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ABSTRACT OF DISSERTATION 
 
 
 
 

THE ROLE OF ALTERNATIVE POLYADENYLATION MEDIATED BY CPSF30 
IN ARABIDOPSIS THALIANA 

 
Drought stress is considered one of the most devastating abiotic stress factors that 
limit crop productivity for modern agriculture worldwide. There is a large range of 
physiological and biochemical responses induced by drought stress. The responses 
range from physiological and biochemical to regulation at transcription and 
posttranscriptional levels. Post-transcription, the products encoded by eukaryotic 
genes must undergo a series of modifications to become a mature mRNA. 
Polyadenylation is an important one in terms of regulation. Polyadenylation impacts 
gene expression through determining the coding and regulation potential of the 
mRNA, especially when different mRNAs from the same gene may be polyadenylated 
at more than one position. This alternative polyadenylation (APA) has numerous 
potential effects on gene regulation and function. I have studied the impact of drought 
stress on APA, testing the hypothesis that drought stress may give rise to changes in 
the usage of poly(A) sites generating different mRNA isoforms. The results showed 
that usage of poly(A) sites that lie within 5’-UTRs and coding sequence (CDS) changes 
more than usage of sites in other regions due to drought stress. 
 
Alternative polyadenylation is meditated by the polyadenylation complex of proteins 
that are conserved in eukaryotic cells. The Arabidopsis CPSF30 protein (AtCPSF30), 
which is an RNA-binding endonuclease subunit of the polyadenylation complex, plays 
an important role in controlling APA. Previous study showed that poly(A) site choice 
changes on a large scale in oxidative stress tolerant 6 (oxt6), a mutant lacking 
AtCPSF30. Within the mutant/WT genotypes, there are three classes of poly(A) site, 
wild type specific, oxt6 specific, and common (both in wild type and mutant). The wild 
type specific and oxt6 specific mRNAs make up around 70% of the total of all mRNA 
species. I hypothesize that the stability of these various mRNA isoforms should be 
different, and that this is a possible way that AtCPSF30 regulates gene expression. I 
tested this by assessing the influence poly(A) sites can have on the mRNA isoform’s 
stability in the wild type and oxt6 mutant. My results show that most mRNA isoforms 
show similar stability profiles in the wild-type and mutant plants. However, the 
mRNA isoforms derived from polyadenylation within CDS are much more stable in 



 
 

the mutant than the wild-type. These results implicate AtCPSF30 in the process of 
non-stop mRNA decay. 
Messenger RNA polyadenylation occurs in the nucleus, and the subunits of the 
polyadenylation complex that meditate this process are expected to reside within the 
nucleus. However, AtCPSF30 by itself localizes not only to the nucleus, but also to the 
cytoplasm. AtCPSF30 protein contains three predicted CCCH-type zinc finger motifs. 
The first CCCH motif is the primary motif that is responsible for the bulk of its RNA-
binding activity. It can bind with calmodulin, but the RNA-binding activity of 
AtCPSF30 is inhibited by calmodulin in a calcium-dependent manner. The third CCCH 
motif is associated with endonuclease activity. Previous studies demonstrated that 
the endonuclease activity of AtCPSF30 can be inhibited by disulfide reducing agents. 
These published results suggest that there are proteins that interact with AtCPSF30 
and act through calmodulin binding or disulfide remodeling. To test this hypothesis, 
I screened for proteins that interact with AtCPSF30.  For this, different approaches 
were performed. These screens led me to two proteins-one protein that is tyrosine-
phosphorylated and whose phosphorylation state is modulated in response to ABA, 
which well-known ABA regulates guard cell turgor via a calcium-dependent pathway, 
and the other is ribosome protein L35(RPL35), which plays an important role in 
nuclear entry, translation activity, and endoplasmic reticulum(ER) docking. These 
results suggest that multiple calcium-dependent signaling mechanisms may converge 
on AtCPSF30, and AtCPSF30 might be directly interact with ribosome protein. 
 
Keywords: AtCPSF30, Alternative polyadenylation, Drought stress, Protein-protein 
interaction, Arabidopsis thaliana  
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Chapter One: Literature review 

1.1 Nuclear polyadenylation in eukaryotes 

1.1.1 The definition of polyadenylation 

The expression of eukaryotic genes involves a series of modifications of the primary 

transcript to become a mature mRNA, including 5'-capping, exon/intron splicing and 3'-

end polyadenylation. One of these steps, the addition of a poly(A) tail, is a very important 

step for converting the pre-mRNA to a mature mRNA (Fig 1.1). During this process, 

around 50-200 adenosine residues are added to the 3’-end of the processed pre-mRNA 

(Proudfoot et al. 2002). All eukaryote mRNA 3’ends, except for animal replication-

dependent histone transcripts, are created by a two-step reaction which involves an 

endonucleolytic cleavage of the pre-mRNA followed by the synthesis of poly(A) tail onto 

the upstream cleavage product (Colgan and Manley 1997). 

1.1.2 The function and significance of polyadenylation 

The polyadenylation process is determined by specific signals in the transcript and the type 

of RNA polymerase used for transcription (Richard and Manley 2009). During this process, 

the polyadenylation also competes and/or cooperates with other events such as capping and 

splicing (Tian et al. 2007; Xing and Li 2011b). The functions of the poly(A) tail of mRNAs 

include protecting the mRNA from degradation, aiding in localization, promoting 

translational efficiency, and facilitating the transport of mRNAs from nucleus to cytoplasm 

(Guhaniyogi and Brewer 2001). 

As mentioned above, except for animal replication-dependent histone mRNAs, almost all 

eukaryotic mRNAs are polyadenylated (Richard and Manley 2009; Xing and Li 2011b). 

Replication-dependent histone mRNAs are the only mRNAs without poly(A) tails, instead 
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ending in a stem-loop structure followed by a purine-rich sequence (Tian et al. 2007; 

Dávila López and Samuelsson 2008). Non-coding RNAs are polyadenylated, as are the 

precursors for microRNAs (Yoshikawa et al. 2005; Saini et al. 2007). Many protein-coding 

genes have more than one polyadenylation site, and polyadenylation thereby can produce 

more than one transcript; this process is termed alternative polyadenylation (APA) (Tian 

et al. 2005; Danckwardt et al. 2008). If the poly(A) tail is added to other regions of the 

transcript, it may give rise to the production of a truncated protein or RNA that can impact 

the functions of associated genes (Guhaniyogi and Brewer 2001). 

1.1.3 Polyadenylation factor CPSF30 is involved in 3’end processing 

mRNA 3’end processing is controlled by sequence elements in the pre-mRNA (cis 

elements) and polyadenylation factors (Tian et al. 2005). In mammals, the pre-mRNA 

contains three primary sequence elements and two auxiliary sequence elements. The three 

primary sequence elements consist of the hexamer AAUAAA (the polyadenylation signal), 

the cleavage site and the G/U rich downstream element. The sequence AAUAAA hexamer 

(or its close variant AUUAAA) is the most highly conserved motif in eukaryotes, each 

nucleotide substitution in this hexamer reduces or abolishes mRNA 3’-end processing 

(Sheets et al. 1990; Proudfoot 2011). The two auxiliary sequence elements are an upstream 

element and a downstream element that regulates the 3’-end processing reaction (Xing and 

Li 2011b). 

The polyadenylation factors are a complex of 15 to 20 proteins that are required for 

cleavage and polyadenylation (Mandel et al. 2008). The hexamer AAUAAA is specifically 

recognized by the Cleavage and Polyadenylation Specificity Factor (CPSF) (Sheets et al. 

1990; Proudfoot 2011), a protein complex which contains six subunits: CPSF30, CPSF73, 

https://en.wikipedia.org/wiki/Histone_3%27_UTR_stem-loop
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CPSF100, CPSF160, WD repeat domain 33 (Wdr33) and factor interacting with PAP1 

(Fip1) (Takagaki et al. 1988; Zhao et al. 1999a). Other poly(A) factors are also required 

for the complete reaction, including the Cleavage Stimulatory Factor (CstF), Cleavage 

Factor I and Cleavage Factor II (CF I/II), and symplekin (Keller et al. 1991). 

1.1.3.1 CPSF30 is involved in animal and yeast pre-RNA processing 

Among the CPSF subunits, one of the most interesting is the CPSF30, the 30kDa cleavage 

and specificity polyadenylation factor (Addepalli and Hunt 2007b). Initial experiments 

showed that CPSF30 might be only important for polyadenylation, but it is now known 

that it is required for both cleavage and polyadenylation (Mandel et al. 2008; Shi et al. 

2009; Chan et al. 2014). 

In animals, CPSF30 is a relatively small polypeptide with a characteristic set of five 

CCCH-type zinc finger motifs (Cys-X8-Cys-X5-Cys-X3-His), and a C-terminal CCHC-

type zinc knuckle while CCHC zinc knuckle with the consensus sequence CX2CX4HX4C 

(Barabino et al. 1997; Barabino et al. 2000; Addepalli and Hunt 2007b). Initially, CPSF30 

was not consistently detected with active CPSF preparations, but could be 

immunoprecipitated with other CPSF factors. In particular, hFip1 is intimately associated 

with CPSF30 as well as other polyadenylation factors such as the Poly A-Polymerase 

(PAP) (Mandel et al. 2008). Consistent with this, CPSF30 interacts with hFip1. Other 

eukaryotic (animal) homologs of CPSF30 are RNA-binding proteins, and the greatest 

similarity between all of these involves the second of the five zinc finger motifs (Bai and 

Tolias 1996; Bai and Tolias 1998). Interestingly, the ortholog of CPSF30 from Drosophila 

has nucleolytic activity, raising the possibility that CPSF30 may be a processing 
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endonuclease in the polyadenylation reaction (Barabino et al. 1997; Bai and Tolias 1998; 

Kaufmann et al. 2004). 

The yeast homolog of CPSF30 is Yth1, an RNA-binding protein that is part if the so-called 

cleavage and polyadenylation factor (CPF). Yth1 can bind RNA near the 

cleavage/polyadenylation site, and in vitro experiments showed that it is required for 

cleavage and polyadenylation (Barabino et al. 1997; Bai and Tolias 1998). Yth1 physically 

interacts with Fip, and the RNA-binding by Yth1 can interfere with this association (Bai 

and Tolias 1996; Zarudnaya et al. 2002). The RNA binding activity of Yth1 is found in the 

second zinc finger motif of this protein (Barabino et al. 2000; Tacahashi et al. 2003). In 

addition, the fourth zinc finger motif is involved in the interaction with Fip1, indicating a 

distribution of functions among different parts of Yth1 (Zhao et al. 1999a; Tacahashi et al. 

2003). From sequence alignment, ZF2 is the most conserved zinc finger in CPSF30, and 

displays 76% identity and 96% similarity between yeast and mammals. In ZF2, point 

mutation of the conserved Cys residue are lethal (Tacahashi et al. 2003). 

Recent studies showed that only four polypeptides (CPSF30, CPSF160, hFip1 and 

WDR33) are necessary and sufficient to reconstitute a CPSF subcomplex active in 

AAUAAA-dependent polyadenylation, whereas the CPSF73, CPSF100 and symplekin 

subunits are dispensable (Barabino et al. 2000). Additionally, another study showed that 

CPSF30 and WDR33 directly contact AAUAAA (Chan et al. 2014). The  CPSF30-RNA 

interaction plays a pivotal role for mRNA 3’end processing and is targeted by the influenza 

protein NS1A to inhibit host mRNA 3’end processing (Twu et al. 2006). In lung 

adenocarcinoma cell lines and tumor tissues, CPSF30 is expressed at higher levels when 

compared to the normal tissues (Chen et al. 2013). Remarkably, higher expression of 
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CPSF30 is significantly correlated with the poor survival of patients (Chen et al. 2013). 

Moreover, the proliferation of lung cancer cells can be suppressed by knocking-down the 

expression of CPSF30 with siRNA. The over-expression of CPSF30 in lung cancer 

activated human telomerase reverse transcriptase (hTERT), which may promote the 

proliferation of cancer cells (Chen et al. 2013; Chen 2014). These results indicate that 

changes in the activity of CPSF30 may cause large scale reprogramming of 

polyadenylation, and suggest that the interactions with other factor such as NS1 can change 

the functioning of CPSF30 in vivo (Nemeroff et al. 1998). 

1.1.3.2 Characteristics of the plant CPSF30 

Plants have a polyadenylation complex subunit that is evolutionarily related to CPSF30, 

and the core of the protein (a central set of three zinc finger motifs) is conserved in animals, 

yeast and plants. Unlike mammals, yeast, and Drosophila, the gene encoding CPSF30 in 

Arabidopsis can produce two transcripts that result from the different poly(A) site usage 

(Zhang et al. 2008).  The smaller transcript encodes a 28kD protein, while the larger one 

encodes a 65kD polypeptide which contains the smaller protein and a YTH domain-

containing polypeptide (Zhang et al. 2008).  In higher plants, the orthologs of CPSF30 are 

quite diverged from the algae and yeast (Chakrabarti and Hunt 2015). Also, the monocot 

and dicot CPSF30 isoforms belong to distinct clades that reflect the evolution of these 

different groups of plant species (Chakrabarti and Hunt 2015). Additionally, the smaller 

and larger CPSF30 isoforms fall into similar clades, indicating that the complex plant 

CPSF30 gene has a common ancestor (Hunt et al. 2012) . 

Biochemical properties of the Arabidopsis CPSF30 
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The Arabidopsis ortholog of CPSF30 (termed AtCPSF30) contains three predicted CCCH-

type zinc finger motifs (Delaney et al. 2006). The first CCCH motif is responsible for bulk 

of RNA-binding activity. AtCPSF30 can bind with calmodulin, and the RNA-binding 

activity of AtCPSF30 is inhibited by calmodulin in a calcium-dependent manner (Delaney 

et al. 2006). The third motif is associated with endonuclease activity (Addepalli and Hunt 

2007b). Previous studies showed that the endonuclease activity of AtCPSF30 can be 

inhibited by disulfide bond reducing agents (Addepalli and Hunt 2008). The reason is the 

existence of a disulfide bond that is required for the nuclease activity (Addepalli et al. 

2010). There is an Arabidopsis mutant that can tolerate oxidative stress, called oxt6. This 

mutant has a T-DNA insertion in the gene that encodes AtCPSF30 (Chakrabarti and Hunt 

2015). A set of genes which encode proteins containing thioredoxin- or glutaredoxin-

related domains and proteins containing protein disulfide isomerase-like features are 

regulated by this protein (Zhang et al. 2008), consistent with the oxidative stress tolerance 

phenotype. 

Protein-protein interactions and the localization of AtCPSF30 

AtCPSF30 interacts with numerous other proteins in the polyadenylation complex (Hunt 

et al. 2008).  One study found that AtCPSF30 can interact with itself (Delaney et al. 2006), 

but the function of this interaction in the polyadenylation process is not clear. Previous 

studies also showed that AtCPSF30 interacts with other polyadenylation factors, including 

CPSF100, CPSF73, CstF77 and Fip1 proteins (Delaney et al. 2006; Xu et al. 2006; 

Addepalli and Hunt 2007b; Chakrabarti and Hunt 2015). These studies show that 

AtCPSF30 is a central hub in the protein-protein interaction network of plant 

polyadenylation complex subunits (Hunt et al. 2008; Chakrabarti and Hunt 2015). In 
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transient assays, AtCPSF30 was found to localize in the cytoplasm when expressed by 

itself, but when co-expressed with CPSF73 or CPSF160, it localized to the nucleus. This 

indicates that interactions with other polyadenylation factors are necessary for nuclear 

localization of AtCPSF30 (Rao et al. 2009). 

AtCPSF30 functions in cellular signaling and plant development 

The AtCPSF30 is able interact with calmodulin, and the calmodulin domain overlaps the 

first zinc finger domain of this protein (Delaney et al. 2006). Interestingly, this motif 

matches one of the two motifs involved in the interaction of CPSF30 with the NS1 

influenza protein (NS1) in animals (Nemeroff et al. 1998). The RNA binding activity of 

the first zinc finger can be inhibited in a calcium-depended manner, indicating that 

calmodulin might be perform a regulatory role in RNA processing (Delaney et al. 2006). 

In plants, calcium is a secondary messenger in cellular signaling pathways that can perceive 

environmental and developmental conditions (Sarwat et al. 2013). Calcium binds with 

various calcium sensors such as calmodulin and can give rise to conformational changes, 

which further mediate the interactions with downstream targets (Sarwat et al. 2013). The 

binding of AtCPSF30 to calmodulin in a calcium-dependent manner may provide a 

possible link between polyadenylation and responses of environmental stress and 

developmental changes (Zhang et al. 2008; Liu et al. 2014). 

The functional significance of calmodulin binding activity with AtCPSF30 was tested in 

diverse developmental processes and in response to various stimuli (Zhang et al. 2008; Liu 

et al. 2014). Several novel phenotypes in the oxt6 mutant were reported (Zhang et al. 2008). 

These phenotypes include reduced lateral root formation, altered responses to plant growth 

regulators, lower fertility, and resistant to oxidative stress. The wild type growth, 
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development, and responses to different kinds of growth regulators and to oxidative stress 

can be restored by a transgene that encodes the wild type AtCPSF30 (the small protein 

encoded by the OXT6 gene) (Zhang et al. 2008). This suggests that the large proteins 

encoded by the same gene are not necessary for the functioning of AtCPSF30 in these 

processes. In contrast, a mutant AtCPSF30 that cannot bind to calmodulin only partially 

restores wild type phenotypes to the oxt6 mutant (Liu et al. 2014). This transgene was not 

able to restore wild-type lateral root development and responses to other plant hormone 

such as IAA, gibberellic acid and 6-BA. These results showed that AtCPSF30 has 

calmodulin binding-dependent or -independent roles that help to regulate different 

developmental and stress responses. Another study showed that AtCPSF30 plays critical 

role for the programmed cell death (PCD) and is required for resistance to Pseudomonas 

syringe, by regulating both basal resistance and R gene-mediated defense responses 

(Bruggeman et al. 2014). 

AtCPSF30 mediates APA in a large set of genes 

The phenotypes of the oxt6 mutant suggest that AtCPSF30-mediated alternative 

polyadenylation is essential for the expression of genes related to these phenotypes. 

Especially, the cellular signaling system that might be involved in either the calmodulin or 

disulfide bond remodeling could inhibit AtCPSF30 (Delaney et al. 2006; Addepalli and 

Hunt 2008). This raises the possibility of alteration of poly(A) sites by cellular signaling. 

When genome-wide poly(A) site choice was compared between the oxt6 mutant and wild 

type, more than half of all expressed genes had different poly(A) site profiles in the oxt6 

mutant compared with wild-type Arabidopsis. Three classes of poly(A) site were seen: wild 

type specific (wt-specific), oxt6 mutant specific (oxt6-specific), and common (seen both in 
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wt-specific and oxt6-specific). The wt-specific and oxt6-specific sites were around 70% of 

all the sites seen in the wt and mutant. In contrast, only around 30% were common sites 

(Thomas et al. 2012). These sites fell into various genomic regions, such as 5’UTRs, coding 

regions, introns and 3’UTRs. Interestingly, the genes associated with stress responses were 

over-represented in the set of genes with APA sites within 5’UTRs and protein coding 

regions that were dependent on AtCPSF30. This suggests a role for AtCPSF30 mediated 

APA in the regulation of gene expression associated with stress responses (Chakrabarti and 

Hunt 2015). 

In animals, the differential usage of poly(A) sites can give rise to shorter or longer mRNA 

isoforms (Ran et al. 2013; Gruber et al. 2014). In fast growing undifferentiated cells, genes 

subjected to alternative polyadenylation use proximal poly(A) sites and thereby produce 

shorter mRNA isoforms. This leads to higher levels of expression by omitting microRNA 

targets or recognition sites for other regulatory proteins. Usage of distal poly(A) sites can 

generate longer isoforms that may be subject to modes of negative regulation. A similar 

pattern of proximal/ distal poly(A) site usage is not seen in the case of the oxt6 mutant 

(Thomas et al. 2012). However, poly(A) sites seen only in the oxt6 mutant lacked one of 

the three cis elements (the Near Upstream Element or NUE) that together constitute a 

canonical plant polyadenylation signal (Loke et al. 2005). Proximal sites in animal genes 

have sub-optimal polyadenylation signals. Therefore, while the organization of alternative 

sites in these two systems might be different, it seems that the association with suboptimal 

polyadenylation signals with proximal poly(A) sites may be a common mechanism of 

alternative polyadenylation (Ran et al. 2013). 
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The genome-wide studies of poly(A) site choice in the oxt6 mutant showed that AtCPSF30-

mediated alternative polyadenylation has the potential to impact a large set of genes in 

Arabidopsis. This result coincides with the numerous phenotypes that are displayed in the 

oxt6 mutant (Zhang et al. 2008). As mentioned above, the cellular signaling systems that 

cause the changes in calmodulin binding activity and/or disulfide linkages should inhibit 

AtCPSF30 (Delaney et al. 2006; Addepalli and Hunt 2008). This suggests that cellular 

signaling pathways have the possibility to change the regulation of a large set of genes at 

the posttranscriptional level by altering the usage of AtCPSF30-dependent sites 

(Chakrabarti and Hunt 2015). 

1.2 Alternative polyadenylation in Eukaryotes 

1.2.1 The definition and types of alternative polyadenylation 

A large portion of eukaryotic genes contain more than one potential poly(A) site (as defined 

by the FUE, NUE, and poly(A) signal), raising the possibility of alternative 

polyadenylation (APA) (Di Giammartino et al. 2011; Lutz and Moreira 2011; Shi 2012). 

More than 50% of human genes show alternative polyadenylation was based on genome 

level analysis (Tian et al. 2005; Yan and Marr 2005), while more than 70% of all genes 

were affected by APA in Arabidopsis (Meyers et al. 2004; Wu et al. 2011). Four types of 

alternative polyadenylation have been described in higher eukaryotes.  In type I alternative 

polyadenylation, there is more than one polyadenylation signal in the 3’-UTR in the same 

terminal exon.  This results in more than one mRNA isoform each of which encodes an 

identical protein. APA in this case may alter mRNA stability or translatability, or may have 

other downstream effects (Di Giammartino et al. 2011; Chakrabarti and Hunt 2015). Type 

II alternative polyadenylation involves poly(A) sites that are present in upstream introns. 
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This type APA can invoke alternative splicing along with alternative polyadenylation. The 

truncated protein may or may not be produced, due to the stability of the mRNA, the 

presence of an in frame stop codon, and the translational competence of the mRNA. In 

addition, the products of APA in these cases may or may not trigger non-sense mediated 

decay to degrade these transcripts (Lutz and Moreira 2011; Shi 2012). In type III alternative 

polyadenylation, the poly(A) sites are present in the upstream exons. With no premature 

termination codon and no in-frame stop codon, these mRNA isoforms will be degraded 

through non-stop decay pathways (Daniel and Lynne 2012; Klauer and van Hoof 2012). 

The last type of alternative polyadenylation has poly(A) sites that are present in the 5’-

UTR. These products might- or might- not be stable. 

1.2.2 Widespread occurrence of alternative polyadenylation 

In human, mouse, worm and plant, recent analysis of genome-wide data showed 

that alternative polyadenylation is pervasive. In many instances, alternative 

polyadenylation plays some important roles in control of global physiological events such 

as cell proliferation, differentiation, transformation and developmental programs 

(Sandberg et al. 2008; Ji et al. 2009; Mayr and Bartel 2009). 

1.2.2.1 Widespread occurrence of alternative polyadenylation in animal 

In early studies of expressed sequence tags and more recent next generation sequence 

analyses, alternative polyadenylation in animals was seen to be common and frequently 

involves 3’UTRs. At least 70% of mammalian mRNA-encoding genes produce alternative 

polyadenylation isoforms (Derti et al. 2012; Mainul et al. 2012). In animals, alternative 

polyadenylation may change the expression of mRNA and protein isoforms when poly(A) 

sites fall into the intronic- or coding- regions of a gene (Derti et al. 2012). However, based 
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on individual gene studies, most instances of alternative polyadenylation involve multiple 

sites in 3’UTRs (Gautheret et al. 1998). It has been demonstrated that different 3’UTR can 

effect mRNA stability or translatability (Mainul et al. 2012). Apparently, the longer 

3’UTRs have more RNA cis regulatory elements and AU-rich content than short 3’UTRs. 

