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Abstract: Hydrocarbons as reductants show promising results for replacing NH3 in SCR
technology. Therefore, considerable interest exists for developing low-temperature (<200 ◦C) and
environmentally friendly HC-SCR catalysts. Hence, C2H4 was examined as a reductant using
activated-carbon-supported MnOx-based catalyst in low-temperature SCR operation. Its sensitivity
to Mn concentration and operating temperature was parametrically studied, the results of which
showed that the catalyst activity followed the order of 130 ◦C > 150 ◦C > 180 ◦C with an optimized
Mn concentration near 3.0 wt.%. However, rapid deactivation of catalytic activity also occurred when
using C2H4 as the reductant. The mechanism of deactivation was explored and is discussed herein
in which deactivation is attributed to two factors. The manganese oxide was reduced to Mn3O4

during reaction testing, which contained relatively low activity compared to Mn2O3. Also, increased
crystallinity of the reduced manganese and the formation of carbon black occurred during SCR
reaction testing, and these constituents on the catalyst’s surface blocked pores and active sites from
participating in catalytic activity.

Keywords: NOx reduction; selective catalytic reduction; manganese oxides; activated carbon;
deactivation mechanism

1. Introduction

Nitric oxides (NOX) in flue gas are a major cause of air pollution and are main contributors to
photochemical smog, acid rain, and haze [1–3]. Consequently, more strict emission controls of NOX

emissions are under investigation [4]. Such NOX control technologies like NOX direct decomposition,
selective catalytic reduction (SCR), and selective noncatalytic reduction (SNCR) have been widely
examined for NOX reduction [5,6]. Of these, the SCR of NOX using NH3 as a reductant (NH3-SCR) is
considered one of the most efficient approaches [7].

Catalysts play a vital role in NH3-SCR technology; V2O5/WO3/TiO2 catalysts demonstrate
excellent catalytic performance in stationary plants such as power plants, refineries, and so forth [8–10].
Despite its high activity, a number of obstacles still haunt this technology. Ammonia slip is a common
problem because, by appropriately adjusting the amount of ammonia injected to achieve optimized
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de-NOX activity, ammonium salts (ammonium sulfate or ammonium bisulfate) will form from the
ammonia slip and then deposit within downstream flow pipes in a boiler [11–13]. These deposits
endanger long-term operation of the device due to fouling and blockage [7]. In addition, spent
vanadium-based catalysts are considered a hazardous waste and their post-treatment is difficult and
costly [14].

Furthermore, the optimal working temperature for vanadium catalysts range from 300 to
400 ◦C [15] with a narrow temperature operating window [7]. Hence, to meet the required temperature
conditions without external heating means the catalyst has to be installed upstream of a particulate
collector and desulfurization unit [16]. In contrast, if the operating temperature could be lowered to,
for example, less than 250 ◦C, then the de-NOx step could be installed downstream of a heat recovery
steam generator (HRSG). Small-scale industrial boilers like coke ovens, steel furnaces, and glass kilns
operate with flue gas temperatures near 200–300 ◦C [8,17,18] and temperatures drop below 200 ◦C
after a desulphurization unit. These conditions imply that currently used vanadium-based catalysts
do not meet these temperature requirements [19,20]. Therefore, substantial interest has been expressed
for developing low-temperature (<200 ◦C) SCR catalysts [21].

To date, a great number of studies have been carried out worldwide to develop low-temperature
NH3-SCR catalysts, and much progress has been made [22,23]. Based on the active component,
NH3-SCR catalysts can be divided into three categories: noble metal (Pt, Pd, Ag, etc.) catalysts,
transition metal (Mn, Fe, V, Cu, Cr, Co, etc.) oxide catalysts, and transition metal (especially Cu and
Fe) ion- exchanged zeolite catalysts. Noble-metal-based catalysts have been widely studied since
the 1970s, and are applied mainly to engine exhaust deNOx [24]. Though the noble metals have
excellent catalytic activity at low temperature, they are costly, have a narrow operation window, and
are sensitive to SO2 [25]. Transition-metal-oxide-based catalysts are inexpensive compared to noble
metal oxide catalysts, are usually more resistant to poisoning, and have substantively higher active
surface areas [26–28]. As a result, transition metal oxides have become technically and economically
effective catalysts for SCR of NOx at low temperatures with MnOx, FeOx, and CuOx drawing the most
attention [26]. Mn-based catalysts have displayed high NOX conversion during NH3-SCR de-NOX

