iy

ITY OF

EMTUCKY S
UK I _‘ d University of Kentucky
bk I'IOW SC ge,, UKnowledge

Theses and Dissertations—-Electrical and

Computer Engineering Electrical and Computer Engineering

2003

Processor Microarchitecture for Implementation of Ephemeral
State Processing within Network Routers

Muthulakshmi Muthukumarasamy
University of Kentucky, mmuthulakshmi@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Muthukumarasamy, Muthulakshmi, "Processor Microarchitecture for Implementation of Ephemeral State
Processing within Network Routers" (2003). Theses and Dissertations--Electrical and Computer
Engineering. 142.

https://uknowledge.uky.edu/ece_etds/142

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations—-Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@Isv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT:

| represent that my thesis or dissertation and abstract are my original work. Proper attribution
has been given to all outside sources. | understand that | am solely responsible for obtaining
any needed copyright permissions. | have obtained needed written permission statement(s)
from the owner(s) of each third-party copyrighted matter to be included in my work, allowing
electronic distribution (if such use is not permitted by the fair use doctrine) which will be
submitted to UKnowledge as Additional File.

| hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and
royalty-free license to archive and make accessible my work in whole or in part in all forms of
media, now or hereafter known. | agree that the document mentioned above may be made
available immediately for worldwide access unless an embargo applies.

| retain all other ownership rights to the copyright of my work. | also retain the right to use in
future works (such as articles or books) all or part of my work. | understand that | am free to
register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on
behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of
the program; we verify that this is the final, approved version of the student’s thesis including all
changes required by the advisory committee. The undersigned agree to abide by the statements
above.

Muthulakshmi Muthukumarasamy, Student
Dr. J. Robert Heath, Major Professor

Information not available, Director of Graduate Studies

ABSTRACT OF THESIS

PROCESSOR MICROARCHITECTURE FOR IMPLEMENTATION OF
EPHERMERAL STATE PROCESSING WITHIN NETWORK ROUTERS

The evolving concept of Ephemeral State Processing (ESP) is overviewed. ESP
allows development of new scalable end-to-end network user services. An evolving
macro-level language is being developed to support ESP at the network node level. Three
approaches for implementing ESP services at network routers can be considered. One
approach 1s to use the existing processing capability within commercially available
network routers. Another approach is to add a small scale existing ASIC based general-
purpose processor to an existing network router. This thesis research concentrates on a
third approach of developing a special-purpose programmable Ephemeral State
Processor (ESPR) Instruction Set Architecture (ISA) and implementing
microarchitecture for deployment within each ESP-capable node to implement ESP
service within that node. A unique architectural characteristic of the ESPR is its scalable
and temporal Ephemeral State Store (ESS) associative memory, required by the ESP
service for storage/retrieval of bounded (short) lifetime ephemeral (tag, value) pairs of
application data. The ESPR will be implemented to Programmable Logic Device (PLD)
technology within a network node. This offers advantages of reconfigurability, in-field
upgrade capability and supports the evolving growth of ESP services. Correct functional
and performance operation of the presented ESPR microarchitecture_ is validated via
Hardware Description Language (HDL) post-implementation ‘(v1rtua1 prototype)
simulation testing. Suggestions of future research related to improving the performance
of the ESPR microarchitecture and experimental deployment of ESP are discussed.

KEYWORDS: Ephemeral State Processing, Ephemeral State Store, Ephemeral State
Processor, PLD Technology, HDL Virtual Prototyping.

g§-22-03%

PROCESSOR MICROARCHITECTURE FOR IMPLEMENTATION OF
EPHERMERAL STATE PROCESSING WITHIN NETWORK ROUTERS

By

Muthulakshmi Muthukumarasamy

Director of Thesis

Director of Graduate Studies

@W §;% 2 2.00%

THESIS

Muthulakshmi Muthukumarasamy

The Graduate School
University of Kentucky

2003

PROCESSOR MICROARCHITECTURE FOR IMPLEMENTATION OF
EPHERMERAL STATE PROCESSING WITHIN NETWORK ROUTERS

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Electrical
Engineering in the College of Engineering
at the University of Kentucky

By
Muthulakshmi Muthukumarasamy
Lexington, Kentucky

Director: Dr. J. Robert Heath, Associate Professor of Electrical and Computer
Engineering

Lexington, Kentucky
2003

?—

ACKNOWLEDGEMENTS

My sincere thanks and gratitude are due to my academic advisor and thesis
director, Dr. J. Robert Heath for his guidance and support throughout the thesis. I am
very thankful for his constant encouragement, suggestions and evaluations, and for the
help he provided in editing various versions of this thesis. I would also like to express my
sincerest thanks to Dr. Ken Calvert and Dr. James Griffioen, for providing me an
opportunity to work on this thesis research and for the support and inspiration they
provided. T would like to extend my thanks to Dr. Hank Dietz and Dr. William Dieter for
serving in my thesis committee and providing me with invaluable comments and

suggestions for improving the thesis and for possible future research.

I extend my deepest gratitude and thanks to my parents for their support and
belief in me. My heartfelt thanks are due to my friend Balaji, who provided on-going
support throughout this thesis and encouraged me in difficult times to complete this

thesis.

iii

?—-'

TABLE OF CONTENTS

Acknow]cadsementS (08 EIORTIIINIIL il hvindosmistitinssiecssssdielitintosmrot il iii
List of Tablesi L A0srsn ey U0 MU b nsnnn el v elie. Lanelinh. ... viii
L O o I L N e s A R S S sl ix
ChapterOne: T G@Eation I, S A S I U S it atsmbarenvms oot |
1.1. Backgrourid and Positioning 6 Research.... ..o meieninicimsmsissmmesissss 1

D28 Godl 8 Al DB SR . s b sl BTN s b tenenss enswoiorseyerreminsbiimes o AR 4

Chapter Two: EpheniceiFStite Processig BB F P L. ... ciovcommmmsmnnisnrmeestembsmineiitie 6
2. L Introduction REl AU s st mimasssssivorss s ioisvesisessismesson s 6

2.2 Ephemeral Siate'S1ore (BESS) cucnsmmnrrimmmusmmmsmisaaisissimimmisvivasite ¥

2 35ESP PacketForisat and PRocessiflg L FURRC R O ot i inasssvsssiinis 8

2.4, Macro HstaciTHS R ESP. cnaminmtuminion sttt sinssans it ersasisnaind 9

2.5. Example End-to-End Applications using ESP.........c.ccoiniinninns 19

2.6. Prologue to Ephemeral State Processor (ESPR).....oliliiliin s 21

Chapier Three: Ephemeral State Processor{(BSER YR Sl UL L0l isissmsens 22
3.1, ESPR ReGUircicnts SUNIIIATY coissoitessntestsssisaoissssbsisssnsss osvssiosrsssss 22

3.2. Highest Level Functional Organization of ESPR ... 23

3.3. Micro Instruction Set Format, Types, Architecture and Definition.......... 26

3.3. 1. Micto Tasifuction Foriiatil o mumssnissbmmss smsssisiisissnissesis 27

3.3.2. Miero Tnstroction Types (Classes)il bl o i casumnsiscssivess 28

3.3 201 AR S HIPT T S GHOHE usisamrivemmsssrsssesenaamnest 28

3.3.2.2 iimnicdiate TypeTHSEACHOMIN AN, X AN, coaeeee 28

3.3.2.3: Branch/Jump Type InsHuctons «vewimsssismsusissom s 29

3.312.4. T.EPR/STPR. Type IiStiuctonS «neasmeiimimsssamssssiait 30

3.3.9. 5 -GETIPUT Typelnstruetonsti . L AR, . vk 31

3:3.2.6. Packet Related InStructions), il st 32

3.3.3. Further ESPR Architectiire Defiflifion il il v asimmmmvissinios 32

3.4. Micro Instruction Implementation of ESP Macro Instructions................. 34
Chapter Four: Associative Ephemeral State BtoFE(ESS) XTI DL oo evoammensran 38
4.1, ESS DEST N .ouruiuereiriermiarmrstsesssses it s 38

4.2. Content Addressable Memory (CAM)ccocooniinnniiiimiinnicisnin a8

v

?_—

4.2.1, Write Opeceatisitis i, S S onams B &0 LIGMN TRY, 42
422, RepbOreraanin, | Lol Sl . iR s e 42

4.3. Random Access Memory (RAM) for storage of Value, Expiration

Lo and Erapiy B L ool i A 43
4:4. Expitation Time CalculationBlacks savie Savan g S o ioe wend 44
4.5. Empty Location CalclilatinBiBlo ek st b, bbsoss i ssassessainsoaimtiieds u
4.6, ESE Controller oo - masnies Yool Lh0R. V0. Avhsinm.... 45
4.7. Operations performed in ESS and Flow chart..........ccccocccoeeeiiinieiinnn.. 45
AT 1, GETEIPEEEHEN i NI ettt st 45
4.7.2. PUT ©Operationii L L s ssion sewiimen o O AEE. Mk 45
4.7.3. Branch on GET Failed (BGF) / Branch on PUT Failed
(BEREY Operatlofih . ..o ettt 46
4.8. EBS Scalability, Size and Performatiees. o 0 iii N L S i letl erness 46
Chapter Five: Ephemeral State Processor Version 1 (ESPR.V1.) Architecture............. 48
5.1. Basic Register/Register Architecture Development with ESPR
Components......cotouidinn i i S IEER0 THE TR b i 49
5.2. Four Stage Pipelined Architecture (BSPR VL) i aumimmmssmmiissmsssssanssss 51
5.3, NBGHS CORIOMBY. ..ot romin ST & o, i hes v R v 3 55
5.4. ESPR V1 Requirenients Evaluaticn SERWINEININGo mmabmss s 57
5.5. Special-Purpose Versus General-Purpose approach to ESP 60
5.6, Analytical Performance Model for EBPR.cuussssiwmisssaminssmsisisssies 60
Chapter Six: Post-Synthesis and Post-Implementation Simulation Validation of
BSPR. V1 Acchiletiins oot ST L s tans b it bictisst trsten 66
Mg £ i uhe e fiy 1o (AR . ¢ 1 (FF.C 0 SR TR W 54 B ST 66
6.2. Post-Synthesis Simulation Validation of ESPR.V1 Architecture............... 67
6.2.1. Simulation Validation of Single Micro Instructions.............c.cceeveee. 68
6.2.1.1. Validation of '"ADD' Micro Instruction.............cccecurruennene 68
6.2.1.2. Validation of "GET' Micro Instructioncccoueerumennen. 69
6.2.2. Micro Instruction Program Sequence Validation of
ESPR.VT Afchilt e UiE .. . cdt e o v isninenasri e sy 70

6.2.2.1. Micro Instruction Program Sequence for ALU/SHIFTER
MBI E BRI NR, o o tbrre s Bgmbncarisshrantnesddpnaes 71

6.2.2.2. Micro Instruction Program Sequence for ESS
3y R T e SRR RS R S) R 73
6.2.2.3. Micro Instruction Program Sequence for Branch/Forward
Unit Validation
6.3. Post-Implementation Simulation Validation of ESPR.V1 Architecture78
6.3.1. Post-Implementation Simulation Validation of 'COUNT' Macro
Tistivoton. L loow 00l 1o RRIR N AIERIRCIULL ..o s ervirmmmassiiind 79

6.3.2. Post-Implementation Simulation Validation of 'COMPARE' Macro

IBBEICHIO. s o vicssmmasncsidorsscs i b b i sy asnsvisss s wsviisssaisne 85
6.4 Results and. ConclusiDIs, ayeismssoiies e e s s e oo s st 87
Chapter Seven: Ephemeral State Processor Version 2 (ESPR.V2) Architecture 89
0 R s g O o O L O &9
T.L.L. TagMateh (T SEE.. . e s e setissisivsssviin 91
7.1.2. Empty Location and Lifetime Check (ELTC) Stagecccveu..n. 92
7.1.3, ESS Undite TEU D) St it e e il i s ikonnns 93
7.2. Five-Stage Pipelined ESPR.V2 ATChiteetureccoccvumreseessarsessarsesnsons 94
Chapter Eight: VHDL Design Capture of ESPR Architectures............c.ccoeeviieeeennnne. 98
8.1. Design Partitioning and Design Caplire ... o ccweinussmmmssysasssios: 98
8.2, Initializing the Memory COMemS,.iummovramsmm s nsiiiss 104
8.2.1. Initializing a RAM Primitive via a Constraints File...................... 105
8.2 7. Inifializing-a Block RAM ifi VHIDIL o coupusvesrsoissbrsinmsinsssmsnsesssssnss 106
8.3, Timing Constralils. .commnmmm s st i 110
Chapter Nine: Post-Implementation Simulation Validation of
BSPE V 2 ACHIREIITR ... coonminmivsmnsns sirmismnsmadbiinga ey essd sansstiimeiumebnia s 111
9.1. Validation of Correct Execution of Single Micro Instructions 112
9.2. Small Micro Program and Individual Functional Unit Testing of
BEPR N oo mvesasassimmrmsmmmmsamssassarsessss iAo s S e At te e e s s sns 115
9.2.1. Validation of ALU Unit and JMP Instruction
GEESPR. VDccoiminisssssssyssssssssosivrss i v et st et isapssseameins 115
vi

?+

9.2.2. Validation of Packet Processing Unit of ESPR.V2ccccccvvunee. 117

9.2.3. Validation of BESSORBEPRAEY. L . L UL 0 i 120

9.3. Validation of Macro Instructions of ESP on ESPR.V2.......covivevrvevinn. 122
Chapter Ten: Conclusions and Future RESEarch.............coo.ocveveeeeeiueieeuseesssessssressssnesnns 134
i e SN LR i Bt LRI LR 00 S 0. SO IR 138
Appendix A: Micro Instruction Set Architecture and Definition 139
Appendix B: Macro Level System FIow CRart. . . s msenmmsmmsion 147
Appendix C: System Flow Chart for ESPR.V1 Architecture............ccoco...e. 152
Appendix D: System Flow Chart for ESPR.V2 Architecture..........c.ccoco.... 156
Appendix E: VHDL Code for ESPR. V2 ArChILECIITE. ermrerenssessramnsonsasmes 162
ey e U ot)1 D 298
b A R S MY e | S ORS 301

vil

LIST OF TABLES
Talile5dl L Fnnetion PallontimSIRREEL bt s s st 56
TR 2 N P HORT SRIGTORINT T | o o st st s S 56
Table 5.3. Function Table for Branch Detection URit.cccccoueueureererneresseesisescacsesanns 57
Table 5.4. Control Signals for Micro INSLIUCHOTS.covuesseseoersecsmemesasssseesessessssesossnmsnss 58
Table 6.1. Logic Resources Utilization for ESPR.V1 Architecture.coceeeveeveueneen.. 67
Table 8.1. Comparison of Designs for Instruction MEmOTy.c.cceevevereiuerererereusrennin. 104
Table 8.2 Block RAM Initialization Properties. . assssssrissssrinivisssssssssessissssmosss 107
Table 9.1. Logic Resources Utilization for ESPR.V2 Architecture.c..cccooeeeuveverencene LE1
Table 10.1. Throughput of ESP Macro Instructions in ESPR.V2 Architecture. 135

viii

LIST OF FIGURES
Figure 1.1 ESP Processinoin ROME @ on. oot s et bt PR T 3
Frgure 2.1 BSE Paeket Bomml . o b e el sonrsietbussese corsons oy o st ot 8
Faguee 2.2, BLAG Fiuld o P R atlee e e escisisisesssnssisosars Bt 9
Figmed 20 COINNS T i nenafiin: | . Lts LRI ORI ccinlosionicoorzstn L 11
Figure2:d. COMPARE CHICEAHOMN . b use: ke IR itcorisss o) 12
Fiane 28 COLLECT Getalion.’., o0 U IE ISR | s i S 13
Eipire 20 ROUHT D ORetation.. ..y o s RO e 15
Bignre 2.7, BOOLLECT OPEIAtON. v o e e e i5te s smmmns et fatasassns 17
Figtre 2.8, Findumg Path IHICrsection. o e B DI ertoncsonss sasssnsmisanter 19
Figure 2.9. Reducing Implosion using Two-Phase Tree Structured Computations. 20
Figure 3.1, Punctionial Uaits oF the ESPR. Syl s i s sinvstssiverissossivuss scsessssstassnis: 24
Figure 3.2. Packet Processing in Packet RAM 0f ESPR. ...oc.:oiimmnisissmmsimsiisssmissomssen 25
Figare 3.3. Micro Instruction Formab ... oieimin st st 27
Figure 3.4, Field Definitions. ... oo s iails i asstdaisasinsenisnssistnssapmases 28
Figure 3.5. ALU/SHIFT Type Instruction Format and TICHMEON. oi oo iommiepaminibcacsnsansnss 29
Figure 3.6. Immediate Type Instruction Format and Definition..............ccoocvvvirvennenen. 29
Figure 3.7. Branch/Jump Type Instruction Format and Definition.cccccovvvrvennnn.. 30
Figure 3.8. LFPR/STPR Type Instruction Format and Definition...............ccccoceeveennnnnn. 31
Figure 3.9. GET/PUT Type Instruction Format and Definition.ccccccccvvvrervrrennnns 31
Figure 3.10. Packet Related Instruction Format and Definition.cccooeevinrnnnnnn... 32
Figure 3.11. Equivalent Micro Instruction Sequence for COUNT................................34
Figure 3.12. Equivalent Micro Instruction Sequence for COMPARE. 34
Figure 3.13. Equivalent Micro Instruction Sequence for COLLECT.............cc..c.cce..... 35
Figure 3.14. Equivalent Micro Instruction Sequence for RCHLD.ccoooruniniiinnine. 35
Figure 3.15. Equivalent Micro Instruction Sequence for RCOLLECT.cccoounee. 36
Figure 4.1. Functional Block Diagram of ESS ...cc.ccoiimiiinnisiiiniianninsiasniad 40
Figiite 4.2, LOXR CANEIVIRGIO. ...ovuneensssisiisssss s o s dssetos s aises s s s s o 41
Figure 4.3. 16x64 CAM using 8 16X8 CAMS....ccoccovinmiiminmniiiiiicccee e, 4]

X

Figure 4.4. Expiration Time Calculating BIOcK..........c......ocovoimeoeuesersmencssesensssanissanssssenes 44
Figure 4.5 ESS Opetatibnis Blowshart. Moo Liloe BB B AM. i 47
Figure 5.1, Basic ESPR AvchitCotutelR, 2 A0mn J0shiititil . o ammsasess smssnssmsssmansrsssasd 49
Figure 5.2. Four-Stage Pipelined ESPR.V 1 ArChiteCture.oveueeeeeemreuemensenseacsnens 52
Figure 6.1. Validation of ‘ADD’ Micro INStUCHON.c.cocuiuereeureeeeesereseeseeeseseasenaes 69
Figure 6.2. Validation of ‘GET’ Micro INStIUCHON. «.....c.cceevereeeerereeeeeeeeeseeesersesesssenens 70
Figure 6.3. Program fort Malidating AT/ Shiftessing Linn L0 Vodidat s 71
Figure 6.4. Simulation Output for ALU/Shifter Validation...............ccccccceuviiineerivceennnas 72
Fignre 6.5. Program forValitling BASnm BN e ccomnssassshssasosnnsssmassssakatsh i
Figure 6.6. Simulation Output for ESS Validation.c...coeeveeeeremreenerererssrerererssrensens 74
Figure 6.7. Program for Validating Conditional Branch Controlcccceerueeueeeene.. 76
Figure 6.8. Simulation Output for Conditional Branch Validationcc.ccoccooven... 76
Figure 6.9. Simulation:Output for COUNT v ol T T b it i wsenenvivss 80
Figure 6.10. Simulation Output for COMPAREcocoovoiiririeiiecce st 85
Figure 711 High-Leveb Blotk Diagram T BESL VL and BRPR VD . nconnscanssnd 90
Figure 7.2. High-Level View of Three-Stage Pipelined ESSccccoooiviineviccnennenee. 90
Figure 7.3. CAM in the Tag Match (First) Stage of Pipelined ESSccccccevivenene 91
Figure 7.4. Components of ELTC (Second) Stage of Pipelined ESS..................c......... 92
Figure 7.5. Component of EUD (Third) Stage of Pipelined ESS.cccooeeiireevennnn.e. 93
Figure 7.6. Five-Stage Pipelined ESPR.V2 ATCRHBOIHEC. .o eviissiussismmssssssnssssiossssisseoss 95
Fignre 7.7; High-Level View of Packet Processing Unit....u v 96
Figare 8, 1. High-Level Hierarchy of ESPR. V1. o cinnimns o s 99
Figure 8.2, High-Level Higtuichy 0T BESPRLYZ, .ot sttt sssssssseons 100
Figure 8.3. High-Level Hierarchy of IF Stage for both ESPR.V1 and ESPR.V2. 101
Figure 8.4. High-Level Hierarchy of ID Stage for both ESPR.V1 and ESPR.V2........ 101
Figure 8.5. High-Level Hierarchy of EX Stage L BEPR VL s s 102
Figure 8.6. High-Level Hierarchy of WB Stage Ol TR P RN e o L, 0T s N e e siintive 102
Figure 8.7. High-Level Hierarchy of ETM Stage of ESPR.V2 . ..o, 103
Figure 8.8. High-Level Hierarchy of LTC Stage of ESPR.V2 ..o, 103
Figure 8.9. High-Level Hierarchy of UD Stage of ESPR.V2 ..o, 104
Figure 8.10. NCF File for Initializing Instruction MemMOry.ccooveiiniinnininnnnn. 107

Figure 8.11. Example Micro Instruction AT T R O L . S A e S A e 108
Figure 8.12. VHDL Code for Instruction Memory Using Block RAM 108
Figure 9.1. Simulation Output for SHR Micro InStruction.ccooooovvevveovoroooon, 112
Figure 9.2. Simulation Output for LFPR Micro InStruction.oo.oovveevoovoeveoon, 114
Figure 9.3. Program for Validating ALU Unit and JMP Instruction. 115
Figure 9.4. Simulation Output for ALU Unit and JMP Instruction Validation. 116
Figure 9.5. Simulation Output for Packet Processing Unit (IN) Validation................. 117
Figure 9.6. Simulation Output for Packet Processing Unit (OUT) Validation. 119
Figure 9.7. Program Sequence for Validating ESS.......ccuueieesreoerinressssrensisssnssssssenn. 120
Figure 9.8. Simulation Output for ESS Validation.c.ccoosiicsisiarnreerereesnessessssensessnees 120
Figure 9.9. Simulation Output for Validation of COUNT Macro Instruction. 122
Figure 9.10. Simulation Output for Validation of COMPARE Macro Instruction.125
Figure 9.11. Simulation Output for Validation of RCHLD Macro Instruction. 128
Figure 9.12. Simulation Output for Validation of RCOLLECT Macro Instruction.132
Figure 10.1. Performance Comparison of ESPR.V1 and ESPR.V2.oovovverrvnnn... 135

X1

Chapter One

Introduction

This Chapter discusses the background needed for a better understanding of the

research work, goals and objectives of the thesis.

1.1. Background and Positioning of Research

In order for the Internet to support new end-to-end communication services
required by emerging network applications, additional network-level mechanisms are
needed. There are three approaches which provide the needed network-level mechanisms
in their own way. The first, more traditional approach, is to target a specific end-to-end
problem and develop a focused, stand-alone network-based solution [1,2]. The second
approach is to deploy a flexible infrastructure (e.g., active networks [3,4,5]) that can be
reprogrammed to provide any needed functionality. The third approach is to extend the
network functionality through simple building-blocks, which can be composed and
combined by end-systems in different ways to create new services. The viability of the
third approach depends on the following factors: it must be sufficiently general and
useful to support a wide range of end-to-end network applications and must be able to
justify the cost (financial, operational and performance) of deployment in network
infrastructure.

Ephemeral State Processing (ESP) [6,7,8] is one such network-layer building-
block approach which offers a possible solution for the development of new Internet end-
to-end services and capabilities. The basic idea of ESP is to retrieve, store and process
ESP packets from router nodes by means of creating and computing using temporary
state in the network. Each ESP Packet carries a macro instruction — a ‘program’
(described in the following chapters) and collective programs provide/implement specific
end-to-end network applications/services. Other publications [6,7] describe end-to-end
services based on ESP, including 1.) Services for large-scale group applications, in which
a relatively modest amount of in-network processing can pay big dividends in terms of
scalability [10]; and 2.) Topology-exploring services, in which network elements having

specific characteristics are found and flagged as locations for special processing [11].

ESP can be considered as a form of active networking, which offers: (1)
lightweight Packet Processing service and (2) Computations involving multiple packets
and multiple nodes, and the service is primarily focused on being implemented in fully
programmable routers.

Ephemeral State Processing (ESP) [6,7.8] is an evolving research area of active
networking, and this service offers very limited programmability that can be easily
implemented in hardware. Multiple implementations of the ESP service are currently
being investigated. One alternative is the use and adaptation of commercially available
routers [26] such as the network processor described in [18]. Implementations based on
commodity components have been explored (e.g., Linux-based routers), and have
implemented the service as a module and user-level daemon on these lower level traffic
routers often found near the periphery of the network. The goal is to implement ESP in
core routers which should be able to offer the service at line rates by implementing it on
the interface card. To that end, this current research approach targets PLD platforms that
can be field upgraded to meet changing ESP functional and performance requirements.
Under this approach, another processor, such as the one described in [18], would

implement the routing function within the node.

This thesis research work aims at implementing ESP on a Special Purpose (SP)
programmable processor within each network node — an Ephemeral State Processor
(ESPR). ESP is implemented by a set of macro-instructions, which can be invoked on an
Ephemeral State Processor (ESPR) at ESP-capable node routers as they receive, process
and possibly forward specially-marked ESP packets in IP datagrams. Separation of ESP
packets from other packets (such as the Internet Protocol (IP) packets) is carried out by
logic inside the router and the ESPR only sees ESP packets. Figure 1.1 provides a high-
level view of how an ESPR can be deployed in a router to perform the ESP service.

At most one macro-instruction is invoked by each ESP datagram (packet) as it
enters an ESP capable node. An ESP packet’s macro-instruction is executed by a
successor ESP-capable node every time the packet is forwarded by an ESP-capable
router. An ESP macro-instruction implemented by the ESPR of an ESP-capable node

operates on values carried in the packet or stored at a node router in an associative

memory of the ESPR called the Ephemeral State Store (ESS).

ROUTER

LOGIC TO SEPARATE

ED]_’ ESP PACKETS > roure W[+
INPUT OUTPUT
y i LOOKUP
PORTS PORTS (IP
> [T anc ke

(IP and

ESP . ESS ; Packets)
Erckes) _% ESPR "DE“’

Figure 1.1. ESP Processing in Router

The ESS allows data values to be associated with keys or fags for subsequent retrieval
and/or update. The unique characteristic of the ESS is that it supports only ephemeral
storage of (tag, value) pairs. Each (tag, value) binding is accessible for only a fixed
interval of time after it is created. The /ifetime of a (tag, value) binding in the ESS is
defined by the parameter ‘t’, which is globally specified and required to be
approximately the same at each node. The value in the binding may be updated by any
number of instructions (packets) during the lifetime t. The ESS must provide fast
associative creation, access, and reclamation of bindings, in order to process packets at
“wire speeds”. For given rates of instruction processing (instructions/sec), binding
creation (new bindings/instruction) and a given lifetime (seconds), the size of ESS
necessary to sustain those rates is fixed.

To our knowledge no research group has developed a SP programmable and
reconfigurable network node processor architecture to implement ESP, such as the one to
be described in this thesis. The ESPR microarchitecture can be implemented as an
Application Specific Integrated Circuit (ASIC) chip or to a Programmable Logic Device
(PLD) platform and fast/dense/cheap commodity memory chip technology. PLD
technology is of interest because of its rapidly increasing density and performance at
decreasing cost. Moreover, the use of PLD technology allows the ESP hardware to
evolve over time as the concept of ESP evolves. Special purpose fixed-architecture
communications node processors have been developed and implemented in the past,
particularly in the context of ASICs, but they lack the programmability and flexibility as
that of a PLD platform. These ASIC-based technologies offer no reasonable opportunity

for in-field upgrades of the architecture or its instruction set architecture in response to
changing network processing requirements. Another approach that has been gaining
momentum is the use of general-purpose network processors [18]. Although such
platforms have been used in earlier implementations of ESP [8], their general-purpose
nature imposes limitations on their performance.

Implementation of ESP service via an ESPR on a PLD platform, allows ESPRs in
a multi-node network environment to be dynamically and remotely re-programmed to
incorporate architectural improvements or changes to the macro and micro instruction set
as ESP evolves. Utilization of PLD technology for implementation of the ESPR within
ESP capable nodes of a network would promote in-field upgrade capability of an ESPR
instantiation whenever line speeds may increase or when the density of ESP packets in
the total [P datagram traffic increases to a level requiring a higher performance ESPR. A
higher performance ESPR architecture may be obtained by deeper pipelining, by
instantiating multiple copies of the ESPR to a node PLD platform in a multiprocessor

configuration, or by other architectural performance enhancements.

1.2. Goals and Objectives
The main goal of this thesis research work is to develop a processor

microarchitecture — Ephemeral State Processor (ESPR) to implement ESP. Two versions
of the ESPR architecture — ESPR Version 1 (ESPR.V1) and ESPR Version 2 (ESPR.V2)
are developed for performance improvement reasons. Development of both versions can
be accomplished by means of the following objectives:

(1) understand the concepts of ESP

(2) understand the ESP macro instructions and develop an implementing micro

instruction set

(3) develop functional/operational/performance requirements for ESPR

architecture versions
(4) develop a unique organization/architecture for the associative ESS
(5) develop a special-purpose programmable high-performance pipelined

architecture for ESPR (ESPR.V1 and ESPR.V2)

(6) perform the design capture of ESPR.V1 and ESPR.V2 on to a Xilinx Virtex
FPGA [17] using behavioral VHDL
(7) testing ESPR.V1 and ESPR.V2 for validation of correct execution of micro
and macro instructions of ESP

This thesis research work was conducted following the above sequence of objectives to
develop and validate ESPR. Brief contents of the chapters of this thesis are outlined as
follows.
Chapter 2 — Here the concept of ESP and a description of example end-to-end network
service applications is presented in detail.
Chapter 3 — Highest level Functional Organization/Architecture of an ESPR is described.
The instruction set format, types and additional architectural details are described in this
chapter.
Chapter 4 — Detailed description of an associative ESS design using Content Addressable
Memory (CAM) is presented here.
Chapter 5 — Design of the first version of ESPR — ESPR.V1, comparison of ESPR with
general-purpose processors and an analytical performance model for ESPR is described
in this chapter.
Chapter 6 — This chapter deals with the detailed post-synthesis and post-implementation
simulation validation testing of the ESPR.V 1 architecture.
Chapter 7 — This chapter outlines the need for the second version of ESPR — ESPR.V2
and 1its design description. The description of a pipelined version of the previously
designed ESS, for ESPR.V2, is also presented here.
Chapter 8 — This Chapter discusses the details of Hardware Description Language (HDL)
design capture of the ESPR.V1 and ESPR.V2 processor systems.
Chapter 9 — Post-implementation simulation validation of ESPR.V2 is presented here.

Chapter 10 — This chapter concludes the thesis work and gives an insight to possible

future research and investigation that can be done in this area.

Chapter Two
Ephemeral State Processing (ESP)

This chapter discusses the basic concepts of the ESP mechanism, a brief
explanation of the Ephemeral State Store (ESS), ESP packets - format and processing,
network macro instructions, and example practical applications of ESP followed by a

brief introduction to the design of an Ephemeral State Processor (ESPR).

2.1 Introduction

Ephemeral State Processing (ESP) has been proposed as a network layer protocol
to be implemented in routers to support a range of new scalable end-to-end network
services and to improve scalability and performance of existing network services. It gives
control to the end systems to support scalable network applications such as collecting

network feedback, locating services, identifying ‘branch points’ [6], topology discovery

and other auxiliary functions. The main idea of ESP is to carry service specific
instructions (macro instructions) in its specially marked packets, enable the ESP capable
router nodes to process the packets and leave a temporary state in the node according to
the carried macro instructions and forward the packets to the next node or drop the
packets with the state being already set for identification. This leads to the key
requirements [8] for ESP development:
e provide means for the packets to leave information at a router for other packets to
modify or pick up later as they pass through the path
e having a space-time product of storage for state storing
e having the space-time product of storage consumed as a result of any packet to be
bounded
e per packet processing at each node be comparable to that of IP

The ESP protocol and network macro instructions (shown later in this chapter) are

designed in such a way to meet the first requirement and it also lies in the hands of
application services to meet this requirement by using ESP wisely. The design of an

associative Ephemeral State Store (ESS) with a constant lifetime allows meeting the next

two requirements. Each ESP packet carries a single macro instruction and so the per-
packet processing time is known and bounded and the current goal is to process packets
at or near wire speeds of 100 Mbps, which allows nearly a million packets being
processed per second. With these requirements the ESP mechanism is based on three
building blocks:
* an Ephemeral State Store (ESS), which allows packets to deposit small amounts
of arbitrary state at routers for a short time
 the ESP protocol and packet format, which defines the way by which the packets
are processed and forwarded through the network.
* a set of network macro instructions, which defines the computations on ESP
packets at the nodes
Ephemeral State Processing is initiated in any ESP-capable router when the router
receives an ESP packet. Each router carries out only local operations and the
responsibility for controlling and coordinating the system lies in the end-systems. The
ESP header carries a network macro instruction out of a set of pre defined macro
instructions. An instruction may create or update the contents of the ESS and/or fields in
the ESP header and may place some information in the packet. A sequence of network

macro instructions carried in ESP packets, form a practical ESP based application.

2.2 Ephemeral State Store (ESS)

Scalability of ESP is provided by the availability of an associative ESS at each
network node. The associative ESS will allow data values to be associated with keys or
tags for subsequent retrieval and/or update. The ESS will be unique in that it supports
only ephemeral storage of (tag, value) pairs. Each (tag, value) binding is accessible for
only a fixed interval of time after it is created and each tag has at most one value bound
to it. Both tags and values are fixed size bit strings, the current design uses 64-bit tags
and 64-bit values, to reduce the probability of collision [8].