In addition, 3’UTRs are the most common location for microRNA target sites (Tian et al. 

2005; Di Giammartino et al. 2011; Sun et al. 2012). Several studies have shown that APA 

affects different biological processes including immune responses, neuron activity, animal 

development, tumorigenesis and metastasis. 

APA in immune response 

In the immune response in mammals, hundreds of genes were found to switch their poly(A) 

sites during T cell activation (Lutz and Moreira 2011). Most of the events favored the 

production of shorter 3’UTR isoforms in activated T lymphocytes. This kind of event also 

occurred after anti-CD40 and interleukin-4 stimulation of B cells, and also upon 

lipopolysaccharide- and interferon-γ- stimulation of human monocytes. These studies 

indicate that there is a strong correlation between 3’UTR shortening and cell proliferation. 

The output of protein is impacted by the differential usage of 3’UTR isoforms, typically 

with the shorter one producing more protein through avoidance of microRNA-mediated 

translational repression (Ji et al. 2009), or of degradation by AU rich elements or other 

regulatory elements (Legendre et al. 2006). 

APA in neuronal cells 

In neurons, APA regulates the expression of the brain-derived neurotrophic factor (BDNF) 

gene, resulting in two mRNA isoforms with different 3’UTR lengths (Timmusk et al. 

1993). The long and short mRNA isoforms have different localizations: the long isoforms 
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are found in dendrites, while the short isoforms are localized in somata. The short mRNA 

isoforms lead to smaller spine head diameters and more spines in the apical dendrites 

(Sandberg et al. 2008). In the central nervous system, a series of transcription factors are 

activated by environmental stimuli, such as myocyte enhancer factor 2 (MEF2) that 

mediates the expression of hundreds of genes (Barreau et al. 2005). For many of these 

neuron activity-dependent genes, extracellular stimulation can induce APA to produce 

truncated transcripts (An et al. 2008). The products with short transcripts increase or 

accelerate protein synthesis (An et al. 2008; Flavell and Greenberg 2008; Shi 2012). In 

addition, the regulation of transcription activity by APA seems to be widespread in 

neuronal responses (Flavell et al. 2008). 

APA in cell differentiation and development 

In contrast to 3’UTR shortening by extracellular stimulation, a global lengthening of 

3’UTRs is seen during mouse early embryogenesis (Ji et al. 2009). To confirm in silico 

results, the 3’UTR lengthening process is captured in a mouse muscle differentiation where 

C2C12 myoblast cells differentiate into myotubes. Also, a weaker polyadenylation 

efficiency at proximal sites was observed in the differentiation condition from reporter 

assays, causing 3’UTR lengthening during myoblast differentiation. As well, 3’UTR 

lengthening was found during Drosophila development (Hilgers et al. 2011), suggesting 

that APA regulation is evolutionarily conserved in animals. 

APA in cancer cells 

Considering that alternative polyadenylation is important for cellular proliferation and 

differentiation, it is not surprising that alternative polyadenylation and miRNA-mediated 

repression are correlated in cancer cell lines (Sun et al. 2012). It has been reported that 



 

 14 

oncogenes can be activated by the loss of miRNA target sites, such as high mobility group 

AT-hook 2 (HMGA2) (Hilgers et al. 2011; Sun et al. 2012). Also, the lengths of Cyclin 

D1(CCND1) 3’UTR in mantle cell lymphomas was shortened due to a mutation that 

produces a premature poly(A) signals, giving rise to an increase in mRNA stability 

(Wiestner et al. 2007).  Another study showed that most of the 23 genes containing more 

than one poly(A) signal in the 3’UTR expressed shorten isoforms in cancer cell lines, 

caused by the utilization of the most proximal poly(A) signal (Mayr and Bartel 2009). 

Furthermore, when IMP-1 3’UTRs were fused with a luciferase reporter gene, the result 

showed that a shortening of UTR and the loss of miRNA target sites led to an increase in 

protein production (Lee and Dutta 2007). These results indicate that one of the mechanisms 

of oncogenic transformation is the loss of miRNA sites in the mRNAs of oncogenes. These 

genes can avoid the miRNA-mediated repression through 3’UTR shortening caused by the 

alternative polyadenylation (Mayr et al. 2007). 

1.2.2.2 Widespread occurrence of alternative polyadenylation in plant 

Several studies have been demonstrated that, as in animals, alternative polyadenylation is 

pervasive in plants. Multiple poly(A) sites were identified in genes that encode 

phosphoenolpyruvate carboxylase and alpha1-tublin in maize (Zea mays) (Yanagisawa et 

al. 1988; Montoliu et al. 1990), AGAMOUS and rbohA in Arabidopsis (Keller et al. 1998; 

Cheng et al. 2003), chloroplast ascorbate peroxidase in spinach (Spinacia oleracea) and 

tobacco (Nicotiana) (Yoshimura et al. 2002), several soybean (Glycine max) genes (Xing 

et al. 2010), and a number of Medicago and rice (Oryza sativa) genes (Wu et al. 2014; Fu 

et al. 2016). Also, alternative polyadenylation plays an essential role in a range of 

biological processes in plants. The S locus genes are important for self-incompatibility in 

https://en.wikipedia.org/wiki/Nicotiana
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Brassica. A putative protein was produced from alternative polyadenylation of the pre-

mRNA of the S-locus receptor kinase gene within the third intron, while the removal this 

intron resulted a transcript encoding a predicted membrane-anchored protein (Tantikanjana 

et al. 1993; Giranton et al. 1995). In cotton (Gossypium), the gene that encodes lysine-

ketoglutarate reductase (LKR) can produce two transcripts via alternative polyadenylation. 

These encode monofunctional and bifunctional LKR polypeptides, respectively. These 

polypeptides might be pivotal for enabling efficient flux of lysine catabolism under some 

specific conditions (Tang et al. 2002). The APA of LKR pre-mRNA also was conserved in 

Arabidopsis (Tang et al. 2000). 

Alternative polyadenylation and flowering time control 

Seasonal flowering control has a complicated but unique gene-regulation mechanism that 

involves alternative polyadenylation (Hornyik et al. 2010; Liu et al. 2010). Flowering time 

is negatively regulated by expression of the flowering locus C (FLC) gene. In Arabidopsis, 

flowering time control is also regulated by FPA and FCA, two RNA binding proteins that 

act independently to repress FLC expression and thereby promote flowering (Macknight 

et al. 2002; Hornyik et al. 2010). Both FPA and FCA have been reported to repress FLC 

expression by altering APA of non-coding antisense transcripts (Sonmez et al. 2011). On 

the opposite strand, one promotor located downstream of the poly(A) site of FLC produces 

anti-sense transcripts that have alternative poly(A) sites: one cluster of poly(A) sites 

(proximal) is situated opposite the terminal intron of FLC and another cluster (distal) is 

situated opposite the FLC promoter. The usage of proximal poly(A) sites is promoted by 

both FPA and FCA (Hornyik et al. 2010; Liu et al. 2010). Also, mutations in the CstF 

components, CstF64 and CstF77, showed elevation of sense FLC transcripts and reduction 
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of antisense FLC transcripts, indicating FLC antisense transcripts are sensitive to CstF 

activity (Liu et al. 2010). flowering locus D (FLD), a histone H3 Lys 4 (H3K4me2) 

demethylase, is also needed for effective FLC silencing (Liu et al. 2007; Bäurle and Dean 

2008; Liu et al. 2010). In addition, FY (the homolog of the 3’ processing factor 

WDR33; (Shi et al. 2009)) can interact with FCA to promote proximal poly(A) site 

selection in the FCA pre-mRNA, resulting in a truncated, non-functional FCA transcript 

(Simpson et al. 2003). As suggested by Rosonina and Manley (2010), when the proximal 

poly(A) sites are used in the anti-sense transcript, the transcriptionally active chromatin 

mark H3K4me2 in the body of the FLC gene was removed by the recruited FLD 

demethylase, leading to FLC silencing. Vice versa, when the distal poly(A) sites is used in 

the anti-sense transcript, the positive factors are recruited to the FLC promoter, giving rise 

to enhanced FLC mRNA expression (Rosonina and Manley 2010). 

Alternative polyadenylation and oxidative stress response 

Another well studied example in plants concerns connections between APA and oxidative 

stress responses. Thus, an Arabidopsis mutant deficient in AtCPSF30 expression was found 

to be more tolerant than wild type to oxidative stress (Zhang et al. 2008).  As stated above, 

AtCPSF30 is inhibited by calmodulin and sulfhydryl reagents in vitro (Delaney et al. 2006; 

Addepalli and Hunt 2008) and thus is connected to calcium and redox signaling pathways. 

In addition, a genome-wide study of poly(A) site choice in the AtCPSF30 mutant (oxt6) 

showed extensive poly(A) site choice changes between wild type and oxt6. Specifically, 

three classes of poly(A) site could be discerned: wild type specific (wt-specific) and oxt6 

mutant specific (oxt6-specific), and common sites (seen both in wt and oxt6 mutant plants). 
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The wild wt-specific and oxt6-specific sites make up around 70% of all sites seen in plants 

(Thomas et al. 2012). 

1.2.3 Biological significance of alternative polyadenylation under stress 

APA was described as early as 1980, with studies identifying APA giving rise to the 

production of both membrane-bound and secreted IgM (Alt et al. 1980).  Originally, 

mRNA polyadenylation events were thought of as separate and distinct, but more recent 

studies show that all RNA processing events are interconnected and intertwined (Tom and 

Robin 2002; Moore and Proudfoot 2009; Donny and Robert 2010). Interactions between 

polyadenylation and transcription, splicing, transcription termination, translation, export 

and stability are all included in these events (Proudfoot et al. 2002; Kathleen et al. 2009; 

Donny and Robert 2010). The RNA factors and proteins involved in many of these 

interconnected processes include those that mediate alternative splicing (AS) and APA 

(Danckwardt et al. 2007; Hall-Pogar et al. 2007; Melton et al. 2007; Newnham et al. 2010). 

Recently, studies using transcriptome-wide techniques showed that the transcriptomes are 

highly complicated and alternative processing of pre-mRNAs at post-transcriptional level 

significantly contributes to enlarge transcriptome diversity (1999; Wang and Brendel 2006; 

Shen et al. 2011; Ran et al. 2013; Gupta et al. 2014). 

As mentioned above, APA is widespread in animals and plants. Recently, one study 

showed that APA contributes to the post-transcriptional response to stresses and affects 

many mRNAs and ncRNAs in mammals (Alexander et al. 2012). The length of the 3’-UTR 

affects the potential inclusion or exclusion of cis-acting RNA sequence elements under 

stress, such as microRNA binding sites or binding sites for regulatory RNA-binding 

proteins (Hollerer et al. 2014). Stress-regulated poly(A) sites were identified in intronic 
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and coding regions in plants (Shen et al. 2011; Fracasso et al. 2016). In addition, stress-

regulated poly(A) sites occurred in intergenic regions in animals, possibly corresponding 

to 3’ elongated mRNA isoforms (Hollerer et al. 2016).  Also there is a global tendency 

towards increased utilization of distal poly(A) sites under stress in animals (Hollerer et al. 

2014). This trend also was detected in yeast suffering DNA damage (Graber et al. 2013).  

These results suggest that a general stress response mechanism of poly(A) site usage is the 

stress-dependent inhibited usage of proximal and the increased usage of distal poly(A) sites 

(Hollerer et al. 2016).  Interestingly, for more than 70% of genes subject to stress-induced 

APA, overall expression levels remain unchanged, suggesting that APA can impact the 

gene expression without altering overall mRNA abundance (Hollerer et al. 2016). 

In plants, while there have been studies of stress-associated alternative splicing (AS) 

(Lopato et al. 1999; Lazar and Goodman 2000; Wang and Brendel 2006; Palusa et al. 2007; 

Reddy 2007; Reddy et al. 2013; Hollerer et al. 2016), stress-induced APA has not been 

much studied. While APA is widespread in plants, (Kalyna et al. 2003; Iida et al. 2004; 

Kalyna et al. 2006; Filichkin et al. 2010; Wu et al. 2011; Xing and Li 2011b), there have 

been no indications of stress-associated responses. Therefore, stress-induced APA in plants 

needs further study. 

1.3 RNA stability in eukaryotes 

1.3.1 Nuclear mRNA degradation pathway 

Pre-mRNA synthesis by RNA pol II is coupled with 5’end capping. Also, pre-mRNAs are 

co-transcriptionally spliced to remove introns. Finally, pre-mRNAs are processed and 

polyadenylated. From the beginning of mRNA synthesis, different proteins associate with 

the transcript to form messenger ribonucleoproteins (mRNPs). In nuclear mRNA 
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processing and in the formation of an export competent mRNP, defects can cause the 

degradation of nuclear mRNA by surveillance pathways. Defective mRNPs may also be 

retained in the nucleus to allow time to complete the mRNA processing or to degrade the 

incorrect transcripts (Jensen et al. 2001b; Patricia et al. 2001). 

In nuclear RNA retention and surveillance, an important player is the nuclear exosome that 

contains several subunits including the evolutionary conserved 3’-5’ exonuclease Rrp6. 

The activity of the nuclear exosome is facilitated by the Trf4/Air2/Mtr4p Polyadenylation 

(TRAMP) complex that contains the unconventional poly(A) polymerase Trf4p (Lacava et 

al. 2005).  Defective mRNAs are retained at the transcription sites and polyadenylated 

(Jensen et al. 2001b; Patricia et al. 2001; Thomsen et al. 2003); Rrp6 is required for this 

nuclear retention (Jensen et al. 2001a; Libri et al. 2002). Mutations in nuclear export factors 

can lead to premature transcriptional termination and polyadenylation defects, which can 

induce mRNA retention and degradation by the exosome (Babour et al. 2012). Unspliced 

pre-mRNAs can be exonucleolytically degraded in a 3’to 5’ direction by the nuclear 

exosome, or in a 5’ to 3’ direction by Rat1 (Bousquet-Antonelli et al. 2000). Unspliced 

pre-mRNAs also can be exported to the cytoplasm where they can trigger the cytoplasmic 

quality control pathway (Sayani et al. 2008). In yeast and humans, the regulation of the 

levels of a small subset of genes involves the nuclear exosome and the RNA 

polyadenylation activity of TRAMP (Arigo et al. 2006; West et al. 2006; Schmid and 

Jensen 2008). Additonally, it has been suggested that all mRNAs are subjected to a certain 

rate of nuclear degradation, which is controlled by the degree of the nuclear retention of 

each mRNA (Kuai et al. 2005). 

1.3.2 Cytoplasm mRNA degradation pathway 
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The degradation of mature mRNAs mainly happens in the cytoplasm. There are different 

degradation pathways for cytoplasmic decay of eukaryotic mRNAs (Balagopal et al. 2012; 

Parker 2012; Wu and Brewer 2012; Schönemann et al. 2014). Usually, mRNA decay starts 

at the 3’-end poly(A) tail with deadenylation. Depending on the mRNP, the poly(A) tail 

can be shortened by one of three different deadenylation complexes: PAN2 and 3, the Ccr4-

NOT complex, or Poly(A)-Specific Ribonuclease (PARN) (Aaron and Marvin 2008). For 

each mRNA, the shortening rate is specific and is an important process that defines the 

mRNA half life (Cao and Parker 2001). Following deadenylation, the cytoplasmic exosome 

can exonucleolytically degrade the mRNA in a 3’to 5’ direction (Anderson and Parker 

1998). Usually, the shortening of the poly(A) tail is followed by the 5’-cap removal by the 

decapping complex Dcp2/Dcp1, and subsequent degradation in a 5’-3’ direction by the 

exoribonuclease Xrn1 (Hsu and Stevens 1993; Muhlrad et al. 1994). For some mRNAs, 

decay can start with internal endonucleolytic cleavage, and subseqently degradation by the 

exosome and Xrn1(Bracken et al. 2011). The deadenylation of mRNAs is usually a rate-

limiting step, and the length of the poly(A) tail plays a critical role in gene expression by 

regulating mRNA decay and translation (Decker and Parker 1993). The association of the 

poly(A) tail with the poly(A) binding protein Pab1(PABP in mammals) is essential for 

poly(A) tail shortening as well as for mRNA translation (Mangus et al. 2003). 

mRNA decapping was considered to be an irreversible step in mRNA degradation. But a 

recent study has describled that previously cleaved RNAs can be re-capped in mammalian 

cells (Schoenberg and Maquat 2009; Mukherjee et al. 2012). Therefore, this raises the 

possibility that mRNA decay may be blocked by re-capping, even if part of the mRNA is 

degraded by Xrn1. Usually, decapping occurs after mRNA poly(A) tail shortening (Decker 
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and Parker 1993), and the poly(A) tail and poly(A)-binding protein Pab1 serve as the 

negative regulators of decapping (Tharun 2009). For some transcripts, deadenylation-

independent decapping has been reported (Badis et al. 2004; Muhlrad and Parker 2005). 

The cytoplasmic cap-binding complex eIF4F at the 5’-cap is replaced by the decapping 

complex Dcp2/Dcp1 for deadenylation-independent decapping. Therefore, the process of 

decapping competes with translation iniation (Li and Kiledjian 2010; Parker 2012). 

Decapping plays an important role for gene expression control, which is suggested by the 

large set of factors that modulate decapping activity (Nissan et al. 2010). To stimulate the 

formation of a decapping complex or by enhancing decapping activity, many factors 

positively affect decapping, such as Edc1, Edc2, Edc3 and the Lsm1-7 complex. 

Translation initiation can be directly inhibited by some of the factors that promote 

decapping, such as Scd6 (Rajyaguru et al. 2012) and Stm1 (Balagopal and Parker 2011). 

The DEAD-box helicase Dhh1, which is another decapping enhancer, seems to inhibit 

translation after initiation, thereby leading to the accumulation of ribosomes on the 

transcripts (Sweet et al. 2012). Similarly, Pat1 can directly enhance decapping by 

interacting with the Lsm1-7 complex and Dcp2, and thereby repress translation (Pilkington 

and Parker 2008; Nissan et al. 2010). The Ccr4-NOT deadenylation complex and the Dcp1-

Dcp2 decapping complex associate with Pat1 in humans, thus providing a possbile link for 

these two processes (Marnef and Standart 2010; Ozgur et al. 2010). All these results show 

that Pat1 might be a key player in silencing gene expression in eukaryotes by acting as a 

scaffold protein for the sequential binding of translational repression and decay factors onto 

mRNPs (Marnef and Standart 2010). 
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After decapping, the 5’-3’ exonuclease Xrn1 acts in mRNA degradation. Xrn1 is the critical 

enzyme responsible for the turnover of translatable mRNAs, and is also involved in many 

mRNA quality control pathways including the degradation of mRNAs targeted by siRNAs 

and miRNAs (Jones et al. 2012). The degradation of the mRNA from the 3’end is catalzyed 

by the exosome. The cytoplasmic exosome is a multiprotein complex with 3’-

5’exonuclease activity. The exosome consists of nine core subunits and other related 

subunits, some of which have nucleolytic activity, others of which regulate the catalytic 

activity and substrate specificity of the complex. The exosome can differ between different 

species (Lykke-Andersen et al. 2011). 

1.3.3 RNA quality control pathways in Eukaryotes 

In eukaryotes, there are at least three kinds of defects in mRNAs that affect the translating 

ribosome and activate co-translational quality control pathways.  These are discussed in 

the following subsections. 

Nonsense-mediated decay pathway 

The first type to be discovered and best-known RNA quality control pathway is nonsense 

mediated mRNA decay (NMD). mRNAs that contain premature termination (stop) codons 

(PTCs) can lead to premature translation termination and trigger nonsense mediated mRNA 

decay (NMD) pathway (Figure 1.2) (Losson and Lacroute 1979; Maquat et al. 1981). 

Multiple mechanisms can give rise to PTCs in mRNAs. The most common one is thought 

to be cryptic or alternative splicing. These splicing events can lead to PTCs by either 

causing frame shifts within the coding region, or exposing stop codons within retained 

introns or alternative exons (Lareau et al. 2007; McGlincy and Smith 2008; Sayani et al. 

2008). Also, transcription errors, genetic mutations, or recombination events can cause 
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PTCs (Chang et al. 2007; Isken and Maquat 2007; Rebbapragada and Lykke-Andersen 

2009; Schweingruber et al. 2013). In addition, it seems like a subset of normal endogenous 

mRNA is targeted by the NMD pathway (Joshua et al. 2004; Guan et al. 2006; Johansson 

et al. 2007). When translation is terminated by a ribosome at a PTC, several NMD factors 

associate with the PTC-containing mRNA and target it for degradation by RNA decay 

enzymes.  These NMD factors included the Upf and Smg proteins (Leeds et al. 1991; Leeds 

et al. 1992; Pulak and Anderson 1993). Depending on the specific mRNA and organism, 

NMD degradation is initiated by de-adenylation, de-capping, or endonucleolytic cleavage 

(Muhlrad et al. 1994; Chen and Shyu 2003; Mitchell and Tollervey 2003; David and Elisa 

2004). Subsequently, the degradation of mRNA body involves disassembly of the initial 

mRNA-protein complex, which is dependent on the ATPase activity of the central NMD 

factor Upf1 (Franks et al. 2010). 

The specific functions of Upf/Smg proteins that distinguish premature from normal 

translation termination remain under investigation. Translation termination mediated by 

the eRF1–eRF3 termination complex at a PTC is thought to be not efficient, owing to the 

absence of a normal 3’-UTR (Amrani et al. 2004). The cytoplasmic poly(A)-binding 

protein (PABPC) that is associated with 3’-UTRs promotes efficient translation 

termination on normal mRNAs (Amrani et al. 2004). The translation termination event 

inhibits NMD when the cytoplasmic poly(A)-binding protein is in close proximity to the 

termination complex, whereas termination allows assembly of NMD factors when PABP 

is removed from the termination complex (Amrani et al. 2004; Behm-Ansmant et al. 2007; 

Eberle et al. 2008; Ivanov et al. 2008; Singh et al. 2008). In metazoans, NMD may also be 

triggered when termination occurs upstream of exon-exon junctions.  These junctions are 
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recognized by the exon-junction complex that is deposited during pre-mRNA splicing in 

the nucleus and that interacts with Upf proteins in the cytoplasm (Kim et al. 2001; Le Hir 

et al. 2001; Lykke-Andersen and Steitz 2001; Gehring et al. 2003; Singh et al. 2007). 

Additional mRNP components serve to distinguish normal mRNAs from those targeted for 

NMD (González et al. 2000; Singh et al. 2007; Meaux et al. 2008). Moreover, the NMD 

pathway actively inhibits the recruitment of new ribosomes to the target mRNA (Muhlrad 

and Parker 1999; Isken et al. 2008). In addition, the native polypeptide that is produced 

from a PTC-containing mRNA is subjected to proteolysis in a way stimulated by Upf1, a 

core NMD factor (Kuroha et al. 2009; Verma et al. 2013). 

Non-stop decay pathway 

Another type of mRNA defect is one that results in the absence of a termination codon. 