over a wide reaction temperature range (160–400 ◦C) [29].
For example, Mn/beta have been determined to have NOX conversion levels near 97.5% at 240 ◦C

while maintaining >90% conversion within a temperature range of 220–350◦C [30]. Iron-based catalysts
also have demonstrated high activity and low toxicity compared to the V2O5-WO3 (MoO3)/TiO2

catalysts [17,31]. Pure Fe2O3 [7] has exhibited well-defined activity with nearly 95% conversion with
an operation temperature window of 250–400 ◦C; Cu-based catalysts may have an advantage of
applicability because of good low-temperature activity and low cost, but to date, its NOX conversion
rates have been relatively low [32–34]. In comparison, MnOx-based catalysts have had higher NOx

conversion when using low reaction temperatures [35,36].
Although NH3 is almost universally used as the reductant in SCR de-NOX reactions [1,7,18], it is

dangerous with significant safety issues associated with usage, transportation, and storage [37,38]. In
contrast, C2H4 as a reductant for de-NOx reactions (i.e. HC-SCR) under lean conditions is more easily
implemented and has fewer safety issues [39–41]. The overall reaction equation of HC-SCR can be
written as:

CxHy + 2 NO + (x + 0.25y − 1) O2 = N2 + x CO2 + 0.5y H2O

There is rich literature reporting the development of catalysts for HC-SCR and other usages [42].
Using hydrocarbon reductants, noble metals have shown high catalytic activity at low temperatures [43,44].
For example, Pt/Zr-SiO2 gave high NO conversion at temperatures of 50–300 ◦C using CO + H2 as the
reductant [45]. However, the cost of noble-metal-based catalysts is very high and thus not favorable
for large-scale applications, whereas transition metal oxides are significantly less expensive and
demonstrate high activity at low temperatures and are environmentally friendly to dispose of or
recycle after their use; as a consequence, these metal oxides have become a main focus in HC-SCR
catalyst development [25,46].
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For example, Komvokis et al. studied the C3H6-SCR deNOx activity of Cu-exchanged ZSM-5
samples under dry reaction conditions and found that the catalytic activity was significantly enhanced
by increasing the Cu loading from 0.5 to 1.5 wt.% [47]. This study also showed that the active
temperature window could be lowered to almost 100 ◦C by adding promoters. Other transition metal
oxides like MnOX also have demonstrated excellent deNOX performance at low temperatures [48].
However, deactivation of transitional metal oxides can be significant when real feeds are used that
contain the presence of water and/or SO2 [48]. To diminish deactivation, the doping of other metals
has demonstrated higher, sustained activity for transition-metal-based catalysts [49]. For example,
noble metal or Sn doping has been shown to be effective against deactivation [50].

The supports used for the active SCR catalytic materials have included inert metal oxides like
Al2O3, TiO2, SiO2, and activated carbon (AC); the oxides exhibit high temperature stability and
excellent mechanical properties [15] while AC has demonstrated high chemical stability and surface
area with low cost [45,51–54].

Using AC as an SCR catalyst support with NH3 as a reductant has been examined [55];
Tang et al. [53] showed that over 90% NOX conversion was possible with manganese/AC catalysts
during NH3-SCR reaction testing with a temperature range of 150–250 ◦C. Although ammonia slip
occurred, the ammonium sulfate salts that were formed were also more easily reduced because,
perhaps, of the AC promoting reduction of the salts, thereby avoiding their extensive accumulation on
catalyst surfaces [56].