The lifetime of a (tag, value) binding in ESS will be defined by the parameter ‘1’,
which is assumed to be approximately the same for each node. Once created, a binding
remains in the store for ‘t’ seconds and then vanishes; the value in the binding may be

updated (overwritten and read) any number of times during the lifetime. For scalability,

the value of “t’ should be as short as possible. For robustness, the value of ‘t” needs to be
long enough for interesting end-to-end services to be completed. This ESS supports two
operations:
e put(x, e): bind the value e to tag x. After this operation, the pair (x, ¢) is in the set
of bindings of the store for ‘1’ seconds.
e get (x): Retrieve the value bound to tag x, if any. If no pair (x, e) is in the store
when this operation is invoked or if the associated pair’s lifetime is expired, the
special value ‘L’ meaning failure of the operation, is returned. (‘L’ - indicates the

lifetime of the value is expired or the value is not in store).

2.3 ESP Packet Format and Processing

ESP packets are processed in ESP supporting routers as they travel through the
network. Whenever an ESP packet arrives at a node, it is recognized as such and passed
to the ESPR module for processing. These packets either propagate through to the
original destination or are discarded along the path. Many end-to-end applications can be

constructed using two steps — the first set of packets from end-systems establish and

compute on the state while a second set of packets are used to collect the computed
information. Two forms of ESP packets are supported: dedicated and piggybacked. A
dedicated packet carries the ESP packet in an IP payload and piggybacked ESP packets
carry ESP opcode and operands in an IP option (IPv4) or extension header (IPv6), as well

as the regular application data (e.g., TCP/HTTP data) [8]. The ESP packet format is

shown in Figure. 2.1.

FL|OP | LEN| CID < VAR. FIELD > CRC
(8)| (8) | (16) | (64) | (From 128 to 3968 bits) (32)

FL — Flags (8 bits)

OP - Opcode (8 bits)

LEN — Length of the packet (16 bits)

CID — Computation ID (64 bits)

VAR. FIELD — Variable operands field that contains Tag and/or
Value and/or a micro opcode (From 128 to 3968 bits,
depending on the macro opcode)

CRC — Cyclic Redundancy Check (32 bits)

Figure 2.1. ESP Packet Format

The 8-bit FL (flag) field is organized as follows,

LOC E 1R W
() Mm@

LOC — Location (3 bits)
E — Error (1 bit)

R — Reflector (1 bit)

U — Unused (3 bits)

Figure 2.2. FLAG field of ESP Packet

The LOC field identifies where the ESP processing should occur in the router [8],
either the input side, output side or in the centralized ESP location, or any combination of
these three locations. The E bit is set when an error occurs while processing an ESP
packet (e.g., when a tag is not found in the ESS, when ESS is full, etc.). Such packets are
forwarded to the destination without further processing allowing the end-systems to
discover that the operation failed. R is the reflector bit, ESP routers forward packets with
the reflector bit set without processing them [8].

CID — Computation ID, is a demultiplexing key: different packets that need to
access the same state must have the same CID. The OP field identifies the ESP macro
instruction to be performed, LEN field indicates the length of the ESP packet, VAR.
FIELD carries the opcode specific operands and CRC field carries the Cyclic
Redundancy Check code for the entire ESP packet.

2.4 Macro Instructions of ESP

Network macro instructions are the second building block of the ESP service.
Each node in the network supports a predefined set of ESP instructions that can be
invoked by ESP packets to operate on the ESS. Each ESP macro instruction takes zero or

more operands, where each operand is one of the following types:

e avalue stored in the local ESS (i.e. identified by a tag carried in the ESP packet)
e an ‘immediate value’ (i.e. one carried directly in the packet)
e awell known router value (i.e. the node’s address)

e an associative or commutative operator (e.g., <, >=, etc)

Each ESP packet initiates exactly one network macro instruction and all macro

instructions are carried out locally in the node, may update the state and/or the immediate
values in the packet and after completion of execution, the packet that initiated it is either
dropped or forwarded towards its original destination. A network macro (high-level
language) instruction is implemented by a program comprised of micro (assembly
language level) instructions. Macro instructions are combined and executed to implement
emerging end-to-end application services. The defined macro instructions [8] are

explained as follows:

COUNT:

The COUNT instruction takes two operands (carried in the ESP packet), a tag
identifying a ‘Count (pkt.count)’ value in the ESS and an immediate value ‘Threshold’.
This instruction increments or initializes a counter and forwards or drops the packet,
according to whether the resulting value is below or above a threshold value. It is used
for counting packets passing through the router. The Ephemeral State Store (ESS)
contains a number of (tag, value) pairs. The Ephemeral part of the ESS is that a value
bound to a tag is active only for a particular period of time “t’. In this operation, if the
specified tag in the packet is not currently bound, (i.e.) if there is no such tag found, a
location is created for that tag in ESS, the value associated with it is set to “1” initializing
it to be the first packet passing through the node. Otherwise if the tag is found, the value
associated with it is incremented by one. If the resultant value reaches the ‘Threshold’

value, subsequent COUNT packets will increment the counter but will not be forwarded.

This operation was devised based on networking applications such as Finding
Path Intersection and Aggregating Multicast receiver feedback. The basis of this
operation is to determine the number of members of a particular group and is useful for
counting the number of children (nodes) sending packets through a node. COUNT is
often used as a ‘setup’ message for subsequent collection messages. The values set in the
ESS based on this packet allow later packets to retrieve useful information in performing
network applications. For example, in Finding a Path Intersection the COUNT operation
is the first step. The basic idea here is to count the number of router nodes in a particular

path. If an ESPR module in a router receives a packet with COUNT operation, this router

A

is observed to be in that path and a ‘setup’ message is set in that node by creating a (tag,

value) pair in ESS. If a tag is not found, a location for this tag is created and the
associated value is set to ‘1’ to initiate a ‘setup’ message. Based on the appropriate
‘Threshold” value the resultant packet is forwarded or dropped to avoid implosion. Figure

2.3 shows the macro level description of the COUNT operation.

tp <«— get (pkt.count);

if (t; '= 1) { put (pkt.count, t; +1); }
else { put (pkt.count, 1); }

if (ty <= threshold) forward;

else drop;

Figure 2.3. COUNT Operation

The macro level COUNT operation of Figure 2.3. can be explained on a line-by-
line basis as follows.
Line 1: The value corresponding to tag-count in the packet is retrieved to a register ty,
Line 2: The value is checked for its availability in ESS. ‘1’ indicates lifetime expiry of
this value. If a value is found in ESS and its lifetime has not expired, it is incremented

and then placed in the ESS binding it to the corresponding tag-count.

Line 3: If a value is not found in ESS, a location is created for this tag-count in ESS with
a value of | — meaning counting the initial packet.

Line 4: If the resultant value is less than or equal to the threshold value carried in packet,
the packet is forwarded.

Line 5: Else the packet is discarded.

COMPARE:
The COMPARE instruction carries three operands (carried in the ESP packet), a

tag ‘7" identifying the value of interest in the ESS, an immediate value ‘pkt.value’ that
carries the ‘best’ value found so far, and an immediate value ‘<op> used to select a
comparison operator to apply (e.g., min, max, etc). The COMPARE instruction tests
whether the tag ‘¥” has an associated value in the ESS within its lifetime and tests
whether the relation specified by <op> holds between the value carried in the packet and

the value in the ESS. If so, the value from the packet replaces the value in the ESS, and

the packet is forwarded. If not, the packet is silently dropped. The COMPARE instruction

11

Loiealibe

can be used in a variety of ways but is particularly useful in situations where only packets

containing the highest or lowest value seen by the node so far are allowed to continue on.
This operation is mainly used as a second step in Finding Path Intersection after a
COUNT operation. Figure 2.4 shows a macro level description of the COMPARE
operation.

ty — get(pkt.v);

if (tg =. L)

{ put (pkt.v, pkt.value);

forward; }

else

if (to <op> pkt.value)

{ put (pkt.v, pkt.value);

forward; }

else
drop;

Figure 2.4. COMPARE Operation

Below is a line-by-line description of the macro level COMPARE operation of
Figure 2.4.
Line 1: The value corresponding to tag-v in the packet is retrieved to a register t,
Line 2&6: The value is checked for its availability in ESS, its lifetime expiry and it is
also checked whether the relation specified by <op> holds between this value and the
value carried in the packet.
Line 3&7: If so, the value from the packet replaces the value in the ESS.
Line 4&8: The resultant packet is forwarded.

Line 10: If not, the packet is dropped.

COLLECT:

The COLLECT macro instruction carries four operands (carried in the ESP
packet), a tag identifying the ‘Count’ value in the ESS, a tag identifying a ‘Value’ in the
ESS to perform an associative or commutative operation on, an immediate value
‘pkt.data’, which carries the resultant value from the operation performed from child
nodes and an immediate value ‘<op>" that indicates the actual operator to be applied.

The COLLECT macro operation is used by a network node to compute an

associative or commutative operation on values sent back by its children nodes. If register

tp contains the count for the number of children nodes, each COLLECT packet from a

child node is applied to the node’s current result and tg is decremented. The parent node
holds the current result, which is obtained by performing associative or commutative
operations on values sent by its children nodes. After all children have reported their
value, the computed result is forwarded to the next hop. Figure 2.5 illustrates the macro
level description of the COLLECT operation.

This operation is mainly used in aggregating receiver feedback, for example, loss
rate corresponding to a group. After obtaining information back on the number of
children in a group from the COUNT operation, this operation is performed on values
sent by the children and on corresponding conditions in this operation. This macro

operation allows particular feedback information such as loss rate to be determined.

ty «— get(pkt.count);

if (tp I=1) {
t; <«— get(pkt.value);
if(t; 1=1) ¢

ty -« t <op> pkt.data; }
else {t; g pkt.data;}
put (pkt.value, t);
tﬂ <+ ty) — 1;
put (pkt.count, ty);
if (ty== 0) {pkt.data :=t,;; forward; }
else { drop; }
} else abort;

Figure 2.5. COLLECT Operation

Below is a line-by-line description of the macro level COLLECT operation of
Figure 2.5.
Line 1: The value corresponding to tag-count in the packet is retrieved to a register tp.
Line 2: The value is checked for its availability in ESS. ‘1’ indicates lifetime expiry of
this value. If the corresponding tag with value is found, it indicates the number of
children nodes in a particular group. If there is no such tag found, Line 12 is performed.
Line 3: The value corresponding to tag-value in the packet is retrieved to a register t; It
corresponds to a value sent by a child node.

Line 4: The value is checked for its availability in ESS. 1’ indicates lifetime expiry of

this value.

13

Line 5: If the corresponding tag with value is found, then an associative or commutative

operation indicated by <op> (a micro opcode carried in the packet) is performed on this
value and the value (pkt.data) carried in the packet, and the result is placed in t;,

Line 6: If no such tag with value is found, then the value (pkt.data) carried in the packet
is placed in t;.

Line 7: The resultant value in t; is written into ESS with its associated tag-value.

Line 8&9: After performing the operation on one child node, the number of children
nodes is decremented by one and this new value is placed in ESS with its associated tag-

count.

Line 10: It 1s now checked to see whether the number of children nodes is zero, (i.e.)
whether the operation is completed on all children nodes. If there is no child left, then the

final result from t; is placed in the packet and the resultant packet is forwarded.

Line 11: But if there are some children left, the packet is dropped.
Line 12: This line indicates an abort statement if the parent node doesn’t have the count
on number of children. It sets a corresponding ‘E’ bit to ‘1’ and ‘LOC’ bits to zero in the

‘FLAGS’ part of the packet and forwards the packet to the next node.

RCHLD:

The RCHLD macro instruction carries four operands (carried in the ESP packet),
a tag specifying the Identifier Bitmap ‘fagh’ and an immediate identifier value ‘idval’, a
tag ‘C” identifying count of forwarded packets and an immediate threshold ‘thresh’. The
RCHLD macro instruction is similar to the COUNT macro instruction except that it also
records the identifiers in packets received from its children. For example, tree-structured
[8] computations for collecting information from the group members can be carried out in

two phases:
e The first phase corresponds to a RCHLD instruction, which uses ESP to record

the identifiers.
e The second phase corresponds to the RCOLLECT instruction (which will be

described next), in which the group members send their identifier values up the

tree (towards destination) and each node uses RCOLLECT to compute and

forward the result only after having heard from every child.

Each group member sends the RCHLD instruction towards the root; this
instruction causes the interior node or the immediate parent node to receive packets
carrying this instruction from each of its children. For some useful computational
applications [8], it is useful to determine whether a packet comes from a child that has
not been heard from previously. To accomplish this, Bloom Filters [8,9] are used to
determine a random bit sized identifier for each node called bitmap identifier. Figure 2.6
illustrates the macro level description of the RCHLD operation.

ty «— get(pkt.tagb);

if(ty!=1)¢ to «— t) <OR> pkt.idval;}
else{ ¢t o 0;}

put (pkt.tagb, t;);

ti < get(pkt.C);

if (t; != 1) { put (pkt.C, t; +1); }

else { put (pkt.C, 0); }

if (t, <= thresh)

{ pkt.idval := current node’s identifier value;

forward;}
else drop;

Figure 2.6. RCHLD Operation

Below is a line-by-line description of the macro level RCHLD operation of Figure
2.6.
Line 1: The value corresponding to tag-tagb in the packet is retrieved to a register ty,
Line 2: The value is checked for its availability in ESS. ‘L’ indicates lifetime expiry of
this value. If the corresponding tag with value is found, indicating the bitmap identifier(s)
of the other children nodes for an immediate parent, the immediate value carried in the
packet is bit wise ORed with the value found in ESS meaning the bit corresponding to the

bitmap identifier of the current child is turned on and is also included (added) as children

for the immediate parent.
Line 3: If its not found, the value is set to 0.
Line 4: The resulting new value is written into ESS.

Line 5: The value corresponding to tag-C in the packet is retrieved to a register t;,

Line 6: The value is checked for its availability in ESS. ‘1’ indicates lifetime expiry of

this value. If a value is found in ESS and its lifetime has not expired, it is incremented
and then placed in ESS binding it to the corresponding tag-count.

Line 7: If a value is not found in ESS, a location is created for this tag-count in ESS with
a value of 0.

Line 8, 9&10: If the resultant value is less than or equal to the threshold value carried in
packet, the current node’s bitmap identifier value is written into the packet, and the

resultant packet is forwarded.

Line 5: Else the packet is discarded.

RCOLLECT:

In addition to ‘Value’, ‘pkt.data’ and ‘<op>’ operands carried in COLLECT
packet, the RCOLLECT macro instruction carries four more operands in the packet: a tag
‘taghl’ identifying the bloom filter used in the previous RCHLD instruction, a tag
‘tagh2’ identifying another bitmap for detecting duplicates, a tag ‘D’ for identifying the
count of packets forwarded and an immediate threshold value ‘thresh’ to control the
number of duplicated transmissions.

This instruction is used as a second phase after the RCHLD macro instruction for
tree-structured computations. The main difference between COLLECT and RCOLLECT
is that in RCOLLECT the condition for forwarding is when the two Bloom filters match,
rather than when the count is zero. This packet is sent after a short delay to allow phase
one packets to be processed. As each packet arrives, the bit corresponding to its bitmap
identifier is set in the second bitmap, and the value is added into the existing binding. If
the resulting bitmap is equal to the one from the first phase, it means that all children
identified in the first phase have been heard from. In that case the accumulated value is
written into the packet, the bitmap identifier in the packet is replaced with that node’s

identifier, and the packet is forwarded. Otherwise, the packet is discarded. Figure 2.7

illustrates the macro level description of RCOLLECT operation.

ty «— get (pkt.tagbl);
if (g !1=1) {
t; 4— get(pkt.tagh2);
if(t;!=1)4 t; «— t; <AND> pkt.idval;}
else{ t; < 03}
if (t; != pkt.idval) { t; «— t; <OR> pkt.idval;}
put (pkt.tagh2, t,);
t; «— get(pkt.value);
if (t != 1) {
t— t; <op> pkt.data; }
else { t;, «— pkt.data; }
put (pkt.value, t,);
if (th==1t;) {
t; «— get (pkt.D);
if (t; '=_1) { put (pkt.D, t; +1); }
else { put (pkt.D, 0); }
if (t; <= thresh)
{pkt.value :=t, ;
pkt.idval:= node’s identifier value;
forward; }
else {drop; }
else {drop; }
else {abort; }

Figure 2.7. RCOLLECT Operation

Below is a line-by-line description of the macro level RCOLLECT operation of
Figure 2.7.
Line I: The value corresponding to tag-tagb1 in the packet is retrieved to a register ty,
Line 2: The value is checked for its availability in ESS. ‘1’ indicates lifetime expiry of
this value. If the corresponding tag with value is found indicating the identifier bitmap(s)
obtained from previous phase one (RCHLD) operations, described in Line 3 — Line 22
are executed. If there is no such tag found, Line 23 is performed.
Line 3: The value corresponding to tag-tagb2 in the packet is retrieved to a register t;.
Line 4&5: The value is checked for its availability in ESS. “1’ indicates lifetime expiry
of this value. If the corresponding tag with value is found, indicating the bitmap
identifier(s) of the other children nodes for an immediate parent, the value is added to the
existing value, and if the value is not found, its set to ‘0’
Line 6: Then it is checked whether the resulting value is equal to the one carried in the

packet, if its not equal, the immediate value carried in packet is bit wise ORed with the

17

value found in ESS meaning the bit corresponding to the bitmap identifier of the current
child is turned on and is also included (added) as children for the immediate parent.

Line 7: The resulting new value is written into ESS.

Line 8: The value corresponding to tag-value in the packet is retrieved to a register t; It
corresponds to a value sent by a child node.

Line 9: The value is checked for its availability in ESS. ‘L’ indicates lifetime expiry of
this value.

Line 10: If the corresponding tag with value is found, then an associative or commutative
operation indicated by <op> (a micro opcode carried in the packet) is performed on this
value and the value (pkt.data) carried in the packet, and the result is placed in t,,

Line 11: If no such tag with value is found, then the value (pkt.data) carried in the packet
is placed in t;,

Line 12: The resultant value in t; is written into ESS with its associated tag-value.

Line 13: The bitmap identifiers are compared for equality to check whether the values

from all children nodes have been heard and to forward the packet.

Line 14: If they are equal then, the value corresponding to tag-D in the packet is retrieved
to a register t3 to have the count of packets.

Line 15: The value is checked for its availability in ESS. ‘1’ indicates lifetime expiry of
this value. If a value is found in ESS and its lifetime has not expired, it is incremented
and then placed in ESS binding it to the corresponding tag-D indicating that this packet is

counted.

Line 16: If a value is not found in ESS, a location is created for this tag-count in ESS

with a value of 0 starting to count the packets.

Line 17, 18, 19&20: If the resultant value is less than or equal to the threshold value (for
the maximum number of packets) carried in packet, the resultant value in t; is placed in
the output packet’s ‘pkt.value’ field, current node’s bitmap identifier value is placed in
‘pkt.idval’ field and the resultant packet is forwarded.

Line 21: Else the packet is discarded.
Line 22: If the bitmap identifiers do not match meaning there’s still some child nodes to

hear from, then the packet is silently dropped.

2.5 Example End-to-End Applications using ESP

End systems utilize ESP to perform various applications. Many applications can
be constructed using two-step network macro instructions. For example, in Finding Path
Intersection as shown in Figure 2.8, the first step utilizes the COUNT macro instruction
in determining the number of nodes along the path and defining a state in each node’s
ESS as it travels. The next step, the COMPARE instruction, examines the value left by
the previous COUNT instruction and determines the nearest intersection node along the

path.

COUNT Packet to A

COMPARE Packetto B C
ommo
node along B
two paths

Figure 2.8. Finding Path Intersection

Another example is in Aggregating Multicast Receiver Feedback in which first
the number of children maintaining a state are counted and then some operation is
performed on the values collected to deliver some useful information like maximum loss
rate etc., ESP facilitates such operations without the risk of implosion (see Figure 2.9).

These computations are viewed as tree structured computations by ESP and are generally

carried out in two phases.
In the first phase each group member sends an RCHLD macro-instruction towards

the root; this instruction causes the interior node or the immediate parent node to receive
packets carrying this instruction from each of its children and records their identifiers

(Figure 2.9a). The identifiers are helpful in determining whether the parent has heard

from all children nodes, and this information is useful in some specific applications

el

[8,26]. After a short delay (for processing RCHLD packets), phase two RCOLLECT
packets are sent towards the destination root (Figure 2.9b). The parent node receives
packets from each of its children one by one, and sets the bit corresponding to its bitmap
identifier in the second bitmap, and the value carried in the packet is added to the existing
binding in ESS. If the resulting bitmap is equal to the one from the first phase, it means
that the parent has heard from all its children and the accumulated value is written into
the packet, the bitmap identifier in the packet is replaced with that node’s identifier, and

the packet is forwarded. Otherwise, the packet is discarded.

RCOLLECT()
RCHLD RCOLLECT() Pfacket sent at
Packet sent at time T,

time T
RCOLLECT()
Packet sent at
WHLD() RCOLLECT() Nme T,
Packet sent at
time T

RCOLLECT()
Packet sent at
time T

RCHLD()T

Figure 2.9a. Phase 1 (RCHLD
Packet to Root Node)

Figure 2.9b. Phase 2 (RCOLLECT
Packet to Root Node)

Figure 2.9. Reducing Implosion using Two-
Phase Tree Structured Computations
Various other applications may be implemented such as thinning group feedback
within a network allowing prevention of the implosion problem [10], simple distributed

computations requiring data gathering across the network, identifying network topology

information [8] and network bottleneck identification [2].

2.6 Prologue to Ephemeral State Processor (ESPR)

It is envisioned that a special purpose programmable processor architecture can be
developed which will allow ESP to be programmed into programmable logic within
network level routers to support functional applications. This architecture can be
described in a hardware descriptive language (HDL) and then simulated using an
appropriate simulator for its first level of architectural functionality validation. Final
architectural functionality, design correctness and performance can be verified by
implementing the design in a Field Programmable Gate Array (FPGA) chip through
virtual prototype implementation and testing.

Beyond correct operational functionality, other high priorities for the development
of the ESPR will be to focus on obtaining high performance processing of ESP packets as
stated above and to enhance efficient resource utilization within a FPGA chip where it
may be implemented. Fundamental needed functionality of the ESPR architecture and a
highest-level organization can be developed from the defined macro level instruction set.
Micro level instructions and a detailed implementing ESPR architecture can then be
developed to implement the presented macro level instructions. Keeping the ESP
requirements (described above) in mind, it is envisioned to design a version of the ESPR
to process packets at or near line speeds of 100 Mbps. Depending on the network macro
instructions, the highest performance architectural design of ESPR (ESPR.V2) is being

aimed to process packets in the order of millions of packets per second to meet future line

speeds.

Chapter Three
Ephemeral State Processor (ESPR)

This chapter discusses the characterization and requirements needed for designing
an Ephemeral State Processor (ESPR), hi ghest level functional organization and its basic
micro instruction set formats and types. Finally, it also presents the equivalent micro

instruction implementation of the already defined high level macro instructions.

3.1 ESPR Requirements Summary

Based on the given ESP mechanism, to be implemented into Programmable Logic
Device (PLD) technology, the basic processor building blocks and processor
characteristics/requirements of ESP service can be given as,

® An Ephemeral State Store (ESS) is needed.

» Compatibility with the ESP protocol and packet format is required.

® Must support a predefined set of network macro-instructions.

® Develop an ESP architecture that has an upgrade path and can be

performance boosted via systematic steps (such as deeper pipelining of a
pipelined architecture, move from issuing one instruction per-clock-cycle to
two instructions per-clock-cycle, instantiation of multiple copies of the basic
ESPR architecture to a single PLD platform in a network node resulting in a
multiprocessor configuration).

e Support an in-field upgrade path (e.g., via a software upload)

Following the above ESP requirements, the ESP processor requires a reduced
latency ESS, which is designed as an associative memory to store ephemeral (tag, value)
pairs. A packet storage unit is required to store and send packets to the output, and a way
of indicating the state of this packet to the next node in the path is done using a “code
register”. The third requirement of being able to implement the network macro-
instructions in the node requires development of a set of micro-instructions, supporting

high-level architectural configuration and the Instruction Set Architecture (ISA) which

will be used to implement ESP macro-instructions.

Requirements/characteristics of the ISA of an ESPR can be high-lighted as

follows:

® The number of micro-instructions should be minimized in support of the
concept of “lightweight” ESP.

o The number of instruction formats should be minimized.

» All instructions should be of the same length allowing simplification of the
architecture.

* A minimum number of addressing modes should be utilized within the
instructions.

® Most data to be processed is in 64-bit format.

* The architecture should offer high performance but yet it should be kept
simple (pipelined initial version issuing one instruction per-clock-cycle in the
spirit of being “lightweight”).

o The ESS should be integrated into the ESPR pipelined architecture in a

manner to hide latency.

3.2 Highest Level Functional Organization of ESPR

Based on the previously-presented macro instructions of ESP, an initial ESPR
functional organization can be developed as follows. The required functional units of an
ESPR will be the ESS, Instruction Memory, Packet Storage RAM, Macro and Micro
Controllers, Register blocks and basic processor modules. A high level view of an ESPR
illustrating its main functional units is shown in Figure 3.1. Primary inputs and outputs of

the system are also shown.

The overall operation of the ESPR within a network node will be as follows. The
distinction between an ESP packet and other packets is carried out by external logic
inside the router and the ESPR sees only the ESP packets. When ESP is activated, the
Packet RAM in ESPR receives the ESP Packet and the Macro Controller decodes the
macro opcode in the packet to point to a sequence of micro level instructions held in the
Micro Instruction Memory, which must be executed to implement the incoming macro

instruction. The remaining ESPR functional modules implement the sequence of micro

instructions required to implement a macro operation.

23

In Packet
N Out Packc;::\;
Tognt i Packet RAM <t
Packet [¥* Output
RAM 1 Packet
Output RAM
A Code 3
Macro Register L »
Controller Output Code
Micro
Instruction
Memory
ESPR ON e
1’ " Controller
Reset
1
CFG in y Configuration v
64" » Register (R2)
gtmtap Bitmap ' v Associative
P a Register Memory
o (R3) DataPath |e_,| (ESS)
Registers
"| GPR, TR,
VR

GPR — General Purpose Registers
TR — Tag Registers

VR — Value Registers

ESS — Ephemeral State Store

Figure. 3.1. Functional Units of the ESPR system

Thus, the ESPR processes an incoming packet and the resultant packet is either
forwarded or dropped. Primary outputs of the ESPR are the resultant Output Packet if it is
forwarded and the resultant Output Code for either DROP, FORWARD or ABORT. The

8-bit Output Code Register (OCR) generates Output Code for the corresponding

e

instructions of FORWARD, ABORT or DROP to the indicate status of the current packet
to the next available ESP capable router.

An ESPR_ON starts the ESPR and a main Reset input helps to reset the entire
ESPR system. A Configuration Input (CFG in) provides the Internet Protocol (IP)
address of the current node and is loaded to the Configuration Register (R2), and a
Bitmap Input gives the Bloom filter bitmap identifier value of the current node and is
placed in Bitmap Register (R3). The entire ESP packet is sent to Packet RAM in ESPR in
32-bit blocks and is output in 32-bit blocks. An Input Packet RAM can be placed off chip
to buffer the input packets and an Output Packet RAM can also be placed off the ESPR
chip to test the output packets. Maximum length of an ESP packet is 512-bytes (4096
bits) and the Packet RAM can receive up to 128 blocks.

A typical ESP packet format is shown in Figure 2.1 and Figure 2.2. The Flags
field (8-bits) has ‘LOC”’ (3-bits), E (Error — 1 bit), R (Reflector — 1 bit) and 3 unused bits
reserved for future use. In some cases, as one of the normal outcomes of packet
processing, the packet needs to be prevented from being processed any further on the way
to their destination. To accomplish this, the LOC bits are set to ‘0’ and the packet is
simply forwarded to the destination. In some cases, to indicate an error encountered in
packet processing, the E bit is set to ‘1’ in the processed packets to indicate that error to
downstream routers to keep the packet from further processing.

An ESP packet is retrieved into the Packet RAM (PR) of the ESPR of Figure 3.1,
as 32 bit blocks from Input Packet RAM (IPRAM) placed off the ESPR chip and the
output processed ESP packet is given to Output Packet RAM (OPRAM). This is shown,

focusing on the involved functional units, in Figure 3.2.

OPRAM

. ACK in o

| PRready ' oy
Input " IDV Packet RAM in ESPR (PR) Output
Packet B yd A Packet
R_AM EO i > " EOP_Out RAM

(IPRAM) (OPRAM)
32-bit block 32-bit block .

Figure 3.2. Packet Processing in Packet RAM of ESPR

When ESPR is switched on, it is ready to receive and process packets, and then
the PR (Packet RAM) in ESPR waits until the IDV (Input Data Valid) signal goes high
from IPRAM. When IPRAM is ready to send packet blocks, it asserts the IDV signal
high and places 32 bit packet blocks onto the 32-bit Packet Block bus. The IDV signal
should remain high for at least 2 blocks and the PR starts receiving packet blocks. The
ACK in (Acknowledge input) signal goes high for every packet block indicating proper
receipt of a packet block. When the end of a packet is reached, the IPRAM sends the
EOP_in signal with the CRC value for the entire packet.

Similarly, when OPRAM is ready to receive a processed ESP packet, it sends the
OPRAMready (Output RAM ready) signal to PR. Then the PR sends the address and 32-
bit blocks to OPRAM. The PR sends packet blocks to OPRAM till the length of the entire
packet is reached and then sends the EOP_out (End of Packet output) signal to indicate
the end of the ESP packet. Then the PRready signal goes high to indicate that the PR is
ready to receive the next packet. This packet processing module also has a 64-bit input
(not shown here) from a multiplexer so it may choose between the values from registers
or different pipeline stages of ESPR when executing the STPR (Store To Packet RAM)
micro instruction. It also has a 64-bit output (not shown here) to the register blocks for
the LFPR (Load From Packet RAM) micro instruction, which is explained later in the

description of the pipelined ESPR architecture.

3.3 Micro Instruction Format, Types, Architecture and Definition

In this section the goals, objectives and approach in designing a basic micro
instruction set architecture on basis of the defined macro instructions are discussed. It
also covers different instruction types (classes) of micro instructions and their basic

instruction format. These micro instructions allow one to implement the previously

presented macro instructions.

A high priority goal and objective of this instruction set architecture design is to
have an instruction set which will lead to high performance and low cost/complexity of

the ESPR system. This leads to the design of an Instruction set that has fixed length

instructions. a minimum number of formats and classes. It provides the ESPR with a

potential for easy decoding and implementation of the instructions and with less time in

26

g

decoding and implementation, potentially leading to a high performance and low

cost/complexity system.

The use of a 64-bit width for the micro instructions is addressed as follows. The
‘Branch’ type instructions are identified to use the most number of bits (32) in their
instruction format for implementation of the existing ESP macro instructions. The micro
instruction sequences required to represent the above presented macro instructions exceed
256 address locations in memory and so a convenient number (16-bit) is used to represent
the instruction memory address locations. Considering the evolving growth of ESP and
the future possibility of arising additional complicated macro instructions, the micro
mmstruction width was felt to be best set at 64-bits. Also, to achieve the goal of designing a
lightweight ESPR, to avoid complexities like register renaming etc., in the design of
future ESPR versions and to support the growth of micro opcode and register file(s) size,

64-bit instructions will be supported by the ESPR.

3.3.1. Micro Instruction Format

The basic instruction format for all micro instructions will be as shown in the

following Figure 3.3 with the individual field definitions given in Figure 3.4.

oP RD | RS1| RS2 | TR (TIVR|V UWLS AIO SHAMT
(16 bit Br./Jmp Addr/Imm/Offset

Figure 3.3. Micro Instruction Format

The opcode specifies the micro operation. Some of the defined macro instructions
require arithmetic, associative and commutative operations that are performed in these
micro instructions using operands specified by RS1 and RS2 and the result is written into
RD. T and V fields indicate whether TR and VR is used either as a source or destination.

The W field specifies the general-purpose register write which indicates that the

instruction uses destination register operand RD. The AIO and SHAMT fields are also
sometimes required in these operations. ESS is accessed using the fields TR and VR.

LMOR is set to ‘1’ when the ESPR encounters an operator <op> in the COMPARE,

COLLECT or RCOLLECT macro instruction.

27

A

OP — Opcode (6 bits)

RD —Register Destination (5 bits)
RS1 —Register Source 1 (5 bits)
RS2 —Register Source 2 (5 bits)

TR — Tag Register (5 bits)
T — Tag Register Source or Destination (1 bit)
0 — Source, 1 - Destination

VR — Value Register (5 bits)
V — Value Register Source or Destination (1 bit)

0 — Source, | - Destination

U — Unused
W — General Purpose Register Write (1 bit)

L — LMOR (Load Micro Opcode Register) (1 bit)
S — Sign bit used in Immediate Type Instructions to denote the sign
of the immediate value.
AIO — Address, Immediate, Offset [Address, Immediate Value and Offset (16 bits)]
SHAMT - Shift Amount (6 bits)

Figure 3.4. Field Definitions

3.3.2. Micro Instruction Types (Classes)

The basic micro instruction types (classes) are designed based on fundamental
micro operations required to implement the macro instructions and are developed to
implement the macro operations correctly and completely. A description of the

instruction types and their functionality is as follows. Detailed descriptions and formats

of individual micro instructions are described in Appendix A.

3.3.2.1.ALU / SHIFT Type Instructions
The necessity of this type of instruction arises from the COLLECT macro

operation, which needs associative and commutative operations. Other macro instructions
also need increment and decrement operations. The instructions under this type are,
ADD, SUB, INCR, DECR, OR, AND, EXOR, COMP, SHL, SHR, ROL and ROR.

The instruction format for this type of instruction is shown in the following Figure 3.5.

3.3.2.2.Immediate Type Instruction
The one instruction of this type is MOVL It loads immediate values into registers

and its format and definition is as shown in the following Figure 3.6.

g .

——

63 5857 5352 4847 4342 252423 6 5 0
op RD RS1 RS2 U W u SHAMT
Instruction Operation Description
ADD Addition Computes Sum of two operands
SUB Subtraction Computes Difference of two
operands
INCR Increment Increments an operand by 1
DECR Decrement Decrements an operand by 1
OR Logical OR Logical OR of two operands
AND Logical AND Logical AND of two operands
EXOR Logical EXOR Logical EXOR of two operands
COMP Complement Logical NOT of two operands
SHL Shift Left Logical Left Shift
SHR Shift Right Logical Right Shift
ROL Rotate Left Logical Rotate Left
ROR Rotate Right Logical Rotate Right

Figure 3.5. ALU/SHIFT Type Instruction Format and Definition

63 5887 5352 24232221 65 0
op RD U W |S| 16 bitImm Val U
Instruction Operation Description
MOVI Move Immediate Moves immediate value to register

Figure 3.6. Immediate Type Instruction Format and Definition

3.3.2.3.Branch / Jump Type Instructions

These instructions check conditions and conditionally execute instructions based
on the checked conditions. All macro instructions involve checking conditions based on
high-level language constructs such as IF...ELSE. These micro instructions perform
similar functions at a lower level. The instructions of this type are BRNE, BREQ,
BRGE, BLT, BNEZ, BEQZ, JMP and RET. Figure 3.7 shows the format and

definition.