Once the translating ribosome reaches the mRNA 3’end without encountering a 

termination codon, the mRNAs are subjected to the nonstop decay pathway (NSD) (Figure 

1.3) (Frischmeyer et al. 2002; van Hoof et al. 2002). When polyadenylation occurs 

prematurely within the protein coding region, the mRNAs are likely be non-stop mRNAs 

(Frischmeyer et al. 2002; van Hoof et al. 2002). Truncated mRNAs resulting from 

endonucleolytic cleavage events within the protein coding region are another possible 

source of NSD substrates (Tsuboi et al. 2012; Matsuda et al. 2014). However, the 

degradation of mRNAs endonucleolytically cleaved by a hammerhead ribozyme does not 

require the NSD machinery for rapid degradation, indicating that the general 

exonucleolytic mRNA decay pathway may be more predominate than the NSD pathway 

on such substrates (Meaux and Van Hoof 2006). 
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NSD has been intensely studied in Saccharomyces cerevisiae, where results have shown 

an important role for the GTPase Ski7, which is a homologue of the translation termination 

factor eRF3 (van Hoof et al. 2002). Ski7 also has an N-terminal domain that is important 

for the catalytic activity of the cytoplasmic form of the S. cerevisiae 3’ to 5’ exonuclease 

exosome complex (van Hoof et al. 2000; van Hoof et al. 2002). Deletion of any one of 

these Ski7 domains can stabilize mRNAs targeted for NSD and lead to the inactivation of 

exosome components (van Hoof et al. 2002; Schaeffer and van Hoof 2011). Based on these 

results, Ski7 might enter the empty A-site of ribosomes which are stalled at the 3’ end of 

nonstop mRNAs and recruit the exosome to trigger mRNA degradation (van Hoof et al. 

2002). Recent studies indicate a potential role for another eRF3-homologous factor Hbs1, 

which associates with eRF1-related factor Dom34 in S. cerevisiae NSD. Deletion of these 

factors and of 5’ to 3’ or 3’ to 5’ exonucleases can cause increased stability of NSD 

substrates and accumulation of degradation intermediates (Tsuboi et al. 2012). In addition, 

the Hbs1-Dom34 complex, along with the ribosome cycling ATPase Rli1 (that is called 

ABCE1 in humans), promotes disassembly of ribosomes when stalled at/near the 3’ end of 

mRNA (Pisareva et al. 2011; Shoemaker and Green 2011). These observations suggest that 

the active release of the ribosome by Hbs1–Dom34 and Rli1 might be necessary for 

efficient degradation of an mRNA targeted for NSD (Lykke-Andersen and Bennett 2014). 

Besides S. cerevisiae, NSD has also been studied in human (Homo sapiens) tissue culture 

cells (Frischmeyer et al. 2002; Saito et al. 2013). Some studies showed that the absence of 

a stop codon has no effect on the decay rate of specific mRNAs in human cells (Akimitsu 

et al. 2007; Torres-Torronteras et al. 2011). One possible reason is that relative 

contributions of translation repression and mRNA decay are substrate dependent.  In 
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addition, other studies indicate that siRNA-mediated depletion of Hbs1 or Pelota (the 

human orthologue of Dom34) can lead to impaired NSD in human tissue culture cells 

(Saito et al. 2013). 

No-go decay pathway 

No-go decay (NGD) is the third type of mRNA surveillance mechanism discovered in 

yeast. NGD can be triggered when translation elongation is inhibited, leading to 

endonucleolytic cleavage and rapid mRNA degradation (Meenakshi and Roy 2006). RNA 

structure elements (Meenakshi and Roy 2006), rare codons and polylysine (Gandhi et al. 

2008), and mRNA depurination by a viral enzyme (Tsuboi et al. 2012) are reported to 

activate the NGD pathway. Near the ribosome stall site, NGD is initiated by 

endonucleolytic cleavage, which can physically impede the translational machinery from 

moving down the transcript (Meenakshi and Roy 2006). During this process, Hbs1 and 

Dom34 play important roles by binding the A site of stalled ribosomes and promoting the 

recycling of ribosome subunits (Kobayashi et al. 2010). One previous study showed that 

Hbs1 and Dom34 can stimulate an initial endonucleolytic cleavage event (Meenakshi and 

Roy 2006; Passos et al. 2009; Tsuboi et al. 2012), while another study demonstrated that 

NGD can be triggered by the stalled ribosome event in the absence of Hbs1 and Dom34 

(Passos et al. 2009; Tsuboi et al. 2012). The protein complex Hbs1-Dom34 is related to 

eRF1 and eRF3, respectively. Therefore, Hbs1-Dom34 can directly interact with the stalled 

ribosome. In addition, Hbs1 is related to NSD factor Ski7, which mediates the release of 

stalled ribosomes at the end of transcripts without a stop codon. Perhaps Hbs1 performs 

the similar function in NGD as Ski7 (Chang et al. 2007; Graille et al. 2008). Besides S. 

cerevisiae, the NGD pathway was detected in Drosophila S2 cell (Passos et al. 2009). In 
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addition, the ribosome stalling has been associated with transcript decay in 

Arabidopsis(Onouchi et al. 2005), which suggests that it might be a conserved process in 

plants.  

1.3.4 The significance of mRNA stability 

The importance of mRNA stability is demonstrated by the phenotypes of mutants where 

the genes encoding components of systems involved in mRNA stability have been 

disrupted. For example, mice deficient for the tristetraprolin, an RNA-binding protein that 

controls the stability of mRNAs such as granulocyte/macrophage colony-stimulating factor 

and tumour necrosis factor, have a systemic inflammatory syndrome with autoimmunity 

and myeloid hyperplasia (bone marrow overgrowth) (Carballo and Blackshear 2001). In 

Caenorhabditis elegans, adults carrying mutations in dicer (dcr-1), a double-stranded 

endoribonuclease which plays an important role in the first steps of the RNA interference 

pathway, are sterile and have defects in developmental timing (Grishok et al. 2001; Knight 

and Bass 2001). Arabidopsis mutants with mutations in the gene that codes for DST1, that 

regulates the stability of RNAs such as CCL and SEN1, have defects in circadian rhythms 

(Gutierrez et al. 2002). Moreover, the D-subunit of photosystem I (PSI-D) is encoded by 

two functional genes, PsaD1 and PsaD2 in Arabidopsis. The single-gene mutation of the 

psad1-1, which markedly affects the accumulation of PsaD mRNA and protein, and 

photosynthetic electron flow(Ihnatowicz et al. 2004). In the same mutant, the levels of PSI 

and PSII polypeptides are decreased, and leaf color become light green and increased 

photosensitivity (Ihnatowicz et al. 2004). These results suggest that ribonucleases and 

associated factor can be specifically regulated and can target essential RNAs that play 

critical roles in these developmental and cellular processes. 
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The control of mRNA stability is intimately linked with mRNA translation. In Drosophila 

(Drosophila melanogaster), crucial protein gradients are often dependent on translational 

suppression of mRNAs encoding proteins such as NANOS and HUNCHBACK, followed 

by degradation (Macdonald and Smibert 1996). mRNAs being translated are known to 

form a ‘closed loop’ conformation, in which the 5’cap is held in close proximity to the 

poly(A) tail through a series of connecting proteins, such as eIF4E (eukaryotic initiation 

factor 4E), eIF4G, and poly(A) binding protein (Sachs and Davis 1989; Hentze 1997; 

Mitchell and Tollervey 2000). This seems to provide a mechanism where mRNAs involved 

in translation are protected from exonucleolytic degradation. Proteins that repress 

translation appear to act by disrupting the RNP complex holding the 5’ and 3’ ends of the 

RNA together (Fátima and Matthias 2004). Subsequently, the degradation of these mRNAs 

might require interaction between the translation apparatus and mRNA-degradation 

machinery. Therefore, studying ribonucleases and ribonuclease-associated factors is not 

only important for understanding the control of mRNA degradation, but also for 

understanding mechanisms of translational repression.  The links between these processes 

and mRNA stability need to be further study, which may also shed light on the mechanisms 

of degradation of specific mRNAs in eukaryotes (Newbury 2006). 

1.4 Summary 

In eukaryotes, the process of alternative polyadenylation plays an important role in the 

expression of genes. Previous studies showed that poly(A) site choices were changed in 

different genomic regions under stress conditions, in yeast (Yoon and Brem 2010), 

mammals (Sandberg et al. 2008; Mainul et al. 2012) and plants (Shen et al. 2011; Wu et al. 

2011; Wu et al. 2014). Poly(A) site choice has been studied genome wide in Arabidopsis 
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subjected to drought stress. This study revealed that alternative polyadenylation might 

perform a mechanism to up-regulate gene expression under stress conditions in Chapter 2. 

A study shows that a larger number of poly (A) sites are controlled by CPSF30 in 

Arabidopsis. Three classes of poly (A) sites were noticed: wild type specific (wt-specific), 

oxt6 mutant specific (oxt6-specific), and common (seen both in wt-specific and oxt6-

specific) (Thomas et al. 2012). To test the mRNA isoforms from different genomic regions, 

the stability of different classes of mRNA isoforms was studied in Chapter 3. These mRNA 

isoforms had different stabilities between wild type and mutant oxt6. Especially the 

stability of mRNA isoforms that within the coding region, less stable in wt-specific while 

more stable in the oxt6-sepcific. What proteins might interact with AtCPSF30 to lead to 

the poly(A) site choice changes? Different protein-protein interaction techniques were 

performed to screen the candidate proteins. From localization assays, a previous study (Rao 

et al. 2009) and this study both found that AtCPSF30 is not only in nucleus, but also in the 

cytoplasm, suggesting that AtCPSF30 may interact with other proteins. The study 

displayed that AtCPSF30 interacts with At1g05510, OIL BODY-ASSOCIATED PROTEIN 

1A that, in its tyrosine-phosphorylated state, is modulated in response to ABA in 

Arabidopsis thaliana seeds, and ribosome protein L35 (At5g02610) that belongs to 

Ribosomal L29 family protein.  

When the aberrant RNAs are produced by a variety of events, the defective protein products 

are more likely to be misfolded and sometimes have dominant-negative effects (Roman et 

al. 1991; Ishigame et al. 2013). Thus, it is not surprising that organisms evolved a number 

of quality control processes to detect errors in mRNAs and subject them to rapid 

degradation (van Hoof and Wagner 2011). The defective mRNAs interfere with translation, 
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the corresponding mRNA- and protein-quality control processes all take advantage of the 

ribosome for aberration recognition (Shoemaker and Green 2011). The AtCPSF30 interacts 

with ribosome protein, and the stabilities of noncanonical mRNA isoforms are mediated 

by AtCPSF30. This provides a possibility that AtCPSF30 may be involved in mRNA 

quality control pathways.  
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Figure 1.1 Mature mRNA in eukaryotes 
A typical structure of mature mRNA in Eukaryote (Plants and Animals).  It contains a CAP 
(A 7-methylguanosine attached from the 5’ carbon by a triphosphate bridge to the 5’ carbon 
of the terminal nucleotide of the mRNA), 5’ UTR (5’end untranslated region), CDS (coding 
region), 3’ UTR (3’ untranslated region) and a poly(A) tail that interacts with the poly(A) 
binding proteins (PABPs). 
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Figure 1.2 Non-sense mediated decay pathway (cited from Lykke-Andersen et al, 
2014) 
The mRNAs that contain a premature termination codon (PTC) are degraded when a stall 
in the eRF1/eRF3-dependent translation termination process is detected by Upf and Smg 
proteins. Here Upf3, together with Upf1 and Upf2, may signal the presence of the PTC to 
the 5’end of the transcript, resulting in decapping and rapid exonucleolytic digestion of the 
mRNA. Some evidence shows that the resulting truncated protein product can be targeted 
for ubiquitylation and destroyed by the proteasome in an Upf1- and Cdc48-dependent 
manner. m7G refers to the mRNA 7-methyl guanosine cap; AAAAA refers to the poly(A)-
tail; Ter indicates a normal termination codon. 
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Figure 1.3 Non-stop decay pathway (cited from Lykke-Andersen et al, 2014) 
The ribosome reaches the mRNA’s 3’end without encountering a stop codon which is 
detected by the eRF3-like factor Ski7 and the mRNA targeted for decay by the exosome. 
Ski7 is thought to bind to the empty ribosomal A site, thereby the stalled ribosome is 
thought to be released by the Hbs1–Dom34–Rli1 complex, and thus recruit the exosome, 
resulting in rapid decay from the 3’end. The destruction of the defective protein products 
resulting from NSD mRNA substrates is mediated by ubiquitin pathway components Ltn1 
and Cdc48. 
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Chapter Two: Alternative polyadenylation as a potential mechanism to respond to 

drought stress in Arabidopsis thaliana 

2.1 Introduction 

Plants are under several different environment stresses which all impact growth and 

development (Seki et al. 2003; Farooq et al. 2009a; Farooq et al. 2009b). Among these, 

drought is considered the most devastating abiotic stress factor limiting crop productivity 

in modern agriculture worldwide (Zhang 2003; Fracasso et al. 2016). Climate change and 

water scarcity both give rise to drought stress. More than others, water becomes a resource 

in demand given current and future human population and societal needs (Rosegrant and 

Cline 2003). Therefore, an understanding of drought stress in relation to plant growth is 

very important for sustainable agriculture. 

The adaptation of plants to stress requires tight regulation of gene expression. Gene 

expression is regulated at the levels of transcription and translation and by increasing or 

buffering transcriptional effects by post-transcriptional mechanisms (Suzanne and Pamela 

2008; Hollerer et al. 2016). Recent studies have shown the crucial role of alternative 

polyadenylation (APA) in different species and have connected APA to epigenetic 

regulation associated with various biological processes (Lutz and Moreira 2011; Xing and 

Li 2011b; Ma et al. 2014a). In mammals, APA can give rise to a global shortening of 3’-

UTRs in proliferating cells and in cancer (Sandberg et al. 2008; Mayr and Bartel 2009; 

Elkon et al. 2012; Lin et al. 2012; Felice-Alessio et al. 2013). Also, the APA can result in 

a transcriptome-wide 3′UTR lengthening in differentiated cells and tissues (Sandberg et al. 

2008; Mainul et al. 2012). Besides 3’UTRs, poly(A) sites can fall into other genomic 

regions of pre-mRNA. Genome-wide studies in yeast showed that the mRNA isoforms 
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with 3’ ends within protein-coding regions were up-regulated in cells subjected to 

environment stresses (Yoon and Brem 2010).  This was also seen in selected genes (Sparks 

and Dieckmann 1998). mRNA isoforms with 3’ ends that lie within noncanonical regions 

have been described in plants (Shen et al. 2011; Wu et al. 2011; Wu et al. 2014). In 

Arabidopsis and Medicago truncatula, polyadenylation within the coding region seems to 

be evolutionarily conserved, suggestive of an important function for these mRNA isoforms 

(Wu et al. 2014). Genes associated with polyadenylation within coding regions and introns 

tend to encode proteins and enzymes associated with stress responses in Arabidopsis (Wu 

et al. 2011). These studies suggest that APA may be important for regulating stress 

responses in plants. 

Given the connections between genes associated with stress responses and APA, we 

hypothesized that drought stress may cause changes in the usage of polyadenylation site to 

generate different mRNA isoforms. In this context, studies were conducted to evaluate 

differential poly(A) site usage in plants exposed to simulated drought conditions achieved 

by growth of plants on media containing mannitol.  The results showed the levels of mRNA 

isoforms with 3’ ends within coding sequences and 5’UTRs increase after different drought 

treatments. However, the mRNA isoforms with 3’ ends in 5’-UTRs and in coding regions 

significantly increase after times as short as one hour. This suggests that APA may be 

among the early response mechanisms for responses to drought. The GO analysis showed 

that transcription, post-transcription and translation are processes overrepresented for the 

mRNA isoforms that fall into 5’UTR and CDS genomic region, especially the CDS region 

under drought stress. Taken together, these experiments indicate that the non-canonical 
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isoforms derived from APA within 5’UTRs and CDSs may play important roles in coping 

with drought stress. 

2.2 Results 

To study the relationship between drought stress and alternative polyadenylation, 

Arabidopsis plants were subjected to a number of different stress treatments, and poly(A) 

site choice subsequently analyzed.  In one set of experiments, Arabidopsis plants were 

grown for two weeks in the presence of different concentrations of mannitol in MS solid 

medium to simulate sustained drought stress. In another set of experiments, Arabidopsis 

plants were grown under normal conditions for two weeks and then placed in liquid media 

containing different concentrations of mannitol.  Plants so treated were harvested after 

different times for RNA isolation and further study (Figure 2.1). 

2.2.1 Validation of drought stress treatments with qRT-PCR 

To make sure that both short- and long-term drought stress was effective, potential 

reference genes were chosen for qRT-PCR in Arabidopsis thaliana. Based on previous 

studies and TAIR (Huang et al. 2008), one internal control Act II and eight diagnostic genes 

were used to test the effectiveness of the drought stress treatments. Primers were designed 

to assess the transcript accumulation of candidate genes (Table 2.1). 

The qRT-PCR results revealed that the expression levels of the selected diagnostic genes 

increased when plants were grown on solid media containing increasing concentrations of 

mannitol (Figure 2.2). The expression levels of all the diagnostic genes increased when 

plants were grown on 100mM mannitol treatment, such as MEPRIN and TRAF 

HOMOLOGY PROTEIN (At1g58270), ABA signaling regulator PROTEIN 

PHOSPHATASE2C (PP2C; At3g11410) and the SM-LIKE PROTEIN (At5g48870). 



 

 37 

Moreover, the expression levels of some of these genes decreased as the concentration of 

mannitol increased. For other genes, expression remained the same or increased with 

increasing mannitol concentrations. The fold change of At1g58270 is 3.4, while the 

previous study was 4.0 under drought (Huang et al. 2008), which is mainly for drought-

responsive genes that are regulated by plant hormones. Several studies demonstrated 

At3g11410, which encodes the ABA regulator PP2C, is involved in drought stress (Harb 

et al. 2010; Joshi et al. 2016; Sinha et al. 2017). The gene At2g41190 was also used as 

reference to validate gene expression alterations due to treatment and increases in 

expression of this gene have been documented to be among the greatest under dehydration 

stress (Qin et al. 2008). However, the expression level change of At2g41190 in this study 

was only from 2.1 to 4.5 relative to the ACTIN housekeeping reference gene.  Nevertheless, 

these results showed that the mannitol treatment could effectively induce the drought 

response. 

To further explore different conditions for the drought stress study, a time and 

concentration series treatment was performed with plants exposed to 0Mm, 100mM, 

250mM, and 300mM mannitol (Figure 2.1). qRT-PCR was used to validate these 

treatments using the diagnostic genes listed (Table 2.1). The results showed that the 

expression levels for most genes increased upon exposure to 100 mM mannitol at all time 

points.  However, as for the study in Fig 2.2, there were some difference with some of the 

genes.  Most notable was that At1g07720 responded minimally to the treatments except to 

100mM, due to this gene was mainly for the response of hormones under drought stress 

(Huang et al. 2008). This one instance aside, these results show that the liquid treatments 

were also effective at inducing drought stress. 
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2.2.2 Preparation of high-throughput poly(A) tag libraries and sequencing 

Based on the results of qRT-PCR analysis (Figures 2.2 and 2.3), all of the drought stress 

treatments seemed effective. Therefore, the different concentration series (0mM, 100 mM, 

250 mM, and 300 mM mannitol) and different time series (0h, 6h, 24h and 2 weeks) with 

300mM mannitol were chosen for preparing poly(A) tag (PAT) libraries. The procedure 

for this is illustrated in Figure 2.4 and described in the Methods (Section 2.4).   The total 

RNA was fragmented, poly(A)-enriched, and used for reverse transcription. During reverse 

transcription, an anchored-dT18 was used to attach one sequencing adaptor and a novel 

strand-switching activity of the reverse transcriptase (Zhu et al. 2001) was used to attach 

the other adaptor. The cDNA libraries were used as templates for limited PCR 

amplification and size selection to obtain pools of 400-500bp. After the final quality control 

assessment using the Bioanalyzer, the PAT libraries were submitted for high throughput 

sequencing. 

The sequencing data were analyzed using a series of steps. Using CLC Genomics 

Workbench, sequences were demultiplexed through the adaptor barcode sequence and 

aligned to the Arabidopsis genome. Each PAT library yielded from 2 million to 11 million 

reads after trimming. Between 2.67 million to 7.76 million reads aligned to the Arabidopsis 

genome for each sample [three PAT library (triplicate)] (Tables 2.2 and 2.3). 

Aligned reads were analyzed in several different ways. First, they were used to estimate 

overall gene expression by counting the total number of reads that mapped to each 

annotated Arabidopsis gene. The results can be compared with previous similar published 

RNA-seq or microarray data to estimate the consistency of treatments. Second, the poly(A) 

site analysis was conducted by a dedicated computational pipeline (Bell et al. 2016). The 
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raw reads were trimmed to remove the adaptor sequences before mapping. Mapped reads 

were used to analyze poly(A) sites and poly(A) site clusters (PACs), which are groups of 

poly(A) sites located within 24nt of each other in the same gene (Figure 2.4). From the 

collection of experimentally-determined PACs, the individual PACs were analyzed for 

their relative usage. For this, the changes of the poly(A) site usage was calculated to 

generate a metric. The metrics were further analyzed to estimate the changes of poly(A) 

site choice induced by drought stress. 

2.2.3 Drought stress incites changes in poly(A) site choice in different genomic 

regions 

To study drought-induced global gene expression, the gene expression levels were 

estimated by mapping PATs to individual genes, and further analyzing the results using 

CLC Genomics Workbench.  For these analyses, genes were assigned to be significantly 

different if their expression changed by at least 2-fold, and the results of a Student’s t-test 

for the treated-control comparison returned a p-value <0.001. The results showed that the 

number of genes that passed these filters at higher concentration (Figure 2.5A). Also, the 

number of down-regulated genes were greater than the number of upregulated genes, 

except at 100 mM mannitol. Moreover, when looking at the up-regulated genes, 67 such 

genes were seen in plants treated with 250 mM that were not seen in 100 mM mannitol, 

and 97 genes were apparently upregulated in the 250 mM and 300 mM mannitol 

comparison (Figure 2.5B). For the numbers of down-regulated genes, 92 repressed genes 

were seen in 250 mM mannitol compared with 100mM mannitol, and 120 genes had 

reduced expression in the 250mM-300mM comparison (Figure 2.5C). When the results of 

this study were compared with a similar progressive drought study (Bechtold et al. 2016), 
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111 differentially expressed genes (DEGs) were seen in both studies (Figure 2.5D).  

Furthermore, 244 DEGs categorized in my study were also identified as drought-

responsive in yet another study (Harb et al. 2010). These results confirm those shown in 

Figures 2.2 and 2.3, and show that the drought stress applied in my work was effective. 

To determine the effect of drought stress on poly(A) site choice, individual PACs were 

evaluated for differential poly(A) site choice under control and drought stress condition. 

The number of tags that mapped to a given PAC was divided by the total number of tags 

that mapping to the associated gene from Arabidopsis genome to get values of fractional 

PAC usage for control and drought treatment. The log2 transformed value of the ratio of 

usage in stressed and control samples were used to evaluate changes in poly(A) site choice 

in response to drought stress (Figure 2.6). 

A poly(A) site may fall into any genomic location, such as 5’-UTR, coding sequence, 

intron, 3’-UTR and intergenic region. mRNA functionalities or outcomes might be 

different in these different instances (de Lorenzo et al. 2017). Accordingly, the responses 

of these different isoforms were studied.  The results for the comparison of plants grown 

on solid media with or without 300 mM mannitol are shown in Figure 2.7.  The median 

change for all sites (“all” in Figure 2.7) was close to zero. Isoforms derived from 

polyadenylation in 3’-UTRs and introns displayed similar results, but the 25-75 percentile 

range for intron was much wider, suggesting there is greater variability in the usage of 

these sites.  For isoforms derived from polyadenylation within the protein coding region 

(“CDS” in Figure 2.7) and the 5’-UTR, higher levels were seen as were greater site-by-site 

variability (Figure 2.7). 
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For the time series treatment, the relative usages for individual poly A sites were calculated 

and determined from the comparison between controls and 300mM treatments after 1h, 6h 

and 24h. They are shown in Figure 2.8. When comparing control plants, there is no change 

in usage when considering all sites together (“All” in Figure 2.8). Similarity, there is almost 

no change in usage of sites that fall within 3’-UTRs and introns.  The usage of sites within 

3’-UTRs shows less variability than sites that fall within introns. The usage of poly(A) sites 

that lie within 5’-UTRs and protein coding regions (“CDS”) increased after 1 and 6 hours 

in mannitol (Figure 2.8A and 2.8B). However, after 24 hours, only 5-UTR-localized sites 

showed increased usage (Figure 2.8C).  These results suggest that stress-induced poly(A) 

site changes may play roles in early responses of plants to drought stress. 

