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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Within a hospital, the operating room (OR) department has the largest cost and revenue. Because of the aging population, the 
demand for surgical services has been increasing sharply in recent years. At the other hand, the rate of OR capacity expansion is 
lower than the rate of increasing demand. As a result, OR managers must leverage their resources by efficient OR planning. OR 
planning is challenging because of multiple competing\conflicting objectives such cost minimization and throughput maximization. 
Inherent uncertainty in the surgical procedures and patients arrivals complicate the decision making process. This increases the risk 
of non-realization of the system objectives. In this paper, stochastic bi-level optimization models were formulated to optimize total 
cost and throughput of ORs under the presence of uncertainties in patient arrivals and case times. Newsvendor model and chance-
constrained optimization method were used to optimize multiple objectives under the presence of uncertainties. Using historical 
data, a simulation model was established to validate the results of optimization models. Using statistical process control (SPC) 
stability of each model was investigated. Using bi-level optimization, we addressed managerial preferences over total cost and 
throughput. Optimizing one objective may lead to compromise on the optimality of the other objective, which generates trade-offs. 
Using a trade-off balancing model, we found solutions that minimize the sum of deviations from the best solutions for both total 
cost and throughput. Trade-off balancing optimization models may lead to better solutions, compared to traditional multi-objective 
optimization models. The results of this paper are applicable to manufacturing systems, where managers face multiple objectives 
and uncertainties in the system.  
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1. Introduction 

Healthcare is one of the most important sectors of the 
economy; historical data show a continuous increasing 
trend for the healthcare expenditures in recent 

decades. In 2009, the U.S. healthcare expenditures 
exceeded 17% of the gross domestic product (GDP), 
but was only 4.6% of the GDP in 1950 [1]. Experts in 
economy, healthcare policy and public finance believe 
that the healthcare expenditures control is the main 
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1. Introduction 

Healthcare is one of the most important sectors of the 
economy; historical data show a continuous increasing 
trend for the healthcare expenditures in recent 

decades. In 2009, the U.S. healthcare expenditures 
exceeded 17% of the gross domestic product (GDP), 
but was only 4.6% of the GDP in 1950 [1]. Experts in 
economy, healthcare policy and public finance believe 
that the healthcare expenditures control is the main 
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component of the deficit reduction challenge facing 
the U.S. government [2,3]. Hospitals, physicians and 
drugs are the primary expenditures. Among these main 
categories, hospital cost are the largest part of the 
healthcare expenditures [1]. 
As a result of increasing costs, hospitals need to 
leverage their resources by using them more 
efficiently. Within a hospital, the operating room (OR) 
department is one of the most critical resources, which 
has the largest cost and revenue [4,5,6]. Because of the 
aging population, the demand for surgical services has 
been increasing sharply in recent years [7,8]. 
Therefore, efficient OR management has the potential 
of offering a significant cost saving. To efficiently 
utilize ORs, hospitals must provide high quality care 
more effectively with limited resources by developing 
efficient OR schedules [4,9]. 
OR planning is challenging because it is under the 
continuous pressure of competing objectives, such as 
cost minimization, waiting time minimization, etc. 
There are numerous affecting factors and various 
active players in an OR department. Patients, surgeons 
and OR managers are some of the OR active players 
who might have competing/conflicting objectives, with 
respect to cost, waiting times, etc. A large variety of 
performance measures are used to evaluate the OR 
planning, such as throughput, waiting lists, utilization, 
total cost, etc. The choice among these objectives is 
challenging and complex, because of multiple 
stakeholders (i.e. patients, surgeons, OR managers, 
etc.) with different incentives and priorities [4]. 
Therefore, any decision on one objective may generate 
trade-offs on the other objectives. 
Waiting time, which is defined as the time between the 
referral date and the surgery date, is of particular 
importance for patients [4]. In general, patients prefer 
to get on schedule as soon as possible. Long waiting 
times may negatively affect the patients’ health 
condition and consequently decrease the quality of care 
and patient’s satisfaction. On the other hand, 
deteriorated health condition may increase the cost of 
required care, which is not desirable for the patients or 
for the healthcare providers and insurance companies 
[4,10,11,12]. Throughput, which is defined as the 
number of patients treated in a period of time, is of 
particular importance for surgeons. Surgeons prefer to 
perform as many surgeries as possible in their assigned 
OR times. In general, because of educational and 
research workloads, surgeons are available on limited 
hours/days. Therefore, any idletime is not desirable for 
them [13,14,15]. 
The dependency between waiting time and throughput 
is clearly described by equation (1) which is known as 

Little’s Law [4,16]. The average work in process (L) in 
the system equals average arrivals (λ) to the system 
multiplied by the average cycle-time (W). 

𝐿𝐿 = 𝜆𝜆𝜆𝜆 (1) 
In the OR planning context, L can be interpreted as the 
number of patients on the waiting list, λ as the 
throughput and W as the summation of waiting time 
and case time. Therefore, by increasing throughput, the 
waiting time indirectly decreases [4]. 
OR utilization is of importance for OR managers. OR 
utilization measures the proportion of potential output 
that is actually realized. OR utilization is a very 
important operational metric, because it provides 
insight to the existing slack in the system. An OR 
department with utilization less than 100%, 
‘theoretically’ has the potential to increase the 
production without generating overhead costs 
associated with capacity expansion. OR utilization is 
also a very effective metric to illuminate the cost 
structure of the OR department, by defining 
underutilization (idletime) costs and overutilization 
(overtime) costs. OR utilization is one the most 
extensively studied OR performance measures. 
According to the literature, the OR utilization should 
be maximized to avoid underutilization (idletime) 
costs. But due to the high variations in case times and 
patients’ arrivals, highly utilized ORs are unstable 
[4,17]. 
In this paper, two performance criteria, throughput 
(TP) and total cost (TC) are taken into consideration. 
These performance measures are of importance to three 
main stakeholders (i.e. patients, surgeons and OR 
managers) and each stakeholder must be ‘adequately’ 
satisfied.  
The stochastic nature of the process is another 
challenging factor for OR planning. There are many 
sources of uncertainty, such as variations in patients’ 
arrivals (no-shows, emergencies), variations in case 
times (surgery duration), etc. which may negatively 
affect the OR department performance. Uncertainty is 
an inherent feature of surgical procedures. There are 
two types of well-defined uncertainties in the OR 
planning literatures: (1) uncertainty in the case times, 
which is the difference between expected and actual 
surgery duration and (2) uncertainty in the patients’ 
arrivals caused by emergency arrivals and patients no-
show cases [4,18]. A large body of research has been 
done to tackle the uncertainty in case times 
[11,12,13,19,20]. On the other hand, there are a few 
works addressing the uncertainty in the arrival rate 
[12,14,21,22,23]. There are fewer works, if any, 
considering uncertainties in both case times and 
patients’ arrivals at the same time. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2018.07.008&domain=pdf
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component of the deficit reduction challenge facing 
the U.S. government [2,3]. Hospitals, physicians and 
drugs are the primary expenditures. Among these main 
categories, hospital cost are the largest part of the 
healthcare expenditures [1]. 
As a result of increasing costs, hospitals need to 
leverage their resources by using them more 
efficiently. Within a hospital, the operating room (OR) 
department is one of the most critical resources, which 
has the largest cost and revenue [4,5,6]. Because of the 
aging population, the demand for surgical services has 
been increasing sharply in recent years [7,8]. 
Therefore, efficient OR management has the potential 
of offering a significant cost saving. To efficiently 
utilize ORs, hospitals must provide high quality care 
more effectively with limited resources by developing 
efficient OR schedules [4,9]. 
OR planning is challenging because it is under the 
continuous pressure of competing objectives, such as 
cost minimization, waiting time minimization, etc. 
There are numerous affecting factors and various 
active players in an OR department. Patients, surgeons 
and OR managers are some of the OR active players 
who might have competing/conflicting objectives, with 
respect to cost, waiting times, etc. A large variety of 
performance measures are used to evaluate the OR 
planning, such as throughput, waiting lists, utilization, 
total cost, etc. The choice among these objectives is 
challenging and complex, because of multiple 
stakeholders (i.e. patients, surgeons, OR managers, 
etc.) with different incentives and priorities [4]. 
Therefore, any decision on one objective may generate 
trade-offs on the other objectives. 
Waiting time, which is defined as the time between the 
referral date and the surgery date, is of particular 
importance for patients [4]. In general, patients prefer 
to get on schedule as soon as possible. Long waiting 
times may negatively affect the patients’ health 
condition and consequently decrease the quality of care 
and patient’s satisfaction. On the other hand, 
deteriorated health condition may increase the cost of 
required care, which is not desirable for the patients or 
for the healthcare providers and insurance companies 
[4,10,11,12]. Throughput, which is defined as the 
number of patients treated in a period of time, is of 
particular importance for surgeons. Surgeons prefer to 
perform as many surgeries as possible in their assigned 
OR times. In general, because of educational and 
research workloads, surgeons are available on limited 
hours/days. Therefore, any idletime is not desirable for 
them [13,14,15]. 
The dependency between waiting time and throughput 
is clearly described by equation (1) which is known as 

Little’s Law [4,16]. The average work in process (L) in 
the system equals average arrivals (λ) to the system 
multiplied by the average cycle-time (W). 