29

63 58 57 5352 4847 4342 2221 65 0

OP RS1 RS2 U 16 bit Br./Jmp Addr u
Instruction Operation Description
BRNE Branch on NOT Branches to a different location
Equal specified by 16-bit Address on
inequality of two operand values
BREQ Branch on Branches to a different location
Equal specified by 16-bit Address on
equality of two operand values
BRGE Branch on Greater Branches to a different location
or Equal specified by 16-bit Address on

greater than or equality of two
operand values

BLT Branch on Less Branches to a different location
Than specified by 16-bit Address on
comparison of less than operation
of two operand values
BNEZ Branch on NOT Branches to a different location
Equal to Zero specified by 16-bit Address, if the
operand value is not equal to zero
BEQZ Branch on Branches to a different location
Equal to Zero specified by 16-bit Address, if the
operand value is equal to zero
IMP Jump Jumps to a location specified by
16-bit Address
RET Return Returns from a location to the

normal PC value

Figure 3.7. Branch/Jump Type Instruction Format and Definition

3.3.2.4.LFPR / STPR Type Instructions
LFPR (Load From Packet RAM) and STPR (Store To Packet RAM) instructions

are mainly useful in retrieving/placing information from/to the packet to/from registers.
All macro operations require (tag, value) operands in the packet to be retrieved/placed
from/to separate registers/Packet RAM. The retrieved values are used to perform local
calculations and operations in modules of ESPR. These instructions are used to get/put
tag or value from/to specific fields at a particular offset of the packet to/from local

General Purpose, Tag or Value Registers (GPR/ TR/ VR). The instructions of this type

are LFPR and STPR which have the format as shown below in Figure 3.8.

63 SBS7 5352 4342 383736323130 24232221 65 0
0]y RD U TR |TVR V] UML|U 16 bit Offset u
Instruction Operation Deseription
LFPR Load From Packet Load value at a particular offset
RAM from the packet to register
STPR Store To Packet Stores values to a particular offset

RAM

in packet from a register

Figure 3.8. LFPR/STPR Type Instruction Format and Definition

3.3.2.5.GET / PUT Type Instructions

These instructions are directly equivalent to macro get/put instructions and are

useful in detailed accessing of ESS. The GET instruction checks to see whether the

specified tag exists in ESS, if so checks validity of the value and returns the value if

found. The PUT instruction places the (tag, value) pair in ESS. The BGF and BPF

instructions branch to a different location specified by Br.Addr on failure of GET and

PUT operations respectively. Figure 3.9 shows the format and definition for GET and

PUT instructions.

63 58 57 43 42 383736323130 2221 65 0
oP U TR |T|VR |V U | 16 bit Br. Addr U
Instruction Operation Description
GET Get Retrieves the value bound to a tag in ESS
PUT Put Places a (tag, value) pair in ESS
BGF Branch on GET Branches to a different location
Failed specified by 16-bit address on Failure of GET
operation
BPF Branch on PUT Branches to a different location
Failed specified by l6-bit address on Failure of PUT

operation

Figure 3.9. GET/PUT Type Instruction Format and Definition

31

3.3.2.6.Packet Related Instructions

The instructions of this type are IN, OUT, FWD, DROP, SETLOC, ABORT1
and ABORT?2. These instructions are used to Input, Output, Forward or Drop a packet
respectively and the ABORT instructions sets the LOC bits to zero and set/unset the E bit

in the packet and then forwards the resultant packet. Its format and definition is shown in

Figure 3.10.
63 58 57
OP u
Instruction Operation Description
IN Input Inputs a packet to Packet RAM
ouT Output Outputs resultant code for either
DROP or FWD
FWD Forward Forwards the packet
DROP Drop Drops the packet
ABORTI Abort Sets LOC bits to zero in packet and
forwards
ABORT?2 Abort Sets LOC bits to zero and E bit to “1°
in packet and forwards
SETLOC Set LOC bits Sets LOC bits to a specified LOC

(Location) value

Figure 3.10. Packet Related Instruction Format and Definition

3.3.3. Further ESPR Architecture Definition
Based on the above-defined Instruction Types/Classes and their formats,
additional specific functional units and components of an ESPR system required to

complete the definition of its Instruction Set Architecture (ISA) can be defined as

follows:

e The ESPR architecture will be Register / Register (R/R), Reduced Instruction Set
Computer (RISC) type architecture.

* 32 General purpose 64 bit registers (RO, R1
(R4, R5.......

* Restricted registers

32

R31) — 28 available to Programmer

e RO - loaded with <000.....0°
e RI - loaded with “000...... 1 [

* R2 - Configuration Register which holds the node’s IP address

* R3 - Bitmap Register which holds the current node’s bitmap identifier value
PR - Packet RAM to store Input Packets
32 — Sixty Four (64) bit Tag Registers (TR) and 32 — Sixty Four (64) bit Value
Registers (VR) — 31 available to Programmer (TR1, TR2....... RIL). YR,
VR2......VR31)

e TRO, VRO — loaded with “000.....0°
8 bit Output Code Register (OCR) to indicate status of the packet in current node

¢ 0-No status, 1 - FWD code, 2 — ABORTI, 3 - DROP, 4 — ABORT2
8 bit Flag Register (FLR). FLR consists of the bit pattern to set in flags field of the
packet.
8-bit Micro Opcode Register (MOR) to store the micro opcode in packet (<op>)
instructions particularly used in a defined ‘COMPARE’, ‘COLLECT’ and
‘RCOLLECT’ operation
Associative Memory — Ephemeral State Store (ESS)
64 bit wide Instruction Memory addressed by 16-bit pointer (MAX — 2**16
locations)
CRC block — To calculate Cyclic Redundancy Check (CRC) of the received packet
and to place it back at the end of the packet in PR.
2-bit Condition Code Register (CCR) to indicate the Failure of GET and PUT
operations in ESS.
PC — Program Counter

Macro Controller — Decodes the macro opcode and generates the equivalent micro

code location address to PC.

Micro Controller — Controls the ESPR system at the micro level by generating control

signals
64 bit ALU and SHIFTER — used in the arithmetic and logical computations

Decoders and Multiplexers.

33

3.4 Micro Instruction Implementation of ESP Macro Instructions

The previously presented five ESP macro instructions can now be implemented
with sequences of the presented micro instructions which can be shown in the following

figures — Figure 3.11 through Figure 3.15.

LFPR <Offset - 3> TR1
GET VRI, TRI
BGF Addrl
INCR R4, VR1
MOV VRI, R4
PUT TRI, VR1
BPF Addr2
Addr3: LFPR <Offset - 5> R4
MOV RS, VRI
BGE R4, R5, Addr4
DROP
Addrl: MOV VRI1, R0
PUT TRI1, VR1
BPF Addr2
JMP Addr3
Addr2: ABORT2
ouT
Addr4: FWD
ouT

Figure 3.11. Equivalent Micro Instruction Sequence for ‘COUNT’

LFPR <Offset - 3> TRI1
GET VRI1, TR1
LFPR <Offset - 5> R5
BGF Addrl
MOV R4, VR1
LFPR <Offset - 7> MOR
NOP
R4 <OP> R5 Addrl
DROP
Addrl: MOV VRI, RS
PUT TRI1, VRI
BPF Addr2
FWD
ouT
Addr2: ABORT2
ouT

Figure 3.12. Equivalent Micro Instruction Sequence for ‘COMPARE’

34

LFPR <Offset - 3> TR1
GET VRI, TRI1
BGF Addril
LFPR <Offset - 7> TR2
GET VR2, TR2
LFPR <Offset - 5> R4
BGF Addr2
MOV RS, VR2
LFPR <Offset - 9> MOR
NOP
VR2 «— RS5 <op> R4
JUMP Addr3

Addrl: ABORT2
ouT

Addr2: MOV VR2, R4

Addr3: PUT TR2, VR2
BPF Addrl
DECR Ré6, VR1
MOV VRI1, R6
PUT TR1, VR1
BPF Addril
BEQZ VRI1, Addr4
DROP

Addr4: STPR <Offset - 5> VR2
FWD
ouT

Figure 3.13. Equivalent Micro Instruction Sequence for ‘COLLECT’

LFPR <Offset - 3> TR2
GET VR2, TR2
BGF Addr5
LFPR <Offset - 7> RS8
MOV R6, VR2
OR R7,R6, R8
MOV VR2, R7
PUT TR2, VR2
BPF Addr2
Addr0: LFPR <Offset — 5> TR1
GET VRI1, TR1
BGF Addrl
INCR R4, VRI1
MOV VRI, R4
PUT TRI1, VRI1
BPF Addr2
Addr3: LFPR <Offset— 9> R4
MOV RS, VRI1
BGE R4, R5, Addr4
DROP

Figure 3.14. Equivalent Micro Instruction Sequence for ‘RCHLD’

Addrl: MOV VRI,RI1
PUT TRI, VRI1
BPF Addr2
JUMP Addr3

Addr2: ABORT2
ouT

Addr4: STPR <Offset— 7> R3
FWD
ouT

Addr5: MOV VR2, R0
PUT TR2, VR2
BPF Addr2
JUMP Addro0

Figure 3.14. Equivalent Micro Instruction Sequence for ‘RCHLD’ (continued)

LFPR <Offset - 3> TR1
GET VRI1, TR1
BGF Addrl
LFPR <Offset - 5> TR2
GET VR2, TR2
LFPR <Offset - B> R4
BGF Addr2
MOV R5, VR2
AND R6, R5, R4
BEQ R6, R4, Addr3
Addr4: OR R7, RS, R4
MOV VR2,R7
PUT TR2, VR2
BPF Addrl
Addr3: LFPR <Offset — 7> TR3
GET VR3, TR3
LFPR <Offset - D> R8
BGF Addr5
MOV RS9, VR3
LFPR <Offset - F> MOR
NOP
VR3 <«— R8 <op>R9
JUMP Addr6
Addr2: MOV VR2, RO
MOV R5, VR2
BNEZ R4, Addr4
JUMP Addr3
Addr5: MOV VR3,R8
Addré: PUT TR3, VR3
BPF Addrl
MOV R10, VRI1
MOV RI11, VR2
BEQ RI10, R11, Addr7
DROP

Figure 3.15. Equivalent Micro Instruction Sequence for ‘RCOLLECT’

Addr7: LFPR <Offset — 9> TR4
GET VR4, TR4
BGF Addr8
INCR R12, VR4
MOV VR4, R12
PUT TR4, VR4
BPF Addrl
Addr10:LFPR <Offset — 10> R13
MOV R14, VR4
BGE RI13, R14, Addr9
DROP
Addr8: MOV VR4, R0
PUT TR4, VR4
BPF Addrl
JUMP Addrl0
Addrl: ABORT2
ouT
Addr9: STPR <Offset — B> R3
FWD
STPR <Offset — D> VR3
ouT

Figure 3.15. Equivalent Micro Instruction Sequence for ‘RCOLLECT’ (continued)

The above presented micro instruction sequences for the five defined macro instructions
utilize most of the Packet Related instructions, all of the GET / PUT type instructions,
LFPR/STPR type instructions, most of the JUMP/BRANCH type instructions, some
(INCR, DECR, OR, AND) of ALU/SHIFT type instructions and the MOV instruction.
The rest of the ALU/SHIFT type instructions are included to be utilized in the
COMPARE, COLLECT AND RCOLLECT macro instruction. The rest of the unused

micro instructions are reserved for future macro instructions.

Chapter Four

Associative Ephemeral State Store (ESS)

A unique requirement of ESP is a temporal Ephemeral State Store (ESS)
associative memory where values are bound to tag fields and a (tag, value) pair is active
only for a given time period resulting in a reduced capacity store allowing a more light
weight and scalable processing system. The ephemeral part of ESS is that the value
corresponding to the tag is accessible only for a fixed amount of time and bindings
disappear after the Expiration time, ‘t” seconds. Packets leave useful information in the
ESS after computations for later packets to retrieve which help in implementing various
end-to-end network services. This Chapter discusses the detailed design of ESS and its

individual components.

4.1 ESS Design

The ESS design is based on the method of combining some extra logic with a
normal random access memory to create associative access. Each location is stored with a
Value, Expiration time and a control bit (empty bit — E) for the associated logic. Tags are

stored in separate storage space and are used to find whether the required value exists in

the ESS. It supports two operations, GET and PUT.

o GET (x): Retrieves the value bound to tag x, if any.
e PUT (x,€e): Bind the value e to the tag x.

Depending on the result of GET and PUT, the ESS gives way to support two more

operations.

* BGF addr: Branch on GET Failed to address location indicated by ‘addr’
® BPF addr: Branch on PUT Failed to address location indicated by ‘addr’

The functional blocks of ESS are,

e Block Select Random Access Memory (RAM) used as Content Addressable
Memory (CAM)
* Random Access Memory (RAM)
* Expiration time Calculating block
* Empty Location Calculating block
e ESS Controller
A functional level block diagram is shown in Figure 4.1. Primary Inputs to the
ESS are TAG, VALUE and GET or PUT operation and the primary outputs are the value
(for GET operation) and GET Failed (GF) or PUT Failed (PF) depending on the
operation. The main operation of the ESS is as follows. The CAM is used as a storage
space for tags and is used to find whether there is a match for the incoming tag. On a
match it gives the address for the RAM where the values are stored with its respective
expiration time. Depending on the match, values are accessed based on expiration time.
The RAM also has a separate empty bit (E) to indicate which location in RAM is empty.
This is helpful for the PUT operation when writing a new (tag, value) pair. The empty
location-calculating block is used to determine the empty location in RAM and CAM to
write a new value and tag based on the empty bits from RAM. A global clock register in
the expiration time calculating block is used to check for validity of the (tag, value) pair
by comparing its value with the expiration time field in the ESS. The ESS controller

generates control signals to all the blocks depending on a GET or PUT operation.

Components of ESS can be described as follows.

4.2 Content Addressable Memory (CAM)
A Content Addressable Memory is a storage array designed to quickly find the

location of a particular stored value. By comparing the input against the data in memory,
a CAM determines if an input value matches a value stored in the array. The basic core of
a CAM has a storage location value and a comparator between the storage location value
and the input data. The main advantage of a CAM is that its memory size is not limited

by its address lines and can be easily expanded. It offers increased data search speed by

finding a match and address in a single clock cycle [17].

39

0 TAG (64)
VALUE(64) [EXP(8)E(1
(From Tag Register (TR)l Address 5
Control Signals o VALUE 64/
. , Out
(From Value Register (VR)) Valie
MATCH SIGNAL Control Signals
v EMPTY
GET
PUT ESS CONTROLLER
= o a1
. r'y
Check| Empty 8 EXP. TIME
Empty Locs
32 A 4
EMPTY %l EXPIRATION
LOC. TIME
CALC. CALCULATING
BLOCK BLOCK
' A
Lifetime Expired
Control Signals

GET Failed (GF)

v

PUT Failed (PF)

v

Figure 4.1. Functional Block Diagram of ESS

CAM is used in the ESS design to check whether the (tag, value) pair resides in
the ESS by comparing the incoming tag with the tags stored in it. To obtain efficient
search of tags and for high performance GET and PUT operations, a Dual-Port Block
Select RAM of Virtex FPGA devices will be used in the later presented experimental
model of ESPR to operate as a CAM. As per the current design, the CAM is 32x64 (built
using two 16x64 CAMs) and the depth can be increased if need be. It is built (width wise)
using 8 basic 16x8 block RAM macros and the depth can also be increased in a similar

manner by including more basic blocks. As the CAM output is a decoded address, the

40

depth is expandable without additional logic. Each CAM location has a single address bit
output. When data is present at a particular address, the corresponding address line goes
high and goes low when it is not present. The basic 16x8 CAM and 16x64 CAM for the
ESS design is shown in Figure 4.2 and Fi gure 4.3 respectively.

Data Write 8§

ADDR 4

ERASE WRITE

WRITE ENABLE
CLK_WRITE

‘Write Port (A)
(1 X 4096)

Data Match 8 16, MATCH
MATCH ENABLE [et

Read Port (B)
MaTCHL RST | (16 X 256) | MATCH SIGNAL
CLK_MATCH —
—_—

(]

Figure 4.2. 16x8 CAM Macro

[63:56]
| CAM 16X8
Lo
CAM 16X8 :
(N x [15:0] / ANDJ[15]
CAM 16X8 i
(0)
TAG [63:0]
[15:0]
[15:0]
e [15]
A 4
MATCH [15:0]

Figure 4.3. 16X64 CAM using 8 16x8 CAMs

The unique Virtex block RAM approach is used to build the 16x8 CAM block. This
methodology is based upon the true Dual-Port feature of the block Select RAM. Ports A

and B can be configured independently, anywhere from 4096-word x1-bit to 256-word
x16-bit. Each port has separate clock inputs and control signals. The internal address
mapping of the block Select RAM is the primary feature in designing a CAM in a true
Dual-Port block RAM. Each port accesses the same set of 4096 memory locations using
an addressing scheme dependent on the port width. This design technique configures port
A as 4096-word x 1-bit wide and port B as 256-word x 16-bits wide. Each port contains
independent control signals. Port A is the CAM write port, and port B is the CAM read or
match port. Both the read and write CAM ports are fully synchronous and have dedicated

clock and control signals.

4.2.1. Write Operation

The CAM write port inputs are an 8-bit data bus (Data_Write) in Figure 4.2, an
address bus (ADDR - four bits to address the 16 locations), control signals
(ERASE_WRITE and WRITE ENABLE) and the clock (CLK_WRITE). The 4-bit
address bus selects a memory location. Writing new data into this location is equivalent
to decoding the 8-bit data into a 256-bit ‘one-hot’ word and storing the 256-bit word. The
location of the ‘one’-is determined by the ‘one-hot’ decoded 8-bit value. Port A,
configured as 4096 x 1, has a 1-bit data input and a 12-bit address input. The data input is
addressed to ‘one’ for a write and ‘zero’ for an erase, and the 8-bit data plus the 4-bit
address is merged in a single 12-bit address input. With the 8-bit data as MSB and 4-bit
address as LSB, the resulting 12-bit address input decodes the 8-bit data and selects one

of the 16 memory locations simultaneously. The clock edge stores a ‘one’ or a ‘zero’ at

the corresponding location depending on write or erase.

4.2.2. Read Operation
Port B of Figure 4.2 is configured as 16x256 and 8-bit data (Data Match) to be

searched is connected as an 8-bit address bus. Using the fact that a particular location
corresponds to the decoded 8-bit data, the matching operation is equivalent to searching

16 locations for specific 8-bit data at the same time and port B generates the matches

42

R N—m—m/——/ — =

concurrently. The MATCH SIGNAL is asserted high when a match occurs and the 16-bit
output is the decoded value. MATCH ENABLE and MATCH_RST are the control
signals for port B.

The base 16x64 CAM for this ESS design (32x64) can be obtained by using eight
16x8 CAMs and extra AND gates. Eight 16x8 CAMs allow for a 64-bit width, with the
first 8 bits stored in CAMO, next 8 bits in CAMI and so on. A match is found only if all
8-bit locations match the specified incoming 64-bit tag. An 8-input AND gate for each
CAM output signal provides the final decoded address. The 16-bit MATCH output is
then encoded to provide the 4-bit Address for ESS where value and expiration time are
stored. Currently the ESS design has only 32 locations. This is a sufficient depth to
validate the functionality and design of the ESS and to later experimentally validate the
ESPR with the ESS included.

4.3 Random Access Memory (RAM) for Storage of Value, Expiration Time and
Empty Bit

The RAM storage of Figure 4.1 is used to store value (64-bits), expiration time (8-
bits) and an empty bit (1-bit). The current design has 32 locations and the address bits
come from the CAM and are used to store and retrieve value, expiration time and empty
bit. The empty bit in all locations is set to ‘1’ initially indicating the location is empty and
is changed to ‘0> whenever the location is written with a value.

In case of creation of a new (tag, value) binding in the ESS, the 1-bit empty
location value is checked for the availability of space in ESS rather than checking the
already existing 8-bit expiration time values of all locations. Thus this compromising
solution of an additional 1-bit space for each location in the ESS and an empty location
check on these 1-bit values are preferred over comparing the 8-bit expiration time value
of all locations with a value of zero. It also significantly reduces and replaces the logic

overhead involved in having 8-bit comparators for each location of the ESS with a 1-bit

value check on each location.

43

4.4 Expiration Time Calculating Block

This block is shown in Figure 4.1 and 4.4. A counter operating as a very low
frequency clock functions as a global clock register (see Figure 4.4). Whenever a value is
written (corresponding to any new Tag) to any location, expiration time is calculated by
adding the global clock register value with the lifetime ‘t’ and it is written in the
expiration time field in the RAM. The validity of the value in the RAM is checked by
comparing whether the entry in the expiration time field is less than the global clock

register value.

When 8-bits are used to represent the expiration time values, there may be
possibilities of ‘wrap around’ situations, in which case, the values may incorrectly be in
the ESS for a longer time. As this is an initial functionality testing version of ESPR, 8-
bits is used to represent the expiration time value to check the functionality of the
expiration time calculating block where [8] suggests 10-bit values are sufficient for the
assumption of a 10 second lifetime and a 0.1 resolution clock. In order for correct
functional operation of ESS in an experimental deployment, expiration time should be
represented by a larger number of bits (e.g.: 10 bits or more) to avoid the possibility of

‘wrap around’ situations.

EXP. TIME (8 bits) from RAM
TEXP. TIME (8 bits) to RAM

Lifetime Expired to ESS controller :

GLOBAL CLOCK REGISTER -

Figure 4.4. Expiration Time Calculating Block

4.5 Empty Location Calculating Block
This block (see Figure 4.1) is used to determine the new location to write value

and expiration time in RAM and tag in CAM. The empty bits from RAM are input to this

block and it determines the output address bits to write a new (tag, value) pair.

4.6 ESS Controller

Depending on the GET or PUT operations, the controller of Figure 4.1 generates
control signals to all the blocks in ESS. The inputs to the controller are GET or PUT
operation from the instruction decode stage of ESPR, the check empty signal from the
empty location calculating block, the lifetime expired signal from the expiration time
calculating block and the MATCH SIGNAL from the CAM. Two outputs are the control
signals - GF (GET FAILED) or PF (PUT FAILED). WRITE ENABLE,
ERASE_WRITE, MATCH RST and MATCH ENABLE are output control signals to
the CAM, we (write enable) is a control signal to RAM and cnt (count) is a control signal

to the Expiration time calculating block.

4.7 Operations Performed in ESS and Flowchart
The ESS operations — Flowchart shown in Figure 4.5 describes GET and PUT

operation as will be described here and below.

4.7.1. GET Operation

The incoming tag from the tag register is given to the CAM to check for a match
and for the availability of a value in the ESS. If a match occurs, the CAM asserts the
MATCH SIGNAL high and gives the address to the RAM to get the value. The
expiration time in that address is read out and given to the expiration time block to check
the validity of the data. If the value is not expired, it is read out. If it is expired, a null
value is returned and the controller gives a GF (GET FAILED) output indicating a GET
failure. This location is then cleaned up, and the empty bit in that location is set to ‘1’
indicating that the location is empty. If there is no match, a null value is returned and the

controller generates a GF (GET FAILED) output indicating a GET failure.

4.7.2. PUT Operation
The incoming tag from the tag register is given to the CAM to check whether the

(tag, value) binding already exists in the ESS. If a match occurs, the CAM asserts the
MATCH SIGNAL high and gives the address to the RAM to get the value. The

expiration time in that address is read out and given to the expiration time block to check

45

the validity of the data. If the value is not expired, a new value is written in that location

and the empty bit is set to “0°. If the value is expired, a new value is written, the empty bit
is set to ‘0" and the expiration time is reset again in that location. If there is no match, the
empty location-calculating block checks to find the empty location to write a new tag and
value. If there is an empty location, the address of the new location is given to the CAM
to write the tag and given to RAM to write a value, expiration time and the empty bit is
set to “0°. If there is no empty location, the controller generates a PF (PUT FAILED)
output indicating a PUT failure. Whenever the PUT operation is completed successfully

the empty bit of the location is reset to 0’ indicating that the location is filled.

4.7.3. Branch on GET Failed (BGF) / Branch on PUT Failed (BPF) Operation

The BGF / BPF micro instructions branch to a 16-bit address specified in the
instruction, on failure of GET / PUT respectively. These micro instructions are actually
performed by the Branch Detection Unit of the ESPR depending on the result of ESS

operations.

4.8 ESS Scalability, Size and Performance

The ESS organization, architecture and design is a key functional unit related to
the performance and scalability of the ESP service. We now discuss the scalability and
performance of the current ESS design. The main components of the ESS described
above are CAM and RAM, and the scalability has to be defined in terms of these
memories. The CAM and RAM memories described above can be implemented using
core block RAM of PLD technology chips which the ESPR would be implemented to.
The size of these memories can be expanded by adding the required core RAM on-chip,
by adding the required bits in the existing design, without any change to the existing
controller design.

Thus the presented design for ESS is scalable, dependent upon the capacity of
block RAM memory available in PLD chips and the depth of ESS can be extended
accordingly to that. Under this limitation the same organization, architecture and design
for ESS can be used to implement ESS off chip. Therefore, an off-chip implementation of

ESS is also scalable. The price paid here is a slight decrease in performance of ESS

46

because of the time required by the signals to travel through the additional circuitry in
reconfigurable PLD chips.

The Current ESS design only has 32 (32x137) locations. This was sufficient to
allow its functional validation. The same design can be expanded to a deeper ESS
assuming sufficient on-chip core RAM. For ESPRs implemented to PLD technology, the
core RAM determines the size and performance of ESS, and it can be tuned as necessary

by the utilizing application by including additional block RAM in the design.

GET PUT
(i) TAG given to CAM (i) TAG given to CAM
(ii) Get MATCH SIGNAL (i) Get MATCH SIGNAL
and MATCH ADDRESS and MATCH ADDRESS

Y N
(i) ADDR given (1) GF=1 (i) ADDR given to RAM
to RAM (ii)) VALUE =0 (11) EXP. TIME read out
(i) EXP. TIME
e out (1) Write TAG to
CAM PF=1
If life (i1) Write
i VALUE, EXP.
(i) GF=0 TIME and
If life N| (ii) Give ADDR to v EMPTY to RAM
expd RAM and VALUE N
is read out
Y Wiite VALLIE, Write VALUE
EXP. TIME and EMPTY to
G} GE= RAM
(i) VALUE = 0

Figure 4.5. ESS Operations — Flow Chart

47

ﬁ

Chapter Five
Ephemeral State Processor Version 1 (ESPR.V1) Architecture

This chapter deals with the development of the Ephemeral State Processor
Architecture — Version 1. Later in this thesis, to improve the performance needed, a
second version of ESPR will be developed and tested. The chapter describes the overall
system architecture design of ESPR including all connectivity between functional
modules, and a performance improving pipelined version - ESPR.V1 with its micro
controller design.

It is envisioned that the Ephemeral State Processor (ESPR) that performs ESP
functions will be hardwired in the network layer of routers. It does processing on
incoming packets and packet processing can occur before or after the routing lookup. The
packets will come in through the input ports and be processed by the ESPR and passed
out to the route lookup or output ports and forwarded to the next available ESP capable
router.

The incoming packet is stored in the Packet RAM and the ESPR Macro
Controller decodes the macro opcode network instruction and generates the address of the
first micro instruction that must be executed to implement the decoded macro instruction.
The micro instruction memory (see Figure 3.1) is preloaded with the set of micro code
sequences for corresponding network macro instructions. After a particular micro level
program for a network instruction is initiated in memory, the Micro Controller takes over
and generates control signals for all functional modules of the architecture as each micro
level instruction executes. After the processing is over, according to instructions, the
packet is either silently dropped or passed on to the next available ESP capable router.

The pipelined architecture implements required processing of received packets.

This chapter also evaluates the requirements needed for the development of this

processor and how they are met and a brief discussion of the general-purpose versus
special-purpose approach for ESPR design is also presented. Finally an analytical

performance model for ESPR is devised and presented.

48

5.1 Basic Register/Register Architecture Development with ESPR Components
The Micro Instruction Memory of the basic ESPR architecture shown in Figure
5.1 is preloaded with the micro code sequences for corresponding network macro

instructions. The incoming packet is loaded into the Packet RAM (PR in Figure 5.1). The

From Micro
controller TR
—P
VR MUX OCR 8 Output Code
FLR GPR —p»
-'Sh_>' PR)
me ALU/Shifter s From Microcontroller Output Packet
64
WY ToPR
7® Fl OP| LEN| <VAR. FIELD > ICRC TAG
PKT PR REGISTER
4
’—' Fwded FILE (TR) pr
y 8 & gl 32/{ datain 64
Macro
Controller ggl(é_sz o
To TR/ VR /GPR v
16} LMOR MOR 64 | VALUE i
5 From Inst. 16 g:fg’::;c From Tist » Fwﬁ REGISTER
Offset field 6 i datain | FILE (VR)
From Inst. ; v 25 p4 A~
OP field MICRO 7 Bl sigs e
From Overflow CONTROLLER | 8 ToOCR ; o
Exception Adfil [74y To FLR To VR 4——/——64 v
merpe |18 e TS e LIFE TIME
From Inst. l) 6 > ° From VR ke
Reg X =P AL —» M
From Macro 16 Fwded Val 647::» U 64
Controller - MICRO ekt B 8
F TE-G_’ i INSTRUCTION GENERAL [A 4
rom MEMORY PURPOSE | ® L ;
J REGISTER Oy
FILE 64 64 E
61| (GPR) A M R
5 U
64 X 3
Fwded From PR v
datain
Fwded Value 64 STATUS
64 REG
m’" SIGN
EXTEND

Output value to
Register files

Figure 5.1. Basic ESPR Architecture

49

Flag Register (FLR) is an 8-bit register which holds the corresponding bit patterns for the
setting of *‘LOC” and ‘E’ (Error) bits in the packet and it is always given to the Flag field
in the first location of Packet RAM. The CRC-32 block calculates the Cyclic Redundancy
Check code (CRC) using CRC-32 polynomial and places the resultant CRC code back in
the packet. The Output Code Register (OCR) generates output code depending on
whether the packet is Aborted, Forwarded or Dropped. The opcode field in the packet is
given to the Macro Controller, which on decoding the opcode generates the required
address to store in the PC of the micro instruction memory. This address corresponds to
the address location in the Instruction Memory where the micro code sequences for a
particular network macro instruction is stored. Register (REG) is used to hold the PC
value which helps in the RET micro instruction.

After a particular micro code sequence is initiated in the instruction memory,
every instruction is decoded and processed. The source and destination General Purpose
Register (GPR) numbers are decoded from the micro instruction and values are loaded
from/to the General Purpose Register (GPR) file for further computations. The Tag
Register (TR), Value Register (VR) numbers are also decoded from the micro instruction
and values are loaded from/to corresponding register files. The register write signal for
the three register files is provided from the micro instruction and the register read signal
for the register files is obtained from the micro controller.

Ephemeral State Store (ESS) performs the GET and PUT instructions of storing
the (tag, value) pairs and the Lifetime calculation circuit calculates the expiration time for
each (tag, value) pair. The Condition Code Register (CCR) stores the resultant GF (GET
FAILED) and PF (PUT FAILED) bits from ESS. The micro instruction opcode is given
to the Micro Controller, which decodes it and generates control signals for all functional
units of the architecture. An 8-bit Micro Opcode Register (MOR) stores the micro opcode
carried in the packet for COMPARE, COLLECT and RCOLLECT operations and is also
given to the Micro Controller for decoding. The Load Micro Opcode Register (LMOR)

control signal for this MOR is obtained from the micro instruction. The ALU and Shifter
perform the arithmetic and logical computations and store the result back into registers.

The ALU provides overflow, sign and zero status signals that are stored in a 3-bit status

register. On an overflow exception, the PC is loaded with a specific address by which the

50

microcode sequence aborts and the processing stops. The SIGN EXTEND unit is used to
extend the 16-bit value to 64-bit value which helps in the MOVI micro instruction.

The Macro level system flowchart in Appendix B shows the overall macro level
operation of the ESPR of Figure 5.1. as packets arrive at the input and the appropriate
macro level instruction is executed. Each step in the macro instruction flowchart
corresponds to the execution of a micro instruction. The Micro level system flow charts
in Appendix C and Appendix D represents the clock cycle by clock cycle operation of the
micro instructions as they are fetched and executed. Each rectangular function block of
the micro level system flow chart contains a Register Transfer Level (RTL) description of
the micro operations executed during the clock cycle associated with the function block.
The first two function blocks common to all micro instructions represents the instruction
fetching and each micro operation(s) in each block represent activation of corresponding
functional modules in the architecture for every clock cycle. After the instruction is
fetched each instruction is decoded and executed separately. The ESPR architecture and

system flow charts are developed concurrently.

