follow the same 

maturation pathway. D: The activity and intracellular localization of the R2TP complex is 

regulated by the mTOR pathway sensing nutritional status and possibly other phosphatidyl 

inositol 3′ kinase-related kinases (PIKK), which was shown in yeast. E: Structure of a 

methylating SNORNP. The SNORD forms a protein complex made of 15.5 (also known as 

SNU13 and NHP2L1), NOP56/58 and the methylase fibrillarin (Fib) that 2′-O-methylates 

(H3CO-) rRNA at a defined position (5 nt upstream of the D box). The coloring of the 

SNORD is similar to Figure 1A. Circles indicate the base interaction within the RNA kink. 

Only one antisense box is shown in rRNA targeting, but both antisense boxes can be used. 

The structure is adopted from an archea snoRNP, based on NMR and cryo-EM studies [21, 

22]. In the diagram, we used a shorter stem, which is 2–5 nt in humans [8, 119] and 

substituted the archea single NOP5 protein with the human NOP56 and NOP58 proteins.
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Figure 2. 
SNORDs involved in human disease and their function outside rRNA methylation. A: 

Schematic structure of Prader-Willi syndrome critical region (PWSCR). Genes are ovals, 

SNORDs are gray lines. Each SNORD is surrounded by two non-coding exons as shown in 

the insert above. IC: imprinting center, BP: breakpoint, cen: centromer, tel: telomer The 

microdeletions identified in four patients leading to a PWS-like phenotype [34–37] are 

indicated. B: Schematic structure of the SNHG1 (small nucleolar RNA host gene 1) 

harboring SNORD27, -25, -30, and -31 marking the progression of smoldering multiple 
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myeloma. SNHG1 is a non-protein coding gene, consisting of exon (boxes) that flank the 

SNORDs (gray lines). C: Binding of SNORD115 to the alternative exon Vb of the serotonin 

receptor 2C, identified by bioinformatic prediction [32] and validated by mutation analysis 

[75]. The D box is highlighted. D: Binding of SNORD27 to the alternative exon in the E2F7 

pre-mRNA, experimentally validated through mutagenesis [79]. C and D boxes are shown, 

as well as the binding of the methylating snoRNP to 18S rRNA, leading to the modification 

of A27. Small letters indicate the intron. E: Interaction between SNORD83B three mRNA 

targets which regulates their expression levels as determined by LiGR [80]. F: Scheme of 

interactions between SNORDs and pre-mRNA targets. The schematic structure of a SNORD 

is shown and the site of interaction with various pre-mRNA and mRNAs indicated by lines. 

Note that the sites of interaction include the C and D boxes.
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Figure 3. 
Substituting SNORD115 with an oligonucleotide. A: Secondary structure of the serotonin 

receptor 2C pre-mRNA that encompasses exon Vb between the proximal (PS) and distal 

(DS) splice sites (yellow). Intron V is shown in small letters. In this structure, the distal 

splice site is blocked and the proximal site used. Binding of SNORD115 to the boxed site 

likely causes a structural change, similar to binding of pyrvinium pamoate [95], which 

activates the distal site. Editing of up to four adenosines (red boxes) to guanosines similarly 

activates the distal splice site by weakening the RNA stem. Oligo#5 complementary to the 

green region strongly activates the distal site [103]. B: Gene structure of the 5HT2C. Exons 

are shown as boxes and the alternative splice patterns indicated by dashed lines. The region 
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in (A) is indicated by a yellow box and the location of oligo#5 is shown. The start codon in 

exon III is indicated by a round arrow. Skipping of exon Vb results in an early stop codon 

(open square arrow), whereas its inclusion results in a later stop codon (black square arrow). 

C: RNA isoforms generated by the processing events. Exon Vb skipping generates RNA1 

and its inclusion generates RNA2. Due to editing combinations, RNA2 represents 32 RNA 

isoforms. SNORD115 and oligo#5 promote the inclusion of the non-edited exon Vb. D: 

Protein isoforms generated by the processing events. RNA2 encodes 24 isoforms, one non-

edited isoform 5HT2C_FL_INI with the amino acids INI in the second intracellular loop and 

23 isoforms (5HT2C_FL_ed) that are edited. Circles in the second intracellular loop of the 

serotonin receptor 2C indicated non-edited amino acids and stars depict the editing events. 

E: Effect of the isoform ratios in on signaling POMC-neurons. Left: 5HT2C_tr is present in 

intracellular membranes (ER/golgi) and sequesters the full-length receptor, stopping its 

signaling at the plasma membrane (PM). The lack to signaling does no inhibit food intake, 

such generating an orexic response. Right: A relative decrease of 5HT2C_tr caused by 

SNORD115 or oligo#5 leads to an increased occupation the full-length receptors at the 

plasma membrane surface and its signaling via the phospho lipase C (PLC) pathway. PLC 

activation induces c-fos, which activates POMC transcription. The resulting POMC peptide 

is processed into alpha Melanocyte-stimulating hormone (αMSH), which activates 

Melanocortin 4 receptors (MCR4) receptors in the paraventricular nucleus, which results in 

an anorexic behavior response.
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Figure 4. 
SNORDs generate methylating and non-methylating complexes. It is likely that there are 

differences in processing between individual SNORDs and this scheme summarizes general 

features. A: Generation of snoRNAs: Almost all human SNORDs are intronic and are 

released from their hosting genes through pre-mRNA splicing, debranching of the lariat and 

exonucleic trimming. The location of a SNORD flanked by terminal stems in a hosting 

intron is shown; the boxes depict exons. The released RNA forms different ribonucleic 

protein (RNP) complexes: Methylating snoRNPs and non-methylating snoRNPs. B: 

Methylating SNORDs are generated using the R2TP system (RUVBL1/2) [20], which is 

regulated by mTOR pathways. Methylating SNORDs perform 2′-O-methylation of rRNA in 

the nucleolus. In addition, SNORD3@, containing the methylase fibrillarin (fib) acts in 

rRNA cleavage. The structure of a methylating SNORNP, consisting of a terminal stem, two 

kinks formed by C and D boxes are shown. The SNORD binds to the target rRNA via its 

antisense boxes and performs 2′-O-methylation at a specific rRNA ribose, 5 nt downstream 

of the D box. C: Non-methylating SNORDs are generated through the association of 
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SNORDs with diverse proteins, either dsRNA binding proteins (blue, PKR: protein kinase 

R, drosha) or hnRNPs and other RNA binding proteins (grey circles, ovals). SNORDs 

activate PKR and can be processed by drosha similar to miRNAs, leading to their 

incorporation in to argonaute proteins (ago). SNORDs stabilized by hnRNPs bind directly to 

pre-mRNA via RNA-RNA interaction and change pre-mRNA alternative splicing [74] and 

mRNA expression [80], likely through changing the stability of the mRNA. Some of the 

SNORDs in non-methylating RNPs are further processed into psnoRNAs [70], possibly 

protected by hnRNPs from further degradation. The association of non-methylating 

SNORDs with shuttling proteins, such as HuR could explain their detection in the cytosol, 

which is promoted by NADPH superoxidase function [57].
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