However, few studies have examined AC-supported transition metal oxides during HC-SCR
reactions [7]. Because MnOx has exhibited promising low-temperature HC-SCR reactivity and
AC supports have excellent stability and low rates of ammonium salts accumulation [25,50,57,58],
this study aimed to investigate the low-temperature catalytic performance of manganese/AC catalysts
while using C2H4 as a reductant. Besides the reaction testing, deactivation mechanisms were also
examined using SEM/EDS, X-ray diffraction (XRD), Raman spectroscopy, transmission electron
microscope and selected area electron diffraction (TEM-SAED), and X-ray photoelectron spectrometer
(XPS). The physical and chemical characterization provided insights for future catalyst developments
and modification to eliminate or mitigate undue deactivation.

2. Experimental Methods

2.1. Catalyst Preparation

The AC used is commercially available and had a particle size of 1000–2350 µm. The raw AC
was pretreated at room temperature in 10% HNO3 for 4 h, washed until the pH of the wash solution
became neutral, and then the AC was dried in air at 140 ◦C for 14 h. These HNO3-treated AC supports
are denoted as NAC in the following.

The precursor of the MnOx was Mn (NO3)2·4H2O in water. The NAC supports were impregnated
with these solutions to achieve approximate Mn loadings of 3.0 wt.%, 5.0 wt.%, and 7.0 wt.% during
which time the mixtures were sonicated in a bath for 2 h. After the mixtures were allowed to stand for
12 h, they were dried at 110 ◦C in a vacuum oven and then calcined at 400 ◦C for 2 h in a sealed muffle
furnace under N2 atmosphere. The synthesized materials were labeled as Mn(0.0X)/NAC, where
(X = 3, 5, 7).

2.2. Catalyst Characterization

The synthesized materials were characterized for their physical and chemical properties before and
after reaction testing. Surface area and porosity were measured in a Micromeritics ASAP 2020 analyzer
after degassing overnight at 160 ◦C and then subjected to isothermal N2 adsorption–desorption
measurements at 77 K. Crystalline structures were examined by X-ray diffraction (XRD) using CuKα

irradiation in a Rigaku SmartLab system with a 2θ range of 2–75◦. The microstructure was observed
by scanning electron microscopy (SEM) performed on an FEI Quanta 250 embedded with a Bruker
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Quantax EDS. Raman spectroscopy (Horiba Jobin Yvon LabRam HR) was used to investigate the
molecular speciation of the catalyst when irradiated by a 442 nm laser frequency that minimized
sample fluorescence. The laser was focused on the samples with a confocal microscope using a 50
X objective (Olympus BX-30-LWD, NA = 0.5); the spectral resolution was 2 cm−1, and wavenumber
calibration was checked using the silica vibrational mode at 520.7 cm−1. TEM-SAED was performed
on Tecnai G2 F20 instrument (FEI Co., USA). Catalyst was ultrasonicated in ethanol for 15 min, the
solvent was filtered, and samples were obtained on carbon-supporting film for the test. XPS was
performed on Thermo Fisher ESCALAB 250Xi instrument, with Al Kα excitation, and the data was
calibrated using the C1s peak at 284.8 eV.

2.3. Catalytic Activity Test

The experiment setup for testing catalytic activity is shown in Figure 1. It included a fixed-bed,
quartz tube reactor (i.d. = 20 mm) heated by a temperature-controlled furnace; during testing, the
weight of the sample was 10 g. Gas flow rates were controlled at 1500 ml/min by a set of mass
flow controllers (MFCs, MF SHY 400) which produced a simulated gas mixture of 500 ppm NO, 500
ppm C2H4, 3 vol.% O2, and N2 as a balance. The gas mixture was flowed into the reactor after the
temperature attained a stable state and gas concentrations of outlet NO and NOX were analyzed
using a flue gas analyzer (MRU). NO conversion and NO2 selectivity were evaluated according to the
following equation:

NO conversion (%) =

(
1 − [NO]out

[NO]in

)
× 100 (1)

NO2 selectivity (%) =
[NO2]out
[NO]in

× 100 (2)

where the subscripts in and out indicate the inlet and outlet concentrations, respectively.
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Figure 1. Schematic diagram of the bench-scale setup.

