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The Nuts and Bolts of the Platelet Release Reaction

Smita Joshi and Sidney W. Whiteheart1

Department of Molecular and Cellular Biochemistry University of Kentucky, USA

Abstract

Secretion is essential to many of the roles that platelets play in the vasculature, e.g., thrombosis, 

angiogenesis, and inflammation, enabling platelets to modulate the microenvironment at sites of 

vascular lesions with a myriad of bioactive molecules stored in their granules. Past studies 

demonstrate that granule cargo release is mediated by Soluble NSF Attachment Protein Receptor 

(SNARE) proteins, which are required for granule-plasma membrane fusion. Several SNARE 

regulators, which control when, where, and how the SNAREs interact, have been identified in 

platelets. Additionally, platelet SNAREs are controlled by post-translational modifications, e.g., 
phosphorylation and acylation. Although there have been many recent insights into the 

mechanisms of platelet secretion, much still remains undefined. In this review, we focus on the 

mechanics of platelet secretion and discuss how the secretory machinery functions in the pathway 

leading to membrane fusion and cargo release.
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Introduction

Platelets are discoid, anucleate cell fragments that contribute to normal hemostasis and, 

increasingly, their additional roles in inflammation, infection, wound healing, angiogenesis, 

and metastasis are receiving attention [1, 2]. Release of granule content is central to most 

platelet functions because it allows platelets to modulate the microenvironment at sites 

where they are activated. Platelets contain three main types of granules- dense (also known 

as δ-granules), α, and lysosomes-each with distinct contents and properties. Dense granules 

contain small molecules, e.g., ADP, ATP, serotonin, polyphosphate, and calcium, which have 

a role in amplifying hemostasis. Defects in dense granule biogenesis significantly increase 

bleeding. α-Granules contain a plethora of proteins with diverse function, e.g., mitogens, 

cytokines, and adhesive proteins. Defective α-granule biogenesis causes a more varied 

bleeding diathesis [3]. Lysosomes contain acid hydrolyses and proteases, which may 

contribute to clot remodeling. In this review, we discuss the mechanics of platelet granule 

release, with specific focus on the proteins required and how they function. For additional 
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information, we recommend several excellent reviews that cover platelet granule biogenesis 

and secretion [4–7].

Exocytosis by Platelets

Platelet secretion is a textbook example of regulated secretion: there are stores of cargo in 

granules that are released upon stimulation with an agonist (often called a secretagogue). 

Platelets respond to many agonists; some, e.g., thrombin and convulxin, are considered 

strong and cause robust release while others, e.g., ADP and epinephrine are weak 

secretagogues. Secretion of dense granules is generally monitored by measuring ATP or 

serotonin release. α-Granule exocytosis is monitored by measuring the release of soluble 

cargo proteins e.g., Platelet Factor 4, thromboglobulin, von Wlillebrand Factor (vWF), or the 

surface exposure of P-selectin, an abundant α-granule membrane protein. Hydrolytic 

enzymes, such as β-hexosaminidase, are used as metrics of lysosome release. In many 

studies, single time points or agonist doses are used; however, this hides the complexity of 

the platelet exocytosis process. More detailed studies demonstrate that the rates and extents 

of platelet exocytosis are directly related to stimulation strength [8]. Dense granule release is 

the fastest, most sensitive process; lysosome release is the slowest and requires greater 

stimulation. α-Granule release is kinetically the most diverse. Together, these three exocytic 

processes form the platelet releasate, which has been shown to contain hundreds of bioactive 

components [9–12]. It is this releasate that affects the microenvironment around activated 

platelets and contributes to platelet function.

The content of the platelet releasate and how its composition is controlled have been the 

subject of great interest. Are platelets able to release only subsets of their cargo or is the 

process stochastic? Both unbiased proteomics and directed antibody array systems have 

been used to monitor the release of multiple cargos simultaneously. Several groups suggest 

that specific classes of cargo (e.g., pro-angiogenic and anti-angiogenic factors) can be 

released in response to specific agonists [13–15]. However, other studies detected no 

thematic patterns in cargo release. Jonnalagadda et al., using a custom microELISA array 

and four agonists (thrombin, convulxin, PAR1 and PAR4), showed that agonist potency 

influences the kinetics and extent of secretion, but there were no “functionally thematic” 

patterns in the release process [8]. Broader proteomic studies confirmed the lack of thematic 

patterns in the release of granule cargo [11, 12]; however, there are distinct kinetic patterns 

with cargo release occurring in waves. These findings suggest that platelets can use distinct 

release rates to temporally affect their microenvironment. The kinetics of release may be 

governed by the degree of stimulation, the chemical properties of the cargo, the locale where 

the cargo is packaged in a granule and/or the machinery used [8, 16, 17]. Since most of these 

past studies were done in suspension, it is unclear if there are also spatial constraints on 

platelet secretion. Early electron microscopy studies suggest that the ventral platelet surface 

is different from the distal surface, consistent with some degree of polarity [18].