𝐿𝐿 = 𝜆𝜆𝜆𝜆 (1) 
In the OR planning context, L can be interpreted as the 
number of patients on the waiting list, λ as the 
throughput and W as the summation of waiting time 
and case time. Therefore, by increasing throughput, the 
waiting time indirectly decreases [4]. 
OR utilization is of importance for OR managers. OR 
utilization measures the proportion of potential output 
that is actually realized. OR utilization is a very 
important operational metric, because it provides 
insight to the existing slack in the system. An OR 
department with utilization less than 100%, 
‘theoretically’ has the potential to increase the 
production without generating overhead costs 
associated with capacity expansion. OR utilization is 
also a very effective metric to illuminate the cost 
structure of the OR department, by defining 
underutilization (idletime) costs and overutilization 
(overtime) costs. OR utilization is one the most 
extensively studied OR performance measures. 
According to the literature, the OR utilization should 
be maximized to avoid underutilization (idletime) 
costs. But due to the high variations in case times and 
patients’ arrivals, highly utilized ORs are unstable 
[4,17]. 
In this paper, two performance criteria, throughput 
(TP) and total cost (TC) are taken into consideration. 
These performance measures are of importance to three 
main stakeholders (i.e. patients, surgeons and OR 
managers) and each stakeholder must be ‘adequately’ 
satisfied.  
The stochastic nature of the process is another 
challenging factor for OR planning. There are many 
sources of uncertainty, such as variations in patients’ 
arrivals (no-shows, emergencies), variations in case 
times (surgery duration), etc. which may negatively 
affect the OR department performance. Uncertainty is 
an inherent feature of surgical procedures. There are 
two types of well-defined uncertainties in the OR 
planning literatures: (1) uncertainty in the case times, 
which is the difference between expected and actual 
surgery duration and (2) uncertainty in the patients’ 
arrivals caused by emergency arrivals and patients no-
show cases [4,18]. A large body of research has been 
done to tackle the uncertainty in case times 
[11,12,13,19,20]. On the other hand, there are a few 
works addressing the uncertainty in the arrival rate 
[12,14,21,22,23]. There are fewer works, if any, 
considering uncertainties in both case times and 
patients’ arrivals at the same time. 
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 In this paper, we propose a model which takes both 
sources of uncertainties into consideration. Without 
loss of generality, we assume that the case times and 
patients’ arrivals are normally distributed. Using joint 
distribution of case times and patients’ arrivals, we 
provide theoretical properties for OR department cost 
function (consisting of overtime and idletime). Using 
newsvendor model, we minimize the mismatch 
between expected and actual cost. Then, we utilize a 
bi-level chance constrained optimization model to 
optimize TC and TP. To this aim, we alternate the 
order of objectives to show the trade-offs generated by 
the competing objectives. Finally, we propose a trade-
off balancing model, to show the effectiveness and 
efficiency of trade-offs balancing over traditional 
optimization models. 
The main contributions of this paper are (i) a stochastic 
model, which explicitly takes uncertainties into 
account in both case times and patient arrivals, (ii) bi-
level optimization models,  in which the order of 
objectives is alternated to show the trade-off among 
objectives, and (iii) a trade-off balancing model, which 
balances the trade-offs between competing objectives 
of TP and TC. This research is unique because it 
provides a flexible tool for OR managers to perform 
OR planning more efficiently, by avoiding excessive 
overtime/idletime cost and long waiting lists. 

2. Method 

This section first presents a brief introduction to the 
newsvendor model and the chance-constrained 
optimization method. Next, two bi-level chance 
constrained models for OR planning problem under 
the presence of uncertainties in case times and 
patients’ arrivals are proposed. A trade-off balancing 
model is also presented at the end of this section. 

2.1. Newsvendor model 

Newsvendor model is a mathematical model, used to 
determine optimal inventory levels, subjected to fixed 
cost ratios (with Co for overage cost and Cs for 
Shortage cost, and 𝐶𝐶𝑜𝑜, 𝐶𝐶𝑠𝑠 > 0) where demand is under 
normal distribution  𝐷𝐷~𝒩𝒩(𝜇𝜇𝐷𝐷, 𝜎𝜎𝐷𝐷

2)  . Before the 
realization of D, the decision maker has to make a 
decision Q (inventory level). Minimizing the 
mismatch between Q and D is the objective of 
newsvendor model. If 𝑄𝑄 > 𝐷𝐷, the overage cost occurs, 
which is 𝐶𝐶𝑜𝑜(max(0, 𝑄𝑄 − 𝐷𝐷)). If 𝑄𝑄 < 𝐷𝐷, the shortage 
cost occurs, which is  𝐶𝐶𝑠𝑠(max(0, 𝐷𝐷 − 𝑄𝑄)). The optima 
Q* minimizes the  𝔼𝔼{𝐶𝐶𝑜𝑜(max(0, 𝑄𝑄 − 𝐷𝐷)) +

𝐶𝐶𝑠𝑠(max(0, 𝐷𝐷 − 𝑄𝑄))} . Assuming unconstrained 
problem and taking convexity of objective function in 
Q into consideration, the optimal solution can be 
derived by the first order condition [24,25].  
Therefore,  𝐹𝐹(𝑄𝑄∗) = Φ(z) = 𝐶𝐶𝑢𝑢

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
, where 𝑧𝑧 = 𝑄𝑄∗−𝜇𝜇𝐷𝐷

𝜎𝜎𝐷𝐷
 

and Φ(∙) is the cumulative distribution function of the 
standard normal distribution. Q* is explicitly presented 
by 𝑄𝑄∗ = 𝜇𝜇𝐷𝐷 + 𝑧𝑧𝜎𝜎𝐷𝐷.  

2.2. Chance-constrained optimization 

Chance-constrained optimization method is one of the 
approaches to solve optimization models in the 
presence of uncertainty. The basic idea is to ensure that 
the probability of meeting certain constraints is above 
a predetermined level [26,27]. In other word chance-
constrained model restricts the solution feasible region 
to achieve higher confidence level for the solution. 
The general optimization model under uncertainty can 
be formulated as follows: 

min 𝑓𝑓(𝑥𝑥, 𝜉𝜉) (2) 
s.t.  

𝑔𝑔(𝑥𝑥, 𝜉𝜉) = 0 (3) 
ℎ(𝑥𝑥, 𝜉𝜉) ≥ 0 (4) 

Equation (2) describes the objective function, equation 
(3) describes the equality constraints and equation (4) 
describes the inequality constraints. x is the decision 
variables vector and 𝜉𝜉  is the uncertainties vector. 
Using chance-constrained method the inequality 
constraints can be formulated as  𝑃𝑃𝑃𝑃(ℎ(𝑥𝑥, 𝜉𝜉) ≥ 0) ≤
𝛼𝛼, 𝛼𝛼 ∈ [0,1] is the predetermined probability level.  

2.3. Bi-level optimization models  

2.3.1. Total cost to Throughput (C2P) 

We propose a bi-level optimization model that at the 
first level minimizes TC, and then at the second level 
maximizes TP subjected to the cost constraints 
imposed by the first level optimization. 
 
I)  TC 

Without loss of generality, we assume that the patients 
randomly arrive to the OR department via a normal 
distribution  𝑑𝑑~𝒩𝒩(𝜇𝜇𝑑𝑑, 𝜎𝜎𝑑𝑑

2) . This assumption is very 
common in the literature and it fits the actual data 
when the number of arrivals is large enough. Case 
times are assumed to be independent, identically 
distributed (i.i.d) random variables with normal 
distribution  𝑝𝑝~𝒩𝒩(𝜇𝜇𝑝𝑝, 𝜎𝜎𝑝𝑝

2) . This assumption is also 
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common in the literature and it fits the actual data 
when the patients’ population is large enough. We 
assume that set-up and clean-up times are factored into 
the case time p. In this paper, we deal with the strategic 
OR planning problem which is a long-term one. 
Therefore, the assumption of having a large population 
of patients holds. Assuming that the case times and 
patients’ arrivals are i.i.d, we define a new random 
variable named workload (l) as the product of patients’ 
arrival d and case times p. It is worth noting that the 
product of two normal distributions is not always a 
normal distribution. But, under some conditions the 
product can be approximated to a normal distribution. 
Particularly, for two normal distributions with 
different mean (𝜇𝜇𝑥𝑥 ≠ 𝜇𝜇𝑦𝑦) and different variance (𝜎𝜎𝑥𝑥

2 ≠
𝜎𝜎𝑦𝑦

2 ), as the inverse variation coefficient 𝛿𝛿 = 𝜇𝜇
𝜎𝜎 

increases (𝛿𝛿 > 1), the distribution of the product of 
two independent normal variables tends to a normal 
distribution [28]. 
Using approximation formulas proposed by Macias 
and Oliviera [28] we can compute mean and variance 
of l by equation (5) and equation (6) respectively.  

 𝜇𝜇𝑙𝑙 = 𝜇𝜇𝑑𝑑𝜇𝜇𝑝𝑝 (5) 
𝜎𝜎𝑙𝑙

2 = 𝜇𝜇𝑑𝑑
2𝜎𝜎𝑝𝑝

2 + 𝜇𝜇𝑝𝑝
2𝜎𝜎𝑑𝑑

2 + 𝜎𝜎𝑑𝑑
2𝜎𝜎𝑝𝑝

2 (6) 
Now we are able to utilize the newsvendor model to 
obtain the optimum workload for the planning horizon 
(T), minimizing the TC. To translate cost factors Cs 
and Co into the OR planning context, we argue as 
follows: shortage cost occurs in OR department when 
the planned capacity (workload) is less than the actual 
realized workload. Therefore, a fraction of actual 
workload must be done in overtime (overtime=max(0, 
Actual workload - Planned workload).  With this 
argument, shortage cost of the newsvendor model is an 
equivalent for overtime in ORs. On the other hand 
overage cost occurs in ORs when the planned capacity 
is greater than the actual realized workload and a 
fraction of the planned capacity sits idle 
(idletime=max(0, Planned workload – Actual 
workload). Therefore, the overage cost of the 
newsvendor model is an equivalent for idletime in 
ORs. Based on what was discussed above, to drive out 
optimal planned capacity (B*) in the time period of T, 
we can define the expected cost by equation (7). Let 
g(∙) and G(∙) be the density and cumulative distribution 
functions of l. 