5.2 Four Stage Pipelined Architecture (ESPR.V1)

To improve the performance of the ESPR by increasing the processing speed, the
basic ESPR architecture of Figure 5.1 is transformed to a pipelined architecture as shown
in Figure 5.2. It is a 4-stage pipeline with Instruction Fetch (IF), Instruction Decode (ID),
Instruction Execute (EX) and Write Back (WB) stages. All instructions advance during
each clock cycle from one pipeline register to the next. The first stage, Instruction Fetch,
is common to all instructions. This stage contains the Program Counter (PC), Micro
Instruction Memory, Register (REG) and a multiplexer. PC is loaded with an address
from the multiplexer depending on micro/macro instructions, overflow exception from
ALU or incremented PC value. Instructions are read from the instruction memory using

the address in PC and then placed in the IF/ID pipeline register. The PC address is

incremented by one and then loaded back into the PC to be ready for the next clock cycle.
REG is used to hold the address from PC whenever the JMP micro instruction is

encountered and used to restore the address back in PC whenever the RET micro

51

[4%

OR

mr;

L - — ¢ SBRI ‘],
p OR B GERm. pox o L ¥ _EXFlush
HAZARD T P IDFlsh Llu:; BR. M
== DET.UNIT OP _iny, : B lap ™ per. ¥ o w
X GPR ata?| UNIT |Branch 0 2 B
| Tim x| P
& c.;_]:-:)]gs X ” ol “GRTpUT
IMP : '|——>] > SBRE— e i
! RET a]?uoul.__.b M T -
5 » MICRO —i PRin — e = PUL,
IF F OCR Value U h VAL |
~Flush “;S"L CONTROLLER | FLR Value Tag | x -
63- < Ll
03-5 INST_IN [63:0] riron. T
INCR PC LPC I'ag Rt‘g RQM_-L‘THE RC%NV;;]‘R: evimfwd <
rom stage '
[F/ - TR o E.Eg £ :D - y Value ¢
_ = m [TRD frot : Tag Readout | » GF, PF
From Instruction Overflow Exception (64) W—B‘L FILE : W Ex AL > X ESS 86
From Macetrlr Address WB write | (TR) @84) CCR EX |ouT,
data ESSOUT / y
L b Value R 3 . i S8 :’]Vz) M
o) 4 alue Reg Write hpm: A ol SH ctrl gshamt £ e
M Ri,;g VALUE from WB stage :igfl{;;.{ M Ak * w ;J(
U |l p MICRO > T Rl s
c INSTR. i Ri\)vg(}m ?IELCIE Value Read out El:'l}l}l)n__b x Ay :’l ALU/SH
| i C
MEM = WB with (VR) TRin—p Ul F o jALusHET ouT
daa > VRi Uk
RE Y WB
v Reg Read Reg Write ROl o {aluin E write
REG RSl ¥ ¥ from WB stage aluout 0] - R data
R GEN. Read Data 1 out TRl:EE X
RS2)| PURPOSE T VRICgl S‘)Pt‘mi‘wd+ i
64 _“Ei WIll¥ REG. Read Data 2 out ESSOUT
[nstructi e i 2 FILE > ESSOL PKT PKT
e CFG_IN| (cpR) GPRIN| M 8 e T
s 16-bit ADDR/OFF TR@E ;i v v 4
aluo!
signbit oo R < PACKET RAM (PR)]
fmm. Value ”| EXTEND PKT Offset —_Opcode I—(gutput Packet
Figure 5.2. Four-Stage Pipelined » OCR |—» v 4 ctrl sigs to muxes
ESPR.V1 Architecture S A e =
UNIT |g

instruction is encountered. The Hazard detection unit generates the control signals for the
PC and the IF/ID pipeline register. The instruction is then supplied from the IF/ID
pipeline register to the Instruction Decode (ID) stage. It supplies a 16-bit offset that
calculates the offset for the packet register in the Execute stage and a 16-bit immediate
field to the Sign Extend block that sign extends the 16-bit value to a 64-bit value. The
sign bit for the Sign Extend unit comes from the micro instruction. It also supplies the
register numbers to read Tag Registers (TR), Value Registers (VR), or General Purpose
Registers (RS1, RS2 and RD). The Register Write signal and Write data value for the
register files come from the WB stage. All these values are stored in the ID/EX pipeline
register along with the output values Read datal, Read data 2 from the general purpose
register file, tag readout from tag register file, value readout from the Value register file
and the sign extended output value for computations in the EX stage. The ID stage also
contains the Micro Controller, which decodes the opcode in the instruction and generates
control signals for the Execute (EX) stage and Write Back (WB) stage. These control
signals are forwarded to the ID/EX and EX/WB pipeline registers where they are utilized.
The Micro Controller also generates values to be stored in the Flag Register (FLR) and
Output Code Register (OCR) in the EX stage.

Execution then takes place in the Execute (EX) stage either in the ESS,
ALU/SHIFTER, in the Packet Register or in the Branch detection unit. The values stored
in the ID/EX pipeline register from the ID stage are given to the corresponding execution
modules. The multiplexers at the input of ESS choose tag and value for ESS
computations. The tag and value to the multiplexers come either from registers in the ID
stage, from the packet register or from the ALU output. The Condition Code Register
(CCR) holds Get Failed (GF) and Put Failed (PF) outputs from the ESS. The multiplexers
at the input of the ALU choose values for ALU computations either from registers in the
ID stage, from the packet register, from the ALU output, from the ESS output, or from
the sign extend block. The Shifter gets values mostly from the general-purpose registers
through the ALU pass through mode. The multiplexer at the input of PR chooses values

for the STPR micro instruction either from registers in the ID stage, from the ALU output
or from the ESS output. The FLR gets its value from the ID stage micro controller and

connects it to the flag field of PR. The OCR gives the output code from the ID stage

53

micro controller to an output port. The jump and conditional branch type micro
instructions are executed using the Branch detection unit. Two register values are given
as input to the branch detection unit to check for the equality or inequality depending on
the type of micro instructions. The multiplexers in front of the Branch detection unit
choose value from general-purpose registers or from the ALU output. The micro
controller generated control signals for the execution modules are given to the respective
modules and the control signals for the WB stage are forwarded to the EX/WB pipeline
register. The resultant values of execution are also stored in the EX/WB pipeline register.

After the execution of instructions, results are written back to registers and this
takes place in the Write Back (WB) stage. The WB stage result is written back to
registers using a multiplexer. The control signal for this multiplexer comes from the WB
stage control signal and it chooses between ALU output and ESS output to write back to
registers in the ID stage.

Potential hazards such as Data hazards and Branch hazards may arise in a
pipelined architecture. The hazard detection unit detects any data hazard and stalls the
pipeline when necessary. This hazard detection unit controls the writing of the PC and
IF/ID registers plus the multiplexers that choose between the real control values and all
0s. A multiplexer in the ID stage and EX stage is used to reset the control signals to ‘0’
for stalls.

A data hazard is detected when the write register of the previous instruction is the
same as the read register of the next instruction. So in this case, the next instruction reads
the wrong value of the read register because the write register would not contain the
correct value in this stage. The forwarding unit in the EX stage helps in eliminating data
hazards by forwarding the result from the ALU output back as the register value for the
next instruction instead of waiting to get the result from the WB stage. This forwarding
unit generates control signals for the multiplexers in front of the ALU, ESS, PR and
Branch detection unit to choose the value from the ALU output directly instead of from
the register input. The WB control signals, opcode from the ID stage and register

numbers are given to the forwarding unit that helps to forward the result for correct

execution.

54

One solution to resolve a branch hazard is to stall the pipeline until the branch is
complete. But on the other hand a common improvement over stalling upon fetching a
branch is to assume the branch will not be taken and so will continue to execute down the
sequential instruction stream. If the branch is taken, the instructions that are being fetched
and decoded must be discarded. Execution continues at the branch target. To discard the
instructions the controller flushes the instructions in the IF, ID and EX stages of the
pipeline. After the execution of a branch condition in the Branch detection unit and if the
branch has to be taken, multiplexer in front of the PC helps in choosing the new branch
target address. To flush instructions in the IF stage, a control line called IF Flush is
added, which resets the instruction field of the IF/ID pipeline register to ‘0’ to flush the
fetched instruction. A control signal called IDFlush is used to flush instructions in the ID
stage. The EXFlush control signal is used to flush the already executed instructions in the
EX stage. The micro controller determines whether to send a flush signal depending on
the instruction opcode and the value of the branch condition being tested.

The pipelined architecture system flow chart in Appendix C shows the stage-by-
stage operation of all the micro instructions in a pipelined architecture. Most of the
instructions take a single execution phase. The ESS (GET / PUT) instructions may take
more than one clock cycle (at most 5 clock cycles) to execute. So the ESS has to operate

at five times the frequency of the overall ESPR.

5.3 Micro Controller
The Micro Controller is located in the ID stage of the pipeline and will be

required to generate 25 control signals to implement all defined micro instructions. The
final Micro Controller may be predominantly pipelined combinational logic whose input
is the Opcode (6 bits) and whose outputs are the control signals identified within this
section. It generates control signals for the ID stage, EX stage and WB stage. The ID
stage control signals are REGREAD, JMPINST and RETINST. REGREAD is supplied
to the General Purpose, Tag and Value Register files. JMPINST and RETINST are used
to determine the flushing of pipeline stage registers.

The EX stage control signals are given to the Packet processing unit for the PR,
ESS controller in ESS, ALU, Shifter and Branch detection unit. The control signals for

55

ﬁ

the Packet processing unit are LFPRINST, STPRINST, ININST, OUTINST, LDPKREG,
LDOCR and LDFLR. LFPRINST, STPRINST and ININST correspond to the micro
instructions LFPR, STPR and IN. The control signal OUTINST corresponds to the OUT
micro instruction. LDPKEG, LDOCR and LDFLR are given to the Packet RAM (PR),
Output Code Register (OCR) and Flag Register (FLR) respectively. The control signals
for the ESS unit are GETINST, PUTINST and LDCCR. GETINST and PUTINST signals
are given to the ESS controller to perform GET and PUT operations. LDCCR is the

control signal for the Condition Code Register (CCR). The Shifter control signals are SO,
S1 and S2 and ALU control signals are S3, S4, S5 and Ci. The function table for the
Shifter, ALU and Branch detection unit are shown in Tables 5.1, Table 5.2 and Table 5.3

respectively.

Table 5.1. Function Table for Shifter

CTRL SIGS (S0, S1,S2) | OPERATION
000 PASS THROUGH
001 SHIFT LEFT (SHL)
010 SHIFT RIGHT (SHR)
011 ROTATE LEFT (ROL)
100 ROTATE RIGHT (ROR)

Table 5.2. Function Table for ALU

CTRL SIGS (83, S84, 85, Ci) | OPERATION
0000 PASS THROUGH for a
0001 PASS THROUGH for b
0010 ONES COMPLEMENT for a
0011 ONES COMPLEMENT for b
0100 ADD
0101 SUB
0110 INCR a
0111 DECR a
1000 INCR b
1001 DECR b
1010 OR
1011 AND
1100 EXOR
1101 NEGATIVE of a
1110 NEGATIVE of b
56

Table 5.3. Function Table for Branch detection unit

CTRL SIGS (BRANCH TYPE) | OPERATION
000 BLT
001 BRNE
010 BREQ
011 BRGE
100 BNEZ
101 BEQZ
110 BGF
111 BPF

The WB stage control signals generated by the micro controller are S6 and REGWRITE.
The S6 control signal is given to the multiplexer in the WB stage to choose between the
ALU and ESS outputs. The REGWRITE control signal is connected back to the General
Purpose Register file in the ID stage. Two additional control signals for the WB stage,
TAG REGISTER WRITE and VALUE REGISTER WRITE, comes from the micro
instruction and are given to the Tag Register file and Value Register file respectively.
The active control signals involved in the proper execution of each micro instruction are
shown below in Table 5.4. For each micro instruction the remaining control signals apart
from the active ones are interpreted as inactive during its execution. Each control signal
is a control point and identified within the final ESPR.V1 architecture shown in Figure

5.2,

5.4 ESPR.V1 Requirements Evaluation

In designing a processor to handle special functions there comes the question of
choosing between the options available for design: either designing a special
functionality Coprocessor to perform special functions which can be connected to a
general purpose processor to handle other general purpose functions or designing a stand
alone special purpose processor. This section discusses requirements evaluation of the
Ephemeral State Processor and the next section discusses the options available in
designing ESPR. The components and functional unit requirements of the ESPR system

defined in Chapter 3 — Section 3.1 can be evaluated as follows to give support to the

architectural design of ESPR.

57

Table 5.4. Control Signals for Micro Instructions

MICRO INSTRUCTIONS CONTROL SIGNALS

NOP No Active Signals

IN ININST, LDPKREG

ouT OUTINST

FWD LDOCR, OCR = 0000 0001

ABORT]1 LDOCR, LDFLR, OCR=00000010, FLR=00000000
DROP LDOCR, OCR = 0000 0011

CLR REGREAD, REGWRITE, 56

MOVE REGREAD, REGWRITE, S6

MOVI REGWRITE, S6

ADD S3, S4, S5, Ci, REGREAD, REGWRITE, S6
SUB S3, S4, S5, Ci, REGREAD, REGWRITE, S6
INCR S3, 84, S5, Ci, REGREAD, REGWRITE, S6
DECR S3, S4, S5, Ci, REGREAD, REGWRITE, S6
OR S3, S4, S5, Ci, REGREAD, REGWRITE, S6
AND S3, 84, S5, Ci, REGREAD, REGWRITE, S6
EXOR S3, S4, S5, Ci, REGREAD, REGWRITE, 86
COMP S3, S4, S5, Ci, REGREAD, REGWRITE, S6
SHL S0, S1, S2, REGREAD, REGWRITE, S6
SHR S0, S1, S2, REGREAD, REGWRITE, S6
ROL S0, S1, S2, REGREAD, REGWRITE, S6
ROR S0, S1, 82, REGREAD, REGWRITE., 56
LEPR LFPRINST, REGREAD, REGWRITE, S6
STPR STPRINST, REGREAD

BRNE BRANCH TYPE, REGREAD

BREQ BRANCH TYPE, REGREAD

BRGE BRANCH TYPE, REGREAD

BNEZ BRANCH TYPE, REGREAD

BEQZ BRANCH TYPE, REGREAD

JMP JMPINST

RET RETINST
GEL GETINST, REGREAD, LDCCR

PUT PUTINST, REGREAD, LDCCR

BGF BRANCH TYPE, REGREAD

BPF BRANCH TYPE, REGREAD

ABORT2 LDOCR, LDFLR, OCR=00000100, FLR=00000001
BLT BRANCH TYPE, REGREAD

SETLOC LDFLR

The conceptual description of Ephemeral State Processing (ESP) requires no data
memory in the design except the Ephemeral State Store (ESS), and so the ESPR is
designed as a basic Register/Register Architecture. Based on the ESP requirements
described in Chapter 2, the main component of design in designing the ESPR is the ESS,

and a scalable associative memory is designed to meet this requirement. To differentiate

special operations carried out on tags and values, a separate tag register file and value

58

ﬁ

register file are included along with the general-purpose register file for normal

operations. With the current set of macro level instructions, the number of registers is

designed to be 32 for validation purposes. This set may grow over time depending upon
the ESP design requirements. The existing unused bits in the micro instruction can be
used to add register numbers. The tags and values in ESP are 64-bit wide and so the
registers are designed to hold 64-bit wide values. All the basic operations in the ESPR are
carried out on 64-bit wide operands and so the ALU, Shifter and rest of the components
are designed to handle operands in this manner.

A RAM (Packet RAM - PR) is designed for storing and processing incoming
packets. PR is designed to have 128 locations of each 32 bits wide. This is designed
based on maximum packet size and incoming packet block width. Also offset handling is
easy in RAM because the operands in a packet are either 8 or 64 bits wide. Thus a RAM
is used to store packets to provide efficient PLD resource utilization. As the status of the
current packet, after processing, has to be indicated to the next node, an Output Code
Register is used to store the status of the current ESP packet. The Flag Register is used to
operate on flag fields individually. The Micro Opcode Register is used to store the micro
opcode carried in a packet which may be further used for ‘COMPARE’, ‘COLLECT’ or
‘RCOLLECT’ macro instructions. The Status Register is used to hold the status after
ALU operation and the Condition Code Register is used to hold the status after ESS
operation.

A separate block is needed for calculation of Cyclic Redundancy Check (CRC)
which may be helpful to detect whether an error occurred when the packet is received
before processing (Refer Appendix — B). Macro and Micro Controllers are necessary for
their respective control operations. As network macro instructions grow over time, there
might be a future necessity to have further more additional micro instructions and
additional registers. To reflect this and also that basic operations are over 64-bit values,
the micro instruction width is chosen to be 64-bits wide. Additional components such as

the program counter, decoders and multiplexers meet basic requirements for a processor

design.

59

5.5 Special-Purpose Versus General-Purpose approach to ESP
The two options available in designing ESPR are,
¢ Designing a special-purpose processor for ESP as the one described in this
Chapter
e Designing a special functionality coprocessor that can be linked to a
general purpose processor

A special-purpose processor can be designed as the pipelined architecture as
described in Section 5.2 in this Chapter. The second alternative is to first design a
coprocessor that handles functions corresponding mainly to ESS and the Packet RAM
with its control unit. And then have a general-purpose processor connected to this
coprocessor module, both combined together to perform ESP.

Referring to the ESPR system requirements, most of the main components are
special functional units, which involves almost all of ESS, Packet RAM, Tag and Value
register file, Macro controller, Output Code Register, Flag Register, Micro Opcode
Register, Condition Code register and CRC block. And also, most of the micro
instructions in the micro instruction sequence representation of macro instructions utilize
most of the special functional units described above, mainly ESS and the Packet Register.
The micro instruction sequences for macro instructions involving general-purpose
components are few. The instruction set is defined to handle a lot of general-purpose type
instructions only in considering future necessity. Considering the above ESPR
requirements and also to eliminate I/O overhead between the general-purpose processor
and coprocessor, an initial step was taken in designing a special-purpose pipelined
processor for ESP over a general-purpose approach. A comparison of cost and
performance of the special-purpose vs general-purpose ESPR has not been conducted.

The special purpose ESPR design is an initial step towards implementing ESP in routers.

5.6 Analytical Performance Model for ESPR

The performance of any processor can be measured by the time it takes to
complete a specific task, which is commonly described as CPU execution time. CPU
execution time depends on how fast the hardware can complete basic functions, which in

turn can be a function of the clock frequency at which the processor performs its

60

operations in addition to other factors. A simple formula that defines the basic
performance measure — CPU execution time [27], for a processor that performs its

operations sequentially can be given as,

CPU execution time for a program =
(Instruction Count for a program) * (avg. clock cycles per instruction) *

(elock evele timefation Mueehistaarminelisviie The COLL sssoatsnygrd)

A program is comprised of a number of instructions and in a sequential processor,
each instruction takes a different number of clock cycles (more than one) to complete its
required function, so the term average clock cycles per instruction is used, and clock
cycle time is the basic clock cycle period for the processor. The above equation makes it
clear that, the performance can be improved by reducing either the clock cycle period or
the number of clock cycles required for a program. As per this, performance
improvement can be obtained by pipelined implementation of the processor — as was
done for the ESPR Thus pipelining reduces the average execution time per instruction;
however there is degradation in the expected performance of pipelined processors due to
pipeline stalls. And if the stages of the pipeline are perfectly balanced, then the time per

instruction in a pipelined machine [27] is equal to,

Time per instruction on unpipelined machine / Number of pipe

SPAGES .1 oevvswiensen aim sss avnives vesinan ansionsmss 2853 SH4EH SHEENBIY AR s senons biw snspos n (4)

Under these conditions, the speed up from pipelining equals the number of pipe stages.

The ideal CPI (clock cycles per instruction) for a pipelined machine [27] can be given as,
Ideal CPI =

Number of clock cycles per instruction on an unpipelined machine / Number of

DUDE SEAGES . evecon e as e e s ot e e s b e (3)

61

The ideal CPI is almost always 1. The pipelined CPI [27] is the sum of the base CPI and a

contribution from stalls.

Pipeline CPI = Ideal CPI + Pipeline stall cycles per instruction............... (4)

By reducing the terms on the right hand side, the overall Pipeline CPI can be reduced and
thus increasing the instruction throughput per clock cycle. The CPU execution time of a

program for a pipelined processor [27] can now be given as,

(CPU execution time) pipelined =
(Number of clock cycles for instruction count + stall cycles) * (Ideal CPI) *
(pipelined clock cycle time)... ..o.oi v il muilaiss i v (9)

Both versions of the Ephemeral State Processor (ESPR - ESPR.V1 and the to be
presented ESPR.V2) are pipelined processors and their performance model can be
derived from the basic pipelined performance equation as described in (5). Hereafter we
refer to the performance model in terms of the ESPR architecture which refers to both

versions. The ideal CPI for ESPR can be given as,

CPIespr = No. of clock cycles for an instruction in unpipelined ESPR / No. of pipe
stages(6)

All instructions except the IN and OUT instruction can be included in the above
CPI equation. The IN instruction gets the input packet into ESPR in 32-bit blocks and it
takes more than one pipelined ESPR clock cycle to complete it depending on the input
packet size. The number of clock cycles for completion of the IN instruction can be
determined from studying the macro system flow chart in Appendix B and it includes the
basic count of clock cycles for the IN instruction and additional cycles to check whether
the EOP is reached to stop getting input. Similarly, the OUT instruction also takes more
than one pipelined ESPR clock cycle to output the packet. Depending on the packet size,

IN and OUT takes an equal number of clock cycles to complete their respective

62

operation. The number of pipe stages does not have effect in determining the CPI for IN

and OUT. CPI for IN and OUT are given in equations (7) and (8) respectively.

CPIiv = No. of clock cycles for getting input packet using IN instruction......... (7)
CPlour = No. of clock cycles for OUT instrietion... 0L L o L0 L NE)

The performance of ESPR is determined based on the time it takes to complete
the processing of a particular Ephemeral State Processing (ESP) packet after the ESPR is
switched on. The CPU execution time for the packet is comprised of different execution
times, which are described below, and it depends on type of input packet and type of
resultant packet and also depends on whether the packet and Ephemeral State Store (ESS)
checking failed or succeeded. The complete performance equation for ESPR can be

derived from the following equations. The base CPU execution time is given as,

CPUgyse =

((avg. micro instruction count for a macro instruction * CPlgspr) + total number
of stall cycles in a macro instruction) %
(OEEGS00) . v wissinmosarios nsarwerses minsionsi oD N CTenaE) Ohuaes ton a5 e sx v mesith ()

Any ESP packet carries a macro opcode for performing a particular macro
instruction and so the performance of ESPR is measured in terms of per packet
processing and is determined by the execution time of a particular macro instruction. A
macro instruction consists of a sequence of micro instructions in instruction memory, and
the number of micro instructions executed for a particular macro instruction depends on
the type of input packet and the availability of the required (tag, value) pair in ESS, as
can be seen from the macro level system flow chart in Appendix B. So the term avg.
micro instruction count is used in the above CPUgase equation and it excludes any IN
and OUT micro instruction. Stalls in ESPR arise due to branch or jump instructions.

CLKgspg is the basic clock cycle period for ESPR. Similarly the CPU execution times for

the IN and OUT micro instructions are given in equations (10) and (11) as follows.

63

CPU[N F CP]{N # CLKLSPR (10)

The instruction count for the IN or OUT micro instruction is 1, and there are no
stall cycles during their execution. After the packet is received in ESPR, it is checked for
any errors and conditions and then the ESS is checked for its availability before the

packet gets processed. So the CPU execution time spent in checking the packet and ESS,

is given by,

CPUcprck = (No. of clock cycles for packet and ESS checking) * (CLKgspr)...(12)
CPUry = (No. of clock cycles for FWD or ABORTI or ABORT2) *
(AT RGO v O SR R RS

CPUgp, is the CPU execution time for either the FWD or ABORT1 or ABORT2
micro instruction. In case of failure of any checking as described above, eq. (13) helps in
determining the total execution time. The CPU execution time of the resultant packet,
depending on the FWD/DROP of packets or failure of checking, can be obtained by the
combination of any of the above five different CPU execution time equations. CPU

execution time for forwarded and dropped packets is given as,

CPUFWDfPACKET = CPUBASE &+ CPU[;V =+ CPUOUT + CPUCHECK (14)
CPUpnroppicrxer= CPUgsss + CPUp + CPUBHEGK v ciosimsisnses visianoonsia svasassis{ 43

If any packet or ESS checking fails, the CPU execution time in that case is given as,

CPUcmicransn = CPUw + CPUgyr + €PUrd + ((1, 2 or 3 clock cycles
(depending on which checking failg)) * CLEpag) . comn i somtsosimmmsmasamnf WO

64

—ﬁ

Thus, the above performance model is designed to measure the time taken by

ESPR to complete processing of an incoming packet, depending on the type of packet

and the processed results of packet. This is a theoretical description of the performance of
ESPR. Real performance results can be obtained from the post implementation simulation

results to be described and seen in later chapters.

65

Chapter Six
Post-Synthesis and Post-Implementation Simulation Validation of

ESPR.V1 Architecture

The hardware design of any system starts with the design specifications, design
architecture and design description using Hardware Description Languages (HDL). The
next step in the design cycle is simulation and design verification using CAD tools to
synthesize and implement the hardware system to a desired programmable logic
technology. Field Programmable Gate Array (FPGA) technology using reconfigurable
logic is the widely used programmable logic as it offers many advantages of cost
effectiveness, flexibility, ability to reconfigure easily, large number of gate counts in a
single chip and ability for rapid prototyping and design iteration. This Chapter discusses
the Post-Synthesis and Post-Implementation validation testing of the ESPR.VI
architecture synthesized to a Virtex FPGA chip.

6.1 Introduction

Post synthesis simulation and Post Implementation simulation are two major
essential phases in the design process of a hardware system in terms of organization,
architecture and design validation. Post synthesis simulation can functionally validate the
design architecture for its implementation to a specific FPGA chip. This simulation offers
output results without considering the specific gate and other logic resource delays while
configuring the chip. The gate and all other logic resource delays in the chip are included
by the CAD tool while performing Post Implementation Simulation.

Post Synthesis and Implementation simulation and design validation of the final
ESPR architecture was done using Xilinx Foundation series 3.1i software. It provides
logic simulators for post synthesis and post implementation testing. One can monitor all
the inputs, outputs and intermediate signals using this logic simulator. Because of its
inability to accept test vectors from a file, test vectors for validation are input manually

and exhaustive testing was not performed. But in all cases the simulation results were

compared with valid outputs for validation.

66

—_»

The CAD tool provided by Xilinx for Post Synthesis Simulation validation used
the environment of a PC (Personal Computer) system — Pentium III 550 MHz Processor,
with Windows 98 platform and 384 MB (Megabytes) of RAM memory. The design
capture of ESPR.V1 was synthesized into a Xilinx Virtex 800 FPGA chip and
implemented on a Virtex2 — 4000 FPGA chip. Post Implementation simulation
verification with desired timing constraints on the design is performed on a PC (Personal
Computer) system — Pentium IIT 550 MHz Processor, with Windows 2000 platform and
640 MB (Megabytes) of RAM memory. The logic resources utilized in the Xilinx Virtex2
— 4000 FPGA chip to implement the described ESPR.V1 architecture is given in the
following Table 6.1.

Table 6.1 Logic Resources Utilization for ESPR.V1 Architecture

Resources Utilization
4 Input LUTs 13, 840
Flip flops 7,388
Block RAMs 16
Equivalent System Gates 1,386,196

6.2 Post-Synthesis Simulation Validation of ESPR.V1 Architecture

Post synthesis simulation validation provides for the functional validation of the
ESPR.V1 architecture on a FPGA chip. All the components of ESPR.V1 are first
developed, synthesized and verified separately for functional correctness. Then the whole
system of ESPR.V1 is connected using individual modules, synthesized and tested for its
functional validation. Most of the micro instructions are tested on a clock cycle by clock
cycle basis for proper generation of internal and external signals, and outputs. All the
individual components and the whole ESPR.V1 system are not tested exhaustively but
are tested for a large set of varying input conditions.

The pipelined ESPR.V1 system is synthesized to run at a clock cycle (clk_pipe) of
10 nanoseconds (frequency of 100 MHz). The simulation validation was first done for
individual micro instructions and then for small programs using the micro instructions.

For this simulation the instruction memory is first written with specific micro instructions

67

——'

to be tested and then simulated for proper execution in corresponding clock cycles.
Synthesis was not optimized to run at a maximum clock rate since achieving this is a long
drawn out process. Our top priority was functional validation of the architecture. Also,
the Xilinx Virtex FPGA chip used for implementation is an older FPGA chip with long

propagation delays through its logic resources.

6.2.1. Simulation Validation of Single Micro Instructions

Most of the micro instructions were tested and verified individually and then
programs with sequences of micro instructions were tested for correct execution. The first
micro instruction to be verified was the ‘ADD’ (ALU/SHIFTER type instructions)
instruction and the next instruction to be verified was the ‘GET’ (GET/PUT type
instruction for ESS) instruction. Both of these micro instructions exercise most functional

units in the processor.

6.2.1.1.Validation of ‘ADD’ Micro Instruction

To verify the ADD micro instruction, the bit pattern for this instruction was
written to the instruction memory. This micro instruction utilizes PC, micro instruction
memory, General Purpose Register File, Controller, ALU and Shifter functional units.
The ADD instruction is interpreted as,

ADD RD, RS1, RS2
The ADD instruction verified here was,

ADD R5, R4, R3
_ 001001 00101 00100 00011 00000 0 00000 0 000000 100 0000000000000000 000000

- 24A4180001000000 (Hex. Equivalent for binary representation)

The source registers R3 and R4 were initially loaded with values 6 and A respectively
using the MOVI micro instruction. The verification of this instruction is shown in Figure

6.1. The verification starts with the IF stage and the instruction (instchk) is fetched during

the first clock cycle.

68

TN T e PTOTPERE B Gy e MEREC | e e NN
Biinstchk63. (hf |0|}{2444180001000000 $000000000000000

Blopsigex5. (hey |0 039 ~_foo

BlRS1los4. (hex)d |0 04 o0

BlRS20s4. (hex)1 |0 03 [oo

BlRDosl4. (hex)d |0 05 100

BiGPR1rs63. (hey |0 000000000000000A J0000000000000000
B|GPR2rs63. (hey |0 0000000000000006 |0000000000000000
Blaluoutswbe3. 1 (0 ~___ [0000000000000010

Figure 6.1. Validation of ‘ADD’ Micro Instruction

During the second clock cycle of ID stage, the opcode for ADD is decoded as i
(opsigex) and the source and destination register are decoded as ‘4’ (RSlos), ‘3’ (RS20s)
and ‘5> (Rdosl) respectively. In the same ID stage the source registers R4 (GPR 11s) and
R3 (GPR2rs) are read as ‘A’ and ‘6’ respectively. In the next clock cycle of EX stage, the
ALU output (aluoutswb) for the addition of A + 6 = 16, is obtained in hex as
“0000000000000010”. This validates the ADD micro instruction.

6.2.1.2.Validation of ‘GET’ Micro Instruction
To validate the GET micro instruction, the bit pattern was written in the
instruction memory. This micro instruction utilizes PC, micro instruction memory, Tag
Register File, Controller, and ESS functional units. The GET instruction is interpreted as,
GET TR, VR

The GET instruction validated here was,
GET TR1, VR1

- 011110 00000 00000 00000 00001 0 00001 1 000000 000 0000000000000000 000000

- 7800004180000000 (Hex Eq.)

The source register TR1 was initially loaded with a Tag of 5 using the MOVI
micro instruction. A Value of 2 was already associated with this Tag and stored in ESS
using the PUT micro instruction. The GET instruction is executed after sometime to
validate whether it checks the ESS for this Tag 5 and the lifetime of its Value. The

validation of this instruction is shown in Figure 6.2.

69

—%

kil nieniEk o Trartion baerats Siaeents for LIS IIFTER Vabdakias |
1 2SN | s 0 G g 6 g g g g 6y e S O S5

etk cnt. ... B3
Blinstchké3. (hg |0][}7800004180000000 1000000000000000

L

0
BiopsigexS. (hey |0 11 o
BTRosd. (hex)#} [0 Il o
BlVRosd. (hex)#} [0 JoL o0
Bleszoutawbed { |0 [0000000000000002

Figure 6.2. Validation of ‘GET’ Micro Instruction

The first clock cycle of the IF stage fetches the instruction (instchk) for GET. The ID
stage decodes the opcode (opsigex) for GET and the source Tag Register (TRos) and the
destination Value Register (VRos). ESS in the EX stage runs with the clock (clk_ess) of 2
nanoseconds and at a frequency five times the frequency of the processor. The clock
(clk_cnt) for the counter in ESS which counts for the lifetime of the value runs at a very
low frequency and has a period of 80 nanoseconds. The value is read out of the ESS from
the EX stage as “0000000000000002”. This proves a successful validation of the GET

micro instruction.

6.2.2. Micro Instruction Program Sequence Validation of ESPR.V1 Architecture
After functional validation of the ESPR.VI architecture executing single micro
instructions, the pipelined ESPR.V1 architecture was validated by loading the micro
instruction memory with sequences of micro instructions that form small programs. Three
example programs are shown in this section with its simulation validation. These
programs are written in a way to show each of the features and components of the
pipelined processor at work. Most of all these programs have data hazards, which are
automatically reduced/eliminated by the forwarding unit. One program with a Branch
type instruction uses the hazard detection unit to control branch hazards as explained in
the architectural description of ESPR.VI. This section briefly explains pipelined

execution of the micro instruction sequences and shows the simulation validation results.

The first program is explained in a detailed manner and the remaining two programs are

briefly explained.

70

6.2.2.1.Micro Instruction Program Sequence for ALU/SHIFTER Validation
The following micro instruction program was loaded in sequence in the micro
instruction memory. Figure 6.3 shows the micro instruction program sequence, which

provides an example for testing the ALU/Shifter type instruction execution.

Data Hazard — R3
0. MOV R3,R1-1C6 000 Data Hazard — R4
1. ADD R4, 001000000
2. ADD RS, R4, R3 — 24A4180001000000
3. ADD Ré6, R4, R4 — 24C4200001000000
4. SHL R7, R4, 2 — 44E4000001000001
5. MOV RS, R3 - 1D03000001000000

Figure 6.3. Program for Validating ALU/Shifter

This program also tests the forwarding unit to eliminate the data hazards that arise in the
ADD instructions. In the first two ADD instructions there is a danger of the old data
being read instead of the new value for R3 from the MOV instruction and the new value
for R4 from the first ADD instruction. This is a called a Data Hazard. This is because the
new values are not written until the WB stage but the next sequencing instruction in the
ID stage wants to read the new value before it is written. The forwarding unit allows for
the proper execution of the instruction without any hazard by forwarding the required
data to the computational unit inputs from the ALU output. Figures 6.4a, 6.4b and 6.4¢
show the post synthesis simulation validation results for the above program.

All the instructions take a single clock cycle to execute. Figure 6.4a shows the IF
stage for the first three instructions, ID stage for the first two instructions and EX stage
for the first instruction. Figure 6.4b shows the fetching of the remaining three micro
instructions, WB stage for first three instructions, EX stage for second, third and fourth
instructions and ID stage for third, fourth and fifth instruction. Figure 6.4c shows the WB
stage for the fourth, fifth and sixth instruction and the remaining stages for the remaining

instructions. All instructions were executed correctly and their execution also validated

the functional operation of the forwarding units.