To further explore drought-associated APA, those individual sites whose differential usage 

changed the most significantly (P-value<0.01, determined using DEX-seq package) were 

identified and evaluated. The list of sites that satisfied this criterion and transcripts 

associated with these sites. GO analysis showed that these genes are highly enriched for 

those of the intracellular organelle component, non/membrane-bound organelles 

component, cytoplasmic part, and macromolecular complex part. Moreover, the genes 

associated with the protein folding process, cellular protein/macromolecular metabolic 

process, reproductive development process and abiotic process (Figure 2.9) are also unduly 

affected by APA in drought stress. Interesting, there are more transcripts that have 

significantly differential usage of poly(A) sites under 250 mM mannitol treatment. GO 

analysis showed that these genes were associated with binding activity and structural 

molecular activity for molecular function (Figure 2.9B). 
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2.2.4 Annotation and functional analysis of poly(A) site choice in 5’UTR and CDS 

regions 

As stated in the previous section, no matter the concentration- or time-treatment, the usage 

of poly(A) sites that fall within 5’UTRs and CDS changes more than the usage of sites 

within other regions (Figures 2.7 and 2.8). To further analyze this, the annotation and 

function of transcripts affected by APA at sites that fall into 5’UTRs and CDS were 

assigned using agriGO. The annotations were verified manually and integrated using gene 

ontology (GO). For this, the reference is the Arabidopsis gene model (TAIR); the statistic 

model is the hypergeometric test; the multi-test adjust method is false discovery rate (FDR) 

with and adjusted p-value less than 0.05; and the minimum number of mapping entries is 

more than 9. The transcripts that fall into 5’UTR and CDS were annotated according to at 

least one of the three categories: cellular component, biological process or molecular 

function. The same parameters were used for GO analysis for all the transcripts affected 

by stress-induced APA in 5’UTRs and CDSs. 

For one-hour treatment, 428 poly(A) sites that fall into the 5’UTR were identified; these to 

407 transcripts. These 407 transcripts could be categorized into 104 functional groups. 

Among these groups, the terms related to biological process that are significantly enriched 

include stimulus (GO:0050896), abiotic stimulus (GO:0009628), water deprivation 

(GO:0009414), and hormone stimulus (GO:0009725) process, such as jasmonic acid 

(GO:0009753) and salicylic acid (GO:0009751) (Figure 2.10A). Molecular function 

categorizations for this group included transcription (GO:0006350), transcription regulator 

activity (GO:0030528), catalytic activity (GO:0003824), transporter 

activity(GO:0005215), transferase activity (GO:0016740), transferring phosphorus-
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containing groups (GO:0016772), DNA binding (GO:0003677) and protein binding 

(GO:0005515) activity (Figure 2.10B). 

For poly(A) sites that fall into the CDS, around 10316 differentially-utilized poly(A) sites 

corresponding to 5743 transcripts could be identified. These could be separated into 565 

functional groups. For biological process, the set of transcripts is highly enriched for RNA 

processing (GO:0006396), RNA metabolic process (GO:0016070), tRNA metabolic 

process (GO:0006399), tRNA aminoacylation for protein translation (GO:0006418), RNA 

splicing (GO:0008380), cellular protein metabolic process (GO:0044267), cellular 

metabolic process (GO:0044237), cellular nitrogen compound metabolic process 

(GO:0034641), macromolecule metabolic process (GO:0043170). Also, some transcripts 

are enriched in response to abiotic stimulus (GO:0009628), response to oxidative stress 

(GO:0006979), response to inorganic substance (GO:0010035), response to osmotic stress 

(GO:0006970), response to cadmium ion (GO:0046686), intracellular signaling cascade 

(GO:0007242), and response to metal ion (GO:0010038) (Figure 2.11A). Molecular 

function characterizations included binding activity (GO:0005488), nucleotide binding 

(GO:0000166), purine nucleotide binding (GO:0017076), purine ribonucleotide binding 

(GO:0032555), protein binding (GO:0005515), nucleic acid binding (GO:0003676), ATP 

binding (GO:0005524), DNA binding (GO:0003677), zinc binding (GO:0008270). And 

the catalytic activity (GO:0003824), ATPase activity(GO:0016887), helicase activity 

(GO:0004386), translation factor activity (GO:0008135), and transcription regulator 

activity (GO:0030528) are involved (Figure 2.11B). These categories are dominated by 

biological processes and molecular functions related to transcription, post-transcriptional 

and translational processes under drought stress. 
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2.3 Discussion 

2.3.1 Comments regarding the validation of the drought stress treatments 

Previously, it was reported that only 27 drought-inducible genes could be seen in different 

drought stress studies (Bray 2004). Another study showed that 67 genes that are responsive 

to nine abiotic stresses (Swindell 2006). In another report, 197 genes were found to be 

induced by large range of diverse stress conditions in Arabidopsis (Ma and Bohnert 2007). 

Interestingly, only two genes were found in common between the last two studies. More 

recently, another study showed that 1067 genes were found to be stress-responsive in 

Arabidopsis, while only 111 genes were seen in other studies (Harb et al. 2010). In this 

study, 244 genes, more than 53%, identified as  drought-inducible genes were also foundin 

other studie of drought-stressed Arabidopsis (Harb et al. 2010; Bechtold et al. 2016). 

The numbers of stress-responsive genes identified in drought stress experiments largely 

depends on the criteria used in selecting genes in a microarray or RNA-Seq experiment. 

Differential gene expression in earlier studies was selected based on expression ratios, not 

statistical thresholds. If the filter was a 5-fold change in expression, many weakly 

responsive genes are ignored. Therefore, the proportion of differentially expressed genes 

may be underestimated (Huang et al. 2008). In addition, the discrepancies from different 

studies may reflect the methods used for plant growth conditions, the application of stress 

treatment, and the purposes of the study. With these things in mind, the overlap of around 

25% and 53% of stress-inducible genes in this chapter is not surprising, and supports the 

conclusion that the stress treatments were effective. 
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2.3.2 Alternative polyadenylation and the molecular function of plants to drought 

stress 

Alternative polyadenylation (APA), a mechanism in which the same gene encodes mRNA 

isoforms with different 3'-ends due to the presence of multiple polyadenylation signal 

(PAS) elements, is pervasive in plants (Shen et al. 2011; Wu et al. 2011; Wu et al. 2014; 

Fu et al. 2016).  In Arabidopsis, around 60-70% of genes have multiple poly(A) sties (Shen 

et al. 2011; Wu et al. 2011; Duc et al. 2013). The functions of mRNA isoforms derived 

from APA at promoter-proximal sites that lie within protein coding regions, introns, and 

5’-UTRs have not been explained. One type of noncanonical mRNA isoform derived from 

polyadenylation within CDSs will, with few exceptions, lack translation termination 

codon. This kind of mRNAs are termed non-stop RNAs, which are less stable than 

canonical mRNAs in animals and yeast (Frischmeyer et al. 2002; van Hoof et al. 2002). 

For the intronic polyadenylation, the abundance of  mRNA isoforms is associated with 

polysomes, suggesting these isoforms are in fact substrates for quality control processes, 

such as NMD or nonstop decay in plants under abiotic stresses such as hypoxia (de Lorenzo 

et al. 2017). In contrast to isoforms are produced by polyadenylation within intron and 

CDS, the isoforms derived from polyadenylation in 5’UTRs showed little difference in 

their stability from isoforms produced by canonical poly (A) site choice is unclear, but 

possibly including some sort of association with RNA quality control processes (de 

Lorenzo et al. 2017).  These results indicate that noncanonical isoforms could be subjected 

to the RNA surveillance pathway. 

The levels of mRNA isoforms with 3’ ends that lie within 5’-UTRs and protein-coding 

regions increase (Figures 2.7 and 2.8) in drought-stressed plants. The mechanisms that 
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cause these increases have not been studied. However, other studies may shed new light on 

these mRNA isoforms. mRNA isoforms with 3’ ends that lie within coding regions lack 

stop codons and should be relatively unstable. This mode of APA may be a negative 

regulatory mechanism. To cope with different kinds of stresses, plants can utilize 

transcriptional re-programming(Yamaguchi-Shinozaki and Shinozaki 2006; Chinnusamy 

et al. 2007; Hirayama and Shinozaki 2007; Verslues and Zhu 2007; Zhu et al. 2007). The 

production of non-stop mRNAs might be an additional re-programming via an analogous 

RNA quality control process. 

The levels of 5-UTR-derived mRNA isoforms increase to the greatest extent after 1h of 

drought stress and is still higher than controls after 6h and 24h (Figure 2.8). The 

significance of this observation is unclear at this time.  The stability of these mRNA 

isoforms is indistinguishable from isoforms with 3’ ends that lie within 3’-UTRs (de 

Lorenzo et al. 2017), arguing against a negative regulatory function analogous to that 

proposed for non-stop mRNA isoforms.  In yeast, previous studies showed that ribosomes 

and 5’UTRs may interact in ways that modulate the stability of nonaberrant mRNAs (Linz 

et al. 1997). This suggests that ribosomes and 5’-UTRs might interact in ways that may 

affect translation. However, how this relates to mRNAs with 3’ ends that lie within 5’-

UTRs, and thus have no protein-coding potential, is not clear. 

Drought stress-responsive 5’UTR isoforms are associated with GO terms such as abiotic 

stimulus and water deprivation, both of which are relevant to drought stress. These 

characteristics were identified in many plants using microarray and RNA-seq, such as 

Arabidopsis thaliana (Harb et al. 2010), Leymus chinensis (one kind of sheepgrass) (Zhao 

et al. 2016), and Prunus persica (Ksouri et al. 2016). Under drought stress, ABA acts as 
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the central signal molecular and mediates a complex gene regulatory network (Yamaguchi-

Shinozaki and Shinozaki 2006; Kim et al. 2010; Zhao et al. 2016). However, the mRNA 

isoforms that end within 5’UTRs are associated with different hormone stimuli, including 

jasmonic acid and salicylic acid, and not ABA pathways. Drought stress-responsive 5’-

UTR isoforms are associated with transcription regulator activity, protein binding activity 

and catalytic activity. Previous studies showed that transcription factors (TFs) such as 

MYB, bZIP, C2H2, and NAC were expressed to a greater degree in plants under drought 

(Pereira et al. 2011; Thirunavukkarasu et al. 2017). These TFs include individuals that act 

in the ABA-dependent or ABA-independent signaling pathways (Shinozaki et al. 2003; 

Thirunavukkarasu et al. 2017). Thus, mRNA isoforms with 3’ ends within 5’UTR may 

play an important role in regulating transcription under drought stress. 

The associations of drought stress-responsive CDS isoforms (nonstop RNAs) are more 

complicated. These transcripts are significantly enriched for genes associated with RNA 

processing. Previous studies showed that RNA processing was critical for ability of plants 

to cope with drought stress (Wang et al. 2016). Specifically, the abundances of RNA 

processing-related proteins change when plants are subjected to drought (Wang et al. 

2016). These include RNA binding proteins that can bind with RNA molecules to mediated 

post-transcription gene regulation (Wang et al. 2016). Drought-responsive nonstop RNAs 

are also associated with GO terms such as DNA binding, nucleotide binding, protein 

binding, ATP binding, and zinc binding.  

2.3.3 Alternative polyadenylation factors might be involved in drought stress 

There is a large range of physiological and biochemical responses induced by drought 

stress, such as osmoprotectant synthesis and changes in fatty acid composition (Krasensky 
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and Jonak 2012). Oxidative damage due to the accumulation of reactive oxygen species 

(ROS) (Smirnoff 1993) is another such outcome of drought stress. ROS results from partial 

reduction of atmospheric O2, that leads to the production of four forms of cellular ROS, 

singlet oxygen, superoxide radicals, hydroxyl radicals and hydrogen peroxide. Singlet 

oxygen and hydroxyl radicals can be extremely reactive, leading to the oxidation of 

multiple cellular components and ultimately, if unchecked, to cell death (Foyer and 

Mullineaux 1994; Lerner and NetLibrary 1999; Mittler 2002; Apel and Hirt 2004). The 

toxic by-products of aerobic metabolism can be removed by means of antioxidants and 

antioxidative enzymes (Apel and Hirt 2004; Miller et al. 2010). ROS are also involved in 

signaling pathways that impact plant development, biotic- and abiotic-stress responses 

(Apel and Hirt 2004; Mittler et al. 2004). ROS can give rise to changes in gene expression, 

especially for the genes encoding ROS scavenging enzymes (Mittler 2002; Vranova and 

Villarroel 2002; Mittler et al. 2004; Gapper and Dolan 2006). In addition, ROS leads to 

rapid increases in intracellular calcium, resulting in a cellular signaling cascade (Price et 

al. 1994; Yang and Poovaiah 2002; Maike et al. 2004; Evans et al. 2005). 

In plants, there is an enigmatic subunit of the polyadenylation complex, CPSF30 (Hunt et 

al. 2008). The Arabidopsis CPSF30 is impacted by calmodulin and sulfhydryl reagents in 

vitro (Delaney et al. 2006; Hunt et al. 2008). Several calcium binding proteins, such as 

calmodulin, calcium sensing receptor, calreticulin and calcium-dependent protein kinase, 

were changed in response to drought (Wang et al. 2016). Specifically, the RNA binding 

activity of CPSF30 can be inhibited by calmodulin in a calcium-dependent manner.  In 

addition, the third zinc finger contains a disulfide bond that can reduced by sulfhydryl 

reagents (Addepalli et al. 2010); reduction of this bond inactivates the endonucleolytic 
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activity of the protein. As stated above, generation of ROS leads to increased levels of 

intracellular calcium (Maike et al. 2004; Evans et al. 2005). This could conceivably result 

in a calcium-calmodulin dependent inhibition of RNA binding by CPSF30, much as is seen 

in vitro.  Also, exposure to oxidative stress may also lead to extensive disulfide bond 

remodeling (Barford 2004). This provides a possible mechanism by which stress, via ROS, 

may regulate the activity of CPSF30 (Chakrabarti and Hunt 2015). Given that CPSF30 

controls the usage of many poly(A) sites in plants (Thomas et al. 2012), these 

considerations raise the possibility that CPSF30 may be a link between stress and APA 

through the combined actions of calcium and redox signaling pathways. 

To tell if AtCPSF30 is involved in the response to drought stress, all the genes from 1hour 

300 mM mannitol treatment were compared with all the genes that are affected by CPSF30-

mediated APA (see Chapter Three). The result show that around 50% genes overlap, and 

most genes possessing wt-specific poly(A) sites (7916 out of 7986) are involved in drought 

stress. Genes with noncanonical sites that fall within in 5’UTRs, CDS, and intron were 

compared in the set of those possessing wt-specific sites and those that respond to 1h of 

exposure to 300mM mannitol. There were 410 noncanonical transcripts are in the wt-

specific set of mRNAs, while 6431 are in the set of mannitol-responsive transcripts. The 

overlap of these sets is 363 noncanonical transcripts (almost all noncanonical wt-specific 

transcripts). These results indicate that AtCPSF30 may be involved in the responses of 

plants to drought stress.  
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2.4 Material and Methods 

2.4.1 Plant material and treatment 

Arabidopsis thaliana wild type Col-0 was cultured vertically on solid and liquid MS media 

(1x Murashige and Skoog salts, MES 0.5g/L pH = 5.7, and 1% sucrose). Plants were grown 

under long day conditions, 16h light and 8h dark for two weeks at 23 °C. The light intensity 

was 30 µmol•m–2•s–1 from Sylvania Octron ECO 5000 K 32W light bulbs. The surface of 

the seeds was sterilized before plating and put at 4°C for two days. In all experiments three 

biological samples were prepared. 

For the study involving different concentrations of mannitol, drought stress was induced 

on solid MS media containing different concentration of mannitol (0 mM, 100 mM, 250 

mM, 300 mM). The control samples were put under the same condition as treated samples 

without mannitol (Pandey et al. 2013). To study stress at different times after imposition 

of the stress, plants were grown on MS media for two weeks under normal conditions, and 

then placed in liquid media containing 300mM mannitol for 1h, 6h and 24h. The control 

samples were grown with MS liquid media without mannitol. 

2.4.2 qRT-PCR condition and analysis 

For quantitative real-time PCR, total RNA was extracted using Plant Trizol (Invitrogen), 

and SMARTScribe™ Reverse Transcriptase (Clontech) was used for reverse transcription 

with 1µg of total RNA. SsoAdvanced SYBR Green Supermix (Bio-Rad) and a CFX 

Connect real-time PCR system (Bio-Rad) was used for qRT-PCR in triplicate on 96-well 

plates. The cycling programs were as follows: initial DNA denaturation step (95°C for 

30s), 40 cycles (95°C for 5s, 55°C for 30s), and melt curve of 65°C to 95°C (in 0.5°C 

increments, 5s per step) (Wang and Perry 2013). The reference control genes were 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585594/#def7
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measured with three replicates in each PCR run, and the Ct from the average was used for 

relative gene expression analysis. The expression data value from candidate genes were 

normalized by subtracting the mean of reference gene Ct value from candidate Ct value get 

△Ct. The △△Ct was from △Ct of candidate gene subtracting the average of control △Ct. 

The fold change was obtained using the expression 2^-△△ Ct. 

2.4.3 Poly(A) tag library preparation and sequencing 

Total RNA was isolated using Trizol reagent and purified by RNAeasy columns (Qiagen, 

Hilden, Germany). A Nanodrop spectrophotometer was used for quantity and quality 

measurement (Biotek Synergy HT Multi-Mode Microplate Reader). Very pure RNA will 

have an A260/A280 ratio of ~2.1.  Anything higher than 1.8 is considered to be of 

acceptable purity. Also, The A260/A230 ratio should also be above 2.0. Each poly(A) tag 

library was generated from 1µg from total RNA using method B1 described by Ma et al. 

(Ma et al. 2014a). The quality of the PAT libraries was checked by on a Bioanalyzer using 

the Agilent High Sensitivity DNA chips (Agilent Technology). The concentration of these 

libraries is measured with Qubit fluorometer with Qubit® dsDNA HS assay kit (Agilent 

Technology). These poly(A) tag libraries were sequencing on the Illumina high-throughput 

sequencing platform. Three independent biological replicates were used for each sample. 

2.4.4 Poly(A) tag and gene expression analysis 

The poly(A) tag(PAT) libraries sequencing data were analyzed using the pipeline as 

described previously (Bell et al. 2016). Briefly, all the reads were demultiplexed and 

trimmed to remove the oligo-dT and sequencing adaptors using CLC Genomic Workbench 

suite of tools. The trimmed tags were mapped to the Arabidopsis genome (TAIR10, 

www.Arabidopsis .org). The pooled samples from triplicates can be exported as. bam files. 
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The quality can be evaluated by mapping to each sample to determine the gene expression. 

The sequence of all the pooled samples sequence can used for the poly(A) analysis. The 

PATs that mapped to individual annotated genes can be counted using Bed Tools, and to 

create lists of each individual poly(A) sites (PAS) and poly(A) sites clusters (PAC). A 

minimum of ten individual PATs for PASs and PACs are kept for further analysis. At least 

ten individual PATs for sites and cluster are kept for subsequent analysis. 

To determine gene expression, the PAT frequency of each gene was determined by a 

special file (TAIR10genes120.gff) that has only Arabidopsis genes. The data can be 

imported to CLC using the empirical analysis of DGE (differential gene expression) to 

compare the control and treatment. The genes with a total filter cut-off of 2-fold change 

and p-value <0.001 were selected as statistically significant.  

To determine the PAT frequency for each PAC, the list of PACs is used as annotated master 

file to tell the numbers of tags in each individual sample that map to the PAC. Thus, the 

numbers of tags in each individual sample are compared with the number of tags in the 

Arabidopsis genome to get a proportion for poly(A) site usage analysis.  

To calculate the statistically significant differences in poly(A) site usage in gene by gene 

analyses the DEX-seq package in R was used at a p-value<0.01 which was considered as 

statistically significant.   

2.4.5 Relative poly(A) site usage analysis 

Relative poly(A) site usage was calculated as shown in Figure 2.6. The log2 transformed 

value of PAS/gene treated sample divided PAS/gene control sample is defined as the 

Relative Poly(A) site Usage metric. The mRNA isoforms that fall into the CDS are used 

as an example for the calculation of relative mRNA stability. In the control sample, A, B, 
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C, D represent the numbers of tags that map to the poly(A) sites that fall into 5’UTR, intron, 

CDS and 3’UTR without treatment, respectively. In the treated sample, A’, B’, C’ and D’ 

represent the numbers of tags that map to the poly(A) sites that fall into 5’UTR, intron, 

CDS and 3’UTR under treatment, respectively. Therefore, the relative usage of site C is M 

in control sample, while N is the relative usage of site C’ for the treated sample. The change 

in relative poly(A) site usage is N/M; this value is log2 transformed before plotting results. 

(http://shiny.chemgrid.org/boxplotr/). 

2.4.6 GO analysis 

Gene Ontology term enrichment was performed using agriGO, which is a toolkit and 

database for agriculture community (Website http://bioinfo.cau.edu.cn/agriGO/). 