𝑌𝑌(𝐵𝐵) = 𝐶𝐶𝑜𝑜 ∫ (𝐵𝐵 − 𝑙𝑙)𝑔𝑔(𝑙𝑙)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑠𝑠

𝐵𝐵

0
∫ (𝑙𝑙 − 𝐵𝐵)𝑔𝑔(𝑙𝑙)𝑑𝑑𝑑𝑑

∞

𝐵𝐵
 (7) 

Because equation (7) is a convex function in B, by 
applying the first derivative condition we can derive 
out the optimal planned capacity B*. Applying 
Leibnize rule [29,30,31] for differentiation under the 

integral sign with respect to B and setting it equal to 
zero, it yields: 

 𝑑𝑑𝑑𝑑(𝐵𝐵)
𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑜𝑜 ∫ 1. 𝑔𝑔(𝑙𝑙)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑠𝑠 ∫ (−1)𝑔𝑔(𝑙𝑙)𝑑𝑑𝑑𝑑∞

𝐵𝐵
𝐵𝐵

0  
 = 𝐶𝐶𝑜𝑜𝐺𝐺(𝐵𝐵) − 𝐶𝐶𝑠𝑠[1 − 𝐺𝐺(𝐵𝐵)] = 0 → 

𝐺𝐺(𝐵𝐵∗) = 𝐶𝐶𝑠𝑠
𝐶𝐶𝑜𝑜 + 𝐶𝐶𝑠𝑠

 
(8) 

𝐺𝐺(𝐵𝐵∗) = Φ(𝑧𝑧) = Φ (𝐵𝐵∗ − 𝜇𝜇𝑙𝑙
𝜎𝜎𝑙𝑙

) = 𝐶𝐶𝑠𝑠
𝐶𝐶𝑜𝑜 + 𝐶𝐶𝑠𝑠

 (9) 
𝐵𝐵∗ = 𝜇𝜇𝑙𝑙 + 𝑧𝑧𝜎𝜎𝑙𝑙 (10) 

𝐺𝐺(𝐵𝐵∗)  represents the probability of workload being 
less than or equal to B* (𝑃𝑃𝑟𝑟(𝑙𝑙 ≤ 𝐵𝐵∗) = 𝐺𝐺(𝐵𝐵∗) ). In 
other words, the probability of having enough capacity 
to meet l is 𝐶𝐶𝑠𝑠

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
. Another interesting implication of 

equation (10) is that for the normal case, B* is an 
increasing function of 𝜇𝜇𝑙𝑙 and 𝜎𝜎𝑙𝑙, provided that the z is 
positive (because 𝐶𝐶𝑠𝑠 and 𝐶𝐶𝑜𝑜  are strictly positive). 
Considering this fact that the cost of overtime hours is 
always greater (or equal) than the cost of idletime 
hours, we can conclude that  𝐶𝐶𝑠𝑠

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
≥ 0.5. Therefore, 

we should allocate more capacity to avoid overtime 
(shortage cost). B* is then imposed as the capacity 
constraints into the second level optimization model, 
which maximizes throughput (TP). 
 
II)  TP 

In order to maximize TP, the OR manager can estimate 
the expected case times based on historical data and 
surgeon estimation. The OR manager can use 𝑛𝑛𝑝̅𝑝 ≤
𝐵𝐵∗ to derive the number of patients to be planned. 
Where 𝑝̅𝑝 is the OR manager’s estimation for the case 
times and n denotes the number of patients to be 
planned. The drawback of this simple procedure is that 
it ignores the variability in the case times and patients’ 
arrivals and it doesn’t provide any insight to the 
probability of expected overtime levels. To provide a 
guarantee on the expected overtime, stochastic 
constraints must be imposed to the objective function 
to capture the uncertainties inherent to the surgical 
procedures. By letting α ( 𝛼𝛼 ∈ [0,1])  to be the 
probability of overtime exceeding a threshold 
(tolerance on overtime), denoted by TL, we can 
formulate the probabilistic constraints by equation 
(11). 

𝑃𝑃𝑃𝑃 {(∑ 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1
− 𝐵𝐵∗) > 𝑇𝑇𝑇𝑇} ≤ 𝛼𝛼 

(11) 

While avoiding the overtime, OR managers want to 
minimize the idletime to treat more patients in a given 
time period. Therefore, we can formulate the nonlinear 
optimization model for TP as follows: 
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 In this paper, we propose a model which takes both 
sources of uncertainties into consideration. Without 
loss of generality, we assume that the case times and 
patients’ arrivals are normally distributed. Using joint 
distribution of case times and patients’ arrivals, we 
provide theoretical properties for OR department cost 
function (consisting of overtime and idletime). Using 
newsvendor model, we minimize the mismatch 
between expected and actual cost. Then, we utilize a 
bi-level chance constrained optimization model to 
optimize TC and TP. To this aim, we alternate the 
order of objectives to show the trade-offs generated by 
the competing objectives. Finally, we propose a trade-
off balancing model, to show the effectiveness and 
efficiency of trade-offs balancing over traditional 
optimization models. 
The main contributions of this paper are (i) a stochastic 
model, which explicitly takes uncertainties into 
account in both case times and patient arrivals, (ii) bi-
level optimization models,  in which the order of 
objectives is alternated to show the trade-off among 
objectives, and (iii) a trade-off balancing model, which 
balances the trade-offs between competing objectives 
of TP and TC. This research is unique because it 
provides a flexible tool for OR managers to perform 
OR planning more efficiently, by avoiding excessive 
overtime/idletime cost and long waiting lists. 

2. Method 

This section first presents a brief introduction to the 
newsvendor model and the chance-constrained 
optimization method. Next, two bi-level chance 
constrained models for OR planning problem under 
the presence of uncertainties in case times and 
patients’ arrivals are proposed. A trade-off balancing 
model is also presented at the end of this section. 

2.1. Newsvendor model 

Newsvendor model is a mathematical model, used to 
determine optimal inventory levels, subjected to fixed 
cost ratios (with Co for overage cost and Cs for 
Shortage cost, and 𝐶𝐶𝑜𝑜, 𝐶𝐶𝑠𝑠 > 0) where demand is under 
normal distribution  𝐷𝐷~𝒩𝒩(𝜇𝜇𝐷𝐷, 𝜎𝜎𝐷𝐷

2)  . Before the 
realization of D, the decision maker has to make a 
decision Q (inventory level). Minimizing the 
mismatch between Q and D is the objective of 
newsvendor model. If 𝑄𝑄 > 𝐷𝐷, the overage cost occurs, 
which is 𝐶𝐶𝑜𝑜(max(0, 𝑄𝑄 − 𝐷𝐷)). If 𝑄𝑄 < 𝐷𝐷, the shortage 
cost occurs, which is  𝐶𝐶𝑠𝑠(max(0, 𝐷𝐷 − 𝑄𝑄)). The optima 
Q* minimizes the  𝔼𝔼{𝐶𝐶𝑜𝑜(max(0, 𝑄𝑄 − 𝐷𝐷)) +

𝐶𝐶𝑠𝑠(max(0, 𝐷𝐷 − 𝑄𝑄))} . Assuming unconstrained 
problem and taking convexity of objective function in 
Q into consideration, the optimal solution can be 
derived by the first order condition [24,25].  
Therefore,  𝐹𝐹(𝑄𝑄∗) = Φ(z) = 𝐶𝐶𝑢𝑢

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
, where 𝑧𝑧 = 𝑄𝑄∗−𝜇𝜇𝐷𝐷

𝜎𝜎𝐷𝐷
 

and Φ(∙) is the cumulative distribution function of the 
standard normal distribution. Q* is explicitly presented 
by 𝑄𝑄∗ = 𝜇𝜇𝐷𝐷 + 𝑧𝑧𝜎𝜎𝐷𝐷.  

2.2. Chance-constrained optimization 

Chance-constrained optimization method is one of the 
approaches to solve optimization models in the 
presence of uncertainty. The basic idea is to ensure that 
the probability of meeting certain constraints is above 
a predetermined level [26,27]. In other word chance-
constrained model restricts the solution feasible region 
to achieve higher confidence level for the solution. 
The general optimization model under uncertainty can 
be formulated as follows: 

min 𝑓𝑓(𝑥𝑥, 𝜉𝜉) (2) 
s.t.  

𝑔𝑔(𝑥𝑥, 𝜉𝜉) = 0 (3) 
ℎ(𝑥𝑥, 𝜉𝜉) ≥ 0 (4) 

Equation (2) describes the objective function, equation 
(3) describes the equality constraints and equation (4) 
describes the inequality constraints. x is the decision 
variables vector and 𝜉𝜉  is the uncertainties vector. 
Using chance-constrained method the inequality 
constraints can be formulated as  𝑃𝑃𝑃𝑃(ℎ(𝑥𝑥, 𝜉𝜉) ≥ 0) ≤
𝛼𝛼, 𝛼𝛼 ∈ [0,1] is the predetermined probability level.  

2.3. Bi-level optimization models  

2.3.1. Total cost to Throughput (C2P) 

We propose a bi-level optimization model that at the 
first level minimizes TC, and then at the second level 
maximizes TP subjected to the cost constraints 
imposed by the first level optimization. 
 
I)  TC 

Without loss of generality, we assume that the patients 
randomly arrive to the OR department via a normal 
distribution  𝑑𝑑~𝒩𝒩(𝜇𝜇𝑑𝑑, 𝜎𝜎𝑑𝑑

2) . This assumption is very 
common in the literature and it fits the actual data 
when the number of arrivals is large enough. Case 
times are assumed to be independent, identically 
distributed (i.i.d) random variables with normal 
distribution  𝑝𝑝~𝒩𝒩(𝜇𝜇𝑝𝑝, 𝜎𝜎𝑝𝑝

2) . This assumption is also 
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common in the literature and it fits the actual data 
when the patients’ population is large enough. We 
assume that set-up and clean-up times are factored into 
the case time p. In this paper, we deal with the strategic 
OR planning problem which is a long-term one. 
Therefore, the assumption of having a large population 
of patients holds. Assuming that the case times and 
patients’ arrivals are i.i.d, we define a new random 
variable named workload (l) as the product of patients’ 
arrival d and case times p. It is worth noting that the 
product of two normal distributions is not always a 
normal distribution. But, under some conditions the 
product can be approximated to a normal distribution. 
Particularly, for two normal distributions with 
different mean (𝜇𝜇𝑥𝑥 ≠ 𝜇𝜇𝑦𝑦) and different variance (𝜎𝜎𝑥𝑥

2 ≠
𝜎𝜎𝑦𝑦

2 ), as the inverse variation coefficient 𝛿𝛿 = 𝜇𝜇
𝜎𝜎 

increases (𝛿𝛿 > 1), the distribution of the product of 
two independent normal variables tends to a normal 
distribution [28]. 
Using approximation formulas proposed by Macias 
and Oliviera [28] we can compute mean and variance 
of l by equation (5) and equation (6) respectively.  