1clk_pipe.[B0 e rimiis . e e i 15 sttt e et A= i T
ele . I
ifre_in... .0
Blinst_in63@ |0
Bipcout15. (| |0|fo000 Toonl {000z 10003
Blinstchkou| |0|{1C61000001000000 12483180001000000 |2424180001000000 124042000010
Blf;eaddatal I {omuoooaomom {0000000000000000
BlReaddata?| |0 /
Blaluinlout| |0 /’ 10000000000000001
BlaluinZout| |0 / 100000000000
BlVBdataout| |0 /r 100000000000
Illl being read in ID stage
Figure 6.4a. Simulation Output for ALU/Shifter Validation
=S
Rk 7 st METhe rogisttle hen fhalfiny Valuokaeic s iorod 10
ielr. ... 0 U
e in. . 0 L
Blinst ink3@ [0
Bpcout15. (| [0jj0003 [0004 Joons s
Blinstchkoul [0{fz4c4z00001000000 ~ [4454000001000002 1 1003000001000000 Ina000000000c
[BlReaddatal| |0
BReaddata?l |1
Blaluiniout| 0 [0000000000000002
BlaluinZont| (0|j0000000000000001 10000000000000002 T
BlWBdataout! [0 10000000000000002 10000000000000003 2 (T
Output of first ADD!T

Output of the second ADD

Output of first MOV :
instruction in 6" clock cycle

etructionin 4 dock evel instruction in 5" clock cycle
instruction in 4" clock cycle

Figure 6.4b. Simulation Output for ALU/Shifter Validation (continued)

72

iFlk pipe. B S TegIstons IS whinen|with *3". i O TR il 2oref Te
il cundl
iwe_in... [0
Biinst_inb3@
Bipcout15
Blinstchkou
BlReaddatal
B??eaddataZ
Efiaiuinluut
Biaiuilﬂuut
B[VBdataout

0008 10007 {0008 (IE]
{0000000000000000

10000000000000001 |0000000000000000

10000000000000001 10200000000000000

0000000000000000
FLUUGUUUUUD?DUM IUGUUEQUU?EOUE 10000000000000001 o 1000000000000

T e e — e e] |

Output of MOV
Output of third ADD QOutput of SHL

Figure 6.4c. Simulation Output for ALU/Shifter Validation (continued)

6.2.2.2.Micro Instruction Program Sequence for ESS Validation

Figure 6.5 shows the micro instruction program sequence, which provides an
example for validating the ESS. First a series of ALU operations were performed to
obtain a value for the Tag and Value register. Then the (tag, value) pair was stored in
ESS using the PUT micro instruction. A GET was performed to obtain the value bound to

that respective tag. This program also tests the hazard elimination circuitry of the

ESPR.V1.

Data Hazard — R3
.MOV R3,R1 - 1C6 000 Data Hazard — R4

. ADD R4, 001000000 Data Hazard — RS
.ADD R5, R4, R3 — 00000 Data Hazard — VR1

MOV TR1, R5 - 1C050060010000
. MOV VR1, R5-1C05 00000
PUT TRI, VR C00004100000000

BPF 44h — 8400000000001100
.SHR R7, R4, 3 — 48E4000001000003
. GET TR1, VR1 — 7800004180000000
. BGF 44h — 8000000000001100

VOO R WN=D

Figure 6.5. Program for Validating ESS

Figures 6.6a, 6.6b, 6.6¢ and 6.6d show the post synthesis simulation validation results for
the above program. Figure 6.6a shows a series of ALU operations similar to the previous

program. Figure 6.6b shows the operation and result of the ALU operations and fetching

of the PUT instruction. It also shows a value of ‘3" being written to the Tag register.

13

ﬁ

After the Tag and Value registers are written with *3°, the PUT instruction stores them in
the ESS. Figure 6.6¢ shows the fetching of the BPF, SHR and GET instructions. Figure
6.6d shows that the correct Value of ‘3” bound to Tag register TR1 is obtained as ESS
output from the GET micro instruction. The signal ‘essouts’ in Figure 6.6d shows the

correct value of *3°.

pl dipedilie T] [e[S

clk_cnt . .[BSL |

O B e e i o g g e) A o

AN

i

1

i

ife_in.
Blinst_in63
Bipcout15 . (
Blinstchko
B
B
B
B
E.

o
i |

= — N —

{0000 {oooL [oo0z l0003
1061000001000000 [2483180001000000 {z4a4180001000000 {1C0500600100¢
{0000000000000001 [0000000000000000

Readdatal
Rzaddatal
aluinlout

10000000000000001

1000000000000(

aluinout,
essoutshl
BlFBdataout

1000000000000C

Figure 6.6a. Simulation Output for ESS Validation

i::lk_pipe.B[l_"_l—r_—|—__|_|_|_
iclk cat. B

R 1 T I o S 0 oy
il b I

iwe in... 0 [

Binst_1n63@ |1

Bipoout15. (| |0jfooo3 l0004 {0008) 03
Blinstchiou (0}{1C05006001000000 ~]1C05000181000000 17000004100000000 (8400000000001
BlRezddatall |0

BlReaddata?l |0

Bialuinlout| |0 /0000000000000002 J0000000000000003

BlaluinZout! |0{§0000000000000001 10000000000000400

Bessouts6d |0

BiWEdataout| |0/{0000000000000001 {b000000000000002 10000000000000002 W

Output Value ‘3’ given to Tag Register TR1

Figure 6.6b. Simulation Output for ESS Validation (continued)

74

T e B e i e I e

1

ijclk cnt. B8

TSNl e W W I L S I g B W B e Wy
£1 oo |

imedn... J [

Blinst_1263@ (1

Bipeout15. DEOD% fo007 Too0s [0003
Blinstchkou| [0{j#400000000001100 14234000001000003 [7800004180000000 180000000000
Blﬁeaidatai I {0000000000000002
BReaddatall |0

Blaluinlout| |0 10000000000000000 [onoonoaoaoo
BlaluinZout| |0 }0000000000000003 10000000000000000

Bessontzhd) |

ElBdataout| |0 10000000000000000

Figure 6.6¢c. Simulation OQutput for ESS Validation (continued)

ilk_pipe.[BOL J_—L—J—'I__J—_\—
iclk_cnt. .[B8)

ot N T e O T oy Y 15— 5 e VO oy 5 s 5 e O
i} 4 s BRI 0L

ifwe_in....[0 [

Blinst_in6J@ (1

Bipcout15. (| |0{[jo00s — Jo00a I (1

Blinstchkou| [0|[f2000000000001100 — (0000000000000000

BlReaddatal) |0 ~ [0000000000000000

B}ReaédataZ 0

Blaluinlout| [0|[J0000000000000002 ~ {D000000000000003 [nooooooo0000a000
BlaluinZout| [0 {0000000000000003 [0oononoooogoooog
Blessouts63| |0 {0000000000000Q03

BliBdataout| |0 ‘% {D000000000000002

ESS Output from ‘GET’ Micro Instruction

Figure 6.6d. Simulation Output for ESS Validation (continued)

6.2.2.3.Micro Instruction Program Sequence for Branch/Forward Unit Validation

Figure 6.7 shows a micro instruction program sequence for branch control

validation.

75

“ —~—

Branch Hazard and Data Hazard — R4
MOV R3, R1 - 1C610000

BEQ R3, R4, 6h — 6003200000000180
ADD RS, R3, R4 — 24A4180001000000
SHL R7, R4, 5 —44E4000001000003
AND R6, R5, R7 — 38C5380001000000
MOV RS, R6 — 1D06000001000000

MOVI R7, Fh — 20E0000001000 Data Hazard — R3
INCR R3 - 2C6 000
ROR RS9, R3, 2 - 5123000001000002

Figure 6.7. Program for Validating Conditional Branch Control

el L R S M

The first two MOV micro instructions were used to write registers to check for the branch
equality (BEQ) condition. The pipelined ESPR.V1 assumes the “branch not taken”
condition to reduce branch hazards. The BEQ condition in the above program succeeds
because the two registers R3 and R4 are written with the same value of ‘1’and so the
program execution has to branch to the address (6h) specified by the branch address.
Because of the branch not taken condition, the ADD and SHL instructions following
BEQ will be fetched and decoded. When the BEQ instruction reaches the EX stage, the
correct branch decision is taken by the branch detection unit and the instructions fetched,
decoded or executed after BEQ were flushed and the program execution branches to the
address specified by BEQ and the micro instructions starting from that address continues
to execute in normal sequence. This can be validated from the following post synthesis

simulation results shown in Figures 6.8a, 6.8b, 6.8c and 6.8d.

L mer ey I MEVANR B fdgad v L vy e tiner o e

[o000 {0001 Too0z [0003

[10£1000001000000 11C81000001000000 16003200000000180 /'S 1244418000
10000000000000001 \‘

\

L §

Jo00000000000001 \

3

\\
100000000
\

Fetching ‘BEQ’ Micro Instruction

Figure 6.8a. Simulation Output for Conditional Branch Validation

76

ifeLk_pipe [0
i1 <1k S |
e in... [0
Blinst_in63@ (0
Blpcout15. (| [0](_Jooos J0004 10006 » [o007
Bjinstchkou [0 12414190001;00000 |44840000010000 [1D0600Q001000000 \ [z03000001
BReaddatal] [0 / 10000000000000000 %\ | ‘\
BRexddatall (1 j ‘\% 1 ‘\‘
Bluinlout] {0 ! \‘ looaoooodgoououao \
BialuinZout| {0 rl |0000000000000001 \‘ Ioouoouuulimocouno k_
B¥Bdataout| |0|[__JoooooghoooaoonoL \ [0000400040000000

! i ‘\ \ PC becomes

Continuous Fetching of ‘SHL branch address

Continuous Fetching of ‘ADD’

assuming branch not taken sasuming Uramelaor (hkon

Fetching of instruction at

Flushing of . branch address 6h
previous instructions

Figure 6.8b. Simulation Output for Conditional Branch Validation (continued)

i@alk_pipe.ﬂu"
iglr..

172_1n 0
Binst_in63 l[l
Bpoout1. (|) 007_4] [0 (o
Binstchkou ln IR I ST 7300000100000 [£123000001000002 fa0000000¢
BReaddatal| 0 i 1000000000000000L
Beadiatal] I

Baluinlout 1[] / [o0o0000000000007 TS

L
BaluinZout| {0 !
B¥Bdataout| O/
Continuous Fetching and execution of
instructions in sequence starting from
branch address

Figure 6.8c. Simulation Output for Conditional Branch Validation (continued)

e pige B LAV sty w G IeeRcy ! [TOVTRIAZ Wit any g

lele ool

lwe_in... [0

Jinst_1n63@ |0

Jpcout1s. (| [0]Lj000A {0008 Tonac 200D

3lin5tchkou || |o000000000000000

iReaddatal| |0 10000000000000000

JReaddata?l |0

Yaluinlout| |0[{{000000000000000L 10000000000000002 [0000000000000000

JaluinZout| (0

H%HBdataaut U]UUDUUOE?UOUGUUF 100@007mnunz Esunnuuonuu%w {a00000000¢
Output for MOVI Output for INCR Output for ROR

Figure 6.8d. Simulation Output for Conditional Branch Validation (continued)

6.3 Post-Implementation Simulation Validation of ESPR.V1 Architecture

Unlike Post synthesis validation of any HDL system design, Post implementation
validation is done to validate the design from a functional and timing perspective —
meaning testing the functionality of the designed system on a chip for its basic operating
frequency with its included gate and propagation delays. By means of this, it provides the
important information of how fast the system can run and yet produce functionally
correct results. Post implementation validation of individual ESPR.V1 components and
the whole of ESPR.V1 are done and simulation results for two macro instructions are
provided in this section. The post synthesis validation was done at a basic ESPR.V1 clock
frequency of 100 MHz for functional validation. Keeping in mind the different types of
delays associated with implementing a design on a FPGA chip, post implementation
testing was done at an operating frequency, which produced favorable functional results.
We did not have a goal in our post implementation simulation validation of the ESPR
architecture to maximize system clock frequency. How to do that is known but time
consuming. Our goal was simply to determine the frequency at which the ESPR would
perform functionally correct. This frequency becomes the base frequency which can be

improved upon via synthesis and VHDL coding optimizations in addition to deeper

pipelining of the ESPR.V1 architecture.

78

——'

Initially the ESPR.V1 operated at a frequency of 16.7MHz without any timing
constraints. The Xilinx 4.2i CAD tool has a feature called timing analyzer, which gives
information about the delay associated with various signals. Once after the signal with a
maximum delay is found, constraints on various signals and clock signals related to the
longest delay path signal can be imposed on the ‘UCF’ (User Constraints File) file
associated with the HDL design project. This can be done using Constraints editor
available in Xilinx 4.2i. After imposing constraints on some signals, an improvement in
timing was obtained and the ESPR.V1 operated at a frequency of 20MHz. The post
implementation simulation validation was done at the level of macro instructions, and for
this entire simulation of ESPR the instruction memory is preloaded with the micro
instruction sequences for all five macro instructions and then simulated for proper
execution of the macro instructions depending on the input packet. The initialization of
the instruction memory was done by writing a constraints file (NCF) in the desired format

and saving this file under the specific HDL design project in Xilinx 4.21.

6.3.1. Post-Implementation Simulation Validation of ‘COUNT” Macro Instruction

All macro instructions were tested for functionality and timing correctness; the
first one tested was the COUNT macro instruction. The following simulation results
show the execution and completion of the COUNT macro instruction initiated by an ESP
(COUNT) packet in the ESPR.VI.

Figure 6.9a shows the starting of post implementation simulation output of the
COUNT macro instruction. After the ESPR.V1 is switched on, the IDV signal goes high
and the preloaded instruction memory fetches the IN micro instruction for getting the
input packet. This initial step is the same in all macro instructions. The ESPR.V1 clock
(clk pipe) frequency is 20 MHz and 1s the same for instruction memory (clk im). The
clock (clk_p) for the packet processing modules is 2 times faster than the clk_pipe. Clock
(clk e) for ESS is five times faster than the pipeline clock. All this can be seen from
Figure 6.9a. After the IN instruction is fetched, the ESPR.V1 starts getting the input
packet in 32-bit blocks as shown in Figure 6.9b. The input packet for COUNT has the
following format — 00070004, 00000001, 00000000, 00000001, 00000000, 00000002,

00000000, CRC.

79

_

wu| Zns/div Uiy [2ons Ons |60ns |80ns [100ns |[L20ns |L40ns |l&0ns [L80ns [200mns [220ns [40ns [260ns [280ns [300ns |32

AT RT R A ol e el e e o onC e et s 7 ol ottty vyl ey o et
clk_im Ic1l)] | | | | L] 1 | | | 1
clk_pipe....[C1] | e s 1R e i [1 I 1 I ool 5 Tl
clk_p S5z 21 ! gy e) e 1 v o ey] T s) T L |] o gy T (o e e e o | it
clk_e S o) S g O g U g 5 g £y 5) g By g g 5 0 3 0 o O Ty B T S g Rl B
clk c BF|_|
clr | e
ve_im 2 0 |
ESFR_on FRpY R TR Y ———
IDv 0 [4 |
EOPin o I / |3
Ordy o [i N
loc2 (hex)#3@ [0[[T 7 i B
bitmapiné3. (¥ |0|[o0oo0o00000GGYOL N
cfg_in63 (hei@ |0||0000000000000PFF ‘\
inp31l (hex)#{@ |0||00000000 T N
inst_in63. (h4@ |0|[cooooODOGGOGhGED N
PRready L N\
ACK 1in Ll I \ I
crook I' ‘\
locok M / \
efok -
ldopram f \
EOP_out 890 iy i
pooutlS. (hex| (0|[oo00f BN (118
instchk63. (hi 0||cooooagdo0n000000 J0400000000000000 ‘\
datachkID63 0|[o0e0035000000000 B ‘\‘
£131 (hex)#3 0||oc000p00 X N
outp3i. (hex)] |0 Dunnaann 1 =%
podl. (hex)#3] |0|[000opG00 AT N
oo?. . (hex)28| |0|[00 [\\ AN

Opcode for IN
ESPR_ON is high indicating instruction is fetched IDV signal goes high

ESPR is switched on
Figure 6.9a. Simulation Output for COUNT

s ns/aiv e Z0ns 40ns FSO!IS 380ns MOOns FZDHS |11ﬂns 60ns rEUns iSﬂDns FZUns iSans |550ﬂi |58Cln5 1600!15 IGIU‘ns

il i T e T e

oo ondiedbiadd e il il vl i

sizns codonlondinding

clk_inm IC1f | L J 1 J L J L | L L
clk_pipe .. iC1| | 1 |] J 1 [1 I 1] = D
ERr RN = 8 s I e W e S o W T i T T T e e T T e G
clk e IC3]
clk c IBF|_|
clr 01l
ve_in o
ESPR_on 0 -
1DV o
EOP1in o L]
Ordy Ly
loc2 (hex)#3|@ |0
bitmapint3. (§@ |0
cfg_in63 (hel@ |0
inp31. (hex)#}@ [0 {00070004)(00000001 — (ooooooog (00000001 00000000 Joooooo0z _ Jo0000000
inst_in63. (he@ |0 51 24
PRready ||
ACK_in . | -] I [| P - | | I 1 [L = JE -
crocok . B |
locok ; B j—_—‘
efck = | |
Idopran . || /
EOP_eut ||
pcoutlS (hex 0
instchk63. (hi
datachkID63
£131. (hex)#3 z —___XYcoo7ooos
outp3l (hex)q [0 (00000000 Y (00000000 Y (00000000
poll. (hex)#3 1] 00000000 {____loooooooo | 00000000
oo7 . (hex)#8 0

Start of input COUNT

Figure 6.9b. Simulation Output for COUNT (continued)

_7

Figure 6.9¢c shows the CRC and the EOP _in signal. Then the packet is checked for CRC
and loc bits. Then the ESS is checked for its availability. After this checking is performed
successfully, the program counter starts fetching the micro code sequence for the

COUNT macro instruction.

wn] 2nssdiv LLLL] 60ns |680ns [700ns [720ns [740ns [760ns [780ns [B00ns [820ns [S840ns [860ns |S80ns [900ns [920ns [940ns Pé
L K o Y 500 A s 5 9 e i, 0 0 e 52, T O e B i o W
clk_in IC1 1 [1 | T 1 I 1 [1 £} I
iclk_pipe IC1
clk_p IC2)
Iclk_e - C3
lelk_c .-~ » |BF]
lclr s
ve_im
ESPE_on
IDY
[EOPin
Ordy .
loc? (hex)#3
Ibitmapiné3 . (1}
icfg_in63 . (hey
inp3l. (hex)#
inst_in63. (he
[PRready
IACK_in
crcok
locok
efok
ldopram. . .
EOP_out
pcoutlS, (hex
instchkb3. (he
datachkID63.
£131. (hex)#3
outp3l (hex)
po31. (hex)#3
oo?. . (hex)#8

=
et
5]
ol
=
v

11
] Ti____.i

L #'L'“'_ﬂ—'f"l"-—'”—'(——_[""{' Al
L1

.l

00000000

cooc oSl TTTITTTITITTTI
Ly

Bee®eocooo

.y
LY 0008 {ooos

T
6
\. Ql (540000600C
1

oocoo] [|

CRC check OK signal
CRC for COUNT End Of input Packet (EOP)
packet

—~1
/"—’_J—-““

Start of micro instruction

Figure 6.9c. Simulation Output for COUNT (continued)

Figure 6.9d shows the continuation of execution for COUNT. As this is the first packet
for ESPR.V, there is no tag placed in the ESS and therefore the GET instruction fails for
that tag (0x0000000000000001) and jumps to location Ox14. Then the instructions

starting from location Ox14 are executed as shown in Figure 6.9¢ below.

81

wu| zns/div W] 9o0ns [940ns 15!50:5 980ns |lus 1.0Zus [1.04us |L.06us JL.0Bus [1.lus |1.1Zus [L.1l4us [1.16us |L.1Bus |L.2us |L.2Zus

9léns 1 Hll{liil nnluu le‘nn‘!llllilll \I||!|||\|||1|l|]|| \|||‘u|||1\|u|||n[|l|llnn \ill!llllﬁ||<‘\III|1IIII!HH |||||u|||n\-||u| vohi unluu
clk_in. . o] B | I g] I] £o)] Fo [] | =g
el o o | [e TR s I 1 T 1 \ 1 T == TE
o1k p. 7 | oy W gy] s e e Al ey o e B [o s Bl oy - g B g s I g 2
ST | p U e U g T 1 O o g T vy 0 I o 0 0 0 g o Oy g g 50 5 8 21
clk_c ... |BF

|

Oxdy. . ..
loc2 (hex)#3
bitnapiné3 d
lcfg_in63 . (hed
inp3l (he=x}#
inst_in63. (hg
FRready .
ACK_in

crcok . -
locok . .

efok. ..
ldopram.
EQOP_out
ipcout1s. (hex
instchk63. (he
datachkID63
f131. (hex)¥*3
loutp3l . (hex)
po3l. (hex)#3
loo7 . . (hex)#8

e e e e o000 9Qo

o o oo o]

{oooe fooo7 o008 Jooos 10014 foois 1

154000060000000C0 I'.'BDEEG4180EIUUDUD);SDDDGODODGDDOSDOHZCEEUBOlUIOOOOOG 1MJ4000180000000 {1C00000180000000 %
z Nz REo01e0000606 /1500600180060000_:
= e

I {0000000000800000
et

] '\gnouunum X (00000000 \
] Xp00ao0aL {__(oooooooo X
] \ \

7
LFPR inst \ \
GET for the tag : i
GET fails and execution jumps to
(OXGGGOOQ‘]“OOO“OO[_H) from location 14 after address 7., The fetched
packet using LFPR inst. before ;¢ A¢ addresses 8 & 9 are not executed

i
/

0000 ool

Figure 6.9d. Simulation Output for COUNT (continued)

L] zns/div WLU| 5 s4us (1.26us [1.28us |L-3us [L.32us |1.34us [.36us |I.38us 1_dus 1.4Zus [L_44us |1 46us |L.48us
1.232us x:uin:u vl I|I1|Iliklll\l||:||L|I\IHH uuluu}lnlinn IHi|||ll|lIllllHlll\Ellllil il |||||||ui
clk_im .- eyl 1 | 1 s 1 o [T 1 | 1 I I
clk_pipe o | | =37 | =] 1 I 1 I 1 =
clk_p. CZ__,—‘__J—___,_L_j_l_f'_l_l_'I_l—l_l_mu——L—'_L
clk e.CB_WW
clk <. . . {BF]
el s [
ve_in
ESPR_on
IDV. . .
EQPin .
Oxdy. ..
loc2 . (hex)#3
bitmapiné3
cfg_inb63. (he
inp3l . (hex)#
linst_in63. (h
PRready
ACK_in.
creok.
locok.
efok. .
ldopranm. .
EOP_out . .
pcoutl5 (hex
instchk63 . (hd
idatachkID63.

1. Sus tl, 52us |l.5.qus
e

[TRTARERT] FYRRIRTY ki

m e o oo o0B

~

e @ @
o0 @ ol

[cois {0017 {0018 0019 YiGooc (660D {000z
7C00004100000000)B2000000000006C0 7000D00000000300 |0000000000000000 . /(5480000001000140 (ickoDol

B N
£131. (hex)#3 !

outp3l. (hex)a F

]
1
D31 (hex)#3 ‘\ =

oo? . . (hex)#8 ’

PUT inst. for creating JUMP inst. JUMP inst. jumps
an ESS state to location 0xC

il

o oo oo oo

Figure 6.9¢. Simulation Output for COUNT (continued)

82

———

Location 0x15 has a PUT instruction, thus useful in creating a state in ESS which
later packets can retrieve, and the JUMP micro instruction at location 0x17 makes the
execution jump to location 0xC. Execution continues from there, and the count value is
checked whether it has reached the threshold so that forwarding of packets has to be
stopped to avoid the problem of implosion. This is done by a branch condition, and as the
threshold is not reached the current packet has to be forwarded to the next available node.
Branch is performed in location OXE and it branches to location 0x20 where the packet
has to be forwarded. This is shown in the following Figure 6.9f which proves correct
execution of the COUNT macro instruction. Then the FWD and OUT micro instructions
are executed and the output code for FWD (01) is given as the primary output. Also the
packet is output to the output port of ESPR as shown in Figure 6.9g and Figure 6.9h.
When the entire COUNT packet is given as output, the EOP out signal goes high to
indicate the end of packet and the PRready signal goes high to indicate that the Packet
RAM (PR) is ready to accept the next packets as can be shown in Figure 6.9h.

md| 2ns/div LU jl,Sdus Ji,ﬁt‘.us I_L,ssu; 1.6us rl.s:‘-_us 1.64us Il.ESus 68us [1.7us l: Tzus |:,?au;
'

1. 76us |1 78us !I,Bus [L_BZU; |! 8
vl

il

1.s2zas ooloodacdidanlosdind vl ol val i odinddoa b wonhondvenbididodindi

clk_in 3 Cl1 L [| | ! | L] | |
clk pipe Ici L 1 [ik J i | 1 | 1 1 |
L e WO g e ey U e M ey L e L T e (T B e B oy OIS [
6 50 0 S g g g O 0 O 5y 5 5y iy S g W i Uy 0 ey e Iy O B O

clk p C2
clk e IC3
elk c BF]
clr

0 i

ve_im
ESFR_on
IDV..

EOFin

Ordy

loc2 . (hex)#3
bitmapiné3 . (
cfg_in63 (hei@
inpll. (hex)#j@
inst_iné3. (h4@
PRready
ACK_in

crcok

locak

=fok

ldopram
EOP_out
pcoutlS. (hex
instchk63 (hd
datachkIDé&3
£131 (hex)#3
outp3l. (hex)
poldl. (hex)23
0o7. {hex)#8

B Rm o oo o655
Sooool |

I

(GO0E (oooF § GIEETE) 0020) IS
[(ICAO0DOL0L000000 J|6404260004000800 Wmunnnnnaooooaoon (GC00000000000000 (0800000000000000
_ﬁL _{6000000000000002 xonulgﬁonunocauunn ’ ;
7 T /
[___(fooooooo 7 E =
foo000002) 00000000 ’L ’/ '/
T 7 i o1

7
& £

/ BGE inst. branches FWD inst/ OUT inst

BGE inst. to location 0x20 & :

Coboocoo

OCR produces the
output code for
FWD (01)

Figure 6.9f. Simulation Output for COUNT (continued)

will| 2Zns/div LU L. 74us [L.76us Ix,?sus 1.8us .82us |l.84us IL,EEus 11,3&;5 |1,9us |.l.93us

1.94us {l,Ssus 1.98us [Zus]Z.Utus 12.04!
|
el

L73us ovidoulvsdaaliodiolosdaolandhaal oo adoaliedoadvolon bl ualvabanddialiadan bbb vl

e dw ..] 12 I 1 | 1 I i [1 I 1 S 15
1k pipe..:. Gl | 1 J S J !] 1 | 1 [1 [L
TR oor B (TS g O PN (R o oy S oy P e O gy |08 g 0ty 07 0| Oy RS ey SR ey PO =
ST O =) | 6 i i 7 0 S o O VA 1 0 6 5 5 s O g s e O g 5 g g O g OB 15 5

elleml o 1553

loc2. (hex)#3
bitmapinb3 {
ctg in63. (he
1np3l. {hex}&
inst_in63. (hg
PRready. . .
ACK in. ...
crcok

locok. ...
efok. .
ldopram. .
EOF_out .
pcoutlS. (hex
instchk63. (he
datachkID63
£131. (hex)¥3
outp3l. (hex)i
po3l (hex)#3
oo?. (hex)#8

CEE R

Scoooal

11

I

00zl

0CO0000000000000 [0800000000000000

)
£
/
7

7

/

7 Yfooo7oo04 {0o00000L {Btoo0000 {Dcoooo0L
v —

F 00070004 }80000001 {ooooo000 00000001

Ty 7
OCR produces the/ / \ Output packet
for COUNT

output code for
FWD (01) LDOPRAM to load the
output RAM

oo ooo ol

Figure 6.9g. Simulation Output for COUNT (continued)

2. 261

2. 24us IZ.ZSus
il

Hl\illlf

| insidiw LU lZ.llus [2_1.2\.15 2.13us [2.l4us EZ.lSuS 2. 16us |z,17us iz.ums [2.19\.\5 2.2us [2.2lus [2.22us |2.23us :
il

2.105us nri lelIII\ Hllll'll |I\I|\III L|HIHI\ HII‘HFI I'IIIHH IIIIIIIII lII\[IHI JIIIIHII \Illlilll H!IIIII! HHI!III :IIIilIII
elk_im..... JC1 T T S R |
iclk_pipe.. .. [CL
<TU A T, c2| | It 1 I 1 | R, e T J | 1 oy
clk e.......[C3
clk_c . : .. |BF
CEE s oo BT
ve im.
[ESPR_on. . .

[EOPin . .
Ordy
locZ. (hex)#3 @
bitmapinbl (ﬁ
cfg_1n63. (he
1np3l. (hex)#@

inst_1n63. (he@ ji— f

200 B O

PRready
ACK_in. .
crcok . . |
locok /

efak . =

EOP_out

pcoutls . (hex A |
1nstehk63. (he 77
datachkID63 el

£131 . (hex)#3 Ve
c»u;f}h(h?j;a :XW’—’E%.SE; 7 JOMEFCeLE
PO hnex

—ooooomoz___ b J
oa?. (hex)28 /
EOP out

PRready CRC

L1 1

oo ooeool

Figure 6.9h. Simulation Output for COUNT (continued)

84

6.3.2. Post-Implementation Simulation Validation of ‘COMPARE’ Macro

Instruction

The next validated macro instruction was COMPARE, and to test the correct
functionality the COMPARE instruction was tested after the COUNT instruction so that
it can utilize the state left in ESS by COUNT. The initial stages of getting the input
packet and error checking are similar to the previously-mentioned COUNT instruction
and are shown as follows in Figure 6.10a and Figure 6.10b. Figure 6.10c shows the start
of execution of the COMPARE packet. The GET micro instruction location 0x27 does
not fail because the tag 0x0000000000000001 carried in the packet is already associated
with a value by the COUNT packet and using GET, this value is retrieved. Figure 6.10d
shows the correct execution by dropping the packet and outputting code ‘3’ for
‘DROP(ed)’ packets. A branch condition (for eg.: BGE) opcode carried in the packet is
performed in location 0x2E, on the existing value, and the value carried in the packet.
Execution branches according to the condition. Thus the resultant packet gets dropped

based on the condition.

Wi | znssaiv L 2. 62us [2.64dus |2.66us [2.68us [2.Tus [2.72us [2.74us [2.76us [2.78us [2.%us [2.82us [2.84us [2.86us [2.88us 2.%us .9
8 g T 7y e r o e oo s O T e sl e 0 o] e 0
clk_im c1l | 1 1 [1 I 1) 1 Al 1 I
lelk_pipe 251 1 | O] SUSSNSSESS T 1 [1 [1 I 1 i 1 [
R TR | gy sy B, oy SO oy FODI oy (SR o s s & e D s = 1 Sl & o I s SO e B
flk=. o | T 0 T T e O O O o O 0 S i 550y 4 58 8 8) = 2 L B 8 A o 5 1 S B
clk c IBF| |
clr. o7
ve_1m - 0]
IESPR_on. ... [0 L]
IDV o T | S —
EOFin. . . 0
fordy. . e L
loc2 (hex)#3@ |0
[bitrapiné3. (1@ |0
cfg_in63. (hed@ |0
inp3l. (hex)#)@ [0)ooos0io4 (00000001 00000000 Yopoooool (00000000 foooooooz {00000000
inst_in63. (hd@ |0
PRready .
}.cx_m‘l.,”) i I il T 1 i | J | J | I 1 =
fcreok. . . B '
locok. M |
jefok. . L |
ldopran L l
EOP_out . . L] !
pcoutls . (hex 0 !
instchk63. (hd |0 |
datachkID63 0 1
£131. (hex)#3] |0 | 00020104 {B000000L —_JDooooooa (oooooooz Jo0000000
Ut tatheny]| T — LT ¥ 00000000 (Goooaooz —__ {00000000
po3l. (hex)#3] |0 [y Jooooooer 00000000 00000004 £
007 . . (hex)#8 0
Start of input COMAPRE

Figure 6.10a. Simulation Output for COMPARE

85

sl ool liadiealion

| 2ns/div WLU| 2.9us |2.32us F-ST“S 2. 96us Iz,ﬁs-xs [Bus [3.02Zus |3.04us Ia.oeus !3.03‘5 is.ms IS.lZus 3. 14us 3. L6us |3,Laus [3A
vl i

z.884us ulun -n:'uuuuhm |m||n- II:‘IIH|\|||||||H|||n||:|||||\|| unlnull
ST L g el o |11 | o Y I =7 1 I 1 [- = 2 == o) =
=lk_pipe.. .. jC1 A 1 I 1 I 1 =1 I] I 1 T I
TR o B <L e B e IO M g OV i] 700 gy TP =y R) i 1
£ e S i g I o Iy U 0 T T O O 0 o O T 0 O T O O O 0 0 O

= o [BFL
= IR R (B
VELENY e L 1BNEE
ESPR on..... |0
ID¥: . s e L
EOPin
Jrdy . e
loc? (hex)#3
bitmapinb3. (}
=fg_inb3. (he
inp31 (hex)#
inst_1n63 . (hs
PRready.| | 7
ACK in. . 1 I Tk
crcok >
Tocok B 7

=fok . Y / \
ldopram. .
EQOP_out
pcoutl5. (hex
instchk63. (ki
datachkIDEI.
£131_(hex)#3
sutp31l . (hex)
po3l. (hex)#3
207 .. {hex)#8

vl

=]

X000o0000 {oooooo1s JDAFSZ35C {00000000

P e e e 8 oo
T o0 0o

[

|

|
T~
L

—
{oooooooo / bid 1\{Ccocoooo X
{GoOo00000 ‘! ¥ {oooooooo X

/ 3\

/
CRC for COMPARE packet CRC check OK signal

Figure 6.10b. Simulation Output for COMPARE (continued)

oo oaoooo]
™~
1

3.44us |3.48us
IIII1\IIHEI|I|I|II

3.dus [3.42us
IIIII‘III! IIHEIIII

[3.38us

vl

3. 3Bus

3.48us [3.5us |3A52us i3.$4us 3. 56us [3.5¢
ol

wohinlinlin

| Znsfdiv LU .28us |3.3us -3Zus [3. 34us
o e

3.268us nnbandoaloaloalalondan T T
Sl AR e O[T 1 | 1 I 1] 1 I [I
clk_pipe i T ot o B (i | el L [L =4 1 —
clk p.......1C2] — | =] .t | L L} L] JE] | L) L L LT
elk e .. C3 Il_ll_ll_!l_”_jul_,[_]uL_I[_Jl_l_l_ll_ll_il_ll_l_luuuul—l
cik-c:.. . |BF}
elr.. A |0
ve_ im o
ESFR_on. (1]
1 SR 0
EOFin o
Ordy.
loc2. (hex)#3
bitmapin63. {
cfg_1in63, (he
inp3l. (hex)#
inst_in63. (he
PRready. .
ACK_1in
crcok
locok
efok

] |

G HE e o

T eeseseal Ll Il oo]

ffooze Jo0z3 100za (00zZB B i

(£4000060000000C0 {7800004180000000 {{54A0000001000140 ﬂSDDOODOOBBDODEBD {{1cE0000101000000 1[5
{0000000000000001 §0000000000000000 ;3

(jGoze

pcoutlS. (hex
instchk63 (hg
datachkID63.
£131 (hex)#3
outp3l. (hex)
podl. (hex)#3}
007 (hex)28|

00000001 [100000000 {00000002{00000000

{___ 100000000 {0000000Z{00000000

GET microinstruction

Figure 6.10c. Simulation Output for COMPARE (continued)

86

W] zns/fdiv UL [3_ssus Is,saus 3. 5us

3. 62us F,G4us |3.€6us [3.68us IJ_'Jus F.?Zus i3,74us [3,?6\.\5 3. 78us [3.8us I'S,SZus |3.84us |3
vl

3.542us anlion oludvdid vl ool vnlodvndiovadid v v o b baodisan b oo

el am i ET I el I]] 1 I] I el _iaa —
clk pipe....[C1

Ej’j

=
2
<

oo o000

Ordy :
loc? . (hex)#3 @
bitnapingd . {
cfg_inb3. (he:
inp3l (hex)#
inst in63. (he@
iPRready . .