Parameters used were: reference is Arabidopsis gene model (TAIR); the statistic model is 

hypergeometric test; the multi-test adjust method is FDR adjust p-value; the significance 

is less than 0.05; and the minimum number of mapping entries is 9. In the GO figures, the 

X-axis is the negative log FDR adjust p-value and the Y-axis is the GO terms. 
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Table 2.1 Selected reference genes for Arabidopsis and corresponding primer pair 
information 
 

Gene ID Gene Name Primer sequence F/R (5’-3’) Amplicon 
length(bp) 

Amplicon 
Tm(°C) 

 
AT3G18780 
 

 
Actin II 

GCTCTTGACCTTGCTGGACG  
1134 

58.5 

CACAAACGAGGGCTGGAACA 58.0 
AT1G58270 
 

Meprin and TRAF homoloGy 
domain containinG protein 

ACAAGTACCAAATAAGCCAGGAGA 1191 55.9 
ATGTTGATGTCAACGCCAAAC 54.3 

AT2G41190 Amino acid transporter GCAGCGTCATTCAAACCATT 1611 54.3 
TTACCATACTTGCCCAACCAG 54.9 

AT3G62550 Universal stress protein (USP) 
Gene 

CCCCTCTTCCCGTTTACTCT 489 56.1 
GCATCTCCTCTTCCAACTCG 55.3 

AT4G02200 Response to water deprivation TTGTGGGTTTGATTCGTC 687 50.2 
AATCCACTGCCATTTCAT 49.2 

AT3G57520 Alkaline α Galactosidase GATAAGCCAGGCAACCAC 2322 53.7 
GGATCAGCGAATAAGCAGT 52.3 

AT5G48870 Sm-like snRNP proteins TTGGGTGATAATGAAAGG 267 46.5 
CAGAATGGCGATGTTGTT 50.6 

AT1G07720 Ketoacyl-CoA synthesis family 
protein 

GTCATCACTCCCAAGATTC 1437 50.2 
CGATAACCGCTTTACCTCC 52.9 

AT3G11410  Protein phosphatase 2C(PP2C) TCGTAACGGTGTAGCCATTCC 1200 56.9 
ATAGTCCATCACTCGCCAAGAT 55.7 
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Table 2.2 PAT-seq sequence data information for different concentration of 
mannitol treatment 
 

Concentration 
Number of 

reads 
Average 
length 

Number of 
reads after trim 

Percentage 
trimmed 

Average 
length after 

trim 
Mapped 
genome 

Genome 
(%) 

0R1 11,707,815 74.2 11,469,301 97.96% 58.4 4,803,600 59.97 
0R2 7,873,950 73.4 7,838,672 99.55% 59.5 1,302,561 44.63 
0R3 7,785,199 71.8 7,684,335 98.70% 57.2 1,657,080 40.42 

100R1 7,769,335 91.6 7,697,889 99.08% 77.5 3,506,352 74.42 
100R2 3,281,244 91.6 3,267,843 99.59% 77.9 583,191 48.49 

100R3 3,652,714 89.5 3,621,831 99.15% 74.6 1,126,871 59.48 
250R1 6,151,988 91.8 6,067,819 98.63% 75.7 3,640,708 73.16 
250R2 7,168,937 89.7 7,117,643 99.28% 75.5 1,487,633 49.66 
250R3 2,971,359 91.8 2,932,590 98.70% 77.1 967,624 62.81 
300R1 9,518,342 73 9,392,832 98.68% 58.3 2,666,613 55.32 
300R2 10,268,266 71.6 10,224,728 99.58% 57.7 1,444,568 37.21 

300R3 2,731,849 91.8 2,704,432 99% 76.5 608,002 44.82 
 
In all instances, R1, R2, R3 refers to replication 1, 2, and 3. 0 refers to the control samples, 
100 refers to 100mM mannitol treatment, 250 refers to 250mM mannitol treatment, 300 
refers to 300mM mannitol treatment. 
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Table 2.3 PAT-seq sequence data information for different time of mannitol 
treatment  
 

Time* 
Number of 

reads 
Average 
length 

Number of 
reads after trim 

Percentage 
trimmed 

Average 
length after 

trim 
Mapped 
genome 

Genome 
(%) 

C1R1 2,752,919 91.9 2,729,777 99.16% 77.2 936,045 66.6 
C1R2 2,635,930 92 2,570,946 97.53% 76.4 1,337,743 72.97 
C1R3 2,682,875 91.9 2,640,094 98.41% 77.1 1,335,143 78.69 
C6R1 3,089,237 91.9 3,064,861 99.21% 77.2 929,385 66.92 
C6R2 2,122,206 91.9 2,055,926 96.88% 75.5 1,087,510 70.63 

C6R3 2,785,286 91.9 2,737,572 98.29% 76.1 1,163,480 69.79 
C24R1 3,533,966 92 3,511,789 99.37% 77.6 731,200 48.37 
C24R2 3,089,642 91.8 2,999,843 97.09% 75.9 1,007,878 53 
C24R3 5,000,558 92 4,906,102 98.11% 76.2 1,786,755 63.94 
M1R1 2,756,213 91.9 2,736,602 99.29% 76.8 571,198 61.89 
M1R2 1,962,515 92 1,908,908 97.27% 76.3 954,816 75.46 

M1R3 2,550,958 92 2,500,046 98% 76.1 1,147,787 72 
M6R1 3,038,561 92 3,017,262 99.30% 77.9 956,162 69.03 
M6R2 2,065,761 91.9 2,025,557 98.05% 76.8 1,049,515 74.49 
M6R3 2,960,666 92 2,933,781 99.09% 77.3 1,091,548 74.45 
M24R1 5,739,327 91.9 5,641,449 98.29% 76.1 741,014 25.41 
M24R2 4,370,747 91.9 4,283,686 98.01% 76.4 1,177,343 56.58 

M24R3 5,802,731 92 5,731,230 98.77% 76.1 1,410,453 76.68 
 

*Time: In all instances, R1, R2, R3 refers to replication 1, 2, and 3. C1, C6, and C24 
denotes the control samples at 1, 6, and 24 hours after initiation of treatment. M1, M6 and 
M24 refers to the mannitol treatment samples at 1, 6, and 24 hours. 
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Figure 2.1. Overview of experimental approach to study APA under drought stress  
This flowchart shows two experiments. First, two-week old seedlings were cultured in MS 
solid media under 0mM,100mM, 250mM, and 300mM. Second, two-week old seedlings 
were totally emerged in different concentration treatments for 1h, 6h and 24h. After two 
weeks, all the materials were harvested to perform RNA extraction.  All samples have three 
biological replicates. The drought stress was validated by qRT-PCR for concentration and 
time treatment, and thereafter PAT libraries for sequencing were prepared.   
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Figure 2.2 qRT-PCR to validate different concentration treatment under drought 
stress 
qRT-PCR was performed to study the expression of eight drought-responsive genes under 
mannitol simulated drought conditions. Two-week old Arabidopsis seedings were cultured 
under different concentration treatments. The RNA was extracted to make cDNA for qRT-
PCR. The X-axis are the control and reference genes. The ActinII (At3g18780) was chosen 
as internal reference gene. The drought-response genes were chosen from previous studies 
under drought stress condition. For example, At3g11410, which encoded the ABA 
regulator PP2C, is involved drought stress. The gene fold change of At1g58270 is 3.4, 
while the previous study was 4.0 under drought (Harb et al. 2010; Joshi et al. 2016). 
Another gene At2g41190, which is response to water deprivation, was also used as 
reference to validate gene expression level (Qin et al. 2008). The gene At5g48870 is 
response to ABA and water deprivation (Cui et al. 2014). The results show that all three 
mannitol concentrations were effective, as each induced the expected changes in 
expression. The Y-axis is gene expression level from fold change.  
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Figure 2.3 qRT-PCR to validate different time treatment under drought stress 
qRT-PCR was performed to study the expression of eight drought-responsive genes under 
mannitol simulated drought conditions. Two-week old Arabidopsis seedings were cultured 
under different concentraion treatments. The RNA was extracted to make cDNA for qRT-
PCR. The X-axis are the control and reference genes. The ActinII (At3g18780) was chosen 
as internal reference gene. The gene At2g41190, which is involved in response to water 
deprivation, was also used as reference to validate gene expression level in previous study 
(Qin et al. 2008). The gene At3g62250, which is involved in ubiquitin-dependent protein 
catabolic process, translation, was involved in ROS pathway (Rojas et al. 2012). The Y-
axis is gene expression level from fold change.  
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Figure 2.4 Preparation for PAT libraries and sequencing data analysis workflow 
The general experimental approach carried out in this study is shown in two sections: 
poly(A) tag library preparation (left), the sequencing data workflow (right), and ready for 
next step analysis, including gene expression analysis, distribution of PATs, relative 
poly(A) site usage and gene ontology (GO) enrichment. PATs, poly(A) tags; PAC, poly(A) 
cluster. 
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5A. The tendency of up-regulated and down-regulated gene expression numbers in each 
comparison. 
The X-axis shows different concentration treatments compared with control, and the Y-
axis shows the up-, down-regulated gene expression numbers. The number of genes that 
passed these filters increased at higher concentration of mannitol. The number of down-
regulated gene was greater than the number of upregulated genes, except at 100 mM 
mannitol. 
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5B. Venn diagram showing the numbers of up-regulated genes.  
The numbers of up-regulated gene expression numbers in each comparison are presented 
using venn diagram. Moreover, when looking at the up-regulated genes, 67 new genes were 
seen in plants treated with 250mM that were not seen in 100 mM mannitol, and 97 new 
genes were apparent in the 250mM and 300Mm mannitol comparison.  
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5C. Venn diagram showing the down-regulated number of gene.  
The numbers of down-regulated gene expression numbers in each comparison are 
presented by venn diagram. For the numbers of down-regulated genes, 92 new genes were 
seen in 250 mM mannitol compared with 100mM mannitol, and 120 new genes in the 
250mM-300mM comparison. 
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5D. Venn diagram showing the total numbers of differential gene expression from this 
study compared with two previous studies. When the results of this study were compared 
with a similar progressive drought study (Bechtold et al. 2016), 111 genes were seen in 
both studies.  244 genes in my study were also identified as drought-responsive in yet 
another study (Harb et al. 2010).  
Figure 2.5 Drought stress incites significant global gene expression changes  
To study drought-induced global gene expression, the gene expression levels were 
estimated by mapping PATs to individual genes, and further analyzing the results using 
CLC Genomics Workbench.  For these analyses, genes were assigned to be significantly 
different if their expression changed by at least 2-fold, and the results of a Student’s t-test 
for the treated-control comparison returned a p-value <0.001. In these figures, 0_100 means 
the comparison between100mM mannitol and control (0mM), 0_250 means the 
comparison between 250mM mannitol and control (0mM), 0_300 means the comparison 
between 300mM mannitol and control (0mM). 
5A. The tendency of up-regulated and down-regulated gene expression numbers in each 
comparison.  
5B. Venn diagram showing the numbers of up-regulated genes.  
5C. Venn diagram showing the down-regulated number of gene.  
5D. Venn diagram showing the total numbers of gene expression from this study compared 
with two previous studies.  
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Figure 2.6 Overview of poly(A) site usage analysis  
Here using the CDS as an example to calculate relative poly(A) site usage. The left part 
shows the control sample has the two poly(A) sites fallen into different genomic region. 
The right part shows that the numbers of poly(A) sites are increased up to six under 
treatment. The total number of poly(A) sites could be same or different in genes. The total 
number of poly(A) tags are seventeen in control sample, while twenty in the treated sample. 
Therefore, the relative usage of site C is M in control sample, while N is the relative usage 
of site C’ for the treated sample.  The log2 efficiency of N/M the relative poly(A) site usage 
is calculated by counting tag numbers. Values greater than zero means the more poly(A) 
usage in treated plants, and values less than zero means less poly(A) usage in treated plants. 
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Figure 2.7 Drought induced by 300mM mannitol treatment for two weeks alters 
non-canonical poly(A) site usage  
Boxplot showing changes in overall usage of different classes of poly(A) sites in plants 
grown on 300 mM mannitol for 2 weeks. The relative contributions that each PAC makes 
to total poly(A) site usage was evaluated on a gene by gene basis, the ratios of usage in 
drought and control plants were calculated and log2 transformed. “Gene” means the 
complete collection of PACs. The number above each plot shows the total number of PACs 
in each class.  Non-canonical poly(A) sites include those situated in 5’-UTRs, CDS, and 
introns. 
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Figure 2.8 Drought induced by 300mM mannitol treatment for different time 
intervals leads to changes in the non-canonical poly(A) site usage 
A. Changes in poly(A) site usage in plants treated with 300 mM mannitol for 1 hr. 
B. Changes in poly(A) site usage in plants treated with 300 mM mannitol for 6 hr. 
C. Changes in poly(A) site usage in plants treated with 300 mM mannitol for 24 hr. 
 Calculations and display are as described in Figure. 2.7. 
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Figure 2.9 Enriched GO categories among the genes displaying APA after drought 
stress induced by different concentrations of mannitol treatments for two weeks 
Gene Ontology term enrichment according to the agriGO, which is a toolkit and database 
for agriculture community (Websitehttp://bioinfo.cau.edu.cn/agriGO/). Parameters are that 
reference is Arabidopsis gene model (TAIR); the statistic model is hypergeometric test; the 
multi-test adjust method is FDR adjust p-value; the significance is less than 0.05; and the 
minimum number of mapping entry is 9. The X-axis is minus log FDR adjusted p-value. 
The Y –axis is the GO terms. 
9A. The GO terms from 100mM treatment compared with control. 
9B. The GO terms from 250mM treatment compared with control. 
9C. The GO terms from 300mM treatment compared with control. 
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Figure 2.10 Enriched GO categories among the transcript isoforms terminating at 
poly(A) site located at 5'UTRs 
A. The biological process of 1h_300mM treatment in 5’UTR.  
B. The molecular function of 1h_300mM treatment in 5’UTR. 
GO analyses were conducted as described in the legend for Figure. 2.9. 
 



 

 72 

 



 

 73 

 
Figure 2.11 Enriched GO categories among the transcript isoforms terminating at 
poly(A) site located at CDSs 
11A. The biological process of 1h_300mM treatment in CDS 
11B. The molecular function of 1h_300mM treatment in CDS 
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Chapter Three: AtCPSF30-mediated alternative polyadenylation controls mRNA 

stability 

3.1 Introduction 

The process of polyadenylation is important for the function of eukaryotic mRNAs, being 

intimately involved in translatability (Sachs and Wahle 1993; Li and Hunt 1997) and 

stability (Jacobson and Peltz 1996). This is especially true for genes whose mRNAs can be 

polyadenylated at more than one position within the pre-mRNA (Lutz and Moreira 2011; 

Xing and Li 2011b), a process termed alternative polyadenylation (APA). APA in the RNA 

processing step may give rise to mRNAs with different functions and might ultimately 

change the function of the associated gene product (Hunt 2012). 

In plants, there are two general classes of APA sites, canonical and noncanonical (de 

Lorenzo et al. 2017). Poly(A) sites that occur in the 3’-untranslated regions (3’-UTRs) of 

pre-mRNAs are called canonical, since they yield mRNAs that are translatable and encode 

full-length polypeptides (Sun et al. 2012). Noncanonical poly(A) sites reside in the 

upstream regions, including 5’-unstranslated regions (5’-UTRs), protein coding regions 

and introns.  Polyadenylation in the protein coding region of the pre-mRNA would produce 

transcripts that lack a translation termination codon (resulting in a non-stop mRNA). Non-

stop mRNAs are unstable and rapidly turnover through the non-stop decay mechanism 

(NSD) (Frischmeyer et al. 2002; Vasudevan et al. 2002; Akimitsu et al. 2007). 

Polyadenylation that occurs within introns can lead to alternative protein products or 

impact mRNA stability through the nonsense-mediated decay mechanism (NMD) (Hogg 

and Goff 2010; Hwang and Maquat 2011). Interestingly, alternative polyadenylation also 

can happen in the 5’UTR (Wu et al. 2011; Thomas et al. 2012; Wu et al. 2014). 
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Alternative polyadenylation (APA) has the potential to affect gene regulation and function. 

In Arabidopsis, APA may be linked with stress responses through a polyadenylation 

complex subunit CPSF30 (AtCPSF30) (Hunt 2014). Zhang et al. have described an 

Arabidopsis mutant that can tolerate oxidative stress, called oxt6. This mutant was caused 

by a T-DNA insertion in the gene that encodes AtCPSF30 (Zhang et al. 2008). The 

AtCPSF30 is impacted by calmodulin and sulfhydryl reagents in vitro (Delaney et al. 

2006). The RNA binding activity of AtCPSF30 can be inhibited by calmodulin in a 

calcium-dependent manner, whereas the third zinc finger contains disulfide bond that can 

inhibited by DL-dithiothreitol (Addepalli et al. 2010). Consistent with its function as a 

polyadenylation factor subunit (Delaney et al. 2006), poly(A) site choice is altered genome-

wide in the oxt6 mutant (Thomas et al. 2012). This study revealed that there are three 

classes of poly A sites in Arabidopsis: sites seen only in the wild type (wt-specific), sites 

seen only in the oxt6 mutant (oxt6-specific), and sites seen in both genetic backgrounds 

(common sites). The wt-specific and oxt6-specific sites comprise 70% of all sites (Thomas 

et al. 2012). 

While AtCPSF30 controls the usage of a large number of poly(A) sites, it was not clear 

how AtCPSF30-mediated APA contributes to gene regulation.  In this chapter, I 

hypothesize that alternative polyadenylation through AtCPSF30 controls mRNA stability. 

Two-week old Arabidopsis seedlings were treated with 200µM cordycepin for 2h to block 

nuclear transcription. RNA was isolated and used for PAT-seq libraries preparation and 

analyzed. The results showed that most mRNA isoforms show similar stability profiles in 

the wild-type and oxt6 mutant plants, with the exception of mRNA isoforms with 3’ ends 

that lie within 5’-UTRs. However, oxt6-specific mRNA isoforms derived from 
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polyadenylation within coding region (CDS isoforms) are more stable than wt-specific 

CDS isoforms. These results implicate AtCPSF30 in the process of non-stop mRNA decay 

and other aspects of RNA surveillance. 

3.2 Results 

3.2.1 Overview of experimental approach 

To determine the relative stabilities of mRNA isoforms, the method used in similar 

previous studies (Johnson et al. 2000; Gutierrez et al. 2002) was used. Two-week old 

seedlings were treated with cordycepin for different times ranging from 15 min to 120 min 

to block nuclear transcription. Total RNA was isolated from these samples for PAT library 

preparation, sequencing, and analysis (Figure 3.1). The poly(A) site analysis was 

conducted using a dedicated computational pipeline (Bell et al. 2016). The rationale for 

this approach holds that, after treating with cordycepin (a transcription inhibitor), there is 

no new mRNA produced. Thus, all mRNAs will decay depending on their stabilities. Some 

of the mRNA isoforms will be less stable than the others, and these differences can be 

measured by determining the relative levels of the individual isoforms on a gene-by-gene 

basis. This approach is summarized in Figure 3.2.   The relative poly(A) site usage is used 

to estimate relative mRNA stability. In Figure 3.2, the mRNA isoforms that fall into the 

CDS are used as an example for the calculation of relative mRNA stability. In the control 

sample, A, B, C, D represent the numbers of tags that map to the poly(A) sites that fall into 

5’UTR, intron, CDS and 3’UTR without treatment, respectively. In the treated sample, A’, 

B’, C’ and D’ represent the numbers of tags that map to the poly(A) sites that fall into 

5’UTR, intron, CDS and 3’UTR under treatment, respectively. Therefore, the relative 

usage of site C is P in the control sample, while Q is the relative usage of site C’ for the 
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treated sample. The change in relative poly(A) site usage is Q/P; this value is log2 

transformed before plotting results. 

3.2.2 Validation of the cordycepin treatment 

To validate the effectiveness of the cordycepin treatment, the relative expression of all 

mRNA isoforms derived from different genes was determined using PATs as described 

before (Ma et al. 2014b).  For this, the number of PATs which were mapped to individual 

annotated genes were used to calculate relative gene expression levels. Subsequently, 

relative mRNA stability was inferred (Figure 3.3A) and the results compared with previous 

stability studies (Figure 3.3B). In my experiment, 1266 unstable transcripts were identified 

(FDR p-value<0.05 and the absolute fold change more than two) in the wild type 

cordycepin study. When compared with the list of genes encoding unstable transcripts 

noted in previous published papers, roughly 83% of the unstable transcripts in my work 

were also identified in Gutierrez et al. (Gutierrez et al. 2002), 77% of the unstable 

transcripts were identified in the Kim et al. (Kim et al. 2011), and 70% were identified in 

the de Lorenzo study (Figure 3.3B) (de Lorenzo et al. 2017). These results demonstrated 

that the cordycepin treatment was effective. 

3.2.3 The global mRNA stabilities in the wild type and oxt6 mutant 

To evaluate the relative stabilities of different classes of mRNA isoforms in the wild-type 

and oxt6-mutant, the relative levels of individual mRNA isoforms were calculated from the 

ratio of poly(A) site usage. Since the largest number of unstable transcripts could be seen 

120 min post-treatment commencement, the relative poly(A) site usage of each mRNA 

isoform was calculated from comparison between control (C0) and 120 min (C120) 

cordycepin treatment samples. The ratio of poly(A) site usage for these comparisons was 
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log2 transformed. The values less than zero reflect low stabilities, while values greater than 

zero indicate greater stabilities. The aggregate values for each class of mRNA isoform 

(with poly(A) sites that fall in 5’-UTRs, CDS, introns, and 3’-UTRs) are summarized in 

Figure 3.4. In the wild type, the median values for all sites and sites that fall into the 3’-

UTR were similar. Sites that fell into the 5’UTR region had a slighter greater median value, 

but the value was not significantly different from the median value obtained from 3’UTR 

sites. However, mRNA isoforms with poly(A) sites that lie within the CDS and within 

introns had significantly lower values, -0.35 and -0.42 (Figure 3.4A). These results indicate 

that, in general, mRNA isoforms derived from CDS and intronic polyadenylation are 

somewhat less stable than other mRNA isoforms. These results corroborate those described 

in De Lorenzo et al. (de Lorenzo et al. 2017) . 

In the oxt6 mutant, mRNA isoforms with 3’ ends within CDS and introns also had 

significantly lower stabilities than isoforms with 3’ ends within 3’-UTRs (Figure 3.4B). 

Interestingly, mRNA isoforms with 3’ ends within 5’UTRs also showed lower stabilities 

(Figure 3.4B). These results show that the relative stabilities of mRNA isoforms with 3’ 

ends that fall within CDS and introns do not seem to be affected by the absence of 

AtCPSF30.  However, they suggest that AtCPSF30 may be important for the isoforms with 

3’ ends that fall within 5’-UTRs, since these isoforms were less stable in the mutant than 

the wild-type. 

3.2.4 The stabilities of mRNA isoform defined by their dependences on AtCPSF30 

As mentioned above, poly(A) sites in Arabidopsis may be defined by their dependence on 

the presence or absence of AtCPSF30. One class is the wild type specific, which means 

that the poly(A) sites exclusively exist in wild type plants. Another class is the oxt6 mutant 



 

 79 

specific, which are poly(A) sites only seen in the oxt6 mutant. The third class (common 

sites) consists of sites seen in wild type and mutant plants. To explore the stabilities of 

mRNA isoforms derived from usage of these three classes of poly(A) sites, the ratios of 

poly(A) site usage were calculated using the same method for the global mRNA stabilities, 

and the relative stabilities of subsets of each class displayed as shown in Figure 3.5. The 

stabilities of common mRNA isoforms derived from poly(A) sites within 5’UTR, coding 

sequence, and introns were all significantly lower than common sites ending within 3’ 

UTRs (Figure 3.5A). Also, the stabilities of wt- and oxt6- specific mRNA isoforms with 3’ 

ends within introns were lower than wt- and oxt6- specific mRNA isoforms with 3’ ends 

within 3’UTRs (Figures 3.5B and 3.5C).  Interestingly, naturally occurring, wt-specific 

isoforms derived from 5’UTR polyadenylation were relatively stable (Figure 3.5B), while 

mutant induced, oxt6-specific isoforms derived from 5’UTR polyadenylation were 

relatively unstable (Figure 3.5C). Moreover, naturally occurring, wt-specific isoforms 

derived from CDS polyadenylation were relatively unstable (Figure 3.5B), while those 

oxt6-specific isoforms, invoked due to the mutation, that are derived from CDS 

polyadenylation were relatively stable (Figure 3.5C). These results indicate that naturally 

occurring mRNA isoforms derived from 5’UTR polyadenylation are stabilized by the 

presence of AtCPSF30, while the stability of another type of mRNA isoform derived from 

5’UTR polyadenylation and generated due to the mutation are not dependent on 

AtCPSF30. However, the stability of mRNA isoforms derived from CDS polyadenylation 

is dependent on the presence of AtCPSF30, while the stability of mRNA isoforms derived 

from intronic polyadenylation is not dependent on the presence of AtCPSF30. These results 
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reveal a very complicated role for AtCPSF30 in the stabilities of mRNA isoforms derived 

from 5’UTR and CDS. 

To further explore the poly(A) site choice associated with mRNA stability, those individual 

sites whose stabilities were the most significantly (P-value <0.001, determined using DEX-

seq package) lower were identified. The list of sites that fall into theses parameters and 

transcripts associated sites are identified. For the wt-specific unstable transcripts, the GO 

analysis showed that they are highly enriched for response to stress, response to stimulus, 

response to metal ion, response to inorganic substance, response to water deprivation, 

response to osmotic stress, response to chemical stimulus, cellular localization, protein 

localization and transportation, and cellular nitrogen compound metabolic process (Figure 

3.6A). Interestingly, as far as molecular function is concerned, the main affected categories 

were structure molecular activity and structural constituent of ribosome (Figure 3.6A). 

However, the biological process of GO analysis for oxt6-specific transcripts are similar to 

the wt-specific transcripts, but the affected molecular functions are different for oxt6-

specific transcripts; for the latter, unstable transcripts were associated with binding activity 

and RNA binding activities (Figure 3.6B). These results suggest that the unstable 

transcripts are involved in stress response processes, and that the molecular functions of 

unstable wt-specific and oxt6-specific transcripts are different, suggesting different 

contributions of these sites to growth and development. 