 𝜇𝜇𝑙𝑙 = 𝜇𝜇𝑑𝑑𝜇𝜇𝑝𝑝 (5) 
𝜎𝜎𝑙𝑙

2 = 𝜇𝜇𝑑𝑑
2𝜎𝜎𝑝𝑝

2 + 𝜇𝜇𝑝𝑝
2𝜎𝜎𝑑𝑑

2 + 𝜎𝜎𝑑𝑑
2𝜎𝜎𝑝𝑝

2 (6) 
Now we are able to utilize the newsvendor model to 
obtain the optimum workload for the planning horizon 
(T), minimizing the TC. To translate cost factors Cs 
and Co into the OR planning context, we argue as 
follows: shortage cost occurs in OR department when 
the planned capacity (workload) is less than the actual 
realized workload. Therefore, a fraction of actual 
workload must be done in overtime (overtime=max(0, 
Actual workload - Planned workload).  With this 
argument, shortage cost of the newsvendor model is an 
equivalent for overtime in ORs. On the other hand 
overage cost occurs in ORs when the planned capacity 
is greater than the actual realized workload and a 
fraction of the planned capacity sits idle 
(idletime=max(0, Planned workload – Actual 
workload). Therefore, the overage cost of the 
newsvendor model is an equivalent for idletime in 
ORs. Based on what was discussed above, to drive out 
optimal planned capacity (B*) in the time period of T, 
we can define the expected cost by equation (7). Let 
g(∙) and G(∙) be the density and cumulative distribution 
functions of l. 

𝑌𝑌(𝐵𝐵) = 𝐶𝐶𝑜𝑜 ∫ (𝐵𝐵 − 𝑙𝑙)𝑔𝑔(𝑙𝑙)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑠𝑠

𝐵𝐵

0
∫ (𝑙𝑙 − 𝐵𝐵)𝑔𝑔(𝑙𝑙)𝑑𝑑𝑑𝑑

∞

𝐵𝐵
 (7) 

Because equation (7) is a convex function in B, by 
applying the first derivative condition we can derive 
out the optimal planned capacity B*. Applying 
Leibnize rule [29,30,31] for differentiation under the 

integral sign with respect to B and setting it equal to 
zero, it yields: 

 𝑑𝑑𝑑𝑑(𝐵𝐵)
𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑜𝑜 ∫ 1. 𝑔𝑔(𝑙𝑙)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑠𝑠 ∫ (−1)𝑔𝑔(𝑙𝑙)𝑑𝑑𝑑𝑑∞

𝐵𝐵
𝐵𝐵

0  
 = 𝐶𝐶𝑜𝑜𝐺𝐺(𝐵𝐵) − 𝐶𝐶𝑠𝑠[1 − 𝐺𝐺(𝐵𝐵)] = 0 → 

𝐺𝐺(𝐵𝐵∗) = 𝐶𝐶𝑠𝑠
𝐶𝐶𝑜𝑜 + 𝐶𝐶𝑠𝑠

 
(8) 

𝐺𝐺(𝐵𝐵∗) = Φ(𝑧𝑧) = Φ (𝐵𝐵∗ − 𝜇𝜇𝑙𝑙
𝜎𝜎𝑙𝑙

) = 𝐶𝐶𝑠𝑠
𝐶𝐶𝑜𝑜 + 𝐶𝐶𝑠𝑠

 (9) 
𝐵𝐵∗ = 𝜇𝜇𝑙𝑙 + 𝑧𝑧𝜎𝜎𝑙𝑙 (10) 

𝐺𝐺(𝐵𝐵∗)  represents the probability of workload being 
less than or equal to B* (𝑃𝑃𝑟𝑟(𝑙𝑙 ≤ 𝐵𝐵∗) = 𝐺𝐺(𝐵𝐵∗) ). In 
other words, the probability of having enough capacity 
to meet l is 𝐶𝐶𝑠𝑠

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
. Another interesting implication of 

equation (10) is that for the normal case, B* is an 
increasing function of 𝜇𝜇𝑙𝑙 and 𝜎𝜎𝑙𝑙, provided that the z is 
positive (because 𝐶𝐶𝑠𝑠 and 𝐶𝐶𝑜𝑜  are strictly positive). 
Considering this fact that the cost of overtime hours is 
always greater (or equal) than the cost of idletime 
hours, we can conclude that  𝐶𝐶𝑠𝑠

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
≥ 0.5. Therefore, 

we should allocate more capacity to avoid overtime 
(shortage cost). B* is then imposed as the capacity 
constraints into the second level optimization model, 
which maximizes throughput (TP). 
 
II)  TP 

In order to maximize TP, the OR manager can estimate 
the expected case times based on historical data and 
surgeon estimation. The OR manager can use 𝑛𝑛𝑝̅𝑝 ≤
𝐵𝐵∗ to derive the number of patients to be planned. 
Where 𝑝̅𝑝 is the OR manager’s estimation for the case 
times and n denotes the number of patients to be 
planned. The drawback of this simple procedure is that 
it ignores the variability in the case times and patients’ 
arrivals and it doesn’t provide any insight to the 
probability of expected overtime levels. To provide a 
guarantee on the expected overtime, stochastic 
constraints must be imposed to the objective function 
to capture the uncertainties inherent to the surgical 
procedures. By letting α ( 𝛼𝛼 ∈ [0,1])  to be the 
probability of overtime exceeding a threshold 
(tolerance on overtime), denoted by TL, we can 
formulate the probabilistic constraints by equation 
(11). 

𝑃𝑃𝑃𝑃 {(∑ 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1
− 𝐵𝐵∗) > 𝑇𝑇𝑇𝑇} ≤ 𝛼𝛼 

(11) 

While avoiding the overtime, OR managers want to 
minimize the idletime to treat more patients in a given 
time period. Therefore, we can formulate the nonlinear 
optimization model for TP as follows: 
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min {𝔼𝔼[max (0, (𝐵𝐵∗ − ∑ 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1
))]} 

(12) 

s.t.  

𝑃𝑃𝑃𝑃 {(∑ 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1
− 𝐵𝐵∗) > 𝑇𝑇𝐿𝐿} ≤ 𝛼𝛼 

 

 

(13) 

Equation (12) is the objective function, which 
minimizes the expected idletime; this implies that the 
objective function indirectly maximizes TP by 
packing more patients into B*. Equation (13) is the 
chance constraints, which guarantees that the overtime 
does not exceed an acceptable level of TL. TL and α 
are two managerial preferences, by which the OR 
manager can balance the waiting list. If managers 
experience an increasing waiting list by adjusting a 
larger value for TL. They can manage the waiting list, 
but it is important to consider resource availabilities 
(e.g. available budget, staff availability, etc.). 
Case times are assumed to be independent, identically 
distributed (i.i.d) random variables with normal 
distribution 𝑝𝑝~𝒩𝒩(𝜇𝜇𝑝𝑝, 𝜎𝜎𝑝𝑝

2). Therefore, overtime which 
is defined by  𝑂𝑂𝑂𝑂 = max (0, ∑ 𝑝𝑝𝑖𝑖

𝑛𝑛
𝑖𝑖=1 − 𝐵𝐵∗) , is also a 

normally distributed random 
variable  𝑂𝑂𝑂𝑂~𝒩𝒩(𝜇𝜇𝑂𝑂𝑂𝑂, 𝜎𝜎𝑂𝑂𝑂𝑂

2 )  , where 𝜇𝜇𝑂𝑂𝑂𝑂 = 𝑛𝑛𝜇𝜇𝑝𝑝 
and 𝜎𝜎𝑂𝑂𝑂𝑂

2 = 𝑛𝑛𝜎𝜎𝑝𝑝
2. The chance-constrained optimization 

model can be approximated to its nonlinear 
deterministic counterpart as follows [27]: 

min {𝔼𝔼[max (0, (𝐵𝐵∗ − ∑ 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1
))]} 

(14) 

s.t.  
𝜇𝜇𝑂𝑂𝑂𝑂 + Φ−1(1 − 𝛼𝛼)𝜎𝜎𝑂𝑂𝑂𝑂 ≤ 𝑇𝑇𝑇𝑇 (15) 

𝑛𝑛𝜇𝜇𝑝𝑝 ≤ 𝐵𝐵∗ (16) 
Equation (15) guarantees overtime does not exceed an 
acceptable level (TL) with probability of α. Where Φ(∙) 
represents the cumulative distribution function of the 
standard normal variable. equation (16) imposes the 
notion that the long term performance must converge 
to the expected one.  
Fig.1.a represents the relationship among number of 
planned patients, ratio of overtime threshold to 
planned capacity, and probability level α. This 
relationship provides the OR managers with a 
powerful but flexible tool to manage their OR 
department according to their preference over the 
acceptable overtime threshold and the associated risk 
of non-realization. By packing more patients into B* 
the risk of overtime increases (as we would intuitively 
expect). 
Given TL and α, the final output of this bi-level 
optimization is an ordered pair ( 𝐵𝐵1

∗, 𝑛𝑛1
∗ ), which 

specifies the optimum planned capacity and optimum 
number of patients to be planned.  

2.3.2. Throughput to Total cost (P2C) 

I) TP 
In order to show the trade-offs generated by the 
competing objectives, we alternate the order of 
objectives in our bi-level optimization models. If the 
OR managers’ preference is to meet the demand by a 
predetermined confidence level β, they must first find 
the optimum number of patients to be planned and its 
associated risk of non-realization. Afterwards, they 
have to find the required capacity, which minimizes 
the total cost generated by overtime and idletime. In 
order to do this, we formulate the first level 
optimization model maximizing TP as follows: 

min{𝔼𝔼[max(0, 𝑑𝑑 − 𝑛𝑛)]} (17) 
s.t.  

𝑃𝑃𝑃𝑃{(𝑑𝑑 − 𝑛𝑛) > 𝛾𝛾𝛾𝛾} ≤ 𝛽𝛽  
 

(18) 
Where, d is the actual number of arrivals, n is the 
number of patients to be planned, 𝛾𝛾 is the acceptable 
threshold for number patients more than n, 𝛾𝛾  is 
proportional to n, and β is the confidence level. 
Patients’ arrivals are assumed to be independent, 
identically distributed (i.i.d) random variables with 
normal distribution  𝑑𝑑~𝒩𝒩(𝜇𝜇𝑑𝑑, 𝜎𝜎𝑑𝑑

2) . The chance-
constrained optimization model can be rewritten to its 
nonlinear deterministic counterpart as follows [27]: 

min{𝔼𝔼[max(0, 𝑑𝑑 − 𝑛𝑛)]} (20) 
s.t.  