ACK dm.
icrcok

locok. ...
efok.
|ldopram.
EOP_out . .
pcoutiS. (hex
instchk63. {(h
datachkID63
f131. (hex)#3

coooco] 1

| I | sl

| |

DZB agzc) (i) J00ZE YoozF) CEED) iUOSl
80000101000000 4000030008001C0 [0000000000000000 f{0004Z280000000C80 |([140000p000000000 [0000000000000000

jooooooo 7| (ponocoonoooonooe J_0o00000000000000 y
£
/ “ £ /
outp3dl. (hex)y Fuuo s 44 ’/m:i::(unauaooo 7 il
i

Ipo3l {hex)#3 poao] X7 W Joooooooo ’_/’ 74
Vi

B
' [

loo7. {(hex)#8 / Z // // 107

GET does not fail e DROP code.

and follows normal DROP inst. resumes normal
execution execution

ERENEN=)

-

Branch condition
carried in packet is
retrieved using LFPR
and is performed

Figure 6.10d. Simulation Output for COMPARE (continued)

6.4 Results and Conclusions
The ESPR.V1 will correctly operate at a frequency of 20 MHz without

architectural, VHDL coding or synthesis optimizations. From the post implementation
simulation results, an average COUNT packet takes 2.15 microseconds to be processed in

ESPR.VI and an average COMPARE packet takes 1.43 microseconds to be processed in
ESPR.V1.

Thus, verification and validation of the final pipelined ESPR.V1 architecture was

achieved by testing ESPR.V1 with example packets and testing of macro instructions

using post synthesis and post implementation simulation verification/validation

87

techniques. Performance results have been calculated for the COUNT and COMPARE

macro instructions. The ESPR.V1 system was not tested exhaustively but was validated

for correct functionality for a given performance level (20 MHz), for varying input packet

formats with different macro instruction opcode.

88

Chapter Seven
Ephemeral State Processor Version 2 (ESPR.V2) Architecture

The ESPR.V1 architecture described in Chapter 5 is a Four-Stage pipelined
architecture with the ESS being staged with all other execution units in the EX stage of
the pipeline. The ESS operated at a clock frequency five times faster than that of the
pipeline clock. Because of the number of functional units and their structures in the EX
stage and because of the complexity of some of these units, long signal propagation
delays (latency) can occur within this stage. To overcome this problem and also to design
an overall performance enhanced architecture, a second version of the ESPR architecture
is designed.

The main objective in the design of ESPR.V2 is to increase the speed
(performance) by which the processor can operate to meet ESP service needs. To meet
this objective, study and analysis of ESPR.VI revealed that a bottleneck lies in the EX
stage of ESPR.V 1 as anticipated. To reduce the bottleneck, the EX stage of ESPR.V1 was
partitioned to multiple stages resulting in a deeper pipelined ESPR. The essence of
improving the performance of ESPR.V1 is to hide the latency of ESS by partitioning the
ESS such that it can be implemented over three stages of a pipeline. This was done in
addition to other architectural adjustments resulting in a Five-Stage pipelined ESPR.V2.

The performance enhancing pipelined design of Ephemeral State Store (ESS) and
hence the five stage pipelined architectural design of ESPR — ESPR.V2, is discussed in

the following chapter.

7.1. Pipelined ESS
In order to partition the work being done in the EX stage of ESPR.V1, the ESS,

now fully in the EX stage, was transformed into a pipelined version. The flow of
operations to be performed in the ESS for the ‘GET’ and ‘PUT” instructions can be seen
from Figure 4.5 of Chapter 4. To hide the latency and to achieve the functionality needed
for ‘GET® and ‘PUT’, the operational work of ESS is distributed into three pipeline
stages. The functional block diagram of ESS can be seen in Figure 7.1 and the three-stage

pipelined version of ESS can be seen from Figure 7.2. Figures 7.1 and 7.2 show only a

89

high-level view of ESS and its pipelined version with its primary inputs and outputs.

Detailed description of each stage of the pipelined ESS with supplementing diagrams and

additional control signals is shown in the following sub section with Figures 7.3, 7.4 and

T,
1k
e et 64 OUT VALUE
clock :
GET o
e
e
PUT
e ==
ESS E
e
_TAG 64,
VALUE ¢ i
7
Figure 7.1. High-Level Block Diagram of ESS
L empty n
¥ mux
M > e addr "
P empty 5/ > b
- JEf % T
' il
: 5 : K RAM value
i match &0 :
= ¥ N i 64
GET % : ka4
= imatch M 7> 754’ Value
PUT CAM for R o 4 MUX A 1
— Tag , A i C.m
CL it h 51%!3
5 matc mux L
i/-} hddr lddr exp time in ! CAM,
mux ETC EMPTY and
r 7z » EXP. 8 # .
B > Time # EXP. Time
—“» RAM Update
AN T input P
clock
exp time out e
e) PF

L1 - TM / ELTC Stage Latch

L2 — ELTC / EUD Stage Latch
ELC — Empty Location Calculating block
ETC — Expiration Time Calculating block

Figure 7.2. High-Level View of Three-Stage Pipelined ESS

90

The first stage is the ‘Tag Match (TM)’ stage in which the tag to match is given as

input along with the necessary operations (‘GET’ or ‘PUT’) to be performed. As all other
components of ESS such as Value, Expiration Time and Empty values are placed in
RAM, the second pipeline stage, called the ‘Empty Location and Lifetime Check
(ELTC)’ stage, checks for the lifetime of the corresponding (tag, value) binding in the
Expiration Time RAM if there is a tag match or checks for an empty location if it is a
‘PUT’ operation and there is no match. The third stage, called the ‘ESS Update (EUD)’
stage, updates the (tag, value) binding in ESS if it is a ‘PUT’ operation or retrieves a
value if it is a ‘GET’ operation. The failure of a ‘GET” operation — ‘GET Failed’ (GF),
and failure of a ‘PUT’ operation — ‘PUT Failed’ (PF), is known from stages 1 and 2

respectively. The following sub sections describe each pipeline stage separately in detail.

7.1.1 Tag Match (TM) Stage

The first stage, called the ‘Tag Match (TM)’ stage, contains only the CAM
(32x64) with its necessary control signals. The design of CAM and its operation has
already been discussed in Chapter 4. The CAM and its control signals form the entire first
pipeline stage of ESS and are shown in Figure 7.3.

] match
GET CAM for 518

Tag
WR__ 1 (32x64)

‘:EVI]{E +’5
—» match
mux addr addr
—_— L

3

Figure 7.3. CAM in Tag Match (First) Stage of Pipelined ESS

For both ‘PUT’ and ‘GET’ functionality, the tag to match is given to CAM along with the
specified operation, and if there is a match, the match signal (match sig) goes high along

with the corresponding 5-bit match address (match addr) in one clock cycle. The control

——

signals Match Enable (ME), Match Reset (MR), Write Ram (WR), Write Enable (WE)

and Erase Ram (ER) are generated internally in this pipeline stage with the existing
signals from this stage and control signals from the remaining two stages. ‘ME’ is
activated on either of ‘GET’ or ‘PUT’. This CAM is also staged in the third stage of the
pipeline for updating the new tag if it is a ‘PUT’ operation. So the ‘WR’ and *“WE’
signals get activated on the third stage if it is a ‘PUT’ operation and there is a no match in
the first stage and there is an empty location for the new tag. The ‘mux addr’ comes from

choosing between the empty address and the match address.

7.1.2 Empty Location and Lifetime Check (ELTC) Stage

The ELTC stage, shown in Figure 7.4 is the second stage of the pipelined ESS. It
consists of a Multiplexer (MUX) for choosing either the empty address or match address,
Empty RAM, Empty Location Calculating (ELC) block, Expiration Time RAM and
Expiration Time Calculating (ETC) block. All Components and control signals for the
ELTC stage are shown in Figure 7.4.

clk E empty m&tch
’ M data out 5 sig
we_emp VA ELC match
= . 32 addr
T
datain Y empty out 5 5
by MUX :
mux A 5 mux
addr M i addr
| empty addr
5
clk
—P
e life expd
i e exp time out)
EXP. // > ETC
i TIME 8
RAM
. clockT
exp time out
8 {
ELC — Empty Location Calculating block
ETC — Expiration Time Calculating block
Figure 7.4. Components of ELTC (Second) Stage of Pipelined ESS

92

Dependent on the tag match from the first stage, the address for the whole of ESS is

chosen from the multiplexer. The operation of the ELC and ETC are the same as
described in Chapter 4. If it is a ‘GET’ operation, and if there is a match from the first
stage, the lifetime for the (tag, value) binding is checked by the ETC block by comparing
the current clock value and value being read from the expiration time RAM at the match
address location. ‘Get Failed (GF)’ is generated either from the first stage if there is no
match or from the second stage if lifetime of the binding has expired. On success of
‘GET’, the ‘mux addr’ is given to the third stage for retrieving the value. If it is a ‘PUT’
operation and if there is a match from the first stage, the second stage checks for the
expiration time to decide whether to update it in the third stage or not. On failure of a
match from the first stage, empty ram is checked for an empty location to place this new
(tag, value) binding in ESS. ‘Put Failed (PF)’ is generated in this stage if there is no
match and no empty location. Writing to Empty RAM and Expiration RAM takes place
in the third stage when needed, to update on a ‘PUT’ operation for a new (tag, value) pair

and on the expiration of lifetime for an existing (tag, value) pair respectively.

7.1.3 ESS Update (EUD) Stage
Figure 7.5 shows the main components of this third stage — ESS Update (EUD) stage.

clk

we_val

mux
addr QOut Value

5 Value RAM 7;’6

Value

64

Figure 7.5. Main Component of EUD (Third) Stage of Pipelined ESS

The EUD stage contains the Value RAM for retrieving the value if there is a successful

‘GET’ operation and for updating (writing) the value if there is a ‘PUT’ operation. Other
components of the ESS such as CAM, Expiration Time RAM and Empty RAM are also
updated here in this third stage if it is a ‘PUT’ operation for a new (tag, value) binding
(see Figure 7.2). On account of lifetime expiry for an existing (tag, value) pair on a
‘PUT’ operation’, only the Expiration Time RAM gets updated. No operation is
performed in the third stage if ‘GET” or ‘PUT” fails — *GF’ or ‘PF’.

Operations formally performed in five clock cycles in the original ESS
organization/architecture have been transformed into a three stage pipelined ESS. The
next section deals with how this three staged ESS is incorporated into the existing Four-

Stage pipelined ESPR.V1 resulting in a Five-Stage pipelined ESPR.V2 architecture.

7.2. Five-Stage Pipelined ESPR.V2 Architecture

To improve the performance of the ESPR architecture further, the ESS is
pipelined as described above, and the ESPR.V1 architecture is further pipelined into
ESPR.V2 architecture by including the pipelined ESS and some necessary modifications
to the existing ESPR.V1 architecture. Basic operations performed by the ESPR, its
functionality, and the macro and micro instructions of the already defined ISA of
ESPR.V1 will remain the same for ESPR.V2.

ESPR.V2 is a Five-Stage pipelined architecture with Instruction Fetch (IF),
Instruction Decode (ID), Instruction Execute/Tag Match (ETM), Branch Detection/Life
Time Check (LTC), and ESS/Register Update (UD) stages allowing 5 instructions to be
active in the pipeline at the same time. Figure 7.6 shows the ESPR.V2 pipelined
microarchitecture. The IF and ID stages of ESPR.V2 are similar to that of ESPR.V1. The
EX stage of ESPR.V1 is split into two execute stages resulting in stages — ETM and LTC

in ESPR.V2. The WB stage of ESPR.V1 is transformed into the UD stage of ESPR.V2

for updating both the register file and the ESS. All sequential functional units, including

the ESS components in each stage, operate at a Master Clock (MC — clk_pipe) frequency
and the Packet RAM operates at twice the MC frequency to enable proper packet

processing. The architecture contains full hazard detection and elimination capability in

pability similar to that of ESPR.VI.

addition to exception handling ca

\O
n

OR |4 Branch from LTC stage EXFlush
< \ A
0 i
U 3 U U
OR LTC & UPD 4 0 M
HAZARD ¥ D ctrl sigs 5 D | yppey | U
, NOP Tnk L X » U
DET.UNIT E ctrl sigs —P
gl T G o i L
—»{ M M c
IF/1D RET| v L ;I"AG’ Match
IMP ctrl X T .nput | 2
<50 i {\T b CAM in ESS
IF_Flust L NST. e g
i ¥ micro OCR Valyel, esTWE ; L
6| CONTROLLER [FLR Valueg AT Match D
ram o i s 4
INST ¢ 64 fm LT N Addres] : 4
1o Rep Write lag in 4
lag Reg Rea{? =5 "5._ ngél 2 i FLR 64 | U
INCR LPC TR from TAG from X
P,C Overflow WB, REGI Tag Rei‘d out| D Ipput PKT4% PKT ,64 P L i
From Instruction Extoeptin 15 FILE T | 4 FWDE PROC |Output .Ff i:,zgpcoié“ l l L
From Macctrir Address I 7> (TR) ET | In _ll.‘t ——%} UNIT |TO Regs T
F 64 ValueReg | ™M P L 16"y LI M ipputl 64 Branch C
; ; |Valug Reg Write Offset etrl ouput | /| —" Detection /
1 |Read o= from WB 0Ci sigs PACKET L input2 ¥
D "| VALUE | gage R O Cod T Um't 2
LNI| MI‘CRO VRD|from REG. Salis Read 2 mpmclr(!) ® e Blmnch =
‘ INSTR. Ly WB | -4 FILE > datain] oo lsigs type 3 E';p“”]? -
; MEM |/ WB jwite | (VR) 64 | o by sigh Value
diiti AP 1lus1 reg inpy, e P RAM
64 B dq;;fr'f? 64 | M put 6d g > in
Reg|Read W@A Lkl : - ST U = 64| MUXES ESS
Write from 7 otr] i -
REG 64 T RSl = W Stage dataih X LTC dat
i - . Read Qal'ﬂ — qhi
Instruction we_im '{NB “'fl_f‘lz P PURPOS | 64 64 | SHIFTER dut Inputto Onigit T ctrl sigs C
il P EREG. Read Datag) z ALU/SHET %%l FWD
1 644p| FILE 64 L p— 4 PRICAM Opcodt UNIT . B
b m .
CFG_IN| (GPR) AD]?’RJOFE TRin 64 FWD in K Value
. 16 VRin 64 MUXES YR input
sign bi PRin 64 sigs ¥
= SIGN g LTC Output o4 (’]4 4 from
¢ . 3 . “— EXTEND | 64 Opcade-in 3 ETM data regs
Figure 7.6. Five-Stage Pipelined Imm. Value %1)%2 > FWD g Output
ESPR.V2 Architecture Value UNIT ;2' Sigs| ETM datg
Ve Output
6 tt]l SIESFWD WB write
Prev Opcode Muxes data 64

m

The Micro Controller in the ID stage generates required control signals for all
remaining functional units in the ETM, LTC and UD stage. The ETM stage consists of
the first stage of pipelined ESS — the CAM, and other execution units like ALU, Shifter,
Packet Processing unit, registers related to packet processing module such as Flag
Register (FLR) and Output Code Register (OCR), Micro Opcode Register (MOR),
Forwarding Unit to eliminate the hazards and some multiplexers. Values read from the ID
stage register files, sign extend value or forwarded values from the ETM or LTC stage
are given to the ALU and Shifter for arithmetic, logical and shift operations. The
Forwarding unit is used to provide control signals to the Forward Multiplexers to choose
input values for the ALU, Shifter, Packet Processing Module (for ‘STPR’ micro
instruction) and for the CAM.

The Packet Processing Unit of the ETM pipeline stage consists of a Packet RAM
(PR), Packet Processing Unit Controller, Cyclic Redundancy Check (CRC) calculation
unit and processing modules for Load From Packet RAM (LFPR) and Store To Packet
RAM (STPR) instructions. A high-level functional view of the Packet Processing Unit is

shown in the following Figure 7.7.

Input from MUX OUtP_UI to
> Reggaters
IN Packet Input Output
i s ctrl sigs
OuUT Processing Unit : > Packet
X "| Packet RAM >
LFPR .| Controller i
STPR | (PR) PR Ready
> (128 X 32) ey
- o) ‘F“ ctrl sigs ACK in
OR_Ready ctrl sigs
IDV CRC ldoram
STPR v Value "
»| Processing \ offset EOP_out
LFPR Unit for LFPR CRC
Offset AR NEER Calculation
from ID Module CRC OK
stage >

Figure 7.7. High-Level View of Packet Processing Unit

96

The Controller in the Packet Processing unit generates the necessary control

signals for the PR, CRC module and for the processing module for LFPR and STPR
instructions. The PR is 32 bits wide to hold the incoming packets in 32-bit blocks in each
clock cycle and 128 bits deep to hold the maximum packet size, and can be extended to
any size deeper without any change in the existing design. As PR is 32 bits wide, it takes
2 clock cycles for both LFPR and STPR instructions to handle 64 bit data, and so the
whole of the packet processing module operates at twice the frequency of the ESPR.V2
pipeline frequency (clk_pipe). The CRC calculation module checks the CRC of incoming
packets to precede the further operation of ESP macro instructions. It also calculates CRC
for the outgoing ESP packets and places this at the end of the packet before giving it to
the output port.

Depending on the micro instructions, the Micro Controller in the ID stage of
Figure 7.6 generates the Flag Register code to be placed in FLR and PR and Output Code
to be placed in the OCR. The control signals needed for the ETM, LTC and UD stages
and necessary inputs to the ETM stage are placed in the ID/ETM pipeline register for
further operations of the current micro instruction. The Fourth stage, the LTC stage, holds
the Branch Detection Unit and the second stage of ESS. The instruction following either
a ‘PUT’ or ‘GET’ is always the Branch on PUT Failed (‘BPF’) or Branch on GET Failed
(‘BGF’) instructions respectively. The branch detection unit placed in this stage makes
use of the “Put Failed (PF)’ or ‘Get Failed (GF)’ from the second stage of ESS to make
the branch decision. Inputs to the branch detection unit come from either the register files
or from the ETM stage. The control signals for the LTC and UD stage are forwarded
from the ETM stage pipeline register to ETM/LTC and LTC/UD registers respectively.
The final stage, the UD stage, holds the third stage of ESS for updating Value RAM and
CAM or retrieving from the Value RAM. Write Back to register files either from the

previous stages or from value RAM also happens in this stage.

R A e SO S s, ==

Chapter Eight
VHDL Design Capture of ESPR Architectures

Use of a Hardware Description Language (HDL) is one of the best ways to
describe a system to make the design vendor-independent, reusable and retargetable. And
downloading the HDL design of a system to a FPGA chip makes it more convenient for
systems that require reconfigurability. There are various ways of coding using HDLs
including Behavioral Coding Style, Register Transfer Level (RTL) coding style and Gate-
Level Coding Style. Behavioral level Coding Style used to describe a system is the
easiest method and is also easy to understand. But the synthesizing and implementing
CAD tool may not synthesize and implement this design to operate as needed. Necessary
modifications can be made in the existing behavioral design or coding styles can be
combined to make the CAD tool implement the design in a silicon chip efficiently. After
the architectural design of the ESPR has been developed, most time is spent in design
description using VHDL for the functional modules, ways to ameliorate them and the
application of constraints on the existing design using the CAD tool for improvement in
functional and timing performance. This Chapter discusses the HDL design approach
used in describing the ESPR architecture, ways of initializing memory on chip and the
constraints that can be applied to the design. Design capture of both ESPR.VI and
ESPR.V2 architectures was done using Xilinx Foundation 4.2i CAD tools, using VHDL
as a description language and the described ESPR was implemented to a Virtex FPGA
chip. The design was then synthesized and post-synthesis simulated for functional
validation and then implemented (virtual prototype) to the FPGA chip and post-

implementation simulation tested for timing and performance validation.

8.1 Design Partitioning and Design Capture

Most of the functional units of the ESPR are described using behavioral level and
a combination of behavioral and RTL level code whenever needed. Gate level coding
style is also used for some modules to achieve the exact desired functionality on chip.
The whole of ESPR.V1 and ESPR.V2 is designed based on a bottom-up, hierarchical and

modular approach. Since the design of the pipelined architectures involved many

98

functional units, it was necessary to design and test the individual lower level modules

before using them to design a whole processor. And so the whole design of ESPR is

partitioned into separate stages, and it became easy to separate them on the basis of their

pipeline stages. Bottom-up and hierarchical level coding is needed in such a design of

interfacing separate functional modules, and it has to be made sure that each of the low

level modules function correctly. The modular approach also helps to separate out

individual modules and to reuse them if they have identical functionality. Figure 8.1 and

Figure 8.2 illustrate how the code was laid out at a high level for ESPR.V1 and ESPR.V2

and the organization of functional units in the individual pipeline stages are shown in the

following figures.

ESPR.V1

Macro Controller
Functional Modules

e e

ESPR Functional Modules for 4-stage
pipeline

/’

/—/‘ / Forward
Unit
Macro Address
Controller Generation EX Stage
Circuit IF Stage /'
/’ EX/WB Stage
IF Stage Register
Decoder Functional WB Stage
Components ID Stage // 8
EX Stage
IF/ID Stage Functional
Register Components
WB Stage
ID Stage ID/EX Functional
Functional Stage Components
Components Register

Figure 8.1. High-Level Hierarchy of ESPR.V1

99

ESPR.V2 has the same functional hierarchy as that of ESPR.V1 except the EX stage is

split into Execute/Tag Match (ETM) stage and Branch Detection and Lifetime Check
(LTC) stage, and the WB stage is transformed into the updating stage for ESS and
Register files — ESS/Reg. Update (UD) stage.

ESPR.V2

//"\

Macro Controller ESPR Functional Modules for 5-stage

Functional Modules /’ pipeline
/—’/' \ Forward
Unit

Decoder
Macro
Controller LTC Stage
ID Stage
Address / LTC/UD
Generation R— Stage Register
Circuit age
Functional ETM Stage / UD Stage
Components
LTC Stage
RHS ID/ETM Functional
— Stage Components
LF/ID Register
IFF St::ge 1 Stage UD Stage
Cl:,l: Ao ts Register ETM Stage ETM/LTC Functional
i Functional Stage Components
Components Register

Figure 8.2. High-Level Hierarchy of ESPR.V2

The 4-stage functional components of ESPR.V1 and the 5-stage functional components
of ESPR.V?2 are shown in the following figures, Figure 8.3 through Figure 8.10. The
detailed hierarchies of the HDL design of both the architectures are illustrated here to

show the complexity involved in the pipelined processor design of these special purpose

taken in the HDL description of individual functional

architectures. At most, care 18
modules and they are optimized for speed on-chip rather than the area of the chip. After

100

»

successful synthesis, simulation and implementation, the performance and the area
occupied by the design in the chip are compared. Figure 8.3 and Figure 8.4 shows the

hierarchy of the IF and ID stage functional components respectively that are utilized by
both ESPR.V1 and ESPR.V2.

IF Stage
= a / Functional
azari
Components
Detection i ‘\ MUX

Unit /—/4 before PC

Program
Counter Register
(PC) Increment PC below PC
Generation Instruction
Circuit Memory

Figure 8.3. High-Level Hierarchy of IF Stage for both ESPR.V1 and ESPR.V2

ID Stage

Functional
TAG / Components Opcode
Register choosing

File (TR) circuit
General
Purpose Data

Register Value Sign choosing
File (GPR) Register Extend Micro circuit
File (VR) Unit Controller

Figure 8.4. High-Level Hierarchy of ID Stage for both ESPR.V1 and ESPR.V2

Instruction memory in the IF stage was initially designed using the Lookup Tables (LUT)
of the Virtex FPGA in ESPR.V1 design and later modified to use the core block RAM

available on chip to give a significant performance improvement in memory design.

101

Various options for designing the register files GPR, TR and VR of the ID stage were

studied, coded in VHDL and tested and an optimized final design is used in the ESPR.V1
and ESPR.V2 architecture. The following Figure 8.5 and Figure 8.6 shows the high level
hierarchy of EX and WB stages of ESPR.V1 respectively.

Output Code EX Stage Shifter
Register (OCR) \ Fuitietiona

Components ‘_\ S
FLAG Condition Code
Register | Register (CCR)
(FLR)
\ Branch
. Detection
Micro Opcode Unit
Register (MOR)
Multiplexers for
St ALU, Shifter, ESS,
Pr(fcessmg Br.Det. Unit and
e PKT. PROC UNIT

Figure 8.5. High-Level Hierarchy of EX Stage of ESPR.V1

WB Stage
Functional
components

MUX

Figure 8.6. High-Level Hierarchy of WB Stage of ESPR.V1

The Packet Processing unit and ESS of the EX stage have their own internal functional

components that can be seen from the previous chapters. They are not shown here. The

102

ﬁ

packet processing unit is the same for both architectures, ESPR.V1 and ESPR.V2. The
whole of ESS placed in the EX stage of ESPR.V1 is split into three stages in ESPR.V2 as
can be seen from the high-level hierarchy of the ETM, LTC and UD stages of ESPR.V2.
Figures 8.7, 8.8 and 8.9 illustrate the ETM, LTC and UD stages of ESPR.V2

respectively.

ETM Stage ‘/- Shifter
Functional

Components
FLAG
Register

(FLR)
ALU

Output Code
Register (OCR)

Micro Opcode
Register (MOR)

Multiplexers for

Packet . ALU, Shifter, CAM
Processing and PKT. PROC
Unit UNIT

Figure 8.7. High-Level Hierarchy of ETM Stage of ESPR.V2

LTC Stage
Functional
Components

Branch
Detection
Unit
EXP and EMP
lcjilii:l:ia;(ll(:lzm d Multiplexers
EMP RAM in
ESS

Figure 8.8. High-Level Hierarchy of LTC Stage of ESPR.V2

103

UD Stage
Functional
components
Value RAM
MUX in ESS

Figure 8.9. High-Level Hierarchy of UD Stage of ESPR.V2

8.2 Initializing the Memory Contents

Using the Xilinx CAD tool, there are various ways to describe a memory unit
using HDLs. The design of a memory module can be either hard coded as array structure
storage, or by using the stack of an already existing RAM module primitive which can be
implemented as LUTs on chip, or by using the block core RAM memory available. Out
of the three ways described above, the usage of core RAM turned out to be the most
efficient and resulted in higher performance of the ESPR. Table 8.1 provides the detailed

comparison chart for both designs of instruction memory using LUTs versus Block RAM

design.

Table 8.1. Comparison of designs for Instruction Memory

Parameters LUT Design Block RAM Design

Frequency (MHz) 27.59 63.9

Delay (ns) 24.37 7.10

Block RAMs Used 0 -

Gate Count 136, 553 67,333

Number of Slices 730/19,200 (3%) 87/19,200 (1%) |
AT ey ST | S

LUT and Block RAM design were used in testing the design of the instruction

memory and the above performance results were obtained. As required by the ESPR
design, the instruction memory has to be preloaded with micro instruction sequences that
represent Macro code of ESP service. For that, the instruction memory needs to be
initialized with the contents — here in this case, the micro instruction sequences. More
time was spent in determining and finding ways [17] to initialize the memory contents
using Xilinx HDL CAD tool.

One easy way is to write the contents into memory and then read them out, while
performing the necessary simulation. Xilinx provides a way to edit the memory contents
in the simulation editor before performing the simulation. These two ways tend to be
fruitless. It is because the micro instruction sequences that must be in memory to provide
any ESP service is huge and occupies up to nearly 256 instruction memory locations. So
it is troublesome to write each and every micro instruction while performing the
simulation, and also difficult to edit the contents each time on simulation. There is one
other way in which the memory can be initialized by writing using the constraints editor
[17] provided by Xilinx. The same method can also be done by means of writing an
external constraints file prior to synthesis of the whole design or can be written in the
VHDL design file for the instruction memory. The following description shows these two

ways of initializing the instruction memory.

8.2.1. Initializing a RAM Primitive via a Constraints File
A ‘NCF’ (Netlist Constraints File) — ‘filename.ncf> is used to initialize the
memory contents. The NCF file must have the same root name as the input netlist (e.g., if
the input netlist name was ‘inst mem.edf’ then the NCF file should be named as
‘inst mem.ncf’, and the instance name(s) of the RAM primitive should also be known. It
should be written in the NCF file as follows,
INST instname INIT = Value

where ‘instname’ is the instance name of the RAM. This must be a RAM primitive,

enclosed in quotes and ‘Value’ is a hexadecimal number.

——»—

For example, if the instance name of ‘RAM32x1s’ primitive is ‘RAMI1’ then the

contents of ‘RAM1’ could be set in the NCF file by placing the following line in a NCF
file.

INST “RAM1” INIT = ABCD0000;
The following example gives a clear picture of how initializing the instruction memory
can be done using the way described above. Consider the following instruction sequence

to be initialized into memory.

MOV R3, R1—1C61000001000000 (Eq. HEX Value for instruction)
ADD R4, R3, R3 —2483180001000000
ADD RS, R4, R3 —24A4180001000000

The hexadecimal numbers on the right is the equivalent value for the micro instructions
on the left, and the 64-bit values are laid out in order of (63 down to 0). Figure 8.10
shows the contents of the NCF file for the above sequence. The instance name
"esprcomp/lFFULL/ifpipecomp/instrmemnew/IMEM/R320/R321" describes the level of
hierarchy with the top level module ‘esprcomp’ in the left and the lowest level module

‘R321°’ at the end.

8.2.2. Initializing a Block RAM in VHDL

The block RAM structures can be initialized in VHDL for synthesis and
simulation. The VHDL code uses a ‘generic’ to pass the initialization. The generic types
are not supported by the present day Synopsys FPGA compiler, and a built-in dc_seript
(e.g., translate off) is used to attach the attributes to the RAM. The following Table 8.2
illustrates the RAM initialization properties to be used along with the generics in VHDL.
Figure 8.11 shows the example instruction sequence starting from address location zero
for the VHDL code described below. Figure 8.12 shows an example VHDL code for

initializing the block RAM for the instruction memory.

INST "esprcomp/TFFULL/ifpipecomp/instrmemnew/IMEM/R320/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R321/R32 1" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R322/R321" INIT=00000000;

INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3223/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3224/R321" INIT=00000007;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3225/R321" INIT=00000000;

INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3243/R321" INIT=00000006;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3244/R321" INIT=00000006;
INST "esprcomp/TFFULL/ifpipecomp/instrmemnew/IMEM/R3245/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3246/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3247/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3248/R321" INIT=00000003;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3249/R321" INIT=00000002;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3250/R321" INIT=00000004;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3251/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3252/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3253/R321" INIT=00000005;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3254/R321" INIT=00000001;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3255/R321" INIT=00000006;
INST "esprcomp/I[FFULL/ifpipecomp/instrmemnew/IMEM/R3256/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3257/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3258/R321" INIT=00000007;
INST "espreomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3259/R321" INIT=00000001;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3260/R321" INIT=00000001;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnew/IMEM/R3261/R321" INIT=00000006;
INST "esprcomp/[FFULLx’ifpipecompfinstnnemnewf’lMEMfR?.262/R321" INIT=00000000;
INST "esprcomp/IFFULL/ifpipecomp/instrmemnewflMEM/R3263/R32I" INIT=00000000;

Figure 8.10. NCF file for Initializing Instruction Memory

Table 8.2. Block RAM Initialization Properties

Property Memory Cells
INIT 00 255-0
INIT 01 511-256

INIT OF 4095 - 3840

IN PKT

NOP

MOVI R4, 1

ADD RS, R4, R3
MOV TRI1, RS
MOV VR1, RS

PUT TR1, VR1

BPF ADDRI (0X41)
NOP

NOP

LFPR <O 3> TRI
GET TR1, VR1
BGF ADDR2 (0X1B)
NOP

NOP

INCR R4, VR1

Figure 8.11. Example Micro Instruction Sequence

-- Instruction Memory Design using Block RAM

library IEEE;
use IEEE.std logic_1164.all;

--synopsys translate off;
library unisim;

use unisim.vcomponents.all;
--synopsys translate_omn;

entity INSTMEM is

port (elk, we, en, rst: in std logic;
addr: in std logic_vector (7 downto 0} ;
inst_in: in std logic_vector (63 downto 0):
inst out: out std logic_vector (63 downto 0));

end entity INSTMEM;

architecture behavioural of INSTMEM is

component RAMB4 S16 is

port (ADDR: in std logic vector (7 downto 0);
CLK: in std logic;
DI: in std logic_vector (15 downto 0);
DO: out std logic_ vector (15 downto 0);
EN, RST, WE: in std logic):

end component RAMB4 S16;

Figure 8.12. VHDL Code for Instruction Memory using Block RAM

attribute INIT 00: string;
attribute INIT 01l: string;
attribute INIT 02: string;
attribute INIT 03: string:
attribute INIT 04: string:;
attribute INIT 05: string:;
attribute INIT 06: string:;
attribute INIT 07: string:;
attribute INIT 08: string:
attribute INIT 09: string;
attribute INIT 0A: string;
attribute INIT OB: string:;
attribute INIT 0C: string:;
attribute INIT 0D: string;
attribute INIT 0E: string;
attribute INIT OF: string;

attribute INIT 00 of Instram0 : label is
"00000000000006C0000000C00000000010400000000000000000004000000000";
attribute INIT 00 of Instraml : label is
"0100000000000000800000000000000000000000810001000100010000000000";
attribute INIT 00 of Instram2 : label is
"0001000000000000004100600000000000000041000100601800000000000000";
attribute INIT 00 of Instram3 : label is
“2C80000000008000780054000000000084007C001C051C0524A4208000000400";

begin

Instram0: RAMB4 S16

--synopsys translate off

GENERIC MAP (INIT 00 =>
£"00000000000006C0000000C00000000010400000000000000000004000000000™)
--synopsys translate_on

port map (ADDR=>addr, CLK=>clk, DI=>inst in(15 downto 0), DO=>inst_out (15
downto 0), EN=>en, RST=>rst, WE=>we);

Instraml: RAMB4 S16

--synopsys translate off

GENERIC MAP (INIT 00 =>
X"DIOOOOOOOOO00000800000000000000000000000810001000100010000000000“)
--synopsys translate on

port map (ADDR=>addr, CLK=>clk, DI=>inst in(31 downto 16), DO=>inst out (31
downto 16), EN=>en, RST=>rst, WE=>we);

Instram2: RAMB4 S16

-=-Synopsys translate off

GENERIC MAP (INIT 00 =>
X"OOOlOOOOODD00000004100600000000000000041000100601800000000000000")
--synopsys translate on

port map (ADDR=>addr, CLK=>clk, DI=>inst in(47 downto 32), DO=>inst_out (47

downto 32), EN=>en, RST=>rst, WE=>we) ;

Instram3: RAMB4_ S16

--Synopsys translate off

GENERIC MAP (INIT 00 =>
X“2C80000000008000780054000000000084007CODlCO51C0524A4208000000400“)
--synopsys translate on
port map (ADDR=>addr, CLK=
downto 48), EN=>en, RST=>rst, WE=>we) ;
end architecture behavioural;

-clk, DI=>inst in(63 downto 48), DO=>inst_out(63

Figure 8.12. VHDL Code for Instruction Memory using Block RAM (continued)

109

8.3 Timing Constraints

The Xilinx 4.2i Foundation CAD tool provides a means (constraints editor) for
specifying constraints for timing, placement, mapping, routing etc., on the specific design
to provide some performance improvements in terms of area and/or speed of the design.
It is up to a designer to consult the Xilinx Constraints Guide [17] and apply their own
needed constraints to the design. The constraints can be externally specified using a
‘UCF’ (User Constraints File) or can be described using the constraints editor. In the
ESPR architecture design, only timing constraints of specific extent were applied to
ESPR.VI and ESPR.V2 to determine the performance. And it is believed that, more
optimum performance of any design can be obtained by applying more tight constraints

at the expense of longer synthesis and implementation time.