3.2.5 Annotation and functional analysis of mRNA isoforms that AtCPSF30-

dependent and -independent 

As mentioned above, the stabilities of wt-specific and oxt6-specific mRNAs derived from 

polyadenylation within 5’UTR and CDS regions are different (Figures 3.5B and 3.5C). To 
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further analyze this, the annotation and function of transcripts derived from 

polyadenylation at sites that fall into 5’UTRs and CDS were assigned using agriGO. For 

the GO analysis, the reference is the Arabidopsis gene models (TAIR); the statistical model 

is the hypergeometric test; the multi-test adjust method is FDR adjusted p-value less than 

0.05; and the minimum number of mapping entries is greater than or equal to 5. The 

transcripts that fall into 5’UTRs and CDSs were annotated according to at least one of the 

three categories: cellular component, biological process or molecular function. The same 

parameters were used for GO analyses for transcripts that are dependent or independent on 

AtCPSF30. 

For wt-specific poly(A) sites, only 41 poly(A) sites that fall into the 5’UTR were identified; 

those mapped to 25 transcripts. These 25 transcripts are categorized into 10 functional 

groups, which belong to the biological process. In this group, transcripts were enriched in 

cell component categories, including the cytoplasm (GO:0005737), intracellular organelle 

(GO:0043229) and membrane-bounded organelle (GO:0043227) (Figure 3.7A). For oxt6-

specific poly(A) sites, 94 poly(A) sites that fall into the 5’UTR were identified; those are 

associated with to 94 transcripts. These 94 transcripts are categorized into 39 functional 

groups. For the biological process, the transcripts are mainly enriched in repose to chemical 

stimulus (GO:0042221), abiotic stimulus (GO:0009628), response to organic substance 

(GO:0010033), response to water (GO:0009415), response to endogenous stimulus 

(GO:0009719). Also, protein transport (GO:0015031), protein localization (GO:0008104), 

cellular localization (GO:0051641) and macromolecular localization (GO:0033036) are 

included. Molecular function categorizations for this group included transporter activity 

(GO:0005215), substrate-specific transporter activity (GO:0022892), substrate-specific 
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transmembrane transporter activity (GO:0022891), transmembrane transporter activity 

(GO:0022857), and oxidoreductase activity (GO:0016491) (Figure 3.7B). 

For wt-specific poly(A) sites, 428 differentially-utilized poly(A) sites that fall in to CDS 

corresponding to 322 transcripts could be identified. These transcripts are categorized into 

142 functional groups. Biological process characterization included response stimulus 

(GO:0050896), response to temperature stimulus (GO:0009266), response to stress 

(GO:0006950), response to cold (GO:0009409), response to water deprivation 

(GO:0009414), response to biotic stimulus (GO:0009607), response to cadmium ion 

(GO:0046686), response to osmotic stress (GO:0006970), response to chemical stimulus 

(GO:0042221), response to fungus (GO:0009620), response to inorganic substance 

(GO:0010035), response to metal ion (GO:0010038), response to salt stress (GO:0009651), 

response to organic substance (GO:0010033), carboxylic acid metabolic process 

(GO:0019752). Additionally, the cellular ketone metabolic process (GO:0042180), organic 

acid metabolic process (GO:0006082), post- transcriptional protein modification 

(GO:0043687), gene expression (GO:0010467), translation (GO:0006412), defense 

response (GO:0006952), primary metabolic process (GO:0044238), and cellular 

macromolecular metabolic process (GO:0044260) are all included (Figure 3.8A). For the 

molecular function, there is significant enrichment for binding activity, including protein 

binding (GO:0005515) nucleotide binding (GO:0000166), translation factor activity, 

nucleic acid binding (GO:0008135), ATP binding (GO:0005524), purine ribonucleotide 

binding (GO:0032555), ribonucleotide binding (GO:0032553) purine nucleotide binding 

(GO:0017076), adenyl nucleotide binding (GO:0030554), nucleic acid binding 

(GO:0003676), calmodulin binding (GO:0005516). Other enriched categories included 
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transferase activity (GO:0016740), translation initiation factor activity (GO:0003743), 

transmembrane receptor activity (GO:0004888) (Figure 3.8B). For oxt6-specific poly(A) 

sites, 474 sites that fall into the CDS were identified; those are associated with 334 

transcripts. These transcripts can be separated into 91 functional. In the biological process, 

the set of transcripts is highly enriched for genes associated with response to abiotic 

stimulus (GO:0009628), response to stimulus (GO:0050896) response to water 

(GO:0009415)/water deprivation (GO:0009414), post-embryonic development 

(GO:0009791), photosynthesis (GO:0015979), cation transport (GO:0006812), response 

to osmotic stress (GO:0006970), ion transport (GO:0006811), reproductive developmental 

process (GO:0003006), macromolecular localization (GO:0033036), intracellular transport 

(GO:0046907), embryonic development ending in seed dormancy (GO:0009793) and fruit 

development (GO:0010154) (Figure 3.9A). Molecular function characterizations included 

structural molecule activity (GO:0005198), structural constituent of ribosome 

(GO:0003735), hydrolase activity, acting on acid anhydrides, in phosphorus-containing 

anhydrides (GO:0016818), hydrolase activity, acting on acid anhydrides (GO:0016817), 

pyrophosphatase activity (GO:0016462), nucleoside-triphosphatase activity 

(GO:0017111), heat shock protein binding (GO:0031072) activity (Figure 3.9B). 

Taken together, for the mRNAs derived from polyadenylation within the 5’UTR, there are 

fewer transcripts, and thus it is difficult to tell the difference of annotation between wt-

specific and oxt6-specific. However, for the mRNA isoforms derived from polyadenylation 

within CDS, the annotation and function of mRNA isoform between wt-specific and oxt6-

specific have similarities in the biological processes that are more related with stress 

responses, such as response stimulus, response to osmotic stress and response to water 
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deprivation. But differences exist in the molecular functions; the transcripts of wt-specific 

are mainly for binding activity, translation factor activity while the oxt6-specific are 

structural molecular activity, hydrolase activity, pyrophosphatase activity, and heat shock 

protein binding activity. This indicates that the molecular function of transcripts might be 

more dependent on AtCPSF30, while the transcripts for biological process might be 

partially dependent on AtCPSF30.  

3.3 Discussion 

A majority of eukaryotic genes have multiple polyadenylation sites (Di Giammartino et al. 

2011; Lutz and Moreira 2011; Shi 2012). In previous studies, the analysis of genome-wide 

data in plants showed that alternative polyadenylation (APA) is pervasive in plants (Wu et 

al. 2011; Wu et al. 2014; Fu et al. 2016). Poly(A) sites may be classified according to their 

genomic location (5’-UTR, CDS, intron, or 3’-UTR).  The products of the proximal 

poly(A) site choice give rise to noncanonical mRNA isoforms, mRNAs that do not encode 

full-length functional polypeptides (de Lorenzo et al. 2017). In this study, the properties of 

noncanonical mRNA isoforms in wild-type Arabidopsis and the oxt6 mutant were studied, 

to better understand AtCPSF30-dependent and -independent polyadenylation. 

3.3.1 The stability of noncanonical mRNA isoforms derived from polyadenylation 

with introns 

One type of noncanonical mRNA isoforms is mRNAs with 3’ends that lie within introns. 

In most cases, these sites are situated between coding exons, giving rise to isoforms 

encoding different proteins (Mainul et al. 2012). Many human genes encode transcripts 

derived from combinations of alternative splicing and alternative polyadenylation. The 

classic example is that of the heavy chain gene of immunoglobulin (IgM); this gene has a 
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poly(A) site within an intron and gives rise to different mRNAs during different stages of 

B cell development (Edwalds-Gilbert and Milcarek 1995; Takagaki et al. 1996; Bruce et 

al. 2003; Tian et al. 2007).  Another study showed that the calcitonin/calcitonin gene-

related peptide gene (CALCA) is regulated by the splicing factor SRp20 through the usage 

of an intronic poly(A) site to make mRNA variants in a tissue-specific manner (Lou et al. 

1998; Tian et al. 2007). In plants, one well-studied example of alternative polyadenylation 

involves the regulatory factor FY, which is a core polyadenylation complex subunit 

involved in the network of genes that control flowering time in Arabidopsis. FY interacts 

with an RNA binding protein (FCA) leading to polyadenylation within an intron in 

transcripts from the FCA gene (Simpson et al. 2003). In the case of FCA, usage of the 

intronic poly(A) site results in the production of truncated polypeptides. 

When transcripts contain premature termination codons, they are degraded through 

nonsense mediated decay (NMD) to prevent the accumulation of the potentially harmful 

proteins (Stephanie and Allan 2012). Two eukaryotic NMD evolutionary models have been 

proposed. One is the evolutionarily ancient form, and is based on the recognition of long 

3’UTRs. The other is intron-based and involves the so-called exon junction complex. The 

latter mechanism has evolved in vertebrates to efficiently reduce the accumulation of 

abnormal products of alternative splicing (Durand and Lykke-Andersen 2011). In plants, 

3’-UTR located introns can trigger nonsense mediated decay (NMD) (Kertész et al. 2006; 

Schwartz et al. 2006; Hori and Watanabe 2007; Wu et al. 2007), demonstrative of the 

existence of an analogous mechanism. 

In this study, noncanonical mRNA isoforms within 3’ends that lie within introns are all 

unstable in both the wild type and oxt6 mutant (Figure 3.3).  Moreover, CPSF30-dependent 
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and independent intronic isoforms are also inherently unstable (Figure 3.4). Introns in 

Arabidopsis that contains poly(A) sites are shorter than the typical introns whose average 

length around 270 nt (Wu et al. 2011), but they are not long enough that polyadenylation 

within them may trigger NMD (Hogg and Goff 2010). Specifically, 3’UTRs shorter than 

350 nt do not trigger NMD in Arabidopsis, while the average 3’-UTR length is 237 nt in 

the latest version of the TAIR10 Arabidopsis database (Kalyna et al. 2012). Thus, mRNA 

isoforms derived from intronic polyadenylation should not be substrates for NMD. The 

mechanism that is responsible for the lower stabilities of these mRNA isoforms is not clear. 

This might reflect an interplay between splicing, mRNA turnover and polyadenylation. 

Regardless, the results presented in this chapter show that AtCPSF30 does not control the 

stabilities of mRNA isoforms with 3’ends that lie within introns. 

3.3.2 The stability of noncanonical mRNA isoforms in CDS 

Another type of noncanonical mRNA isoform is mRNAs with 3’ends that fall within 

protein coding regions. These isoforms almost always lack translation termination codons 

and are thus non-stop RNAs. Non-stop mRNAs are rapidly degraded through the non-stop 

decay pathway (NSD) (Frischmeyer et al. 2002; van Hoof et al. 2002). In the non-stop 

pathway, ribosomes stall at the 3’ ends of the mRNA, a process that results in the 

recruitment of NSD cofactors and the exosome complex to facilitate the degradation of the 

aberrant mRNA (Klauer and van Hoof 2012). This pathway was identified as a cytoplasmic 

pathway in both yeast and mammals (Frischmeyer et al. 2002; van Hoof et al. 2002), and 

is closely associated with the ribosome. During the translation of nonstop mRNAs, the 

ribosome proceeds through the end of the poly(A) tail, displacing the poly(A)-binding 

protein (PABP) and stalling at the 3' end of the mRNA. The stalled ribosome at the 3′ end 
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of a transcript initiates non-stop decay through the binding of the C-terminus of Ski7 to the 

empty A site of the ribosome, thereby releasing the ribosome. Then the exosome is 

recruited by Ski7 and, along with the SKI complex, deadenylates and rapidly degrades the 

transcript (Frischmeyer et al. 2002; van Hoof et al. 2002). The 5′ to 3′ mRNA decay 

pathway can also mediate NSD without Ski7 in S. cerevisiae (Inada and Aiba 2005). This 

is because the removal of PABP is known to render transcripts susceptible to decapping 

and subsequent degradation by XRN1. 

For the global analysis of poly(A) sites, the results showed that mRNA transcripts derived 

from polyadenylation in the coding regions are all unstable in the wild type and the oxt6 

mutant (Figures 3.4A and 3.4B). However, the median value of relative poly(A) site 

stability for these sites is -0.35 in wild type (Figure 3.4A), and -0.13 in the oxt6 mutant 

(Figure 3.4B). This result suggests that the stabilities of these mRNA isoforms in the wild 

type is less than in the oxt6 mutant, suggesting AtCPSF30 can affect the stabilities of these 

transcripts. In addition, oxt6-specific nonstop transcripts are more stable than wt-specific 

nonstop mRNAs as well as nonstop RNAs whose production is not affected by the presence 

or absence of AtCPSF30 (common sites; compare “CDS” samples in Figures 3.5A, 3.5B, 

and 3.5C).  These results demonstrate that the present of AtCPSF30 can impact the 

stabilities of nonstop transcripts. 

In Chapter 4 of this thesis, screening for proteins that interact with AtCPSF30 is described. 

Among the findings in this chapter is that AtCPSF30 interacts with an Arabidopsis 60S 

ribosomal protein (RPL35). In humans, one study showed that the expansion segment of 

RPL35 plays an important role in nuclear entry, translation activity, and endoplasmic 

reticulum docking (Chen et al. 2008). This raises the possibility that AtCPSF30 might 
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directly interact with ribosome proteins to decrease the stabilities of nonstop mRNAs. 

Taken together, these results indicate that the presence of AtCPSF30 might help lower the 

stability of transcripts derived from CDS polyadenylation. 

3.3.3 The stability of noncanonical mRNA isoforms in 5’UTR 

Unlike mRNA isoforms derived from polyadenylation within introns and protein-coding 

regions, the stabilities of mRNA isoforms with 3’ ends that lie within 5’UTRs are different 

in the wild type and oxt6 mutant plants (Figure 3.4 and 3.5); in the wild type, these isoforms 

are as stable as canonical mRNA isoforms in the 3’UTR (Figure 3.4A), while in the mutant 

they are less stable (Figure 3.4B). Also, common and oxt6-specific mRNA isoforms with 

3’ ends that lie within 5’UTRs seem to be relatively unstable (Figures 3.5A and 3.5C), 

while wt-specific mRNA isoforms with 3’ ends that lie within 5’UTRs are as stable as 

conical 3’UTR mRNA isoforms (Figure 3.5B).  These results indicate that AtCPSF30 

impacts the stabilities of mRNA isoforms derived from polyadenylation in the 5’UTR. 

Usually, poly(A) signals are expected at the 3’ends of genes. However, previous studies 

have shown that strong poly(A) signals are also found in the 5’UTRs of some genes in 

Drosophila melanogaster, and both these novel poly(A) signals and standard poly(A) 

signals become functionally silent when they are positioned close to transcription start sites 

in either Drosophila or human cells (Guo et al. 2011). The polymerase II (Pol II) 

transcription complex thus plays an important role to determine whether a putative poly(A) 

signal is recognized as functional. This mechanism might prevent cryptic poly(A) signals 

from causing premature transcription termination (Guo et al. 2011). The fact that 5’UTR 

site usage occurs in the oxt6 mutant means that AtCPSF30 probably does not control the 
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premature termination decision.  However, it may control the stabilities of these transcript 

isoforms. 

There is a different mechanism of polyadenylation for the products of premature 

transcription termination so that they can be degraded by RNA exosome (Preker et al. 2008; 

Fox and Mosley 2016). In Schizosaccharomyces pombe, the RNA exosome can target the 

transcription machinery by terminating transcription events, which is accompanied with 

paused and backtracked Pol II. The backtracked Pol II can provide a free mRNA 3’end for 

the core exosome to lead to transcription termination with concomitant degradation of the 

associated transcript (Jean-François et al. 2014). Such a mechanism may explain the 

instability of common and oxt6-specific 5’-UTR transcript isoforms. Also, the results 

presented in this chapter raise the possibility that CPSF30 might interact with the Pol II 

complex to enhance the stabilities of the transcripts derived from polyadenylation within 

the 5’-UTR. 

3.3.4 A model to describe stability of nonstop transcripts 

As mentioned above, the non-stop RNAs can be degraded by the non-stop pathway 

(Frischmeyer et al. 2002; van Hoof et al. 2002). In this pathway, ribosomes stalling at the 

3’end can recruit NSD cofactors and the exosome complex to facilitate the aberrant mRNA 

degradation (Klauer and van Hoof 2012). There are two possible ways for mRNA 

degradation, Ski7-dependent and -independent. AtCPSF30 might be involved in these two 

possible ways to mediate the stabilities of these transcript isoforms. A model thereby is 

proposed in Figure 3.10. 

In this model, AtCPSF30 might act with Ski7 to recruit the exosome to degrade the mRNA 

isoforms. During the translation of nonstop mRNAs, the ribosome proceeds through the 
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end of the poly(A) tail, displacing the poly(A)-binding protein (PABP) and stalling at the 

3' end of the mRNA. The stalled ribosome at the 3′ end of a transcript initiates non-stop 

decay through the binding of the C-terminus of Ski7 to the empty A site of the ribosome, 

thereby releasing the ribosome. Then the exosome is recruited by Ski7 and AtCPSF30, 

along with the SKI complex, deadenylates and rapidly degrades the transcripts. Therefore, 

the mRNA isoforms derived from polyadenylation in the CDS are unstable in the wild type 

and wt-specific. Without AtCPSF30, Ski7 may be unable to recruit the exosome, so the 

mRNA isoforms derived from polyadenylation in the CDS would be more stable.  

3.3.5 A model to describe the 5’-UTR transcript isoform stability 

The properties of mRNA isoforms derived from polyadenylation in the 5’UTR region are 

more complicated, since the wild type and wt-specific 5’UTR isoforms are as stable as the 

canonical mRNA isoforms. Therefore, two models are proposed. 

In the wild type, AtCPSF30 can form a polyadenylation complex with CPSF160, CPSF100, 

CPSF73 and Wdr33 to perform recognition and cleavage (Chan et al. 2014; Schönemann 

et al. 2014), followed by the poly(A) tail addition (Figure 3.11A). However, a complex that 

contains only CPSF160, CPSF100, CPSF73 and Wdr33 also may perform the 

polyadenylation function to generate the mRNA isoforms (Figure 3.11B), since 

polyadenylation occurs in the oxt6 mutant. However, the fact is that oxt6-specific 

transcripts do not have an AAUAAA-like motif (Figure 3.11C), may be the presence or 

absence of this motif in the 5’-UTR is involved in stabilization, perhaps through 

interactions with FY or other proteins.  

3.4 Materials and mothed 

3.4.1 Plant material and treatment 
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Arabidopsis thaliana wild type Col-0 and mutant oxt6 plants were cultured vertically on 

solid MS media (1x Murashige and Skoog salts, MES 0.5g/L pH = 5.7, and 1% (w/v) 

sucrose). The surface of the seeds was sterilized before plating and put at 4°C for two days. 

Plants were then grown under long day conditions (16h light and 8h dark) for two weeks 

at 23 °C. In all experiments, three biological replicates were prepared. 

For the cordycepin treatment, whole seedlings were transferred to a Petri dish containing 

incubation buffer (15 mM sucrose, 1 mM KCl/ 1 mM Pipes/ 1 mM sodium citrate, pH 6.5) 

and incubated for 30 min at room temperature before addition of cordycepin (200µM). 

Vacuum was applied for 30 seconds, and plants then incubated for the indicated periods of 

time. Controls were treated identically, but cordycepin was not added. Plants were 

harvested at different time intervals (15 min, 30 min, 60 min, and 120 min) and were 

immediately frozen in liquid nitrogen. 

3.4.2 Poly(A) tag library preparation and sequencing 

Total RNA was isolated using Trizol reagent and purified using RNAeasy columns 

(Qiagen, Hilden, Germany). A Nanodrop spectrophotometer was used for total RNA 

quantitation. Poly(A) tag libraries were generated from 1µg of total RNA using method B1 

from Ma et al. (Ma et al. 2014a). These libraries were sequenced on the Illumina high-

throughput sequencing platform. Three independent biological replicates were prepared for 

each treatment or condition. 

3.4.3 Poly(A) tag and gene expression analysis 

The sequencing data were analyzed using the pipeline as described previously (Bell et al. 

2016). The raw data were demultiplexed and trimmed to remove the oligo-dT and 

sequencing adaptors using CLC Genomic Workbench. The trimmed tags were mapped to 
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the Arabidopsis genome (TAIR10) to get the bam file. The bam files were converted to 

bed files with the BEDtools suite (Quinlan and Hall 2010; Quinlan 2014) to obtain lists of 

individual poly(A) sites (PAS) and poly(A) site clusters (PACs) (see Fig 3.4 and Bell et 

al.) (Bell et al. 2016). A minimum of ten individual PATs for PASs and PACs are kept for 

subsequent analysis. 

To determine gene expression, the PAT frequency of each gene was determined by a 

special file (TAIR10genes120.gff) that has only Arabidopsis genes. The data were then 

imported to CLC using the empirical analysis of DGE to compare the control and treatment. 

The genes with a total filter cut-off of 2-fold change and p-value <0.001 were selected as 

statistically significant.  

To determine the PAT frequency for each PAC, the list of PACs is used as annotated master 

file to tell the numbers of tags in each individual sample that map to the PAC. Thus, the 

numbers of tags in each individual sample are compared with the number of tags in the 

Arabidopsis genome to get a proportion for poly(A) site usage analysis.  

To calculate the statistically significant differences in poly(A) site usage in gene by gene 

analysis using DEX-seq package in R, and a p-value<0.01 is considered as statistically 

significant.  

3.4.4 GO analysis 

Gene Ontology term enrichment was performed using agriGO, which is a toolkit and 

database for the agriculture community (Websitehttp://bioinfo.cau.edu.cn/agriGO/). 