(1 + 𝛾𝛾)𝑛𝑛 ≥ 𝜇𝜇𝑑𝑑 + Φ−1(1 − 𝛽𝛽)𝜎𝜎𝑑𝑑  
 

(21) 
  

Equation (20) is the objective function, which 
minimizes    𝑑𝑑 − 𝑛𝑛 , the difference between actual 
number of arrivals and the planned number of patients. 
Equation (21) imposes that 𝑑𝑑 − 𝑛𝑛 does not exceed a 
predetermined level with the probability of β. Figure 
1.b. shows the relationship among n, 𝛾𝛾 and β.  

 
Fig.1.a. Overtime threshold to planned capacity ratio vs. 

number of planned patients 

 
Fig.1.b. γn threshold vs. n 
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II) TC 
Let n* be the number of patients to be planned, 
obtained from the first level optimization, at the 
second level of the optimization model, the objective 
is to minimize total cost (TC) generated by overtime 
and idletime, imposed by the constraints of treating n* 
patients. We again use the newsvendor model, to find 
to optimum capacity, which minimizes TC. We define 
the workload (l), which is a random variable as the 
product of n* and case times. Case times are assumed 
to be normally distributed random variables, therefore 
l is also a normally distributed random variable. Using 
standard formula for the product of a real number and 
normally distributed random variables, we can 
compute mean and variance of l by 𝜇𝜇𝑙𝑙 = 𝑛𝑛∗𝜇𝜇𝑝𝑝 and 𝜎𝜎𝑙𝑙

2 =
𝑛𝑛∗𝜎𝜎𝑝𝑝2 respectively. We utilize the newsvendor model to 
obtain the optimum workload for the planning horizon 
(T) minimizing the TC, yielding:  𝐺𝐺(𝐵𝐵∗) = Φ(𝑧𝑧) =
Φ (𝐵𝐵∗−𝜇𝜇𝑙𝑙

𝜎𝜎𝑙𝑙
) = 𝐶𝐶𝑠𝑠

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
, →𝐵𝐵∗ = 𝜇𝜇𝑙𝑙 + 𝑧𝑧𝜎𝜎𝑙𝑙. Given 𝛾𝛾 and β, the 

final output of this bi-level optimization is an ordered 
pair (𝐵𝐵2

∗, 𝑛𝑛2
∗ ), which specifies the optimum planned 

capacity and optimum number of patients to be 
planned.  

2.4. Trade-off balancing model 

Intuitively, when we optimize the OR planning 
problem based on different orders of objectives, it is 
very likely that the OR plan performs poorly with 
regard to the second level objective. In other words, 
the result of the bi-level optimization model is the 
global optima with regard to the first level objective, 
whereas it is local optima with regard to the second 
level objective. Therefore, alternating the order of 
objectives generates trade-offs in the OR plans 
performance.  
We utilize a simulation-based trade-off balancing 
model to minimize the trade-offs generated by 
alternating the order of objectives. Let 𝑗𝑗 ∈ {1,2} 
denote the orders of objectives, where, 1 represents 
TC→TP and 2 represents TP→TC. The trade-offs 
balancing model can be formulated as follows: 
 

min(𝜃𝜃
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑗𝑗

|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇 − 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇|
+ (1 − 𝜃𝜃) 𝑇𝑇𝑇𝑇𝑗𝑗 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇

|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇 − 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇|) 

(22) 

Where 0 ≤ 𝜃𝜃 ≤ 1 is the managerial weight assigned 
to TP and intuitively (1 − 𝜃𝜃)  to TC, setting these 
weights is a subjective decision, hence difficult to 
argue. Equation (22) expresses a type of normalized 
objective function to tackle the fact that each objective 

is expressed in different units and different 
granularity.  

3. Case study 

To analyze the efficiency of our proposed models, we 
established a simulation model using historical data 
provided by UKHealthcare (University of Kentucky 
healthcare). UKHealthcare hospitals perform a wide 
variety of surgery procedures and on average they treat 
more than 30,000 surgery cases per year.  
Different scenarios for different combination of 
managerial preferences over the order of objectives, α, 
β, TL and  𝛾𝛾  were designed. Different performance 
measures including throughput, total cost (𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑜𝑜 ∗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑠𝑠 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), idletime and overtime were 
computed to compare the performance of proposed 
models. 

3.1. Data generation 

Normality tests for patients’ arrivals and case times 
distributions were done using UKHealthcare historical 
data of a certain surgery group. Anderson-Darling 
normality test shows a p value of 0.3355 and 0.166 for 
patient arrivals and case times respectively (𝑝𝑝 ≥ 0.05 
for both), and the data plots form a fairly straight line 
along the fitted line. Therefore, it appears that the 
normal distribution is a good fit to the data set. 
Detailed results of the normality tests can be found in 
Appendix .A by table 4 and figure 7. 
To generate random data, we find the maximum and 
minimum value of case time (and patients’ arrivals as 
well), then using 𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚, we calculate the 
range of data. R then was discretized to 5 equal 
increments and the probability of each increment was 
calculated. Assuming T (planning horizon) as equal to 
one week, using Monte Carlo simulation, patients’ 
arrivals and associated case times were generated for 
50 weeks. 50 replications for each week were done and 
the data stored to run the simulation model.  

3.2. Cost ratios 

In this case study, (without loss of generality), we 
assume that  𝐶𝐶𝑠𝑠 = 2𝐶𝐶𝑜𝑜 . This implies that the cost of 
overtime is twice as the cost of idletime; in practice 
these cost ratios may vary place to place. Therefore, in 
our case Φ(𝑧𝑧) = 𝐶𝐶𝑠𝑠

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
= 0.6667 → 𝑧𝑧 = 0.4307.  
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min {𝔼𝔼[max (0, (𝐵𝐵∗ − ∑ 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1
))]} 

(12) 

s.t.  

𝑃𝑃𝑃𝑃 {(∑ 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1
− 𝐵𝐵∗) > 𝑇𝑇𝐿𝐿} ≤ 𝛼𝛼 

 

 

(13) 

Equation (12) is the objective function, which 
minimizes the expected idletime; this implies that the 
objective function indirectly maximizes TP by 
packing more patients into B*. Equation (13) is the 
chance constraints, which guarantees that the overtime 
does not exceed an acceptable level of TL. TL and α 
are two managerial preferences, by which the OR 
manager can balance the waiting list. If managers 
experience an increasing waiting list by adjusting a 
larger value for TL. They can manage the waiting list, 
but it is important to consider resource availabilities 
(e.g. available budget, staff availability, etc.). 
Case times are assumed to be independent, identically 
distributed (i.i.d) random variables with normal 
distribution 𝑝𝑝~𝒩𝒩(𝜇𝜇𝑝𝑝, 𝜎𝜎𝑝𝑝

2). Therefore, overtime which 
is defined by  𝑂𝑂𝑂𝑂 = max (0, ∑ 𝑝𝑝𝑖𝑖

𝑛𝑛
𝑖𝑖=1 − 𝐵𝐵∗) , is also a 

normally distributed random 
variable  𝑂𝑂𝑂𝑂~𝒩𝒩(𝜇𝜇𝑂𝑂𝑂𝑂, 𝜎𝜎𝑂𝑂𝑂𝑂

2 )  , where 𝜇𝜇𝑂𝑂𝑂𝑂 = 𝑛𝑛𝜇𝜇𝑝𝑝 
and 𝜎𝜎𝑂𝑂𝑂𝑂

2 = 𝑛𝑛𝜎𝜎𝑝𝑝
2. The chance-constrained optimization 

model can be approximated to its nonlinear 
deterministic counterpart as follows [27]: 

min {𝔼𝔼[max (0, (𝐵𝐵∗ − ∑ 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1
))]} 

(14) 

s.t.  
𝜇𝜇𝑂𝑂𝑂𝑂 + Φ−1(1 − 𝛼𝛼)𝜎𝜎𝑂𝑂𝑂𝑂 ≤ 𝑇𝑇𝑇𝑇 (15) 

𝑛𝑛𝜇𝜇𝑝𝑝 ≤ 𝐵𝐵∗ (16) 
Equation (15) guarantees overtime does not exceed an 
acceptable level (TL) with probability of α. Where Φ(∙) 
represents the cumulative distribution function of the 
standard normal variable. equation (16) imposes the 
notion that the long term performance must converge 
to the expected one.  
Fig.1.a represents the relationship among number of 
planned patients, ratio of overtime threshold to 
planned capacity, and probability level α. This 
relationship provides the OR managers with a 
powerful but flexible tool to manage their OR 
department according to their preference over the 
acceptable overtime threshold and the associated risk 
of non-realization. By packing more patients into B* 
the risk of overtime increases (as we would intuitively 
expect). 
Given TL and α, the final output of this bi-level 
optimization is an ordered pair ( 𝐵𝐵1

∗, 𝑛𝑛1
∗ ), which 

specifies the optimum planned capacity and optimum 
number of patients to be planned.  

2.3.2. Throughput to Total cost (P2C) 

I) TP 
In order to show the trade-offs generated by the 
competing objectives, we alternate the order of 
objectives in our bi-level optimization models. If the 
OR managers’ preference is to meet the demand by a 
predetermined confidence level β, they must first find 
the optimum number of patients to be planned and its 
associated risk of non-realization. Afterwards, they 
have to find the required capacity, which minimizes 
the total cost generated by overtime and idletime. In 
order to do this, we formulate the first level 
optimization model maximizing TP as follows: 

min{𝔼𝔼[max(0, 𝑑𝑑 − 𝑛𝑛)]} (17) 
s.t.  