3. Results and Discussion

3.1. Dispersion of Active Component

The morphologies of the NAC and Mn(0.03)/NAC were examined before testing using SEM/EDS
data which are presented in Figure 2. The NAC had a porous surface structure, as was also confirmed
by its 710 m2/g BET surface area. The morphology of Mn (0.03)/NAC showed a morphology similar
to the AC by itself, suggesting that the Mn species was well dispersed on the AC surface without
significant agglomeration.
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Figure 2. SEM images of (a) HNO3-treated Activate Carbon (NAC); (b) Mn (0.03)/NAC.

EDS data from Mn(0.03)/NAC are shown in Figure 3; the elements detected were C, O, Mn, Si,
and Al with C and O the main constituents. The relatively small amounts of Si and Al were expected
to originate from ash of the original precursor to the AC before it was processed into activated carbon.
For this sample, the Mn concentration was 2.82 wt.%, a value close to the theoretical value of 3.0 %.
The EDS mapping of Mn species in Figure 4 further demonstrated that Mn was highly distributed on
the surface and contained insignificant Mn agglomerates.
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Figure 4. Dispersion of Mn Element in Mn (0.03)/NAC by EDS mapping.

3.2. Catalytic Performance

As can be seen in Figure 5, all three catalysts produced excellent NO conversion of close to 100%
in the first 30 minutes of reaction time at all of the temperatures tested, indicating that they may be
effective for low-temperature HC-DeNOx applications. However, they experienced rapid decreases in
conversion with decrease rates having an order of 130 ◦C < 150 ◦C < 180 ◦C; after 2 h of reaction testing,
the NO conversions for all three test conditions were less than 30%, indicating the overall integrated
activity was poor. N2O using gasbag sampling was measured by GC to less than 2 ppm—considered
too minor for discussion, therefore, not discussed in this study. The initial NO2 selectivity was very
low and near 0% during the first 20 min of testing, as shown in Figure 5b. For reaction temperatures of
130 ◦C and 150 ◦C, the NO2 selectivity remained at less than 10% during the entire tests.

Similar to the data in Figure 5, the NO conversion and NO2 selectivity in Figure 6 for the catalysts
with three different Mn loadings had high initial conversion activity and very low NO2 selectivity
which then the NO conversion began to decrease and the NO2 selectivity began to increase ~30 min
after the testing was begun; NO conversion for these loadings followed the order 3% < 5% < 7% and
NO2 selectivity had an order of 7% ~ 5% < 3%. During deactivation, the NO conversion dropped to
between 20 and 35% whereas the NO2 selectivity increased to 10–25%.
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Figure 5. Catalytic performance of Mn (0.03)/NAC using C2H4 as a reductant. The reaction
temperature varied from 130 to 180 ◦C; reaction conditions were 500 ppm NO, 500 ppm C2H4, and 3%
O2 at a flow rate of 1500 mL/min. (a) NO conversion; (b) NO2 selectivity.
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Figure 6. NO Conversion of Mn (0.0X)/NAC (X = 3, 5, 7) using C2H4 as a reductant. The reaction
temperature was 180 ◦C and the reaction conditions were 500 ppm NO, 500 ppm C2H4, and 3% O2 at a
flow rate of 1500 mL/min. (a) NO conversion; (b) NO2 selectivity.

Although the NO conversion of these Mn (0.0X)/NAC catalysts exhibited rapid decreases with
only 2 h of testing, their initial reactivity at 130 ◦C was superior than most other HC-SCR catalysts,
including vanadium, iron-based zeolites, and noble metal oxide catalysts [56]. Hence, insight into
their reactivity and its decline may be worthwhile to explore and, for this reason, the mechanisms of
deactivation were assessed using a variety of physical and chemical probes.

3.3. Deactivation Mechanism

3.3.1. Surface Area and Porosity

Changes in surface areas and porosities were assessed because it is well accepted that micropores
and mesopores are a key for catalytic activity in which micropores favor dispersion of the active
component and mesopores guarantee accessibility of the reactants to the interior of the micropores
within a catalyst [59,60]. Table 1 shows that the BET surface area, average pore size, and pore volume
of the Mn (0.03)/NAC catalyst did not change significantly from before to after reaction testing; their
decreases after 2 h of testing were only 4–8% whereas the NO conversion had decreased by 80%.
These comparisons suggest that surface area and porosity decreases were likely not the cause of
decreased activity.