Parameters used were: reference is Arabidopsis gene model (TAIR); the statistic model is 

hypergeometric test; the multi-test adjust method is FDR adjust p-value; the significance 

is less than 0.05; and the minimum number of mapping entries is 5. In the GO figures, the 
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X-axis is the negative log FDR adjust p-value and the Y-axis is the GO terms. 
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Figure 3.1 Overview of experimental approach to study AtCPSF30-mediated APA 
controls mRNA stability  
Two-week old seedings were incubated in buffer for 30min, and then cordycepin added to 
200uM final concentration so no new mRNA is produced. Thus, all mRNAs will decay 
depending on their stabilities. Some of the mRNAs are less stable than the others, and these 
differences can be measured. The seedlings after different times were harvested for RNA 
extraction, and thereafter PATs libraries were prepared and sequenced. Next, the PATs 
libraries data was analyzed to evaluate mRNA stability. 
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Figure 3.2 Overview of the method to calculate mRNA stability  
In the control sample, A, B, C, D shows the poly(A) sites that fall into 5’UTR, intron, CDS 
and 3’UTR without treatment, respectively.  While in the treated sample, A’, B’, C’ and 
D’ means the proportion of poly(A) site choice that fall into 5’UTR, intron, CDS and 
3’UTR under treatment, respectively. Here the poly(A) site choice in CDS region as an 
example, the proportion of poly(A) site choice that fall into CDS is M in control sample, 
whole N is the percentage of poly(A) site choice that fall into CDS for treated sample. The 
relative poly(A) site usage is log2 transformed for P/Q. The relative mRNA stability is 
determined by the value of relative poly(A) site usage compared with zero. 
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3A. The number of unstable mRNA isoforms are increased after longer time cordycepin 
treatment. The X-axis shows the comparisons between different time treatments and 
control. 0vs15 means the comparison between 15mins and control (0min), 0vs30 means 
the comparison between 30mins and control (0min), 0vs60 means the comparison between 
60mins and control (0min), 0vs120 means the comparison between 120mins and control 
(0min). The Y-axis shows the gene expression number of unstable mRNA isoforms. 
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3B. Unstable transcripts in this study to compare with previous studies 
The list of genes encoding unstable transcripts noted in this study are compared with 
previous published papers, roughly 83% of the unstable transcripts in my work were also 
identified in Gutierrez et al.(Gutierrez et al. 2002), 77% of the unstable transcripts were 
identified in Kim et al. study (Kim et al. 2011), and 70% were identified in (de Lorenzo et 
al. 2017). 
Figure 3.3 Cordycepin incited significant down-regualtion gene expression 
To validate the effectiveness of the cordycepin treatment, the relative expression of all 
mRNA isoforms derived from different genes was determined using PATs as described 
before (Ma et al. 2014b).  For this, the number of PATs which were mapped to individual 
annotated genes were used to calculate relative gene expression levels. 1266 unstable 
transcripts were identified (FDR p-value<0.05 and the absolute fold change more than two) 
in the wild type cordycepin study.  
3A. The number of unstable mRNA isoforms are increased after longer time cordycepin 
treatment. 
3B. Unstable transcripts in this study compared with previous studies 
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Figure 3.4 The stabilities of non-canonical mRNA isoforms incites global changes  
Boxplot showing changes in different classes of poly(A) sites usage after 120min of 
treatment with cordycepin. The relative contribution that each PAS makes to total poly(A) 
usage was determined as in Figure 3.2. Total number of PASs in each class show above 
the boxplot.  
A. The global mRNA stability in wild type 
B. The global mRNA stability in oxt6 mutant 
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Figure 3.5. Stabilities of noncanonical mRNA isoforms from three classes of poly(A) 
sites changes  
Boxplot showing changes in different classes of poly(A) sites usage after 120 min of 
treatment with cordycepin. The relative contribution that each PAS makes to total poly(A) 
usage was determined as in Figure 3.2. Total number of PASs in each class are shown 
above the boxplot.  
A. The stabilities of common mRNA isoforms. 
B. The stabilities of wt-specific mRNA isoforms. 
C. The stabilities of oxt6-specific mRNA isoforms.  
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Figure 3.6 Enriched GO categories among the genes displaying APA after 
cordycepin treatment 
Gene Ontology term enrichment according to the agriGo, which is a toolkit and database 
for agriculture community (Websitehttp://bioinfo.cau.edu.cn/agriGO/). Parameters are that 
reference is Arabidopsis genemodel (TAIR); the statistic model is hypergeometric test; the 
multi-test adjust method is FDR adjust p-value; the significance is less than 0.05; and the 
minimum number of mapping entry is 9. The X-axis is minus log FDR adjusted p-value. 
The Y –axis is the GO terms. 
A. The GO analysis for genes encoding unstable wt-specific sites. 
B. The GO analysis for genes encoding unstable oxt6-specific sites. 
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Figure 3.7 The gene ontology analysis for mRNA isoform that fall into 5’UTR  
Gene Ontology term enrichment according to the agriGO, which is a toolkit and database 
for agriculture community (Websitehttp://bioinfo.cau.edu.cn/agriGO/). Parameters are that 
reference is Arabidopsis genemodel (TAIR); the statistic model is hypergeometric test; the 
multi-test adjust method is FDR adjust p-value; the significance is less than 0.05; and the 
minimum number of mapping entry is 9. The X-axis is minus log FDR adjusted p-value. 
The Y –axis is the GO terms. 
A. GO analysis for unstable wt-specific mRNA isoforms that fall into 5’UTRs. 
B. GO analysis for unstable oxt6-specific mRNA isoforms that fall into 5’UTRs. 
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Figure 3.8 The gene ontology analysis for mRNA isoforms that fall into CDS in wt-
specific 
Gene Ontology term enrichment according to the agriGO, which is a toolkit and database 
for agriculture community (Websitehttp://bioinfo.cau.edu.cn/agriGO/). Parameters are that 
reference is Arabidopsis genemodel (TAIR); the statistic model is hypergeometric test; the 
multi-test adjust method is FDR adjust p-value; the significance is less than 0.05; and the 
minimum number of mapping entry is 9. The X-axis is minus log FDR adjusted p-value. 
The Y –axis is the GO terms. 
A. Biological process for unstable wt-specific mRNA isoforms that fall into CDS. 
B. Molecular function for unstable wt-specific mRNA isoforms that fall into CDS. 
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Figure 3. The gene ontology analysis for mRNA isoforms that fall into CDS in oxt6-
specific 
Gene Ontology term enrichment according to the agriGO, which is a toolkit and database 
for agriculture community (Websitehttp://bioinfo.cau.edu.cn/agriGO/). Parameters are that 
reference is Arabidopsis genemodel (TAIR); the statistic model is hypergeometric test; the 
multi-test adjust method is FDR adjust p-value; the significance is less than 0.05; and the 
minimum number of mapping entry is 9. The X-axis is minus log FDR adjusted p-value. 
The Y –axis is the GO terms. 
A. Biological process for unstable oxt6-specific mRNA isoforms that fall into CDS. 
B. Molecular function for unstable oxt6-specific mRNA isoforms that fall into CDS. 
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Figure 3.10 A model to describe the mRNA isoform stability in the CDS region 
In this model, AtCPSF30 might act with Ski7 to recruit the exosome to degrade the mRNA 
isoforms. When the nonstop mRNAs are translated, the ribosome proceeds through the end 
of the poly(A) tail, displacing the poly(A)-binding protein (PABP) and stalling at the 3' end 
of the mRNA. The stalled ribosome at the 3′ end of a transcript initiates non-stop decay 
through the binding of the C-terminus of Ski7 to the empty A site of the ribosome, thus 
releasing the ribosome. Then the exosome is recruited by Ski7 and AtCPSF30, along with 
the SKI complex, deadenylates and rapidly degrades the transcripts. Therefore, wt-specific 
mRNA isoforms derived from polyadenylation in the CDS are unstable. Without 
AtCPSF30, Ski7 may be unable to recruit the exosome, so the mRNA isoforms derived 
from polyadenylation in the CDS would be more stable in the oxt6 mutant.  
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Figure 3.11 A model to describe the mRNA isoform stability in the 5’UTR region 
A. The possible model for AtCPSF30 acting with the polyadenylation complex as a unit. 
B. The possible model for AtCPSF30 acting without interactions with the polyadenylation 
complex. 
C. The possible model mRNA stability in the absence of AtCPSF30. 
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Chapter Four: A screen for proteins that interact with AtCPSF30 

4.1 Introduction 

mRNA 3’ end processing is not only an important step in eukaryotic gene expression but 

also a critical mechanism for gene regulation (Colgan and Manley 1997; Zhao et al. 1999b; 

Millevoi and Vagner 2010; Chan et al. 2011). Polyadenylation affects gene expression 

through determining the coding and regulatory capacity of the mRNA, especially for genes 

whose transcripts may be polyadenylated at more than one position (Lutz and Moreira 

2011; Xing and Li 2011a). 

Polyadenylation is mediated by a complex that includes several subunits that are 

evolutionarily conserved for the most part (Belostotsky and Rose 2005; Hunt et al. 2008). 

Among these subunits, the 30 kD subunit is enigmatic. In Arabidopsis, CPSF30 

(AtCPSF30) plays an important role in regulating APA. This protein contains three 

predicted CCCH-type zinc finger motifs. The first CCCH motif is the primary motif that is 

responsible for the bulk of RNA-binding activity. It can also bind calmodulin, and the 

RNA-binding activity of AtCPSF30 is inhibited by calmodulin in a calcium-dependent 

manner.  The function of the second zinc finger is not precisely known (Delaney et al. 

2006; Addepalli and Hunt 2007b; Chakrabarti and Hunt 2015). The third motif is 

associated with endonuclease activity. Previous studies demonstrated that the endonuclease 

activity of AtCPSF30 could be inhibited by disulfide reducing agents (Addepalli and Hunt 

2008). 

Messenger RNA polyadenylation occurs in the nucleus, and the subunits of the 

polyadenylation complex that meditated this process are expected to reside within the 

nucleus. However, AtCPSF30 by itself localizes to the nucleus and also to the cytoplasm 
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(Rao et al. 2009). Another study showed that CPSF30 has interactions with other subunits 

of the mRNA polyadenylation complex (Hunt et al. 2008). There is a model proposed 

whereby CPSF30 might act as an interface between cellular signaling and alternative 

polyadenylation (Hunt 2014). In this model, either calmodulin or redox status would cause 

an inhibition of CPSF30 as a signaling cues. The effects of calmodulin are obvious, but the 

disulfide remodeling might play an important role for the redox status. Based on these 

studies, we know that CPSF30 is not only in the nucleus, but also the cytoplasm. However, 

what proteins might interact with AtCPSF30 in the cytoplasm are still unknown. In this 

chapter, screen was conducted in an effort to identify such proteins. The results show 

AtCPSF30 interacts with two proteins, one of which is tyrosine-phosphorylated and 

whose phosphorylation state is modulated in response to ABA, and the other is 

ribosomal protein RPL35. 

4.2 Result 

4.2.1 Selected candidates interacting with AtCPSF30 from phage display 

To identify novel proteins that can interaction with AtCPSF30, a phage display approach 

was chosen, since this is one of the most effective techniques to canvass a wide diversity 

of proteins and peptides (Bazan et al. 2012). The recombinant phage was used as a scaffold 

to present various protein portions encoded by a directionally cloned cDNA library to 

immobilized bait molecules (Kushwaha et al. 2014). For the Arabidopsis seed phage 

display cDNA libraries, the total RNA from mature, dehydrated (0h) or 12h-, 24h-, or 36h- 

germinated (on water at 25 °C with constant light) Arabidopsis seeds was the source of 

polyA+ mRNA (Chen et al. 2010). The cDNAs were ligated into T7Select10-3b vector 

arms, the libraries packaged into bacteriophage T7 in vitro, amplified and stored in aliquots 
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at -80C until use. Aliquots were used for serial dilutions to infect the E. coli strain BLT5403 

to determine the titer of the primary recombinants (Chen et al. 2010). In this study, the seed 

library I, the titer of which was 1.6 x107 pfu/ml, was used for initial affinity screening. 

After amplification, the titers of library I were 8.15 x 109 pfu/ml (Chen et al. 2010). 

Based on these results, the MBP-tag(MBP), MBP-tag CPSF30(C30) and the third zinc 

finger mutation of CPSF30 with MBP tag(mC30) were used to perform biopanning to 

capture phage that interact with each bait as described in the Methods and illustrated in 

Figure 4.1.  Here the plaque forming units (PFU) were used to determine and calculate 

titer. At the fourth round of phage display, the plaque forming units went down compare 

with the third round (Figure 4.2) suggesting further affinity selection would be 

unproductive after the fourth round. Therefore, the phage from the fourth round of 

screening were used to preparing phage display libraries for sequencing. 

The Miseq data representing the affinity-purified phage was analyzed using CLC 

Genomics Workbench. Reads were demultiplexed, trimmed, and mapped to a set of 

reference sequences (Figure 4.3). The mapping references used consisted of the set of 

Arabidopsis protein coding sequences. Using the mapping results, gene lists were obtained. 

The gene lists for each of the three replicates for the different “baits” (MBP-CPSF30, MBP, 

etc.) were pooled for further analysis. The results showed that there are 245 proteins that 

exclusively interact with C30 (Figure 4.4A). To narrow down the gene list, the gene lists 

from individual C30 replicates were compared; this yielded a set of 107 genes present in 

two or more replicates. These have the greatest possibility of representing bone fide 

interacting partners with C30. These lists of 245 and 107 were further compared to get a 

set of 15 high-confidence candidates. These 15 candidates were screened first to make sure 
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they were in-frame (Figure 4.4B). Finally, the Arabidopsis sequences that were in-frame 

with the phage coat protein coding region yielded three candidates, At1g05510 (OIL 

BODY-ASSOCIATED PROTEIN 1A; OBAP1A), At1g09590 (CYTOSOLIC LARGE 

RIBOSOMAL SUBUNIT 21E; RPL21E) and At5g02610 (RIBOSOMAL PROTEIN L35; 

RPL35). These were chosen for further study. 

4.2.2 Yeast two hybrid assay to confirm the three candidates 

To confirm these three candidates, yeast two hybrid assays were performed. Because 

AtCPSF30 self-activates when cloned into the DNA-binding domain of the two-hybrid 

system, it was cloned into the activation domain vector. The three candidates were cloned 

into the binding domain vector. The full length AtCPSF30 cloning into pAD, and the empty 

BD plasmid, were used as negative controls. The AtMYC2 in pAD and AtGBF1 in pBD 

were used as positively controls (Maurya et al. 2015). Transformants were identified by 

selecting on synthetic dropout (SD) medium without Leu and Trp (-LT) (Figure 4.6A). 

These were then grown on SD media without Leu, Trp and His (-HLT) to test for protein-

protein interactions.  The results showed that only AtCPSF30 and OBAP1A interact with 

each other (Figure 4.6B). Interestingly, no transformants were obtained with the RPL35-

AtCPSF30 combination, suggesting that this combination might be toxic to yeast cells. 

 

To further confirm these results, transformants were grown on media containing x-gal, 

taking advantage of the presence of the LacZ reporter gene in the yeast host strain. The 

results confirmed the interaction between AtCPSF30 and OBAP1A (Figure 4.6C). 

https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=29017
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=29017
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4.2.3 Bimolecular Fluorescence Complementation to confirm corresponding 

interactions 

These above results showed that OBAP1A interacts with AtCPSF30 in yeast cells.  To 

further confirm interaction, Bimolecular Fluorescence Complementation assays (BiFC) 

were performed. In addition, this assay was used to test for interactions between AtCPSF30 

and RPL35 in plant cells; this is an alternative to the two-hybrid assay that failed due to 

the apparent toxicity of the AtCPSF30- RPL35 combination in yeast cells. 

Before the BiFC assay, localization experiments were performed. In this assay, AtCPSF30, 

OBAP1A and RPL35 were fused to the GFP coding region present in the pSITE2N and 

pSITE2C vectors, differing with respect to where the GFP fusion protein is situated relative 

to the experimental protein (i.e. N- or C-terminus, respectively), and expressed transiently 

in Nicotiana benthamnaia (Chakrabarty et al. 2007). The results showed that expression of 

the fusion proteins containing AtCPSF30 and OBAP1A could be observed with the 

pSITE2C vector, while RPL35 protein expression could be obtained with two vectors.  

However, for the latter protein, the pSITE2N vector yielded higher expression levels. The 

results of the localization experiments showed that AtCPSF30 is located in both the nucleus 

and cytoplasm (Figure 4.7A), as reported earlier (Rao et al., 2009). The proteins encoded 

by OBAP1A and RPL35 were located mainly in the nucleus (Figure 4.7B-C). 

To test the functionality of the binary BiFC vectors in plant, the wild type AtCPSF30, 

OBAP1A At1g05510 and RPL35 cDNA were cloned into pSITEII-nEYFP and pSITEII-

cEYFP, respectively. Here the empty pSITEII-nEYFP and pSITEII-cEYFP act as negative 

controls, while the CoRSV_ORF2 was used as a positive control (Ramalho et al. 2014). The 

constructs were delivered into leaf cells of CFP-H2B tobacco (Nicotiana benthamiana) 
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by Agrobacterium infiltration (Goodin et al. 2008). The result shows that AtCPSF30 and 

RPL35 interact in the nucleus (Figure 4.8). 

4.3 Discussion  

4.3.1 The approaches to identify potential interacting proteins of AtCPSF30 

CPSF30, one of the subunits of the eukaryotic polyadenylation complex, is a small protein 

that consists of a characteristic array of conserved CCCH-type zinc finger proteins, binds 

RNA, and interacts with several other polyadenylation factor subunits. One previous study 

reported that AtCPSF30 interacts with AtCPSF160, AtCPSF100, AtCFIS2, both FIPS 

orthologs, AtPCPS1, AtPCFS5, and AtCLPS3, which may as a central hub in the protein-

protein interaction network of plant polyadenylation complex subunits (Hunt et al. 2008). 

This study mainly used yeast two yeast hybrid to test protein-protein interactions amongst 

Arabidopsis polyadenylation complex subunits. Another study showed that AtCPSF30 

interacts with other polyadenylation factor subunits, AtCPSF160 or AtCPSF73(I) in the 

nucleus when co-expressed (Rao et al. 2009). These two experiments studied specific 

targets that reside in the poly(A) complex. However, these proteins are expected to reside 

within the nucleus, whereas AtCPSF30 may also reside in the cytoplasm (Rao, et. al, 2009). 

Screening a phage display library has the potential to identify additional, unknown 

interacting partners.  

The advantage of this approach is that the cDNA phage display library is a global one for 

seeds that may include novel partners that interact with the bait protein (AtCPSF30). Thus, 

large libraries of proteins can be screened by the in vitro selection. However, the number 

of genes returned is too large to confirm all of them. To narrow down the gene number and 

increase the possibility of identifying bonafide candidates, the overlap among three 

https://en.wikipedia.org/wiki/In_vitro
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replicate wells was used. In the hypothesis, we expected to find proteins that might play a 

role in redox regulation, but found none. Possibly our strategy to narrow down the number 

of genes screened out possible redox-related proteins or the conditions leading to 

interaction must actually be oxidative.  

4.3.2 Possible connection between AtCPSF30 and expression protein of OBAP1A 

AtCPSF30 contains three predicted CCCH-type zinc finger motifs. The first CCCH motif 

is the primary motif responsible for the bulk of CPSF30’s RNA-binding activity. It can 

bind with calmodulin, but the RNA-binding activity of AtCPSF30 is inhibited by 

calmodulin in a calcium-dependent manner. The third motif is associated with 

endonuclease activity. Previous studies demonstrated that the endonuclease activity of 

AtCPSF30 can be inhibited by disulfide reducing agents. Here we expected proteins that 

interact with AtCPSF30 and act through calmodulin binding or disulfide remodeling.  

One of the proteins identified in this study as interacting with AtCPSF30 is encoded by 

At1g05510 (OBAP1A). This gene is expressed in Arabidopsis seeds and during 

germination (Job et al. 2005). OBAP1A, encoded by At1g05510, is tyrosine-

phosphorylated and this phosphorylation state is modulated in response to ABA (Ghelis et 

al. 2008). Protein tyrosine phosphorylation plays important roles in cell growth and 

differentiation in animals. Also, protein tyrosine phosphorylation has been detected in 

Arabidopsis thaliana. OBAP1A, coded by At1g055010, was identified in a mass 

spectrometry-based proteomics study of responses of Arabidopsis to abscisic acid (ABA) 

(Ghelis et al. 2008). Specifically, the overall abundance of this protein decreases, but 

tyrosine phosphorylation increases in ABA-treated seeds.  
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Several studies on tyrosine phosphorylation used phenylarsine oxide (PAO), a specific 

protein tyrosine phosphatase (PTP) inhibitor (Quettier et al. 2006; Ghelis et al. 2008). In 

the cytosolic and detergent soluble fractions as well as on surface of Setaria cervi, the PTP 

activity present was significantly inhibited by PAO (Singh et al. 2016). Also, PAO can 

prevent stomatal closure in Commelina communis. Stomatal closure can be induced by 

ABA, high external Ca2+, darkness, and hydrogen peroxide (Quettier et al. 2006). 

Moreover, with the increased ROS level, the activity of different antioxidant enzymes like 

thioredoxin reductase, glutathione reductase and glutathione transferases was decreased in 

PAO-treated plants (Singh et al. 2016). Along with previous studies showing that CPSF30 

might be involved in ROS regulation (Zhang et al. 2008), this provides a possible reason 

for the interaction of CPSF30 with OBAP1A.  

Protein tyrosine phosphorylation activity is essential for stomatal closure induced by ABA, 

external calcium, darkness and H2O2 (Enid 2002). It is well known that ABA regulates 

guard cell turgor via a calcium-dependent pathway (Julian et al. 2001; Luan 2002). H2O2 

serves as the downstream messenger for ABA and activates calcium channels. The 

phosphorylation of tyrosine lies downstream from the calcium response (Enid 2002).  

These facts suggest that multiple calcium-dependent signaling mechanisms may converge 

on AtCPSF30, and that one may involve OBAP1A.  

Additionally, a BLASTP search of the plant genome database shows that the protein 

encoded by OBAP1A has a strong similarity to the embryo-specific protein Ose731 from 

rice. Ose731 has a lipoprotein domain that is also found in oleosins.  Oleosins stabilize oil 

bodies in seeds during desiccation and facilitate the hydrolysis of these reserves by lipases 

during germination (Keddie et al. 1992). Also, the levels of oleosins decrease in Brassica 
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napus and rice after ABA treatment (Holbrook et al. 1991; Konishi et al. 2005). Oleosins 

have been shown to be phosphorylated in B. napus (Holbrook et al. 1991). Therefore, 

tyrosine phosphorylation through an interaction between AtCPSF30 and OBAP1A might 

regulation oil body biogenesis or oleosin targeting to modulate the synthesis or hydrolysis 

of lipid reserves.  

From the localization experiment, the protein encoded by OBAP1A is located both in the 

cytoplasm and nucleus. Previous studies showed that it is involved in oleosome biogenesis 

and the ABA response (Job et al. 2005; Ghelis et al. 2008), but no study detected it in the 

nucleus. However, one study showed that the protein encoded OBAP1A might be involved 

in the protein/transcript expression patterns by protein profiling in Arabidopsis thaliana 

seed development (Hajduch et al. 2010).  

4.3.3 Possible connection between AtCPSF30 and RPL35 

Another protein identified in this study as interacting with AtCPSF30 is encoded by 

At5g06210. This protein belongs to ribosomal L29 family and is termed Arabidopsis 60S 

ribosomal protein L35 (RPL35). RPL35 is an important component of the 60S ribosomal 

subunit, and is required for 60S r-subunit accumulation (Zhong and Arndt 1993).  

In eukaryotes, the few studies that have focused RPL35 have shown it to have a role in 

translation and endoplasmic reticulum docking (Chen et al. 2008; Babiano and de la Cruz 

2010). Eukaryotic RPL35 shares a remarkable sequence identity with archaeal and 

eubacterial RPL29, although RPL35 has a specific C-terminal extension (Babiano and de 

la Cruz 2010). The location of RPL35 is close by RPL25 and RPL26, thus flanks the 

nascent peptide exit tunnel in a similar way to their archaeal and eubacterial RPL29, RPL23 

and RPL24 counterparts, respectively (Klein et al. 2004). RPL35 with RPL25 together may 
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have a function as a general docking site for nascent polypeptide chain-associated factors, 

like N-terminal processing and modification enzymes, chaperones, the signal recognition 

particle (SRP) and the Sec61/translocon complex (Becker et al. 2009; Günter et al. 2009). 

Another study showed that RPL35 is indeed required for the normal accumulation of 60S 

r-subunit because the defective production of RPL35 causes defects in pre-rRNA 

processing and in intra-nuclear transport and nuclear export of pre-60S r-particles (Babiano 

and de la Cruz 2010). This study also showed that RPL35 assembles in the nucle(ol)us and 

interacts with 27S pre-rRNA stably, indicating that RPL35 might be added early in the 

ribosomal assembly pathway (Babiano and de la Cruz 2010). In our study, the localization 

and BiFC experiment shows that the protein encoded by At5g06210 is located in the 

nucleolus, suggesting that AtCPSF30 might have a function in ribosomal biogenesis.  

In zebrafish (Danio rerio), the protein RPL35 is an haploinsufficient tumor suppressor 

operating through an as yet unknown mechanism, similar to many other r-protein gene 

products (Amsterdam et al. 2004). In humans, RPL35 carries a 54-aa eukaryotic-specific 

expansion segment (ES) at the C-terminal end. Within the ES, the first 25 amino acid 

residues play an important role for the nuclear import of the protein, while the last 29 

residues are one of the contact sites for ribosomal docking to endoplasmic reticulum (Chen 

et al. 2008). In addition, RPL35 expression is significantly up-regulated during bovine 

lactation (Bionaz and Loor 2011). Another study showed that RPL35 could positively 

control translational elongation by interacting with eEF2 and by locating to the ER during 

CSN2 secretion, indicating that RPL35 is an important regulatory factor involved in the 

Met-mediated regulation of CSN2 translational elongation and secretion (Jiang et al. 2015). 