𝑃𝑃𝑃𝑃{(𝑑𝑑 − 𝑛𝑛) > 𝛾𝛾𝛾𝛾} ≤ 𝛽𝛽  
 

(18) 
Where, d is the actual number of arrivals, n is the 
number of patients to be planned, 𝛾𝛾 is the acceptable 
threshold for number patients more than n, 𝛾𝛾  is 
proportional to n, and β is the confidence level. 
Patients’ arrivals are assumed to be independent, 
identically distributed (i.i.d) random variables with 
normal distribution  𝑑𝑑~𝒩𝒩(𝜇𝜇𝑑𝑑, 𝜎𝜎𝑑𝑑

2) . The chance-
constrained optimization model can be rewritten to its 
nonlinear deterministic counterpart as follows [27]: 

min{𝔼𝔼[max(0, 𝑑𝑑 − 𝑛𝑛)]} (20) 
s.t.  

(1 + 𝛾𝛾)𝑛𝑛 ≥ 𝜇𝜇𝑑𝑑 + Φ−1(1 − 𝛽𝛽)𝜎𝜎𝑑𝑑  
 

(21) 
  

Equation (20) is the objective function, which 
minimizes    𝑑𝑑 − 𝑛𝑛 , the difference between actual 
number of arrivals and the planned number of patients. 
Equation (21) imposes that 𝑑𝑑 − 𝑛𝑛 does not exceed a 
predetermined level with the probability of β. Figure 
1.b. shows the relationship among n, 𝛾𝛾 and β.  

 
Fig.1.a. Overtime threshold to planned capacity ratio vs. 

number of planned patients 

 
Fig.1.b. γn threshold vs. n 
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II) TC 
Let n* be the number of patients to be planned, 
obtained from the first level optimization, at the 
second level of the optimization model, the objective 
is to minimize total cost (TC) generated by overtime 
and idletime, imposed by the constraints of treating n* 
patients. We again use the newsvendor model, to find 
to optimum capacity, which minimizes TC. We define 
the workload (l), which is a random variable as the 
product of n* and case times. Case times are assumed 
to be normally distributed random variables, therefore 
l is also a normally distributed random variable. Using 
standard formula for the product of a real number and 
normally distributed random variables, we can 
compute mean and variance of l by 𝜇𝜇𝑙𝑙 = 𝑛𝑛∗𝜇𝜇𝑝𝑝 and 𝜎𝜎𝑙𝑙

2 =
𝑛𝑛∗𝜎𝜎𝑝𝑝2 respectively. We utilize the newsvendor model to 
obtain the optimum workload for the planning horizon 
(T) minimizing the TC, yielding:  𝐺𝐺(𝐵𝐵∗) = Φ(𝑧𝑧) =
Φ (𝐵𝐵∗−𝜇𝜇𝑙𝑙

𝜎𝜎𝑙𝑙
) = 𝐶𝐶𝑠𝑠

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
, →𝐵𝐵∗ = 𝜇𝜇𝑙𝑙 + 𝑧𝑧𝜎𝜎𝑙𝑙. Given 𝛾𝛾 and β, the 

final output of this bi-level optimization is an ordered 
pair (𝐵𝐵2

∗, 𝑛𝑛2
∗ ), which specifies the optimum planned 

capacity and optimum number of patients to be 
planned.  

2.4. Trade-off balancing model 

Intuitively, when we optimize the OR planning 
problem based on different orders of objectives, it is 
very likely that the OR plan performs poorly with 
regard to the second level objective. In other words, 
the result of the bi-level optimization model is the 
global optima with regard to the first level objective, 
whereas it is local optima with regard to the second 
level objective. Therefore, alternating the order of 
objectives generates trade-offs in the OR plans 
performance.  
We utilize a simulation-based trade-off balancing 
model to minimize the trade-offs generated by 
alternating the order of objectives. Let 𝑗𝑗 ∈ {1,2} 
denote the orders of objectives, where, 1 represents 
TC→TP and 2 represents TP→TC. The trade-offs 
balancing model can be formulated as follows: 
 

min(𝜃𝜃
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑗𝑗

|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇 − 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇|
+ (1 − 𝜃𝜃) 𝑇𝑇𝑇𝑇𝑗𝑗 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇

|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇 − 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇|) 

(22) 

Where 0 ≤ 𝜃𝜃 ≤ 1 is the managerial weight assigned 
to TP and intuitively (1 − 𝜃𝜃)  to TC, setting these 
weights is a subjective decision, hence difficult to 
argue. Equation (22) expresses a type of normalized 
objective function to tackle the fact that each objective 

is expressed in different units and different 
granularity.  

3. Case study 

To analyze the efficiency of our proposed models, we 
established a simulation model using historical data 
provided by UKHealthcare (University of Kentucky 
healthcare). UKHealthcare hospitals perform a wide 
variety of surgery procedures and on average they treat 
more than 30,000 surgery cases per year.  
Different scenarios for different combination of 
managerial preferences over the order of objectives, α, 
β, TL and  𝛾𝛾  were designed. Different performance 
measures including throughput, total cost (𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑜𝑜 ∗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑠𝑠 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), idletime and overtime were 
computed to compare the performance of proposed 
models. 

3.1. Data generation 

Normality tests for patients’ arrivals and case times 
distributions were done using UKHealthcare historical 
data of a certain surgery group. Anderson-Darling 
normality test shows a p value of 0.3355 and 0.166 for 
patient arrivals and case times respectively (𝑝𝑝 ≥ 0.05 
for both), and the data plots form a fairly straight line 
along the fitted line. Therefore, it appears that the 
normal distribution is a good fit to the data set. 
Detailed results of the normality tests can be found in 
Appendix .A by table 4 and figure 7. 
To generate random data, we find the maximum and 
minimum value of case time (and patients’ arrivals as 
well), then using 𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚, we calculate the 
range of data. R then was discretized to 5 equal 
increments and the probability of each increment was 
calculated. Assuming T (planning horizon) as equal to 
one week, using Monte Carlo simulation, patients’ 
arrivals and associated case times were generated for 
50 weeks. 50 replications for each week were done and 
the data stored to run the simulation model.  

3.2. Cost ratios 

In this case study, (without loss of generality), we 
assume that 𝐶𝐶𝑠𝑠 = 2𝐶𝐶𝑜𝑜 . This implies that the cost of 
overtime is twice as the cost of idletime; in practice 
these cost ratios may vary place to place. Therefore, in 
our case Φ(𝑧𝑧) = 𝐶𝐶𝑠𝑠

𝐶𝐶𝑜𝑜+𝐶𝐶𝑠𝑠
= 0.6667 → 𝑧𝑧 = 0.4307.  
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3.3. Managerial preferences 

I) C2P 
In this case study, we consider  𝛼𝛼 ∈
{0.01, 0.05, 0.10, 0.20, 0.30} ,  𝑇𝑇𝑇𝑇 ∈ {0.1𝐵𝐵∗, 0.2𝐵𝐵∗, 0.3𝐵𝐵∗} , 
therefore, we have 15 different combinations of 
confidence levels and acceptable overtime thresholds. 
Using equation (5), equation (6), equation (10) and 
historical data (𝜇𝜇𝑑𝑑 = 72 ,  𝜎𝜎𝑑𝑑 = 33 ,  𝜇𝜇𝑝𝑝 = 156 ,  𝜎𝜎𝑝𝑝 =
60 ), we obtain 𝐵𝐵∗ = 13194.06  minute. Therefore, 
using equation (14) through equation (16) we obtain 
n*. Table.1 shows n* for different combinations of α 
and TL. For the sake of brevity, a code is assigned to 
each combination of α and TL, shown in table.1 (e.g. 
C2P-1 for TL=0.1 and α=0.01).  It is worth mentioning 
that n* is the same for those combinations with 𝛼𝛼 >
0.01  or  𝑇𝑇𝑇𝑇 > 0.1𝐵𝐵∗ , because equation (16) sets an 
upper bound on the number of patients to ensure that 
the long term performance converges to the expected 
one.  
 

Table 1. (B*, n*) of different combinations of different α and 
TL 

 TL 
α 0.1 0.2 0.3 

0.01 C2P-1 C2P-6 C2P-10 
(13194, 84) (13194,87) (13194,87) 

0.05 C2P-2 C2P-7 C2P-11 
(13194,87) (13194,87) (13194,87) 

0.10 C2P-3 C2P-8 C2P-12 
(13194,87) (13194,87) (13194,87) 

0.20 C2P-4 C2P-9 C2P-13 
(13194,87) (13194,87) (13194,87) 

0.30 C2P-5 C2P-10 C2P-15 
(13194,87) (13194,87) (13194,87) 

 
II) P2C 

We consider  𝛽𝛽 ∈ {0.01, 0.05, 0.10, 0.20}  and  𝛾𝛾 ∈
{0.10𝑛𝑛∗, 0.20𝑛𝑛∗, 0.30𝑛𝑛∗} ; therefore, we have 15 
combinations of different β and γ. Table.2 shows (B*, 
n*) of these combinations. A code is assigned to each 
combination of β and γ, shown in table.2 (e.g. P2C-1 
for γ=0.1 and β=0.01).  
 

Table 2. (B*, n*) of different combinations of different β and γ 
 γ 

β  0.1 0.2 0.3 

0.01 P2C-1 P2C-6 P2C-10 
(22008, 144) (20948,137) (20190,132) 

0.05 P2C-2 P2C-7 P2C-11 
(19130,125) (18372,120) (17766,116) 

0.10 P2C-3 P2C-8 P2C-12 
(17766,116) (17160,112) (16553,108) 

0.20 P2C-4 P2C-9 P2C-13 
(16098,105) (15643,102) (15188,99) 

0.30 P2C-5 P2C-10 P2C-15 
(15491,101) (15036,98) (14733,96) 

3.4. Performance measures 

Several performance measures including throughput, 
total cost, idletime and overtime were computed to 
compare the performance of the proposed models.  
  

4. Results 

Statistical process control (SPC) techniques are used 
to monitor the performance of the proposed models. 
Xbar-R charts and process capability analyses are used 
to compare the quality of proposed models. Process 
capability index cp is an indicator, representing if the 
outcomes of a process are within the user-defined 
specification limits, where 𝑐𝑐𝑝𝑝 = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿

6𝜎𝜎 , and USL and 
LSL are user-defined upper specification limit and 
lower specification limit respectively. The larger the 
cp, the less variations in the process. Process capability 
index cpk represents the congestion of outcomes 
around the center line, the larger the cpk, the more 
congestion of outcomes around the center line [32,33]. 
C2P-1 has the best performance on idletime, overtime, 
throughput and total cost among all combinations of 
C2P. As mentioned earlier, equation (16) set an upper 
bound on the number of patients to ensure that the long 
term performance converges to the expected one, 
therefore, all combinations of C2P-2 to C2P-15 have 
the same performance, and are not sensitive to 
managerial preferences. Consequently, hereafter we 
only review the behavior of C2P-1. 