Chapter Nine
Post-Implementation Simulation Validation of ESPR.V2 Architecture

Following the design layout and design description of the ESPR.V2, the next step
is to synthesize and simulate the design. After HDL post-synthesis simulation to validate
functional correctness, and prior to implementing and prototyping the design on a FPGA
prototype board, the ESPR.V2 has to be validated for both functional and timing
(performance) correctness via Post-Implementation simulation. This process is referred to
as virtual hardware prototyping as it involves timing validation of the system. This
section presents the Post-Implementation HDL simulation validation of the ESPR.V2
architecture. Simulation results are presented in a step-by-step fashion. The ESPR.V2
was first simulated executing single micro instructions to validate their correct functional
and timing operations. The ESPR.V2 architecture was then simulated executing short
sequences of micro instructions. Lastly, it was validated that the ESPR.V2 architecture
correctly executes all macro instructions for which it was developed to execute. Post
Implementation simulation validation of the architectural design was performed on a PC
(Personal Computer) system — Pentium I 550 MHz Processor, with Windows 2000
platform and 640 MB (Megabytes) of RAM memory. The utilized HDL simulator is
contained within the Xilinx Foundation 4.2i CAD tool set utilized during this research
project. The logic resources utilized in the Xilinx Virtex2 — 4000 FPGA chip to
implement the described ESPR.V2 architecture is given in the following Table 9.1.

Table 9.1 Logic Resources Utilization for ESPR.V2 Architecture

Resources Utilization

4 Input LUTs 5,902

Flip flops 916

Block RAMs 33

Equivalent System Gates 2,256,291 J

111

e e e

9.1 Validation of Correct Execution of Single Micro Instructions

All the micro instructions described for the ESPR.V2 architecture were tested
separately for their functional and timing correctness. The individual pipeline stages for
cach instruction were also tested for proper generation of control and data signals. This
section presents two micro instructions flowing through the five pipeline stages to show
correct execution in all stages. The first micro instruction to be presented is the Shift
Right (SHR) micro instruction in the following Figures 9.1a and 9.1b. The micro

instruction with its equivalent Hex. Format is given as,
SHR R7, R4, 1 —48E4000001000001 (Hex. Format)

From Figure 9.1a, after the Instruction Fetch (IF) stage at approximately 10 s,
the SHR instruction is read out from ‘instchk’ value. Prior to that, a value of ‘OxA’ is
written into register R4 using the ‘MOVI’ micro instruction to be used by the ‘SHR’
instruction to result in a value of ‘0x5” in register R7. The opcode for the SHR instruction
(0x12) is decoded and read from the ‘op20’ variable at the end of the Instruction Decode
(ID) stage at approximately 12 ps. The Shifter is placed in the ETM stage of ESPR.V2
and the value of ‘OxA’ from register R4 is shifted right by one position as specified by

the instruction and a value of ‘0x5’ is read out from the ETM stage.

14, Sus 13w L6, Sus [L7as

s (14

Il|‘II:I.:‘rIIII[;I;:Ellil‘\-;l’;ll—l.;;"\l\lr‘l l‘l‘li;“lil'r;lil'l‘i-”“|‘.H’I1i;;;\I:;l:iilI||AFI;LIii.‘I-II’IIIj(ll[

perrhenneinin

5 Lo, S 2GS > SUS
|l|\||\|||||||| IIII|IIH ||||||||| il
—

iclk pi......[01 il el e
ieclr =
1we_1m soaf B !
Blinst_in63. (k{2 |0|| [o000000000000000
Bpcout15. (hex| (0
Blinstchké3. (h| |0|[_f48E4000001000001 —]0000000000000000
BidatachkiDed | [o -T— J0000000000000004 [0000000000000005
Blop205 (hex)#| 0| J5E ilz &
BiseZ063. (hex)| [0 :]}.‘aucuaauuoooonam. 0000000000000000
Baludos3. (hex| 0[] 7 {000006000000004 yuounnnmouuus J0000000505000000
BGR12063. (hex| [0 i //' (0000000000000004
[

SHR instruction Opcode decoded Shifter Output of

at the end of IF for SHR and the third (ETM)

stage output at the end stage of ESPR.V2

of ID stage

Figure 9.1a. Simulation Output for SHR Micro Instruction

112

__

Figure 9.1b shows the continuation of the simulation output of the SHR micro
instruction. The LTC stage passes the data value of ‘0x5” and the value is written back to
register R7 during the UD stage. This can be seen from the value also being read out by

the variable ‘GPR 120’ of Figure 9.1b at approximately 18 ps.

lZus 12, Sus fi3us 13, Sus [ldus 14 Sus [LSus 18, Bus fieus J6.5us LTus [|i17.5us |iSus 12, 5us [lus 15
ﬂ‘lll:Itllllmr||ul‘lllw|1||||||n||m|||||!||ulm|l|u||1|l||\Lllt\llil||l|ullillllllIII]IIIILHI‘L||||‘ml\|||[llllllt||||||\||n||||r:||m|n

iclk pi......[C1

iclr

ijwe im,......[C

Blinst_in63. (hf& |0

Bipcout15. (hex) |0

Blinstchkéd. (h |0 (0000000000000000

BdatachkID63.| [[0000000000000004 0000000000000005 10000000000000000

Blop205. (hex)#| [0|[12 {00 lf

Bls=2063. (hex)| |0|[J0D000GOGGE00AG0G 7

Blalu3o63. (hex| |0|[f000000O0GGE0000A 10000000000000005 /’ {0000000000000000 10000000000000004

BIGR12063 . (hex| |0 /I 10000000000000004 10000000000000008
Pass through output of Value being written into
the fourth (LTC) stage register R7 during UD

stage

Figure 9.1b. Simulation Output for SHR Micro Instruction (continued)

Figures 9.2a and 9.2b show another micro instruction — ‘Load From Packet RAM

(LFPR)’. This instruction utilizes the packet processing unit. LFPR with its hexadecimal

code is given as,

LFPR <Off — 3> TR1 — 54000060000000C0

The instruction is fetched and the opcode is decoded similar to the previous SHR micro
instruction as can be seen from Figure 9.2a. In Figure 9.2a, ‘clk p’ is the clock used
within the packet processing unit that operates at twice the frequency of ‘clk pi’ (pipeline
clock frequency of ESPR.V2). During the ETM stage, the value of ‘0x1” from the Packet
RAM at offset “3° is retrieved in two clock cycles (clk_p) of 32-bit values each, that starts

from nearly 34.5 us from the variable ‘po” and the ETM stage outputs a 64-bit value of

"0x1” from packet processing unit at 36 ps.

Tue [k %2, Gy

I':li‘-,é‘-'zf [Eii',as I_ Sus ‘E';z:i | 2. Sus i._z:‘ | S5
pihing antlb il ||u||||: il

24125 |?4,Zus FSus 1":‘.5‘3!}5 F-:us l\'sm r"z.‘.s' 37.
I lHllllll 1IIIIIIII \III|II|\ LI|I|HII 'HII|\III \III}IIII HI|IIHI (M

ilclk pi i o B S G e ey PR e ORI, et
Fl =11) (SOMPIRRE s ot T B e Ty B
51 11 IEPERSRSEERE N = 1) 1 ﬁ |] i | L1 = =
Blinst_in63. . . (hex)#AME000e0000000C0 10000000000000000
Blpcout15.. ... {hex)}#16| (0 joooz
Blinstchked. . . (hex)#64| (0 | £4000060000000C0 {0000000000000000
Blop205. ... (hex)#6| [0 7 % a0
Bpodl........ (hex)#32| [0 ;/ o T T [(00070004
Blaludob3. (hex)#64| |0 !/ /' 0000000000000001
B{IDCONE/TRrs63. (hex)4| [0 7 i K7*
/ 7 >

LFPR instruction Opcode decoded PKT PROC Unit Output

at the end of IF for LFPR and from the third (ETM)

stage outputted at the stage of ESPR.V2

end of ID stage

Figure 9.2a. Simulation Output for LFPR Micro Instruction

Figure 9.2b shows the continuation of the simulation output for the LFPR instruction. At

38 us, the output value for the LFPR instruction is passed through the LTC stage and

during the UD stage the value of ‘Ox1’ is written to the tag register TRI.

iclk_pi
k1 o]0/ b
iclk_p.

Blinst_in63. . . (hex)#64f

Bpcoutl5. {hex)#16
Blinstchkh3. . . (hex)#64
BiopZoS (hex)#6
Bpo3l... ... {hex)#32
E!IDCOHP/TRrsH {hex)#

BdatachkID63. {hex)¥64

Figure 9.

lllll]ﬂll}lll\‘ll\l \II\‘IH\lﬂlliIIllIIII\[I!HlIHIIIHE|lI!I|I\H TIll!illlElil‘lll\ill[ll\Lll !HI|IIII III\‘HIli\ll\hll{\llll‘ﬂllll

| T e B e e T e R e e =

i

0

0|[)Co000c0000060000

0l[J2E o0

ol oesoooer___J_)\ Jooo7o0n4

0 10000000000000001 =

0 jnunnaanoaeuen;m A \Fuo00000000000
Pass through output of Value being written into
the fourth (LTC) stage tag register TR1 during

UD stage

2b. Simulation Output for LFPR Micro Instruction (continued)

eSSl S St~ e e o

9.2 Small Micro Program and Individual Functional Unit Testing of ESPR.V2

In the testing process of ESPR.V2, validation of proper execution of single micro
instructions was first achieved and will be followed by the validation of small micro
program sequences. This section presents the validation of two small program sequences
and a couple of instructions which also validates the functionality of main individual
functional units such as the ALU Unit, Packet Processing Unit and ESS. As ESPR.V2isa
five-stage pipelined processor, micro program sequences explained below have hazards,
and the following simulation results also validate the hazard detection unit and

forwarding unit that eliminates the hazards.

9.2.1 Validation of ALU Unit and JMP Instruction of ESPR.V2

Figure 9.3 shows the micro instruction program sequence used to validate the
ALU unit and JMP instruction and also provides an example to test the forwarding unit.
The micro instruction memory is preloaded with the bit patterns for this instruction
sequence. As can be seen from the program sequence, a data hazard arises when the next
instruction in sequence in the ID stage wants to read the new value before the data is
written into the same hazard prone register in the UD stage. The forwarding unit of
ESPR.V2 takes care of the hazardous situation by forwarding the needed value either

from the ETM stage or the LTC stage to the input of the ETM stage.
Data Hazard - R3
0. MOVI R3, 1 —-2060 004 Data Hazard — R4
1. ADD R4, 001000000

2. ADD R5, R4, R3 - 24A4180001000000
3. JMP 32h — 7000000000000C80

Figure 9.3. Program for Validating ALU Unit and JMP Instruction

The following Figures 9.4a and 9.4b show the Post-Implementation simulation validation

for the above program sequence.

N R R e R W e = e

! Ir|||:|n||||||\||||nl|||||r||=l||\||1

|!III‘llll|l|ll|llll|l|l|lllrl

....... 230ns P40ns [PSOas Edlns Wing |3
un||u||||:||m|1m1'4||r||u||m| llill\lll nll‘-m!!

clk_inm. .. B}
clk_pi..

|

1k B ..

T Tk
! s P

clk ©..

clr

ve_im

fmnacsiqg
lmacctrlir

putin

1DV

IEP1

IORT

loc2. (hex)#3 5

inp3l . (hex)#

inst_in63. (hg® |0|[(z283180001000000

10000000000000000

Y24A4180001000000 {7000000000000C80

fm_mac ctrlri

AK

jcok
EPo

ldor

1z
IPRr. .

stag2. (hex)#

pcoutlS. (hex foooz

(o003) (ILEY (0005

1nstchk63. (he

444180001000000) 7000000000000CE0

O W mwooo0 0 0 0 0O 0O 0 od bd B3 H- e b e e e b e e e e e

o o o |

_xZ!JEDﬂ\'J 001000040
idatachkID63 ﬁ

5243?130001003000

— 4
P ass 0000000000000001

/

Fetching of instructions
of the micro program
sequence from
instruction memory

Qutput of the first
MOVI instruction at
the UD stage (5" stage)

Figure 9.4a. Simulation Output for ALU Unit and JMP Instruction Validation

ollz.| Fl
olPRr v
Bistag?. (hex)#] {4
Bpcout15. (hex| [0 [ooos [0032 {0023 {0034
Biinstchk63.(hg [0 %%gﬂumﬁoocao maooocaoaoououﬂ
BdatachkID63 0|[(00go000000000001 J00p0000000000002 \ |0000000000000003 10000000000000000
Be131. (hex)83] O] % ¥ %
Boutp3l. (hex){ [0|L_L / \ Y
Bipo3l. (hex)#3] [0 ¥ | \
Bioo?. . (hex)#8| [0 ,/ \| \‘
Blocro?. (hex)#{ |0 7 \ \
1GFo. % / K‘ \
Ifjap_Tho.....| 4] // | /4 \I \\
Micro Output of the first 3 1 PC value Output of the second
g::?rl:lxion ADD instruction at the JUMP signal changed to the ADS instruction at the
UD stage (5" stage) JUMP address UD stage (5™ stage)

Figure 9.4b. Simulation Output for ALU Unit and JMP Instruction
Validation (continued)

~—

The instructions before the ‘JMP’ instruction were executed correctly, and as the ‘JMP’
instruction is encountered, it is identified in the ID stage and the Program Counter (PC) is

loaded with the JMP address (0x32) and the execution is continued from there on.

9.2.2 Validation of Packet Processing Unit of ESPR.V2

This section shows the simulation results for validating the packet processing unit
using IN and OUT micro instructions instead of a sequence of instructions. Instructions
that utilize the Packet Processing unit are Load From Packet RAM (LFPR), Store To
Packet RAM (STPR), IN and OUT. As LFPR has already been discussed in the previous
section, this section discusses the IN and OUT instruction to validate the Packet
Processing unit. Figures 9.5a and 9.5b show the Post-Implementation simulation output
of the initial and final segment for the IN instruction and Figures 9.6a and 9.6b show the
result for the OUT instruction.

T M T T L A v i A it 0 e 9 | R o T

clk pi.... = e e
fuce. .

clk c...
el .

3
il
il

we_im
famacsig. . ..
IDV........
EP1

putin. ..
macctrir. ..
ORr

loc? . (hex)#3 |3
inst_in63. (hgd
fn mac ctrlr}é
inp3l. (hex)#}
AK

lcok - : 77 1 l'

S J End o=]
T o Lo

T /
ldor 3
pcoutlS. (hex

s
/ 100070004 J00000001 Yooooooo

M el TTTTTT1
\‘“KL

i
\
\
\

|

|0 00 t0 0 O O O O O 0 0 00 OO - b b b b b M b b b e

[=B [|
™~

1
|
i 1
instchk63. { by (0400000000000000 ’[xnauoonunnooooquu i
o -
2 / I

ran T I
£131. (hex)#3 7 4 = [o0070004]

\
\ F 3
/ IDV being / [\;
; Second B2-bit
IN Micr h]gh for two Start of Input Slock
ACK signal going

Lt

ti clock cycles Packet — First
i 32-bit block

high on receiving
each 32-bit blocks

Figure 9.5a. Simulation Output for Packet Processing Unit (IN) Validation

»—

After the IN instruction is fetched from memory, the IDV signal in the ETM stage
has to be high for two Packet Processing unit clock cycles (clk p) and then the input
packet from the Input Packet RAM is fetched in 32-bit blocks in each pipeline clock
(cIk_pi). As can be seen from Figure 9.5a, the AK (Acknowledge) signal goes high on
receiving each 32-bit block of the input packet.

Figure 9.5b shows the final segment of the IN instruction. The end of the input
packet is determined by the EPi (End of Packet Input) signal going high, when receiving
the Cyclic Redundancy Check (CRC) for the packet. On receiving the CRC for the input
packet, the CRC calculation unit performs the CRC check for the entire packet and the

execution for the corresponding ESP packet continues from there on.

L s 17. Susz [igas 18.5us li%us 1S Syus lEfus [0 Eus |elus [l Sus Jilus £2.5us [E3us | JES.Sus
1111 IIIIIIIII||III|IIII||II\l\lll|lll||llll IIII‘HIIIHIIIHIII’HII‘IlII I\I\]IIII IIHlIIiIlIIJ[lIIII III!|\III|IIII|IHILHII|HI|IHI‘HII1
clkopi. ... Bl - e] e e |
elk in. Kl
clk p...
elkc.. ... BE
clr. i

T T e e B e e L Ty [Ty ST ey SRR romm |

N I |

we 1m.......|[0
famacsig. ... |0
1DV

[EPi.

putin. . .
in-ar:ctrlr
[ORr. I
loc2. (hex)#3 8
inst_inb3. (h¢d
fn_mac_ctrlrl®
inp3l. (hex)#}8
AK. . -
cok. .. N e

CRC Value
End of for the packet

Continuous Packet Input
fetching of
32-bit blocks

scocoocolTT I T 1T 11
\

100000000 Jooopoooz 100000000, [AFCOLESF

O 0 O O 00 00 G0 H: ke e b b e b e e e b e

CRC check
OK

Figure 9.5b. Simulation Output for Packet Processing Unit Validation (continued)

The following Figures 9.6a and 9.6b illustrate validation of the OUT instruction of the

Packet Processing unit.

118
B —.‘

finp3l. (hex)2}? |0
JAK. . B
iicok i
! 3 e

1
A

|PRr. . B, o ; /
istag2. (hex)#
lpcout15. (hex
instchk63. (hg
iidatachkID63.
1131 (hex)¥3
ioutp3l. (hex)
Ipa31 . (hex)#3
IGFo

£
Jooz27 / 1loozs Jooz3
v
{080000g000000000 {0000000000000000 F
* s

T

"‘.) § (I
\ s D00QZRO0L
1 7 =5

/
Out Micro Load Output 32-bit blocks
Instruction RAM for output

S o oo oo =]

Figure 9.6a. Simulation Output for Packet Processing Unit (OUT) Validation

ojkK a
ojcak. B
olEPo A e
ofldar: v L w
offRr.........| U =, L S
Bistag?. (hex)#] |4 r] ’/ //
Blpcout1S. (hex| |0]1' ,/ ’/
Blinstchké3. (hd |0 r[,/ !
BidatachkID63 0 'J' 1/ //
Blf131. (hex)#3] |0 ! ,/ J/
Bloutp3l. (hez)q |0 (00000000 fooononoz ~ [ooooooos /.
Bipo3l. (hex)#3] |0 Iaounqimo {oooo0002 /l J00000000 /{ AFCOLESF
1[GFo. i /] 5 e 7i
Load Output End of Packet / /
RAM Output CRC for
Packet RAM Output Packet

Ready for
next packet

Figure 9.6b. Simulation Qutput for Packet Processing Unit Validation (continued)

The Load Output RAM (‘ldor’) signal goes high at the ETM stage on executing the OUT
instruction and it goes high for each block as the packet is output in 32-bit blocks. The
End of Output Packet signal goes high on receiving the CRC (final 32-bit block) of the
packet and the Packet RAM Ready (PRr) signal goes high indicating the Packet RAM is

ready to receive input packets.

119

R B e e e e ey s 7=

9.2.3 Validation of ESS of ESPR.V2
Figure 9.7 shows the micro program sequence for the ESPR.V2 ESS validation.

Data Hazard — R4

. NOP — 48E4000001000003
.LFPR <O - 3> 0060000000C0
. GET TR1, VRI1 — 7800004180000000

. BGF 1Bh — 80000000000006C0

0. MOVI R4, 1 W Data Hazard — RS
1. ADD RS, R4, W

2. MOV TR1, R5 ZM Hazard — VR1
3. MOV VRI, RS';W

4. PUT TR1, VRIC7C00004100000000

5. BPF 41h — 8400000000001040 Data Hazard — TR1
6

7

8

9

Figure 9.7. Program Sequence for Validating ESS

To get a value into the tag and value registers for performing the ‘PUT’ operation,
a series of ALU operations were performed initially and then a ‘PUT’ is invoked to place
a specific (tag, value) pair in ESS. The LFPR instruction is used to get a tag value into the
tag register TR1 from the packet which was previously placed in Packet RAM using the
IN instruction. Later a ‘GET” operation is performed to retrieve the value bound to the
tag. Figures 9.8a, 9.8b, 9.8c and 9.8d show the Post-Implementation simulation output for

the ESS Validation via the above program sequence.

o|ldor. o
olz..........|
0,4 SERERRS T W -l
Bistag?. (hex)#] 4
Bipoout15. (hex] |0 [o004 |o0as —_ |ooos {0007
Blinstchk63. (hd |0|[{z020000001000640 {1z424180001000000 111C05006001000000 {{1C05000181000000
BidatachkID63 . (|0 ﬁ‘ [0000000000000001
Bidado63. (kex)1 [0 /' [0000&000000&0001
BIE131. (hex)#3] [0 i 7
Start of fetching of Output of MOVI
instructions from memory instruction

Figure 9.8a. Simulation Output for ESS Validation

5

ojldor. .
ollz
BIERE.. cude il
Bistag?.(hex)#] /4 Iz
Blpcoutl5 (hex| |0 Tooog ([iE] | (TN {000
Blinstchk63. (hy [0|[J7coocosloooonoog _ |(3400000000001040 {f0000000000000000
BidatachkID&3.(|0 {0000000000000000
Bldados . (hex){ |0 i
BIE131_ (hex)#3] [0 //' T
Fetching of PUT Tag (0x1) and Value (0x1)

instructions from memory

being placed in ESS through
‘PUT’ which is not shown
here

Figure 9.8b. Simulation Output for ESS Validation (continued)

olldor.¥ ... - -
£ 1) e A B
BERES e | 4
Bistag? (hex)#] |4 I3
Bpcout15. (hex]| (0 foooc [ooop {000E
Blinstchké3. (hd |0|){540000600g0000C0 ({7800004120000000 1{800000000000056C0 (foooooaonoon
BidatachkID63.{ |0 * L
Bidadob3. (hex)d |0 ! \‘ {0000000000000C
Blf131 (hex)#3] |0 | \
Bioutp3l. (hex)q |D ll U‘RUUOUUUI 100000000 1{00070004
Blpo3l. (hex)#31 |0 }f xc"guoounl {oooooooo (00070004
Al & e au bl l \
Continuous Fetching of GET instruction

instructions from memory

Figure 9.8c. Simulation Output for ESS Validation (continued)

stagl. (hex)#
pooutlS . (hex
instchké3 . (he
idatachkID63.
idadobl . (hex)400
£131 (hex)¥3
outpil. (hex)d
podl. (hex)#3
oo? . (hex)#8
ocro? . (hex)#
GFo.

— D0 00 0 00 0 0 D 00 o0 oa L

4
0 J000F Y{oo1a
0 muauncooaowoooao
== ~[0000000000000001
de?oauuoonuno])
0 /
0 g
0 /
0 T
0 7
//
f Value of 0x1
GET did not fail retrieved from ESS
during the final

pipeline (UD) stage

Figure 9.8d. Simulation Output for ESS Validation (continued)

121

B e Y

9.3 Validation of Macro Instructions of ESP on ESPR.V2

After successful validation of individual micro instructions and testing of
individual functional units, the goal is to now validate the ESP macro instructions. All
five macro instructions were validated through virtual prototype simulation. This section
concentrates on only four of the macro instructions — COUNT, COMPARE, RCHLD and
RCOLLECT. These are the four macro instructions used in the ESP applications
described in Chapter 2.

Figures 9.9a through 9.9f show the simulation validation output for the COUNT
Macro instruction. Figure 9.9a shows the initiating packet sequence blocks for COUNT.
A different sequence of micro instructions (not shown) is executed before the execution
of the COUNT macro instruction to place a (tag, value) pair in ESS. This avoids the
failure (ESS) of the initial ‘GET’ micro instruction in the sequence of micro instructions

for COUNT (see Figure 3.11) as can be seen from Figure 9.9b.

L A 0 P L T L A I T T i ek o e s s e A
clk_im. [E

elk_pi :
clk p....... Bl 1 1 [1 I 1 [1 [1 J] J 1 J
clk . |
clr
we_1m
fumacsig
putin
macctrlr, ..
IDV ANy | 1
[EP1
25< R o |
loc? (hex)#3 =
fa_mac_ctrlr
inst_inb63 . (he
1np3l (hex)#
AK

ok .

EPo

ldor

1z

PRr 3
pooutlS. (hex
instchk63 (he
datachkID63
idado63 . (hex)d
131 (hex)¥3 s
cutp3l. (hex)d T il - i

Ipo31l (hex)#3 é T E 7! 3 (o007 gﬁ

IN Micro Input Packef ACK Signal for
Instruction blocks (32-bit)

EEEE=E]

_ Jooc7a004 {00G30001 Yooaa8000

[= e T = =< - < = = B e e e o i SO S T oy

4

D mmmmmo oo

input packet blocks

Figure 9.9a. Simulation Output for Validation of COUNT Macro Instruction

122

Jdar. «.ue

1z

PRr

Ipcoutl5. (hex
instchk63. (hg
datachkID63 .
da4o63. (hex)l
£131. (hex)#3
joutp3l. (hex)1
ipo3l. (hex)#3
joo7 . . (hex)#8
ocro?. (hex)#
GFo. .

o

000D TO0DE {00oF 6oL

|7500004130000000 {{26005000000006C0 Y{0000000000000000

f {0000000000000001 X ;
T

[{don70004) 7/
[{o0o7c004 7

oo o oo omel I |
T~

= 000 M 0 0 MW o 0 m U U

Retrieving a value of

Initial GET Micro GET does not fail
0x01 from ESS

Instruction

Figure 9.9b. Simulation Output for Validation of COUNT Macro
Instruction (continued)

The execution continues followed by the ‘INCR’ and ‘PUT’ micro instructions. As a
binding is already placed in ESS indicating that a ‘COUNT’ packet has already passed
through this node earlier, the current packet increments the ESS value to include its count
of passage through the node. Then the ESS state is updated to this value by a ‘PUT’

micro instruction as shown in Figure 9.9¢.

ofcok.
ofPo.........]
olldar......
oflz.. j
OFRE. ez | o L
Bpoout1S. (hex| [0|fofoF 4 #IJ;
Blinstchk63. (b |8 / s [LC04E08180003030 TFrggundin
BidatachkIDe3.{ 0 ,[H ,/ ,/
Bidadobd. (hex)] [0 /I // // //
Continuous execution Fetching of INCR f‘ol:om?g PUT
of Micro Instructions Micro Instruction BSHEICuon

Figure 9.9¢. Simulation Output for Validation of COUNT Macro
Instruction (continued)

Then a threshold check is performed between a value carried in the packet and the value

in the ESS. The value carried in the packet, ‘0x02’ at offset ‘4’ is retrieved using a

s

‘LFPR’ instruction as shown in Figure 9.9d. The current binding in the ESS for tag ‘TR1’

has a value of ‘0x02’, the incremented value. A ‘BGE’ instruction is invoked as shown in

Figure 9.9d to perform the threshold check for COUNT. The values are equal indicating

the threshold is reached, so the packets are forwarded to the next node as shown in Figure

9.9¢. Figure 9.9f shows the final segment of the resultant output packet being forwarded.

ofldor. . ||

s | SARERREOmRE) |

o ;- o (2

Blpcout15. (hex| [0 [fGole 16019 {a01a JlEo2e
Blinstchke3. (b4 [8{[1] — [1£404750000500300 J{1400000000000005 {0000005000650000 f:
BidatachkIDe3.([0 \ 10000000000000682 '/
Bldadob3 . (hex)] |0 \‘]e:mneauntauacl' 02 7
Blf131. (hex)#3] [0 Y / /
Bioutp3l (hex){ [0 100 \‘ I 04 ’/ ’L
Bipodl.(hex)#3] |0 2 100900000 \I; 070004 / ’/
Blalulab3 . (hex| [0 %Ioaaemc@mem:

/

Execution branches
to this address

MOV Instruction following i o

the LFPR instruction to
move the value (0x02) from
ESS into register RS

alue (0x02) retrieved
from packet using LFPR
instruction

Figure 9.9d. Simulation Output for Validation of COUNT Macro
Instruction (continued)

o /
pooutl5. (hex [onze — Iooz7 i
instchké3. (he 0C00000000000000 {0000000000000000 /

datachkIDe3
oo7. . (hex) %3
£131. (hex)#3

10800000000000000

oL, J
N /

=
FWD Code

% & i 4

Z /

Z 7

Z 7
A

.
FWD instruction OUT instruction

o o o o o |

LDOR signal going
high to output
packet to the next
node

Figure 9.9¢. Simulation Output for Validation of COUNT Macro
Instruction (continued)

124

A .m0 . s G

£ W 2
/ £ Lo T
utis. (hex| [0 7s 7 7 #
instchk63. (b |8 7 i 7 i
BldatachkIDe3 | [0 T =z == %
(hex)#8| [0 7 2 24 e
Blt131. (hew)#3] [0 7 7 7 P
Bloutp3l. (hex){ [0 f Joooooo00 /' {oooo000z 1009650.30 /l
Blpo3l. (hex)#3] |o 7 Y0000 " \50000002 /)]D'uaaooue —7 T)arcost "B
/ / \ /:Elnd of Packet / CRC
LDOR signal Output packet in Output (EPo)
going high for 32-bit blocks Packet RAM ready
each 32-bit block (PRr) signal going

high — ready to store
next packet

Figure 9.9f. Simulation Output for Validation of COUNT Macro
Instruction (continued)

The next macro instruction to be validated is the COMPARE instruction. Figure
9.10a shows the fetching of the IN micro instruction and initial segment of the 32-bit

input packet blocks.

macctrlr.
IDV. ... = J]
EPi. 4
ORr........ /

loc2. (hex)#3 |3
lfm_mac_ctrlr
linst_in63. (hg?
Hinp3l. (hex)#}=
AKX
ook . . . / 1
WEPo. . . -

dor. ..o] L]
iz

5 T T

ipcout15. (hex
Hinstchké3. (h
lidatachkID63

idadob3 . (hex)i
£131. (hex)#3
joutp3i. (hex)i
po3l. (hex)£3
Yoo?. (hex)#8

- 1
/] focos0104 150000001 {ooo00020

(=B =
I~
M~

I
I~

{000z f

r
| Jo4oc000000006800 / Jo0060000000000000
2 I
? Ji

r - ’lj' ‘f'
7 =7 /
/ / /
L /
/

[~ — B, — 3 — W —]
N

N
H|

/ /
IN instruction IDV signal going ACK signal Input packet blocks
high

~

Figure 9.10a. Simulation Output for Validation of COMPARE Macro Instruction

125

| S~

“

Tag TR1 (0x01) is retrieved from the packet using the ‘LFPR’ instruction and the
following “GET” instruction for this tag fails as can be seen from Figure 9.10b. Then a
value (0x02) is obtained from the packet to bind with the tag TR1 using the ‘PUT’
instruction as shown in Figure 9.10c. Then the packet is forwarded to the next ESP
capable node as shown in Figures 9.10d and 9.10e with the output code set to 0x01
(FWD).

PRr. ..

ipcoutlS . (hex
1nstchk63. (he
datachkID63.
dadob3 . (hex)d
£131. (hex)43
outp3l. (hex){
po3l. (hex)43
oo?. . (hex)#8
ocra?. (hex)#
s FN—

- — OJ 0 0 0 o o oo oo o0 o0

=
e
-
o
bt
&

{ooop

[0E

f[oo1s

004180000000

\/E000000000080540

{l0000080008

140

|0o0oa00n

= i 3
000000y

f
i

7

[00000000M0000L
=

/

T

/

=

’/.r

.