In yeast, RPL35 assembly is essential for the efficient cleavage of the internal transcribed 
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spacer 2 at site C2 (Babiano and de la Cruz 2010). One possible role for the AtCPSF30-

RPL35 interaction might be to recruit AtCPSF30, which has endonuclease activity 

(Addepalli and Hunt 2007a), to the pre-rRNA for processing of the precursor. 

4.3.4 Summary 

In summary, a large number of AtCPSF30-interacting protein candidates were identified 

by screening an mRNA phage display library. Further analyses confirmed interactions of 

two of these, encoded by OBAP1A and RPL35. Based on other studies of these proteins, 

these studies show that AtCPSF30 might have different roles in the plant, and other proteins 

that interact with this protein might affect its functioning in polyadenylation in the nucleus 

and in the cytoplasm. 

4.4 Material and method 

4.4.1 Vector construction and site-directed mutagenesis 

Total RNA was extracted for wild type Arabidopsis, and the cDNA encoding AtCPSF30 

was isolated by RT-PCR as described by Addepalli (Addepalli et al. 2004). The DNA 

polymerase, Taq DNA polymerase was used to amplify the products with A overhangs. 

The A residue overhang product was cloned into pGEM T vector and the inserts sequenced. 

The AtCPSF30 coding region was excised from a confirmed pGEM clone as an NdeI-

EcoRI fragment and cloned into similarly-digested pMAL-c5x.  The recombinant plasmid 

pMAl-c5x-AtCPSF30 was obtained after ligation and transformation. This plasmid was 

transformed into Rosetta cells for protein expression. 

The mZF1, mZF3 and mZF13 mutants were generated from PMAL-c5x-AtCPSF30 

plasmids as the templates using the Quick-Change site-directed mutagenesis kit 
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(Stratagene) and the oligonucleotides shown in Table 1. The mutant clones were confirmed 

by Sanger sequencing. 

4.4.2 Protein expression and purification  

To produce MBP fusion proteins, 10 mL overnight culture of transformed Rosetta cells 

grown and used to inoculate 200 mL of LB media.  The culture was grown at 37°C for 3 

to 4hr, until the OD600 reached 0.5.  The fusion protein gene expression was induced by 

adding isopropylthio-β-galactoside to a final concentration of 0.3mM. After adding the 

inducer, the culture was grown for an additional 2 h. Cells were harvested and resuspended 

in 5ml of lysis buffer (GLB; 20 mM Tris-HCl (pH 8.0), 200 mM NaCl and 1 mM EDTA). 

The resuspended cells were sonicated using three bursts for 30s each on ice and debris was 

removed by centrifugation at 4°C (8,000,000×g).  The centrifugation was repeated to 

completely clarify the final solution. 

This supernatant added to Amylose Resin High Flow that had been washed twice with GLB 

and incubated in a 500µL Eppendorf tube for 15min. The resin was collected by 

centrifugation (8,000,000 x g) and washed sequentially with 1 ml GLB+ 2M NaCl and then 

1 mL of GLB. MBP fusion proteins were eluted with MBP elution buffer. The eluted 

protein was stored at -80°C.  

Protein preparations were analyzed by SDS-PAGE and staining with Coomassie Brilliant 

Blue, and confirmed by Western blot. Quantities were estimated by comparison with 

known quantities of bovine serum albumin.  

4.4.3 Phage display sequencing  

Screening the libraries by biopanning  
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The seed phage display cDNA library I (Library titer: 6.1 x 107 pfu/mL) was obtained from 

Dr. Bruce Downie, and this experiment was performed in the Downie lab. To make the 

seed phage display cDNA libraries, hot borate extracted total RNA from mature, 

dehydrated (0) or 12h-, 24h, or 36h- germinated (on water at 25 °C with constant light) 

Arabidopsis seeds was the source of polyA+ mRNA (Chen et al. 2010). Phage synthesis 

consisted of acquiring mRNA following two rounds of selection over Oligotex resin 

(QIAGEN Inc., Valencia, CA, USA). One µg of polyA+ mRNA from each stage of 

germination was combined for cDNA synthesis. A kit (OrientExpress random primer 

cDNA synthesis kit; Novagen, San Diego, CA, USA) was used for first strand synthesis 

(randomly primed) to synthesize first- and second-strand cDNAs. One µg random primers 

(Hind III RP) were used to generate the Seed Library I (SLI) and 0.1μg to generate the 

second- (SLII) phage display library. At the end, T4 DNA polymerase blunted the ends, 

linkers were ligated to the cDNAs which were digested with Eco RI/Hind III, and cleavage 

products were size fractionated according to the instructions of the kit manufacturer 

(T7Select10-3 Cloning Kit, Novagen). The cDNAs were directionally ligated into 

T7Select10-3b vector arms, and the libraries packaged into bacteriophage T7 in vitro. An 

aliquot was used for serial dilutions to infect the E. coli strain BLT5403 to determine the 

titer of the primary recombinants (Chen et al. 2010). For each library, the primary libraries 

were then amplified using plate lysates, the phage extraction buffer (20 mM Tris, pH 8.0, 

100 mM NaCl, 6 mM MgSO4) from the plates was combined, treated with chloroform, 

centrifuged (3,000 X g, 5 min) and the supernatant recovered. After the titer of the two 

amplified libraries was determined, the libraries were mixed with 0.1 volume 80% glycerol, 

and 1 mL aliquots were prepared and stored at -80 °C (Chen et al. 2010).  
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One hundred µL of 10µg/ml protein solutions were placed in each microtiter plate well 

(Special protein binding plates) and the plates covered with plastic wrap. For this, three 

proteins-MBP, MPB-CPSF30, MPB-mCPSF30, were used. The microtiter plate was 

placed at 4℃ and incubated overnight. The microtiter plate was taken out and washed in 

TBS, blocked using 200µL milk blocking reagent 5% (W/V) with shaking for 1h at room 

temperature, and washed with TBST buffer. After the last wash, 100ul phage library was 

added to wells and plates were shaken at room temperature for one hour. The supernatant 

was removed and the wells washed with TBST buffer. After the last wash, 200µL aliquots 

of Escherichia coli (BLT5403 cells OD600=0.5 to 0.6) in LB were added to each well, and 

the plate was sealed with adhesive film, incubated for 20min at 37℃ to allow infection. 

After 20min, a portion of the cells was plated at low density to determine the titer. The 

remainder was added to a 250mL Erlenmeyer flask contained 50mL BLT5403. Cells were 

shaken at 37℃ for 3h or until visible lysis occurred. Amplified phage was centrifuged with 

final concentration 0.5M NaCl at 8000×g 10min at 4℃, and the supernatant moved to a 

clean, sterile 50mL falcon tube.  A few drops of chloroform were added and the tubes and 

stored at 4℃ for the next biopanning round.  

PCR and Sequence Analysis of Phage Recovered during Biopanning 

After four rounds of biopanning, a 1 µL aliquot of the final suspension was used for phage 

display sequencing preparation by PCR. Two steps were taken for the primers design of 

phage display. First, part of the Illumina first read adapter with a barcode and some random 

nucleotides was included to allow sequencing and subsequent analysis.  Next, the PE-PCR1 

and PE-PCR2 primers used for amplifying the cleaned reactions from the first step. These 
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primers give products fully compatible with the HiSeq and MiSeq platforms. The primers 

were designed with Illumina adaptor (Table 2). 

The first PCR program was: initial denaturation of 30 seconds at 98°C, denaturation of 15 

seconds at 98°C, annealing at 60°C for 15 seconds, extension at 72°C for 1 minute for 15 

cycles for the first step. The second PCR program was the same as the first PCR, but only 

12 cycles. The libraries were quantified by qRT-PCR and pooled together, and each sample 

contained at least 25ng of amplified cDNA library. The libraries were sequenced on a 

Miseq instrument. 

The sequencing data was analyzed with CLC genomic workbench. These samples were 

demultiplexed, trimmed and mapping to the TAIR10 coding sequence to get the gene list. 

The number of genes were narrowed down by comparing the results of three replicates. 

Sequence analysis was conducted to assure that the respective protein coding regions were 

in frame with the phage coat protein gene present in the phage display vector.  

4.4.4 Yeast two hybrid assays 

The full-length AtCPSF30 was cloned into pAD-GAL4-2.1, and the protein-coding regions 

for At1g05510, At1g09590 and At5g02610 were cloned into pBD-GAL4 Cam (Stratagene), 

respectively (oligonucleotide primers are given in Table (4.3). Different combinations of 

bait and target plasmids were transformed into yeast strain AH109 (Clontech), and the 

corresponding transformants were selected on synthetic dropout (SD) medium without Leu 

and Trp. Transformed colonies were then streaked on SD-His-Leu-Trp and SD-Ade-His-

Leu-Trp medium to check protein-protein interaction. To further confirm the positive 

clones in yeast system, experiments were performed in AH109 yeast strain to detect the 

transcription of LacZ reporter gene.  
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4.4.5 Subcellular localization and BiFC 

Gateway cloning was performed for full-length AtCPSF30, At1g05510 and At5g02610 

cDNAs using pSITEII-2NA, pSITEII-2CA, pSITE-nYEFP-C1, pSITE-cYEFP-C1, 

pSITE-nYEFP-N1 pSITE-cYEFP-N1, respectively (oligonucleotide primers are in Table 

3). The vector was provided by Dr. Michael Goodin, Department of Plant Pathology, 

University of Kentucky, USA. All the constructs and control vectors were transformed into 

Agrobacterium strain LBA3108 using the freeze thaw method (An, Ebert et al. 1988). 

Agrobacterium was freshly grown on LB agar plates with respective antibiotics for 2 days 

at 28 °C. For agroinfiltrations, 1ml of an overnight culture was put into 25ml LB with 

appropriate antibiotics and grown at 28°C overnight.  The suspension was harvested and 

suspended in MES buffer (10mM MES and10mM MgCl2, pH=5.9); the cell density was 

set to OD600 of 0.6 to 1.0. Acetosyringone was added to all samples at 150µM 

concentrations and incubated at room temperature for 2-3 hours. For co-infiltrations with 

different constructs, equal volumes of different Agrobacterium suspensions were mixed 

before infiltrations. 

Three-week old Nicotiana benthamiana that express CFP (cyan fluorescent protein) fused 

to  histone 2B (H2B-CFP) (Kathleen et al. 2009) plants were used for infiltrations.  For 

this, leaves were infiltrated with the Agrobacterium suspensions using a 1ml syringe 

without a needle. Fully expanded and healthy lower leaves were selected for infiltration 

experiments. The abaxial surface of the leaf was injected with the suspension buffer while, 

at the same time applying gentle pressure with a finger on the adaxial surface of the leaf. 

The buffer with bacterial suspension was infiltrated in the intravenous regions. At least two 

leaves were infiltrated with the same suspension buffer for a single plant. The infiltrated 
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plants were incubated under 16hr/8hr light and dark photoperiods at 25oC for a 48-72h 

period. 

The infiltrated leaves were cut into small sections near the infiltration site. The abaxial side 

facing the cover slip was placed on a glass slide in a drop of water and mounted gently 

with a cover slip. The water-mounted sections of leaf tissue were chosen to examine by 

confocal microscopy. Imagines were observed using an Olympus FV1000 laser scanning 

confocal microscopy. The microscope is equipped with lasers for excitation wavelengths 

ranging from 488 to 514 nm. Micrographs for dual-color imaging were obtained 

sequentially, as described in Goodin et al. (2007a). Images were visualized under 20x and 

40x objective lens and image processing was performed by using Olympus Fluoview 

software (Olympus). The images are typically acquired are a pixel resolution of 1024x1024 

at a scan rate of 10µs/pixel. 
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Table 4.1 Primers for AtCPSF30 and its mutant 
 

Primer Name Sequence (5’-3’) Used for 
AtCPSF30-F1 ATGGAGGATGCTGATGGACTTAG Cloning into pGEM 
AtCPSF30-R1 TTACAGAACCCAATTAAAAACCTTAGGACT Cloning into pGEM 

AtCPSF30-F2 CATATGGAGGATGCTGATGGACTT Cloning into pMAL-C5 
AtCPSF30-R2 GAATTCTTACAGAACCCAATTAAAAAC Cloning into pMAL-C5 
mZF1-F AGGTGACGCCAGTACTTTTCTCTATCAGTTCGATA Site-directed mutagenesis  
mZF1-R TTCATACACAGACCTCGAAGCCAGTGTCTACAAAC Site-directed mutagenesis  
mZF2-F AGCAGGATAGTACTTATAAATATACCAATGAAGAT Site-directed mutagenesis  
mZF2-R CTCGACATTCACCGTATAACCGGAAAAAACGGCAG Site-directed mutagenesis  

mZF3-F TGGTCCTGATAGTACTTACAGGTATGCAAAGCTTC Site-directed mutagenesis 
mZF3-R TTGGGACAAAACCCCAGCTTGTACATATTGCATTC Site-directed mutagenesis  
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Table 4.2. Primers for phage libraries sequencing  
 

 Primer Name Sequence (5’-3’) 
F1-T7a ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcCCCggagctgtcgtattccagtcagg 
F1-T7b ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcCGGggagctgtcgtattccagtcagg 
F1-T7c ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcAACggagctgtcgtattccagtcagg 
F1-T7d ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcAGCggagctgtcgtattccagtcagg 
F1-T7e ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcAGAggagctgtcgtattccagtcagg 
F1-T7f ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcACGggagctgtcgtattccagtcagg 
F1-T7g ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcCCGggagctgtcgtattccagtcagg 
F1-T7h ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcCAAggagctgtcgtattccagtcagg 
F1-T7i ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcCAGggagctgtcgtattccagtcagg 
F1-T7j ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcCCAggagctgtcgtattccagtcagg 
R1-T7 CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTaacccctcaagacccgtttagagg 
PE-PCR1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 
PE-PCR2 CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 
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Table 4.3 Primers for yeast two hybrid  
 

Primer Name Sequence (5’-3’) Used for 
At1g30460-F GGATCCATGGAGGATGCTGATGGACT Cloning into PBD vector 
At1g30460-R CGCCGG AATTCTTACAGAACCCAATTAAAAACCTT Cloning into PBD vector 

At1g05510-F CCGGAATTCATGGAGAAGGCAGTTCATTTA Cloning into PAD vector 
At1g05510-R GTCCGATTAAACGAAGACTCTTGGAACGG Cloning into PAD vector 
At1g09590-F GAATTCATGCCGGCTGGACATGGAGT Cloning into PAD vector 
At1g09590-R GTCGACCTAATAGCCTCCTTTGAGATCGTTGAC Cloning into PAD vector 
At5g02610-F GCGTCGACATGGCGAGAATTAAGGTTCA Cloning into PAD vector 
At5g02610-R CTGCAGCTACACTTTGATAGCGTACTTCCTCA Cloning into PAD vector 
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Table 4.4. Primers for BiFC  
 

Primer Name Sequence (5’-3’) 
At1g30460-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAGGATGCTGATGGACTTAG 
At1g30460-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCAGAACCCAATTAAAAACCTTA 

At1g05510-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATG GAGAAGGCAGTT CATTTATCCA 
At1g05510-R GGGGACCACTTTGTACAAGAAAGCTGGGTCAACGAAGACTCTTGGAACGG 
At5g02610-F GGGGACAAGTTTGTACAAA AAAGCAGGCTTCATGGCGAGAATTAAGGTTCATGAGC 
At5g02610-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCACTTTGATAGCGTACTTCC 
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Figure 4.1 Overall graphic depiction of the phage display process (modified from 
Kushwaha, et al. 2014) 
A bait was added at the microtiter plates for phage display screening using the E. coli 
(BLT5403). After E. coli was infected, one part was used for titering, while the rest for 
amplification.  Amplified phage is used as sub-libraries for the next round of panning. 
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Figure 4.2 Titering for seed phage library I 
The X-axis shows different kinds of protein as bait for phage display, including MBP, 
MBP-CPSF30(C30) and MBP-mCPSF30 (mC30). The Y-axis shows the PFU (Plaque 
Form Unit), which is used to calculate titer. This figure showed the titer increases 
dramatically for the all the baits until the third round. In the fourth round, titer from bait 
wells decrease, and further affinity selection is unproductive. 
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Figure 4.3 The flowchart for phage-sequencing data analysis 
This figure shows the method for analysis of PEPSeq (Pair-end Phage Display sequencing). 
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Figure 4.4 Selected Exclusive candidates interact with AtCPSF30 
The gene numbers of MBP, C30 (MBP-ACPSF30), mC30 (mutant of AtCPSF30) are from 
the Miseq data representing the affinity-purified phage was analyzed using CLC Genomics 
Workbench. Reads were demultiplexed, trimmed, and mapped to a set of reference 
sequences (Figure 4.3). The mapping references used consisted of the set of Arabidopsis 
protein coding sequences. Using the mapping results, gene lists were obtained. These gene 
lists are compared by Venn diagram. 
4A. To get the exclusive genes interacting with C30 (AtCPSF30) 
This figure shows that there are 245 proteins that exclusively interact with C30. 
4B. To narrow down the number of genes that interact with AtCPSF30 
To narrow down the gene list, the gene lists from individual C30 replicates MBP-
AtCPSF30) were compared; this yielded a set of 107 genes present in two or more 
replicates (pink), which have the greatest possibility of interacting with C30. These lists of 
245 and 29 were further compared to get a set of 15 high-confidence candidates.  
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Figure 4.5 Correct or incorrect candidate as examples 
A. This figure is to explain how to make sure candidate gene is in the open reading frame 
when it maps to a reference gene. The upper figure shows the At1g05510 sequences from 
Miseq are mapping with the CDS of this gene (yellow bar). After calculating the position 
of ATG for the phage coat protein, this gene is found to be in the proper open reading 
frame.  
B. At1g71950 is an example that the candidate gene is not on the open reading frame. 
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Figure 4.6. Yeast two hybrid to confirm interactions with AtCPSF30 
To confirm these three candidates (At1g05510, At1g09590 and At5g02610) interact with 
AtCPSF30, yeast two hybrid assays were performed. AtCPSF30 self-activates when cloned 
into the activation domain vector. The three candidates were cloned into the binding 
domain vector. The full length AtCPSF30 was cloned into pAD, and the empty BD 
plasmid, were used as a negative control. The atMYC2 in pAD and atGBF1 in pBD were 
used as a positive control (Maurya et al. 2015). Transformants were identified by selecting 
on synthetic dropout (SD) medium without Leu and Trp (-LT) (Figure 4.6A). These were 
then grown on SD media without Leu, Trp and His (-HLT) (4.6B,4.6C, 4.6D) to test for 
protein-protein interactions. Here number 1-3 are the control, the combination of 
At1g30460 (AtCPSF30) in pAD and empty pBD; number 4-5 is the combination of 
At1g30460 and At1g05510; number 6-9 is the combination of At1g30460 and At1g09590. 
P1 and P2 mean positive controls. 
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Figure 4.7 Subcellular location of At1g30460, At1g05510 and At5g06210 
AtCPSF30 and At1505510 were cloned pSITE2-CA and the At5g02610 was cloned to 
Psite2-NA using Gateway cloning. After the recombination constructs confirmed by 
Sanger sequence, the Agrobacterium transformation was performed for three weeks old 
wild type N.benthamiana  tobacco plants using a syringe. Plants were incubated under light 
at 18-28℃ for 48 hours, followed by confocal microscopy was performed using Olympus 
FV1000 laser scanning. The upper panel pictures were taking by 20x objective lens and 
the lower panel by 40x.  
7A. Subcellular distribution of AtCPSF30. 
7B. Subcellular distribution of the protein encoded by At1g05510. 
7C. Subcellular distribution of the protein encoded by At5g02610. 
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Figure 4.8. AtCPSF30 interacts with At5g02610 in the nucleus 
AtCPSF30 was cloned into pSITE-cEYFP and At5g02610 cloned into pSITE-nEYFP 
using Gateway cloning. After the recombination constructs confirmed by Sanger sequence, 
the Agrobacterium transformation was performed on three weeks old wild type 
N.benthamiana tobacco plants using syringe. Plants were incubated under light at 18-28℃ 
for 48 hours, followed by confocal microscopy was performed using Olympus FV1000 
laser scanning. The pictures were taking by 20x and the lower panel by 40x objective lens. 
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Chapter Five: Summary and future perspectives 

The process of mRNA regulation is well known to perform a fundamental role in 

determining the products of gene expression, and alternative polyadenylation is a major 

factor impacting the dynamics of gene regulation. Alternative polyadenylation requires 

several protein factors to define the correct cleavage site by recognition of sequence 

elements within the pre-mRNA. These protein factors are CSPF (cleavage and 

polyadenylation specificity factor), CstF (cleavage stimulation factor), CF (cleavage 

factor) along with poly (A) polymerase. It has been reported that alternative 

polyadenylation is a widespread phenomenon across the transcriptomes of higher 

eukaryotes, and this process is regulated by developmental and environment cues. 

Since environment stress has been reported to lead to alternative polyadenylation, I 

hypothesized that drought stress should give rise to the poly (A) site changes. This is 

particularly the case since drought stress causes increases in reactive oxygen species, a 

characteristic that affects the functioning of CPSF30. My results showed that poly (A) site 

choice within 5’UTR and CDS change in drought-stressed plants. Interestingly, poly (A) 

sites within 5’UTR region show significantly increased usage after only one hour. 

Subsequently, the relative poly (A) site usage within 5’-UTRs decreases after six and 

twenty-four hours treatment, but again increases after two weeks. Why does relative poly 

(A) site within 5’UTRs change so rapidly? This might be caused by altering the efficiency 

of the polyadenylation complex or by changes in the stabilities of different mRNA 

isoforms, or the combination of these two mechanisms. Because this polyadenylation 

complex contains many proteins, it is difficult which of these might be impacted by stress. 

One of these may be CPSF30, since this protein is controlled by calmodulin and by reactive 
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oxygen species, two signaling systems associated with drought. Another possible reason is 

the stability of the mRNA isoforms that derived from polyadenylation within 5’UTRs and 

CDS. In particular, mRNA isoforms with 3’ ends that lie within CDS regions lack stop 

codons and should be unstable. It is conceivable that stress may inhibit RNA quality control 

processes, leading to the result obtained in this thesis.  

It is known that CPSF30 controls a large number of poly (A) sites in Arabidopsis. Between 

the oxt6 mutant and wild type, there are three classes of poly(A) site, wild type specific, 

oxt6 specific, and common (seen both in wild type and mutant). Around 70% of all sites 

are wt-specific or oxt6-specific sites. The stabilities of these mRNA may be different, 

which may provide one mechanism by which AtCPSF30 regulates gene expression. 

My results showed that the mRNA isoforms show similar stability profiles in the wild 

type and mutant plants except those with 3’ ends within CDS. These latter mRNA 

isoforms are much more stable in the mutant than the wild type. This result suggests 

that AtCPSF30 may be involved in the process of non-stop mRNA decay.  

The combined results of the drought stress and stability assays indicates that the efficiency 

of the polyadenylation complex might the main reason for significant increases in poly (A) 

site usage within 5’UTRs. Also, other results suggest that CPSF30 could be involved in 

drought stress-induced APA. Therefore, CPSF30 might be a target for changing the 

efficiency of the polyadenylation complex in response to stress.  

What proteins can interact with CPSF30 to cause the changes of poly (A) site choice and 

the mRNA stability? The protein-protein assays showed that CPSF30 interacts with 

OBAP1A, whose tyrosine phosphorylation state is modulated in response to ABA. ABA 

regulates guard cell turgor via a calcium-dependent pathway, thus bringing an additional 
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calcium signaling mechanism to CPSF30.  CPSF30 also interacts with ribosome protein 

L35(RPL35), which plays an important role in nuclear entry, translation activity, and 

endoplasmic reticulum(ER) docking. These results indicate that multiple calcium-

dependent signaling mechanisms may converge on CPSF30, and CPSF30 might directly 

interact the ribosome. Since CPSF30 interacts with OBAP1A and RPL35, it would be 

interesting to study OBAP1A and RPL35 mutants, and to characterize the double mutant 

of CPSF30 with OBAP1A and RPL35.  
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