4.1. Idletime 

Idletime represents the unproductive time of ORs. In 
our case study, idletime is the difference between the 
actual workload and the planned capacity 
(  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = max (0, 𝐵𝐵∗ − ∑ 𝑝𝑝𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ). OR managers 
want to minimize the amount of idletime. For the sake 
of brevity, we present the best scenario of each model. 
Average idletime for C2P and P2C-15 equals 3907 
and 6163 minutes, respectively. C2P-1 outperforms 
the best P2C by 6163−3907

6163 = 36.6%.  
Process capability analyses results for idletime show 
that the cp is 0.30 for C2P-1 and 0.32 for P2C-15; this 
implies that the P2C-15 is more stable, because on 
average it generates a larger amount of idletime 
compared to C2P. For C2P-1 a big proportion of 
experiments (almost 1/3) does not generate any 
idletime. cpk is 0.27 for C2P-1 and 0.08 for P2C-15, 
which implies that the outcomes of C2P-1 are more 
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centered around the center line of specification limits. 
Figure 2 shows the SPC results for idletime. 

 

 
Fig.2. SPC results for Idletime 

4.2. Overtime 

Overtime represents the amount of time spent after 
regular hours to treat all patients. In our case study, 
overtime is the difference between the planned 
capacity and the actual workload (  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
max (0, ∑ 𝑝𝑝𝑖𝑖

𝑛𝑛
𝑖𝑖=1 − 𝐵𝐵∗) ). OR managers want to 

minimize the amount of overtime. P2C-15 has the 
worst performance on generating overtime among all 
combinations of β and γ (i.e. generating the largest 
amount of overtime). Therefore, we compare the 
performance of C2P-1 with the performance of P2C-
15. Average overtime is 1030 minutes for C2P-1 and 
582 minutes for P2C-15. Therefore, P2C-15 
outperforms C2P-1 by 1030−582

1030 = 43.50%.  
Process capability analyses results for overtime show 
that the cp is 0.09 for C2P-1 and 0.14 for P2C-15; this 
implies that P2C-15 generates less variations in 
overtime. Figure 3 shows the SPC results for overtime. 

4.3. Total cost 

Total cost is defined by  𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑜𝑜 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑠𝑠 ∗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. This formula helps us to find the trade-off 
between overtime and idletime costs. Using 
newsvendor model, we minimize this trade-off. P2C-
15 has the best performance on total cost among all 
combinations of β and γ. Therefore, we compare the 
performance of C2P with the performance of P2C-15. 

C2P-1 outperforms P2C-15 by  6163.36−5967.16
6163.36 =

3.18%. Since this percentage is not a large number, an 
ANOVA was performed to determine whether the 
difference between C2P-1 and P2C-15 is significant.  

 

 
Fig.3. SPC results for overtime 

 
 

 

 
Fig.4 SPC results for Total cost 

The ANOVA results demonstrate that the difference 
between total cost of C2P-1 and P2C-15 is statistically 
significant at 95% confidence level (p<0.05). Process 
capability analysis shows that C2P-1 has lower mean 
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3.3. Managerial preferences 

I) C2P 
In this case study, we consider  𝛼𝛼 ∈
{0.01, 0.05, 0.10, 0.20, 0.30} ,  𝑇𝑇𝑇𝑇 ∈ {0.1𝐵𝐵∗, 0.2𝐵𝐵∗, 0.3𝐵𝐵∗} , 
therefore, we have 15 different combinations of 
confidence levels and acceptable overtime thresholds. 
Using equation (5), equation (6), equation (10) and 
historical data (𝜇𝜇𝑑𝑑 = 72 ,  𝜎𝜎𝑑𝑑 = 33 ,  𝜇𝜇𝑝𝑝 = 156 ,  𝜎𝜎𝑝𝑝 =
60 ), we obtain 𝐵𝐵∗ = 13194.06  minute. Therefore, 
using equation (14) through equation (16) we obtain 
n*. Table.1 shows n* for different combinations of α 
and TL. For the sake of brevity, a code is assigned to 
each combination of α and TL, shown in table.1 (e.g. 
C2P-1 for TL=0.1 and α=0.01).  It is worth mentioning 
that n* is the same for those combinations with 𝛼𝛼 >
0.01  or  𝑇𝑇𝑇𝑇 > 0.1𝐵𝐵∗ , because equation (16) sets an 
upper bound on the number of patients to ensure that 
the long term performance converges to the expected 
one.  
 

Table 1. (B*, n*) of different combinations of different α and 
TL 

 TL 
α 0.1 0.2 0.3 

0.01 C2P-1 C2P-6 C2P-10 
(13194, 84) (13194,87) (13194,87) 

0.05 C2P-2 C2P-7 C2P-11 
(13194,87) (13194,87) (13194,87) 

0.10 C2P-3 C2P-8 C2P-12 
(13194,87) (13194,87) (13194,87) 

0.20 C2P-4 C2P-9 C2P-13 
(13194,87) (13194,87) (13194,87) 

0.30 C2P-5 C2P-10 C2P-15 
(13194,87) (13194,87) (13194,87) 

 
II) P2C 

We consider  𝛽𝛽 ∈ {0.01, 0.05, 0.10, 0.20}  and  𝛾𝛾 ∈
{0.10𝑛𝑛∗, 0.20𝑛𝑛∗, 0.30𝑛𝑛∗} ; therefore, we have 15 
combinations of different β and γ. Table.2 shows (B*, 
n*) of these combinations. A code is assigned to each 
combination of β and γ, shown in table.2 (e.g. P2C-1 
for γ=0.1 and β=0.01).  
 

Table 2. (B*, n*) of different combinations of different β and γ 
 γ 

β  0.1 0.2 0.3 

0.01 P2C-1 P2C-6 P2C-10 
(22008, 144) (20948,137) (20190,132) 

0.05 P2C-2 P2C-7 P2C-11 
(19130,125) (18372,120) (17766,116) 

0.10 P2C-3 P2C-8 P2C-12 
(17766,116) (17160,112) (16553,108) 

0.20 P2C-4 P2C-9 P2C-13 
(16098,105) (15643,102) (15188,99) 

0.30 P2C-5 P2C-10 P2C-15 
(15491,101) (15036,98) (14733,96) 

3.4. Performance measures 

Several performance measures including throughput, 
total cost, idletime and overtime were computed to 
compare the performance of the proposed models.  
  

4. Results 

Statistical process control (SPC) techniques are used 
to monitor the performance of the proposed models. 
Xbar-R charts and process capability analyses are used 
to compare the quality of proposed models. Process 
capability index cp is an indicator, representing if the 
outcomes of a process are within the user-defined 
specification limits, where 𝑐𝑐𝑝𝑝 = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿

6𝜎𝜎 , and USL and 
LSL are user-defined upper specification limit and 
lower specification limit respectively. The larger the 
cp, the less variations in the process. Process capability 
index cpk represents the congestion of outcomes 
around the center line, the larger the cpk, the more 
congestion of outcomes around the center line [32,33]. 
C2P-1 has the best performance on idletime, overtime, 
throughput and total cost among all combinations of 
C2P. As mentioned earlier, equation (16) set an upper 
bound on the number of patients to ensure that the long 
term performance converges to the expected one, 
therefore, all combinations of C2P-2 to C2P-15 have 
the same performance, and are not sensitive to 
managerial preferences. Consequently, hereafter we 
only review the behavior of C2P-1. 

4.1. Idletime 

Idletime represents the unproductive time of ORs. In 
our case study, idletime is the difference between the 
actual workload and the planned capacity 
(  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = max (0, 𝐵𝐵∗ − ∑ 𝑝𝑝𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ). OR managers 
want to minimize the amount of idletime. For the sake 
of brevity, we present the best scenario of each model. 
Average idletime for C2P and P2C-15 equals 3907 
and 6163 minutes, respectively. C2P-1 outperforms 
the best P2C by 6163−3907

6163 = 36.6%.  
Process capability analyses results for idletime show 
that the cp is 0.30 for C2P-1 and 0.32 for P2C-15; this 
implies that the P2C-15 is more stable, because on 
average it generates a larger amount of idletime 
compared to C2P. For C2P-1 a big proportion of 
experiments (almost 1/3) does not generate any 
idletime. cpk is 0.27 for C2P-1 and 0.08 for P2C-15, 
which implies that the outcomes of C2P-1 are more 
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centered around the center line of specification limits. 
Figure 2 shows the SPC results for idletime. 

 

 
Fig.2. SPC results for Idletime 

4.2. Overtime 

Overtime represents the amount of time spent after 
regular hours to treat all patients. In our case study, 
overtime is the difference between the planned 
capacity and the actual workload (  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
max (0, ∑ 𝑝𝑝𝑖𝑖

𝑛𝑛
𝑖𝑖=1 − 𝐵𝐵∗) ). OR managers want to 

minimize the amount of overtime. P2C-15 has the 
worst performance on generating overtime among all 
combinations of β and γ (i.e. generating the largest 
amount of overtime). Therefore, we compare the 
performance of C2P-1 with the performance of P2C-
15. Average overtime is 1030 minutes for C2P-1 and 
582 minutes for P2C-15. Therefore, P2C-15 
outperforms C2P-1 by 1030−582

1030 = 43.50%.  
Process capability analyses results for overtime show 
that the cp is 0.09 for C2P-1 and 0.14 for P2C-15; this 
implies that P2C-15 generates less variations in 
overtime. Figure 3 shows the SPC results for overtime. 

4.3. Total cost 

Total cost is defined by  𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑜𝑜 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑠𝑠 ∗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. This formula helps us to find the trade-off 
between overtime and idletime costs. Using 
newsvendor model, we minimize this trade-off. P2C-
15 has the best performance on total cost among all 
combinations of β and γ. Therefore, we compare the 
performance of C2P with the performance of P2C-15. 