41 (T

fozonooon

[I{oonenios

[I{onogonaL

50000000 | oo

080104

i

/
4
]

u

/J

/
/
/

s

v

=T P = —)

Vi

=y
\

=

/

Neemargfs
Value (0x01) obtained
for tag TR1 using

GET instruction

LFPR instruction

/
e
GET fails and branches to
address 0x15

Figure 9.10b. Simulation Output for Validation of COMPARE
Macro Instruction (continued)

o‘ldor. L
ollz H
olPRr % L
Blpoout15 . (hex]| [0 {6015 Joory {TE
Bims::hk63_(he 0|[J1c8C00CI01006000 [540000201000140 {1CG5000130000060 G
BstzchikID3. | 0 z
Bidado63. (hex)d |0HD0D03000800000C ,/ 1
Bif131. (hex)#3] [0 7
BFutpgl (hex)f [0 F: {1l00000602___ {000G600C
Bpo3l. (hex)#3] |0 / iw‘aif’ﬂ‘j‘fﬁ“-‘“;;-ﬁi"35‘3’93’?
B‘DD? (hex)#8| [0 // //
LFPR instruction Fetching of PUT

Retrieving value 0x02

from packet RAM instruction to bind this

value with tag TRI in
ESS

Figure 9.10c. Simulation Output for Validation of COMPARE
Macro Instruction (continued)

126

RN - N -

I

ol
ojcok

olEPo

ofldor

oflz

ofPRr

Bpcout15. (hex
Blinstchke3 . (hs
BidatachkID63
Bdadofl. (hex)d
Bif131 . (hex)#3
Bioutp3l. (hex)q
Bipo3l. (hex)#3
Boo7. . (hex)#8

FWD instruction

i oo
G[E?o.. -
oldor, . ..
ollz...m.‘.‘
oFRr.......
E%pcoutli (hex
Binstchk63. (he
E‘;ciatacthDSB,
Bif131. (hex)#3
Boutp3l. (hex){

5313531‘ (hex)#3] ¢

ol oA o van

(— N — T — 2 — = -~ =P T |

-

10010
}0000000000000000

10300002000006400

=
]

7

r i

/

z

OUT instruction

//

FWD code

Figure 9.10d. Simulation Output for Validation of COMPARE
Macro Instruction (continued)

) o e

=]

blocks

il TR T ol ‘
a
- O
/ e Pa
A/ o 7
/ s s
a s 7
/000 L {085aG00 = 7
Lo A / (D000c00T Z / (=
. & — = Z
/ / / e 7
LDOR signal End of Output CRC Value
Output packet going high Packet
Packet RAM
ready signal
going high

Figure 9.10e. Simulation Output for Validation of COMPARE
Macro Instruction (continued)

Figure 9.11a shows the initiating packet block sequence for the RCHLD macro

instruction on execution of the IN instruction and Figure 9.11b shows the ending

sequence of the input packet block with the CRC.

_—————‘

127

s

IJII|IIII|HII|I\H‘|H

~

5. Sus Sus iu

elk_pi
elk_im
clk_p
elk c
elr.. .
we_inm
famacsig.
IDV. .

EPi . .
putin
macctrlr.
IORr

(R T ST O S R T i i

Ak

icok

EPo

1z

[FRr

ldor

pcoutlS. (hex

instchk63. (he
131 (hex)#3

po3l. (hex)#3

momwo 00 00 0 W WwmmeE: =«

loc2. (hex)#3 ¢
inst_in63. (he?
fa_mac_ctrlrfs
inp3l. (hex)#}2

S o o o]

25 Sus us 5. Sus us 5. Sus L0us 10.S5us fllus 11, Sus liZus L2 Sus
|IIllIIIllIIIIIIII!IHIIIHH!IHII[III Ill!lllllllllllllli IHIlIlII|IIIiIIHI ||1II|UI||IIILI1H IIIllI\I!iIHIIHI‘

=1 I

(000BDa04 00000001 1

EEEEs e —Entniis, S S

L

40400000000000000 (0000000000000000

Ly

oo o o]

\

J000ED304

X

X

\

\

IN Instruction Start of Input Packet

Figure 9.11a. Simulation Output for Validation of RCHLD Macro Instruction

Lwe_inm.

IDV. ..

[EPi o
U EEE . o 1
macctrlr. .

a|aK ;

b =0 S
iEPo. . .

1 e
JERr

ldnr

ifmnacsig. . . |0

dinst_in63. (he®

L
L
L
L
i |
Jloc2. (hex)#3 &
3
3lfm_mac_ctrlrj@

dinp3l . (hex)#fE

|
& A
] ¥
7 | é e
0 _!/
0 /
0 Z
0 100000004 —_{oooooooo l’ }17461'?&313
= bt
| 7 - 7 f
T = 4 2 {
] / o~ / /
/ Fd /
Continuous Input
P End of Input CRC CRC check OK

Packet blocks

Packet Value

Figure 9.11b. Simulation Output for Validation of RCHLD Macro
Instruction (continued)

To avoid the initial failure of the ‘GET’ instruction in the ESS, a value for the tag (TR2)

(can be seen from the micro instruction sequence representation for ‘RCHLD’ from

128

Bl O e e e e SR

Figure 3.14 of Chapter 3) is written into ESS (using a sequence of micro instructions) to
make the RCHLD macro instruction execute a different and more extensive set of micro
instructions that represent it. Then, the initial checks for availability of ESS and CRC
check are performed and the initiating micro instruction sequence for the RCHLD

instruction is fetched from the preloaded instruction memory as shown in Figure 9.11c.

R]
G c o i J
Ypcout1S. (hex] [0 Jnooc [GooD {0008 — [oooF
Yinstchkéd . (hd |0|[E40000A0000000CO [7800008280000000 [8000000000000C00 10000000000000000
3131 (hex)#3] [0 A
Ipo3l. (hex)#3] |0 /’ \ {ooo0oo0L | |000B0304
Joutpdl. (hex)] [0 /' ‘\ [0000000L [J000B0304
JdatachkIDe3.{ (07 1%, {FI00000000600001
3007, . (hex)#8| [0|[7 ek 7__
/ \ Output Value (0x1) of
Initiating LFPR Next GET instruction LFPR instruction

micro instruction In sequence

Figure 9.11c. Simulation Output for Validation of RCHLD Macro
Instruction (continued)

The GET instruction does not fail retrieving the identifier bitmap value as can be seen
from Figure 9.11d, because of the external PUT instruction which placed a (tag, value)
pair in the ESS. The sequence continues executing until it encounters another GET

instruction (for counting the passing packets) where it fails as shown in Figure 9.1 1e.

i)
3
|

ldor

pooutls . (hex
1nstchkb3. (he
£131. (hex)#3
po3l. (hex)#3
loutp3l. (hex)
idatachkID63 . ioooooou‘uounuouoi J0000000000000000
ioo7. . (hex)#8 Pad /

IGFa. Pl

Value retrieved by GET GET does noé’ Continuous execution

Figure 9.11d. Simulation Output for Validation of RCHLD Macro
Instruction (continued)

129

fooll

0010
J1CC0000201000000 f

[W W W WV W S ¥ o}

100000000
100000000

J00000003

Joooc0003

o o o o oo ol

/
/
/
i

e e S R T Y V)

OPRE L L o
ojldor. :
Bipcout15. (hex| |0 JooLs [o013 10012) (TFE]
Blinstchk63. (hg [0]|7500004180000000 [8000000000000EC0 [0000000000000000 JZ2C80000101000000 /"
Bif131. (hex)#3{ [0 %* ya
Bipodl. (hex)#3] |0 4 [o0000002) {000B0304 f
Bioutpdl. (hex)l (0 ! [00000002 1 [000B0Z04]L
BldatachkIDs3 0 | [0000000000000002 Iaoonouoouoouoéoa
Boo?. . (hex)#8| 0] 2
16Fo. ... / ;
ipro.........| ULf /"a /
Bidadob3. (hex)d 0/1' (300000000005550% //'
Next GET Instruction in GET Fails Branches to address 0x23
sequence

Figure 9.11e. Simulation OQutput for Validation of RCHLD Macro

Instruction (continued)
The instruction sequence continues executing as it can be followed from the micro
instruction representation of the RCHLD macro instruction (see Figure 3.14). Finally a
‘BGE’ instruction is executed which checks the threshold value to either FWD or DROP
the packet. The value of the input packet block at offset 0x9 is 0x4 (threshold). This value
is placed in register R4 using the LFPR instruction which is not shown here. The value
from register VR1 (0x1) is moved into register R5. When a ‘BGE R4, RS 2Ch’
instruction is executed, the value of R4 is greater than RS indicating the threshold is not
reached and the packet has to be forwarded. The instruction execution branches to

address 0x2C as can be seen from Figure 9.11f.

BRE: s |l L

(ldor. . .. o

ipcout1S. (hex] |0 foo02z {0023 fo0zc {
llinstchk63 . (he |0|[6404280000000B00 ~ 1400000000000000 {0000000000000000 f 11C000001800000(
16131 (hex)#3] |0 X ¥

lpodl. (hex)#3] |0|fD00BOZ04 1/ ’/

foutp3l. (hex)] [0 00030301/ /

idatachkIDE3 .{ [0 o {0000000000000004 Sah {000000000000001
IGFo. H g

/
/. Instruction execution
BGE Instruction branches to address 0x2C

Figure 9.11f. Simulation Output for Validation of RCHLD Macro
Instruction (continued)

130

5 e

V R

Then a STPR instruction is executed at address 0x2C followed by a FORWARD and an
OUT, that can be shown in Figures 9.11g and Figure 9.11h. The CRC of the output

packet is different from the input packet because of the STPR instruction.

HEDE e w0 sinciers -
jjldor. ... L
Ypcout1S. (hex| |0|fo0zE oozF
Jinstchk63 . (hd |0 10C00000000000000]0800000000000000 10000000000000000
6131, (hex)#3] |0 A ol
Ypo3l. (hex)#3] |0 /' (00000003 00000000 7
Youtp3l (hex){ [0 ﬁ/’ Youooane: _ Jooooensy
JdatachkIDe3.([0 /foauononooooauom 0000000000000000
Joo7. . (hex)#8| [0 s w i T
e . // / i
FWD Instruction OUT Instruction i 42
Figure 9.11g. Simulation Output for Validation of RCHLD Macro
Instruction (continued)
(u]
ojcok]
0 o RS & l_
ollz..] x
olPRr =
N I & o T e S et I
Bipcout15. (hex| [0 ol
Blinstchk63.(h4 |0 Y
BlE131. (hex)£3] [0 L
Bipo31.(hex)#3] |0 (00000004 Joogoooo0 —_~ Ics
Bloutp31. (hex){ |0 ___—¥0000004 fono0odog~ f
BidatachkID63.{ [T /
Bioa?. . (hex)#8| |0 S /
Blocks of OQutput /
CRC value of
Packet End of Output Packet CSRCst0a

Figure 9.11h. Simulation Output for Validation of RCHLD Macro
Instruction (continued)

RCOLLECT is the macro instruction which requires execution of most of the

micro instructions of ESPR.V2. The following description briefly explains the Post-

Implementation validation of the RCOLLECT macro instruction of ESP. Figure 9.12a

131

——__‘

R B L e e

shows the initial input packet for the RCOLLECT macro instruction. Figure 9.12b shows

the initiating sequence of micro instructions to implement the functionality of
RCOLLECT macro instruction.

LIIIlIUIlHH'HII Illllllll[IIIIiIII|HlIIIIll[Iilllllll?illlilllllllhlllll[illllil!ll\l\lll\ll !I]llLIII[IHIlIIl! IIII|IILI|JIII[IIH lIIE||IlI|:
clk pi......[C] |

iclk_im E
clk p. ..
iclk_c. canIB

J 1] L i}] [] I 1 I] J 1 I

L e i

1 i B

clr. ..

[

we_lm....... [}
fmmacsig. .
ijputin. li
macctrlr. .
DV, . e J 1
EPi . . lE
10Rr 1o
Blloc?. (hex)#3 @
Bifm_mac_ctrlr}®
Blinp3l. (hex)#}@
Biinst_in63. (he@ [
Ak e vess l[/‘

ofEPo. . ! /
ollz ; / 1 £
Mot v L /
/
/

I

=

[

=

(00120404 100000001

[N

o

]

(]

offRr. ..

Blpcout15. (hex [Yooo1
B

B

[=]

r i
instchk63. (hq |0 —[0400000000000000 _‘Iﬁuouooc@punouu o
ya

datachkID63. el /
= / 7

x Start of Input ACK signal
IN Instruction Packet

Figure 9.12a. Simulation Output for Validation of RCOLLECT Macro Instruction

After the ESPR is switched on, the Packet RAM is loaded with the input packets for the
corresponding macro instruction. The packet is then checked for CRC and other checks
such as whether the ESS is full etc. After these checks are performed successfully, the
program counter starts fetching the micro code sequence for the RCOLLECT macro
instruction as shown in Figure 9.12b. Similar to the previous RCHLD instruction, a (tag,
value) pair is placed in the ESS prior to the fetching of the initiating sequence for

RCOLLECT, and so the GET instruction in Figure 9.12b does not fail and continues

execution from there on. The second GET fails and it executes till JMP instruction in the
ADDR2 (0x26) block because R4 has a value of zero. Then it fails in the GET instruction
in ADDR3 (0x1B) block and branches to ADDRS5 (0x2B) block. In the ADDRS block,

132

____‘

B e L i

the execution of ‘BEQ R10, R11, ADDR7’ fails because R10 has a value of 0x1 from
VRI and R11 has a value of 0x0 from VR2 and so the packet gets dropped as can be seen
from Figure 9.12c.

JJ.
Jl L
MR v ovasstis I
JicautIS (hex| |0 ~[ooac Joo0D [000E [ooor
< nstchk63. (hd |0 JS4o00060000000C 17600004180000000 13000000000001240 10000000000000000
YdatachkIDe3d.(|0 /L T 10000000000000001
HI3L. (et Z i 154
1r:=u tp3l. (hex)q |0 ’/ [[quaaoum 1 00120404 ,j
’{po (hex)#3] [0 ,-/ ﬂuuounum I [001Z0404 !/
e ra—_) n / I /
s Following GET Value obtained from
Initiating LFPR st uction offset ‘3’ of the packet
Instruction using LFPR instruction

Figure 9.12b. Simulation OQutput for Validation of RCOLLECT Macro
Instruction (continued)

IVAOLE s e

:{Fﬁr :‘ :

BpcoutlS. (hex| |0 ~ J003z J TTED ~ fo0zs |

Blinstchk63. (h |0 [1D40000201000000 [£004520000000D40 11400000000000000 ﬁnueuouuaamnuaao

BidatachkID63.{ [0 g //" l/' {0000000200000008

Bif131. (hex)#3] |0 IZ ,/)

Boutp3l. (hex){ [0 W s /

Bipodl. (hex)#3] (0 i ,/ ’f

Boa?. . (hex)#8| [0 // 7/ / fo3
BEQ Instruction DROP Instruction DROP code

BEQ fails and
continuous execution

Figure 9.12¢. Simulation Output for Validation of RCOLLECT Macro
Instruction (continued)

R e s e e e T

Chapter Ten

Conclusions and Future Research

The main goal of this thesis research was to develop and validate a hardware
processor architecture for implementing ESP service, using PLD technology into network
routers. The goal was achieved by studying the concepts of ESP, developing a
“lightweight ISA™ (37 micro instructions) for the existing macro level instruction set of
ESP, and then developing ESPR architectures (ESPR.V1 and ESPR.V2) to implement the
micro-instructions of the developed ISA. Both architectures were validated via HDL
post-synthesis and post-implementation simulation testing. It is felt the developed set of
37 micro-instructions of the ISA of both architectures should be sufficient in number and
functionality to support a much larger and extensive macro level instruction set one may
use to support ESP.

The second version of the ESPR architecture — ESPR.V2, was designed with
increasing performance over that of ESPR.V1 as a goal and the aim was achieved.
ESPR.V1 could operate at a frequency of 20 MHz with some timing constraints applied.
On the other hand ESPR.V2 — the five-stage pipelined architecture, could operate at 30
MHz in the same technology FPGA chip. The performance improvement was achieved
strictly from architectural enhancements to ESPR.V1. A comparison graph of
performance of both the architectures and their main functional units are shown in Figure
10.1. Both ESPR architectures are pipelined, contain an associative ESS for
storage/retrieval of ephemeral data, and are evaluated in terms of suitability for
implementation to a PLD platform. For a commercial “production” implementation, the
ESS probably would be implemented off the PLD platform using cheap and fast
commodity memory implementing the ESS organization.

Table 10.1 gives the approximate throughput measured in packets per second
(pps) obtained using the ESPR.V2 architecture through virtual prototype simulation.
Since each macro instruction executes a different set of micro instructions according to
the previous state in the ESS, and also, since it is not experimentally tested, the
throughput results using post implementation simulation are considered to be an

approximate but reliable estimate. It should also be noted that the post-implementation

134

_______—‘

simulation results of Table 10.1 were achieved after implementation of the ESPR.V2

architecture to a moderate speed and older FPGA chip. The Kpps rates shown in Table

10.1 could and would be significantly increased via implementation of the ESPR.V2

architecture to a more modern and higher spee

d FPGA chip.

‘ Performance Comparison of ESPR Architectures

Frequency (MHz)

ESPR.V1
ESPR Architectures

ESPR.V2

e,

Figure 10.1. Performance Comparison of ESPR.V1 and ESPR.V2

Table 10.1. Throughput of ESP Macro Instructions in ESPR.V2 Architecture

(Macro Operations

Throughput in ESPR.V2 |

(Kpps) (approx.)
COUNT () 810
COMPARE () 857
COLLECT () 833
RCHLD () 500
RCOLLECT () 517

——

The experimental results obtained using an Intel IXP1200 [18] router as stated in
[8] produces an estimate of 340 Kpps and 232 Kpps for the COUNT () and COMPARE ()
macro instructions respectively using an SRAM implementation of ESS. The HDL
simulation results obtained through post implementation simulation of ESPR.V2 cannot
be directly compared to the experimental results of [8] as such, because of the issues of
size of ESS and non-experimental version etc. The comparison does though gives a fairly
reliable indication that the ESPR.V2 architecture as implemented to the Xilinx Virtex2
4000 FPGA chip can process ESP packets 2-4 times faster than the Intel IXP1200 as
reported in [18].

In summary, the ESPR architecture and its design has been successfully mapped,
placed, and routed to a single chip PLD platform and successfully tested via post
implementation HDL functional and performance virtual prototype simulation testing. It
has also been proved that the pipelined processor architectures can be successfully
synthesized and implemented into an FPGA chip with the design capture being done
mostly at the behavioral level of HDL abstraction.

This validates the research goal of being able to develop Special Purpose ESP
processors and program them into PLD platforms in communications node routers and in-
field reprogram architectural changes/updates and entire new ESP processor architectures
into the PLD platform when needed for implementation of new ESP functionality and/or
increased performance as communications line speeds increase.

Future Research can address issues such as: Experimental testing of ESP and
ESPR architectures at the network level and improving the performance of ESPR
architectures via deeper pipelining, using a multiple-issue superscalar or VLIW
architectural concepts and via considering a single-chip packet-driven multiprocessor
approach to ESP. Use of commercially available simple-pipeline-architecture GP

~ processors can also be evaluated and compared on a cost/performance/adaptability basis
to the ESP implementation approach addressed within this thesis.
Static and dynamically reconfigurable processor architectures are currently an active
research area [20,21,22,23]. Unfortunately, none of these past reconfigurable
architectures can directly and immediately meet our application requirements. Our

current ESPR architecture could obtain a future performance boost via deeper pipelining,

e

inclusion of one additional pipeline within a single ESPR resulting in a dual-issue ESPR
architecture, and through use of the ESPR as a basic processor module in an envisioned
dynamically reconfigurable single-chip multiprocessor ESPR system. This system could
possibly be based upon some of the framework presented in [23,24,25,26]. It is felt some
of the architectural framework of [23,24,25,26] could potentially be used to meet network
node processing performance needs imposed by expected extremely high

communications line speeds of the future.

Appendices
Appendix A — Presents the Micro Instruction Set Architecture and Definition for the
ESPR Architectures.
Appendix B — Presents the Macro System Flowchart for ESPR.
Appendix C — Shows the Micro System Flowchart for ESPR.V1.

Appendix D — Shows the Micro System Flowchart for ESPR.V2.

Appendix E — Presents the VHDL Code for ESPR.V2.

VHDL Code for ESPR.V1 can be obtained from [28].

Appendix A

Micro Instruction Set Architecture and Definition

0. NOP (OTHER Type Instruction) — No Operation

63 58 57 0
000000

1.IN (OTHER Type Instruction) — Input Packet to Packet Register

63 58 57 0

000001

If IDV ==1) then {
PR 4—— Input Packet
ACK. i Sl)

} Else wait.

2. OUT (OTHER Type Instruction) — Outputs the Packet to Output port and also sends Output
Code Register as Output

63 58 57
000010

If (OPRAMready == 1) then {
Output port <«—— Packet Register
Output Code +—— Output Code Register

} Else wait.

3. FWD (OTHER Type Instruction) — Sets Forward Code in Output Code Register to Forward the

packet,
63 58 57 0
000011

Output Code Register <+—— 1 (FWD Code)

4. ABORT1 (OTHER Type Instruction) — Sets the LOC bits to zero in packet by loading Flag
Register to Flag field of Packet and the packet is forwarded.

63 58 57 0
000100

FLR <— “00000000”
Output Code Register <—— 2 (ABORT1 Code)
Flag field of PR <+— Flag Register

5. DROP (OTHER Type Instruction) — Drops the packet and is indicated by setting Drop code in
Output Code Register

63 5857 0
000101

Output Code Register <4—— 3 (DROP code)
Output Code <—— Output Code Register

6. CLR - Clears the register RD by moving R0, which contains 0 to RD

63 5857 5352 4847 24 0
000110 | RD | RO 1

RD <+ RO
7.MOVE RD, RS —Move value in RS to RD

63 5857 5352 4847 24 0

000111 [RD | RS 1

RD 4— RS
8. MOVI RD, Imm. Val (I Type Instruction) — Move Sign Extended Immediate value to RD

63 58 57 5352 242322 21 65 0

001000 | RD 1 S 16 bit Imm Val

RD <— Sign Extended Imm.val

9.ADD RD, RS1, RS2 (ALU Type Instruction) — Adds RSI and RS2 and places the result in RD
63 5857 5352 4847 4342 24 0

001001 [RD RSI RS2 1

RD <+« RS1 + RS2

10.SUB RD, RS1, RS2 (ALU Type Instruction) — Subtracts RS2 from RS1 and places the result in
RD

63 38 57415352 4847 4342 24 0
001010 | RD RS1 RS2 1

RD o RS1 - RS2

11. INCR RS (ALU Type Instruction) — Increments RS by adding it with R1, which contains 1 and
places the result in RD

63 5857 5352 4847 4342 24 0
001011 | RS | RS R1 |

RS <«— RS + Rl

12. DECR RS (ALU Type Instruction) — Decrements RS by subtracting R1 from RS and places the
result in RD

63 5857 5352 4847 4342 24 0
001100 | RS | RS R1 1

RS <«— RS - RI1

13. OR RD, RS1, RS2 (ALU Type Instruction) — Logical OR of RS1 and RS2 and places result in
RD

63 58:57 53352 4847 4342 24 0

001101 | RD RSI RS2 1

RD «—— RS1 (OR) RS2

14. AND RD, RS1, RS2 (ALU Type Instruction) — Logical AND of RS1 and RS2 and places result in
RD

63 5857 5352 4847 4342 24 0

001110 | RD RS1 RS2 1

RD «—— RS1 (AND) RS2
15. EXOR RD, RS1, RS2 (ALU Type Instruction) — Logical EXOR of RS1 and RS2 and places

result in RD
63 SR&7 5352 48 47 4342 24 0

001111 | RD RSI RS2 1

RD «—— RS1 (EXOR) RS2

141

16. COMP RD, RS (ALU Type Instruction) — Logical NOT of RS and place result in RD
63 58 57 5352 4847 24 0

010000 | RD | RS 1

RD <+— (NOT)RS

17. SHL. RD, RS, SHAMT (SHIFT Type Instruction) — Logical shift left of RS by SHAMT and
result is placed in RD

63 58 57

RD

5352 4847 24 0

SHAMT

010001 RS 1

RD <+ RS << SHAMT (Default shift by 1)

18. SHR RD, RS, SHAMT (SHIFT Type Instruction) — Logical shift right of RS by SHAMT and
result is placed in RD

63 5857 5352 4847 24 0
010010 | RD RS 1 SHAMT
RD “— RS >> SHAMT (Default shift by 1)

19. ROL RD, RS, SHAMT (SHIFT Type Instruction) — Logical rotate left of RS by SHAMT and
result is placed in RD

63 5857 5352 4847 24 0
010011 | RD RS 1 SHAMT
+.—
RD <— RS << SHAMT

20. ROR RD, RS, SHAMT (SHIFT Type Instruction) — Logical rotate right of RS by SHAMT and
result is placed in RD

24 0
SHAMT

5352 4847

RS 1

63 58 57

RD

010100

—_—
RD <+— RS > SHAMT

21. LFPR <Offset> RD (LFPR /STPR Type Instruction) — Loads 64 bit value at a given offset from
Packet Register (PR) to RD

24

2221

63

58 57

5352

635

010101

RD

1

16 bit Offset

RD <4—

PR[Offset | to PR[Offset + 63]

142

22. STPR <Offset> RS (LFPR /STPR Type Instruction) — Stores 64 bit value at a given offset in
Packet Register (PR) from RS

63 5857 5352 4847 22 21 635 0
010110 RS 16 bit Offset

PR[Offset | to PR[Offset +63] «— RS
23. BRNE RS1, RS2, Addr (JUMP / BRANCH Type Instruction) — Checks if RS1 not equal to RS2;
if yes, execution branches to sequence of instructions starting at Br. Addr by placing Br. Addr in PC,

else PC is incremented and resumes execution of normal sequence of instructions.

63 58 57 5352 4847 4342 2221 65 0

010111 RS1 RS2 16 bit Br. Addr

IF RS1 != RS2 then
PC <« Br. Addr
ELSE PC =<— PC+1

24. BREQ RSI1, RS2, Addr (JUMP / BRANCH Type Instruction) — Checks if RS1 equal to RS2; if
yes, execution branches to sequence of instructions starting at Br. Addr by placing Br. Addr in PC,
else PC is incremented and resumes execution of normal sequence of instructions.

63 5857 5352 4847 4342 2221 65 0
011000 RS1 RS2 16 bit Br. Addr

IF RS1 == RS2 then
PC -« Br. Addr
ELSE PC =<-— PC+1

25. BRGE RSI1, RS2, Addr (JUMP / BRANCH Type Instruction) — Checks if RS1 greater than or
equal to RS2; if yes, execution branches to sequence of instructions starting at Br. Addr by placing

Br. Addr in PC, else PC is incremented and resumes execution of normal sequence of instructions.

63 5857 5352 4847 4342 2221 65 0

011001 RSI RS2 16 bit Br. Addr

IF RS1 >= RS2 then
PC <+ Br. Addr
ELSE PC =<-— PC+1

26. BNEZ RS, Addr (JUMP / BRANCH Type Instruction) — Checks if RS1 not equal to RO (0); if
yes, execution branches to sequence of instructions starting at Br. Addr by placing Br. Addr in PC,
else PC is incremented and resumes execution of normal sequence of instructions.

63 5857 5352 4847 4342 2221 65 0
011010 RS RO 16 bit Br. Addr

IF RS '=R0 then
PC <+ Br. Addr
ELSE PC <— PC+1

. BE.QZ RS, Addr (JUMP / BRANCH Type Instruction) — Checks if RS1 equal to RO (0); if yes,
execution branches to sequence of instructions starting at Br. Addr by placing Br. Addr in PC, else
PC is incremented and resumes execution of normal sequence of instructions.

63 5857 5352 4847 4342 2221 65 0

011011 RS RO 16 bit Br. Addr

IF RS ==R0 then
PC <+ Br. Addr
ELSE PC <+— PC+1

28. JMP Addr (JUMP/BRANCH Type Instruction) — Jumps to a location specified by Br. Addr by
placing Br. Addr in PC

63 5857 2221 65 0
011100 16 bit Br. Addr

P <+ Br. Addr

29. RET (JUMP / BRANCH Type Instruction) — Returns from execution of a subroutine to normal
sequence execution by placing Reg in PC.

63 58 57 0
011101

PC «— Reg

30. GET VR, TR (GET / PUT TYPE INSTRUCTION) — Gets Value in VR Corresponding to Tag
TR and Sets CCR as GF = 1, for Failure of GET operation.

011110 TR VR

Tag and Value given to ESS
If match found: then,
If Lifetime not expired then,
VR <+— Value
GF +—— 1
Else

GF — LYR<+— 0
Clean that location and sets Empty (E) bit to 1

Else
GF —— L VR<+— 0

144

_———

31. PUT TR, VR (GET / PUT TYPE INSTRUCTION) — Puts Tag and Value (creates a tag, value

binding) in ESS by placing tag from TR and value from VR into ESS. Sets CCR as PF = 1, for failure
of PUT operation

011111 TR VR

Tag and Value given to ESS
If match found: then,
If Lifetime not expired then,
Value <-+— VR
Else
Tag v TR
Value <+— VR
Reset Expiration Time
Else
If Empty Location then,
Tag e TR
Value = e 4
Store Expiration Time
Empty bit <€— 0
Else
PF = 1

32. BGF Addr (GET /PUT TYPE INSTRUCTION) — Checks the Condition Code Register (CCR)
for failure of GET operation. If GF is 1 indicating failure of GET, execution branches to sequence of
instructions starting at Br. Addr by placing Br. Addr in PC, else PC is incremented and resumes
execution of normal sequence of instructions.

100000 16 bit Br. Addr

If GF==1then PC <— Br.Addr
Else PC <+— PC+1

33. BPF Addr (GET/PUT TYPE INSTRUCTION) — Checks the Condition Code Register (CCR)
for failure of PUT operation. If PF is 1 indicating failure of PUT, execution branches to sequence of
instructions starting at Br. Addr by placing Br. Addr in PC, else PC is incremented and resumes
execution of normal sequence of instructions.

100001 16 bit Br. Addr

If PF =1 then PC <+— Br. Addr
Else PC <«— PC+1

145

34. ABORT2 (OTHER Type Instruction) — Sets the LOC bits to zero and E bit to *1° in packet by
loading Flag Register to Flag field of Packet and the packet is forwarded.

63 58 57 0
100010

FLR <— “00000001”
Output Code Register <+—— 4 (ABORT?2 Code)
Flag field of PR <+— Flag Register

35. BLT RSI1, RS2, Addr (JUMP / BRANCH Type Instruction) — Checks if RS1 is less than RS2; if
yes, execution branches to sequence of instructions starting at Br. Addr by placing Br. Addr in PC,
else PC is incremented and resumes execution of normal sequence of instructions.

63 5857 5352 4847 4342 2221 65 0
100011 RSI RS2 16 bit Br. Addr

IF RS1 <RS2 then
PC +— Br. Addr
ELSE PC <+— PC+1

36. SETLOC (OTHER Type Instruction) — Sets the LOC bits in packet to a specified given value.

63 58 57 0
100100

FLR (7 downto 5) <+— Given LOC Value (3 bits)
Flag field of PR <+— Flag Register

146

APPENDIX B

MACRO LEVEL SYSTEM FLOW CHART

PR <«— PKTIP

S asorr2 [our_|

COUNT

A

LFPR <Offset-3> TR1 \

v

GET TR1, VRI

!

BGF ADDRI

! COMPARE

LFPR <Offset-3> TR1 \

-

GET TRI. VRI

v

&
COLLEC

LFPR <Offset-3> TR1

.

GET TRI, VRI

LFPR <Offset-5> R5

v .
BGF ADDRI \

v

BGF ADDRI

ADDRI1 !

INCR R4, VR1 MOVYRL K

v Y
MOV VR1, R4 PUT TR1, VR1

¢ ¢ ADDR2
PUT TR1, VRI BPF ADDR2 [ABORT2
BPF ADDR2 e s l our

|
ADDR3

LFPR <Offset-5> R4

MOV RS, VR1
ADDR4
.
BGE R4, RS5, ADDR4 » FWD
DROP ouT
MOV R4, VRI1
v
LFPR <Offset-7> MOR
v
NOP
1
- ADDR
R4 <OP>R5 ADDRI MOV VRI, RS
DROP PUT TRI, VRI
ADDR2 F_’_ BPF ADDR2 > FWD
ABORT?2 v
ouT

ouT

ADDRI1
ABORT2 ouT

LFPR <Offset-7> TR2

v

GET TR2, VR2
LFPR <Offset-5> R4
ADDR2 »| PUT TRI, VR1
BGF ADDR2 »| MOV VR2, R4 v
i BPF ADDRI
ADDR3 ‘
MOV RS, VR2 ‘
’ PUT TR2, VR2
’ LFPR <Offset-9> MOR BPF ADDRI . STPR <Offset-5> VR2
DROP ¢
NOP ¥ ey
DECR R6, VR1 5
VR2 < R5 <op> R4 e J,
v MOV VRI,R6 — ouT

JMP ADDR3

RCHLD

LFPR <Offset-3> TR2
v
GET TR2, VR2
v ADDR
BGF ADDRS MOV VR2, RO
v v
LFPR <Offset-7> R8 PUT TR2, VR2
@ v ADDR2
MOV R6, VR2 BPF ADDR2 » ABORT2 » OUT
¥ v
OR R7,R6, R8
: JUMP ADDRO J

A

MOV VR2,R7

v

PUT TR2, VR2

v

BPF ADDR2
ADDRO y

LFPR <Offset-5> TR1
v
GET TR1, VRI

' ADDRI
BGF ADDRI MOV VRI, RO

v v
INCR R2, VR1 PUT TRI, VRI
: b
MOV VRI, R4 | A —
v i

PUT TRI1, VR1 JUMP ADDRO

BPF ADDR2

ADDR3 v _
LFPR <Offset-9> R4 |

.

MOV RS, VR1

v

l BGE R4,R5, ADDR4 [—* STPR <Offset-7>R3 FWD [OUT

h

|ADDR4

A

DROP

@ ADDR7
J, RCOLLECT @ ®——> LFPR <Offset-9> TR4
v

LFPR <Offset-3> TR1 GET TR4, VR4
+ LFPR <Offset-F> MOR v
GET TRI, VRI v @ BGF ADDRS
- NOP ¥
BGF ADDRI v INCR R12, VR4
¥ VR3 < R8§<OP>R9 i
ET T v
G R2, VR2 ADDRI1 PUT TR4, VR4
v »| ABORT<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>