Table 1. Surface area and porosity.

BET Surface Area (m2/g) Average Pore Width (nm) Pore Volume (cm3/g)

Mn(0.03)/NAC Before
Reaction 668.54 2.46 0.41

Mn(0.03)/NAC After Reaction 632.62 2.37 0.375

3.3.2. Morphology Evolution

The morphology of Mn (0.03)/NAC catalyst was examined using SEM after HC-SCR reaction
testing, as displayed in Figure 7, and these results were compared to the SEM data displayed in
Figure 2. In general, the surface of the used catalyst contained considerable numbers of aggregates
which were not present before testing. These aggregates were porous and shapeless, and had varied
sizes; their presence, however, did not significantly decrease the surface area and porosity of the
catalyst. It is possible that these aggregates provided additional surfaces to supplement other surface
area and porosity losses within the original catalyst structure during deactivation. These aggregates
could also represent agglomeration sites of the originally active catalytic components, and thereby
greatly affect active site dispersion to cause rapid deactivation.
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3.3.3. Crystalline Phase Change

Well-dispersed catalytic components usually have low crystallinity or high disorder that broadens
their XRD peaks to the point of nondetection, whereas poorly dispersed or aggregated catalytic
components usually have narrower XRD peaks that are easily detected. A comparison of the XRD
patterns of the fresh and used Mn (0.03)/NAC catalyst before and after reaction testing is shown in
Figure 8; both have a broad, medium-intensity peak at 2θ = 24◦ and a weak peak at 2θ = 43◦ which
correlate with characteristic XRD peaks of amorphous carbon structures [59]. The catalyst before
reaction did not have any other XRD peaks; this fact suggests highly dispersed, noncrystalline Mn,
whereas after reaction testing, two narrow, medium-intensity peaks were established with one at 2θ
= 26◦and the other at 2θ = 50◦. These peaks are characteristic of crystalline Mn3O4. Hence, the Mn
oxide species in the fresh catalyst did agglomerate into larger crystalline Mn3O4 species during testing.
Besides decreased dispersion causing activity losses, it is also known that SCR catalytic activity of
Mn3O4 species is relatively low, following the order of MnO2 > Mn2O3 > Mn3O4 > MnO. Hence, both
decreased Mn dispersion and the formation of low-activity Mn3O4 are responsible, in part, for rapid
decreases in catalytic activity with time of reaction testing.
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3.3.4. Raman Spectra

Figure 9 displays the Raman spectra of the Mn (0.03)/NAC catalyst before and after reaction
testing. Both spectra have a peak at 1357 cm−1 (D) and 1643 cm−1 (G), and bands in the 2700–3100 cm−1

region (2D); the characteristics and locations of these point to Raman scattering from the AC itself [61].
Although a very weak band is apparent at 643 cm−1 in the fresh catalyst, its intensity is enhanced
greatly in the used catalyst. Reference spectra of Mn3O4 show an intense peak at 650 cm−1 (A1g)
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corresponding to the symmetric stretching of the Mn–O bonds, and weaker bands at 480 (T2g), 370 (Eg),
325 (T2g), and 295 (T2g) cm−1 [62]. In comparison, the Raman spectra of the Mn (0.03)/NAC catalyst
after reaction testing have peaks at 647, 479, and 365 cm−1, positions of which are consistent with the
presence of Mn3O4 and in agreement with the speciation reported in other studies [63]. Therefore,
Mn3O4 is present in the deactivated catalyst whereas before testing, the manganese oxide was more
disordered then after testing; the Raman results are consistent with the XRD data.
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3.3.5. TEM-SAED and XPS