C2P-1 outperforms P2C-15 by  6163.36−5967.16
6163.36 =

3.18%. Since this percentage is not a large number, an 
ANOVA was performed to determine whether the 
difference between C2P-1 and P2C-15 is significant.  

 

 
Fig.3. SPC results for overtime 

 
 

 

 
Fig.4 SPC results for Total cost 

The ANOVA results demonstrate that the difference 
between total cost of C2P-1 and P2C-15 is statistically 
significant at 95% confidence level (p<0.05). Process 
capability analysis shows that C2P-1 has lower mean 
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and less variations compared to P2C-15. Detailed 
results of SPC and ANOVA for total cost can be found 
in table.5 in Appendix. A. Figure 4 shows the SPC 
results for total cost. 

4.4. Throughput 

Throughput is defined as the number of treated 
patients in a given period of time. In this case study, 
we assumed that all arriving patients must be treated. 
This assumption implies two points: first, the number 
of treated patients is the same for all scenarios and 
second, scenarios throughputs differ from each other 
only by the number of patients treated in the overtime. 
Therefore, we use the number of patients treated in 
overtime as a performance indicator, to compare the 
throughput of different scenarios.  

 

 
Fig.5 SPC results for Number of patients served in overtime 

As we showed in previous section, P2C-15 has the 
lowest total cost among all combinations of P2C (all 
combinations of β and γ). It also has the worst 
performance on the number of patients served in 
overtime among all combinations of β and γ. 
Therefore, we compare the performance of C2P-1 
with the performance of P2C-15.  P2C-15 outperforms 
C2P-1 by  6.75−3.318

6.75 = 50.84% . Process capability 
analysis shows that cp is 0.29 for C2P-1 and 0.47 for 
P2C-15, which implies that P2C-15 has less variations 
on the number of served patients in overtime. Figure 5 
shows the SPC results for throughput (number of 
patients served in overtime). 

4.5. Trade-off balancing 

As we showed in earlier sections, TC and TP are 
inconsistent objectives, which imply that optimizing 
one may lead to compromise on the other one. 
Therefore, a model that has the least deviations from 
both objectives may be of interest to OR managers. We 
define 𝜃𝜃 ∈ {0, 0.25, 0.50, 0.75, 1}, 𝑎𝑎𝑎𝑎𝑎𝑎 0 ≤ 𝜃𝜃 ≤ 1, as 
the set of OR managers’ preference for TP over TC.  
Using equation (22) and simulation results for 
best/worst performance, we find the most efficient 
combination minimizing deviation from best 
performance. We have 80 different combinations of 
scenarios and different θ, shown by Table.3. The 
absolute values of best and worst performances are 
given by Table.6 in Appendix. A.  
As we intuitively expected, C2P-1 has the least 
deviation from the best performance on TC (θ=0). 
P2C-3 has the best performance, where OR managers 
have equal preferences over both objectives (θ=0.50). 
Several combinations of P2C have the best 
performance on TP (θ=1), as we intuitively expected. 
Figure 6 shows the sum of average deviations from the 
best TC and TP. 

Table 3. Sum of average deviations from best TC and TP 
 θ=0 θ=0.25 θ=0.50 θ=0.75 θ=1.0 
C2P-
1 

0.2882 
(Best) 

0.2552 0.2222 0.1892 
(Worst) 

0.1562 
(Worst) 

P2C-
1 

0.5637 
(Worst) 

0.4228 0.2819 
(Worst) 

0.14094 0  
(Best) 

P2C-
2 

0.4253 0.3190 0.2127 0.1063 0 
 (Best) 

P2C-
3 

0.3689 0.2784 0.0973 
(Best) 

0.0187 
(Best) 

0.0068 

P2C-
4 

0.3202 0.2503 0.1804 0.1105 0.0407 

P2C-
5 

0.3082 0.2461 0.1840 0.1220 0.0599 

P2C-
6 

0.5126 0.3845 0.2563 0.1281 0 (Best) 

P2C-
7 

0.3922 0.2945 0.1968 0.0991 0.0015 

P2C-
8 

0.3486 0.2653 0.1821 0.0989 0.0156 

P2C-
9 

0.3109 0.2468 0.1828 0.1188 0.0548 

P2C-
10 

0.3011 0.2451 
(Best) 

0.1891 0.1331 0.0772 

P2C-
11 

0.3571 0.4761 
(Worst) 

0.2381 0.1190 0 
 (Best) 

P2C-
12 

0.3689 0.2784 0.1879 0.0973 0.0068 

P2C-
13 

0.3314 0.2557 0.1800 0.1043 0.0286 

P2C-
14 

0.3033 0.2453 0.1873 0.1292 0.0712 

P2C-
15 

0.2972 0.2453 0.1934 0.1416 0.0897 
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Fig.6 Sum of average deviations from the best TC and TP 

5. Conclusion 

In this paper, we present a bi-level optimization model 
for OR planning, which captures uncertainties in 
patients’ arrivals and case times. Minimizing total cost 
(TC) and maximizing throughput (TP) are selected as 
objectives of the optimization models. Different 
managerial preferences over objectives are taken into 
account. By alternating the orders of objectives in our 
bi-level optimization model, we show that minimizing 
total cost and maximizing throughput are inconsistent. 
We propose a simulation-based trade-off balancing 
model to minimize the sum of deviations from best 
performance on each objective. Using historical data 
obtained from UKHealthcare, a large set of 
computational experiments are carried out. The 
simulation results show that for TC our proposed C2P 
has the best performance, and P2C has the best 
performance on TP. The simulation results for trade-
off balancing support the inconsistency between 
objectives. These results provide a flexible tool for OR 
managers to perform OR planning more efficiently 
based on their preferences and settings. The results of 
the study are applicable to manufacturing systems with 
multiple objectives under the presence of variations in 
demand and processing times. 
Our future research focus on adaptive control for OR 
planning. This aims to integrate time series into the 
OR planning process in order to update the OR plans 
based on the past performance and prediction of future 
desirable performance.  
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Appendix A. Supplementary results 
 
 A.1. Anderson-Darling normality test results for 
patients’ arrivals and case times. 
 

Table.4 Statistics obtained from UKHealthcare data 
 Mean Standard 

deviation 
Case times 156 60 
Patient arrivals 72 33 
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A.2. ANOVA and SPC results for Total cost 
 

Table 5. ANOVA results for total cost between C2P-1 and 
P2C-15 

Source DF SS MS P 
Factor 1 48119225 48119225 0.041 
Error 4998 63045301205 12614106  
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and less variations compared to P2C-15. Detailed 
results of SPC and ANOVA for total cost can be found 
in table.5 in Appendix. A. Figure 4 shows the SPC 
results for total cost. 

4.4. Throughput 

Throughput is defined as the number of treated 
patients in a given period of time. In this case study, 
we assumed that all arriving patients must be treated. 
This assumption implies two points: first, the number 
of treated patients is the same for all scenarios and 
second, scenarios throughputs differ from each other 
only by the number of patients treated in the overtime. 
Therefore, we use the number of patients treated in 
overtime as a performance indicator, to compare the 
throughput of different scenarios.  

 

 
Fig.5 SPC results for Number of patients served in overtime 

As we showed in previous section, P2C-15 has the 
lowest total cost among all combinations of P2C (all 
combinations of β and γ). It also has the worst 
performance on the number of patients served in 
overtime among all combinations of β and γ. 
Therefore, we compare the performance of C2P-1 
with the performance of P2C-15.  P2C-15 outperforms 
C2P-1 by  6.75−3.318

6.75 = 50.84% . Process capability 
analysis shows that cp is 0.29 for C2P-1 and 0.47 for 
P2C-15, which implies that P2C-15 has less variations 
on the number of served patients in overtime. Figure 5 
shows the SPC results for throughput (number of 
patients served in overtime). 

4.5. Trade-off balancing 

As we showed in earlier sections, TC and TP are 
inconsistent objectives, which imply that optimizing 
one may lead to compromise on the other one. 
Therefore, a model that has the least deviations from 
both objectives may be of interest to OR managers. We 
define 𝜃𝜃 ∈ {0, 0.25, 0.50, 0.75, 1}, 𝑎𝑎𝑎𝑎𝑎𝑎 0 ≤ 𝜃𝜃 ≤ 1, as 
the set of OR managers’ preference for TP over TC.  
Using equation (22) and simulation results for 
best/worst performance, we find the most efficient 
combination minimizing deviation from best 
performance. We have 80 different combinations of 
scenarios and different θ, shown by Table.3. The 
absolute values of best and worst performances are 
given by Table.6 in Appendix. A.  
As we intuitively expected, C2P-1 has the least 
deviation from the best performance on TC (θ=0). 
P2C-3 has the best performance, where OR managers 
have equal preferences over both objectives (θ=0.50). 
Several combinations of P2C have the best 
performance on TP (θ=1), as we intuitively expected. 
Figure 6 shows the sum of average deviations from the 
best TC and TP. 

Table 3. Sum of average deviations from best TC and TP 
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Fig.6 Sum of average deviations from the best TC and TP 

5. Conclusion 

In this paper, we present a bi-level optimization model 
for OR planning, which captures uncertainties in 
patients’ arrivals and case times. Minimizing total cost 
(TC) and maximizing throughput (TP) are selected as 
objectives of the optimization models. Different 
managerial preferences over objectives are taken into 
account. By alternating the orders of objectives in our 
bi-level optimization model, we show that minimizing 
total cost and maximizing throughput are inconsistent. 
We propose a simulation-based trade-off balancing 
model to minimize the sum of deviations from best 
performance on each objective. Using historical data 
obtained from UKHealthcare, a large set of 
computational experiments are carried out. The 
simulation results show that for TC our proposed C2P 
has the best performance, and P2C has the best 
performance on TP. The simulation results for trade-
off balancing support the inconsistency between 
objectives. These results provide a flexible tool for OR 
managers to perform OR planning more efficiently 
based on their preferences and settings. The results of 
the study are applicable to manufacturing systems with 
multiple objectives under the presence of variations in 
demand and processing times. 
Our future research focus on adaptive control for OR 
planning. This aims to integrate time series into the 
OR planning process in order to update the OR plans 
based on the past performance and prediction of future 
desirable performance.  
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