To further identify the formation of Mn3O4, TEM-SAED and XPS test of the Mn (0.03)/NAC after
reaction were performed. Figure 10 shows the TEM-SAED result; the image gave bright diffraction
rings, which are in agreement with the (101), (112), (103), (202), (220), and (105) planes of Hausmannite
Mn3O4 phase, and also (002) plane of graphene was recognized. The XPS survey and high-resolution
spectra of Mn 2p are shown in Figure 11; the survey scan analysis was carried out in the binding
energy between 0–1350 eV, and its spectrum showed the strong peaks of Mn, C, and O, and weak
peaks of Si and N were also detected due to the small amount of impurities that naturally exist in
activated carbon. In Figure 11b, the high-resolution Mn 2p spectra consisted of Mn 2p1/2 and Mn
2p3/2 peaks, and the binding energy of Mn 2p3/2 was 641.2 eV, and the energy separation between the
Mn 2p3/2 and Mn 2p1/2 was 11.6 eV, which well matched the values of Hausmannite Mn3O4 [64,65].
Those results clearly confirmed the appearance of Mn3O4 in the deactivated catalyst.
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3.3.6. Formation of Carbon Spheres

Besides Mn-containing agglomerates on the surface of the carbon, some pores of the activated
carbon in tested catalysts contained spheres, as shown in Figure 12. The elemental composition of
these spheres is listed in Table 2; according to SEM/EDS data, they contained 90.0 wt.% carbon and
1.4% Mn. Because the monitoring diameter and depth of EDS was approximately 10 µm, it is possible
that Mn within the pores of the catalyst separate from the spheres themselves was also detected. These
spheres were most prevalent in part of the tested catalyst, meaning that their formation was associated
with catalytic activity. It is known that MnOx decomposes hydrocarbons at low temperatures near
200 ◦C and forms carbon black [15]. Hence, the spheres are expected to be a type of carbon black
that is deposited within the pores during the decomposition of C2H4. These carbon spheres may
cover the manganese oxides [43] and cause some blockage of the pores, and thereby also diminish the
HC-SCR activity.

In brief, the deactivation of catalysts might have two reasons. First, the manganese oxides on
the supports, acting as active sites of the catalyst, were reduced to Mn3O4 during reaction testing
and decreased the catalytic activity, since manganese oxide reactivity is known to have the following
decreasing order: MnO2 > Mn2O3 > Mn3O4 > MnO [29,55]. In addition, increased crystallinity of the
manganese oxides and deposition of carbon black on the catalyst’s surface during SCR reaction testing
caused blockage of pores and encapsulation of active MnOx sites on the NAC surface.
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Table 2. Element concentration.

Element wt.% at.% Error (3 Sigma)

Carbon 89.97 92.98 35.26
Oxygen 8.65 6.71 7.75

Manganese 1.37 0.31 0.27

4. Conclusions

A series of Mn (0.0X)/NAC catalysts was prepared by impregnation, tested for catalytic activity
during the reduction of NO using C2H4 as a reductant, and then characterized to develop information
regarding trends in NO conversion. These studies have led to the following conclusions:

(1) The HNO3-treated activated carbon contained a high surface area and significant pore volume to
act as a support for the impregnation of manganese oxide; changes in the surface areas and pore
volumes as a consequence of catalytic testing were insignificant.

(2) Three manganese concentrations were impregnated onto the NAC (3%, 5%, and 7%) to create
Mn (0.0X)/NAC catalysts that initially exhibited nearly 100% NO conversion at temperatures
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between 130 and 180 ◦C for up to 30 min after beginning NO conversion testing. Independent
of the temperature and the manganese concentration, the conversion activity decreased rapidly
beyond 30 min of testing and attained only ~20–30% conversion after 2 h.

(3) According to XRD, Raman, SEM-EDS, TEM-SAED, and XPS data, the as-prepared catalysts
contained highly dispersed and highly disordered manganese species, whereas after testing, the
catalysts contained crystalline Mn3O4 species.

(4) The deactivation of the low-temperature HC-SCR catalyst is attributed to two causes: (a) although
the manganese oxide on the NAC support was initially highly active for de-NOx conversion,
it was reduced to Mn3O4 during reaction testing, a species having less activity than MnO2 and
Mn2O3; (b) simultaneously, the crystallinity of the manganese oxides and their size were increased
during reaction testing, and carbon black was formed that contained encapsulated manganese;
the carbon black in the shape of spheres were deposited within pores and covered the active
manganese sites on the NAC surface.

The above conclusions point to additional testing in which improvement in the stability of the
highly dispersed Mn/AC catalysts would be sought.
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