Granule-Plasma Membrane Fusion

The penultimate step of exocytosis is the fusion of cargo-containing granules with plasma 

membranes (PM). Platelet granules also fuse with one another, in a process called compound 
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fusion, which may or may not precede fusion with the PM [19]. Membrane fusion is 

mediated by proteins called Soluble N-ethylmaleimide-sensitive factor Attachment protein 

Receptor (SNARE) proteins (Figure 1). This process is highly conserved in all eukaryotes 

and the family of SNARE proteins is quite large [20]. SNAREs are classified into two 

groups based on their relative locations: v- for vesicle/granule-localized and t- for target 

membrane-localized. SNAREs are also classified based on the amino acid at the center of 

their SNARE domains, either R (Arg) or Q (Glu). Vesicle Associated Membrane Proteins 

(VAMPs) constitute a large group of the known v-SNAREs (R-SNAREs). t- SNAREs (Q-

SNAREs) consist of two classes of proteins – Syntaxins and Synaptosome Associated 

Proteins/SNAP-23/25 proteins [21]. All SNAREs contain one or two amphipathic, heptad-

repeat-containing, SNARE domains of ~60 amino acids; cognate v- and t- SNAREs interact, 

through these domains, to form a transmembrane complex that promotes membrane fusion 

[22]. Four SNARE domains, one each from v- SNARE (R-SNARE) and Syntaxin (Qa 

SNARE) and two from SNAP-23/25 (Qbc SNARE), form a coiled-coil structure that buries 

the hydrophobic residues and draws the two membranes together for fusion.

v-SNARE in Platelets

Quantitative western blotting and proteomic analysis [23, 24] have shown that platelets 

contain multiple v-SNARE isoforms (e.g., VAMP-2,-3,-4,-5,-7,-8; Table 1). VAMP-8 and -7 

are most abundant in human platelets while VAMP-8, -2, and -7 are most abundant in mouse 

platelets. Although previous studies, using permeabilized platelets, showed a role for 

VAMPs, the assignment of specific isoforms was equivocal [25–28]. More definitive studies 

of platelets from knockout (KO) mice demonstrated roles for VAMP-8 and VAMP-7; 

however, in neither case does a single VAMP account for all of the release [29, 30]. Deletion 

of VAMP-3 or reduction of VAMP-2 had no effect when VAMP-8 and -7 were present [30]. 

Interestingly, permeabilized VAMP-8 KO mouse platelets did show diminished secretion 

upon treatment with tetanus toxin light chain fragment, which specifically cleaves VAMP-2 

and -3 [31]. VAMP-7 is resistant to the toxin peptidase [32]. Taken as a whole, these data 

imply unique and dominant roles for VAMP-7 and -8 in platelet secretion, and also suggest 

that, at least in mice, VAMP-2 and -3 contribute to the process. This type of compensation or 

“ranked redundancy” in isoform usage has been reported in chromaffin cells [33] and in 

mast cells [34, 35]. It may be related to some intrinsic property of each VAMP or to the 

amounts of each isoform. This distinction is not clear at present.

Phenotypically, the loss of VAMP-8 causes defective thrombosis. Global deletion of 

VAMP-8 resulted in delayed and diminished thrombus formation [24]. However, VAMP-8 

KO mice failed to show any bleeding diathesis. Interestingly, loss of VAMP-7 caused no 

defect in platelet accumulation at the site of laser injury nor in the tail-bleeding assay, 

though α-granule release is affected in the growing thrombus [29]. These data support the 

primacy of VAMP-8-mediated secretion in hemostasis and suggest that VAMP-7 and 

VAMP-8 contribute distinctly to platelet function.

Consistent with the primacy of its usage, the gene encoding VAMP-8 has been linked, by 

Genome Wide Association Studies (GWAS), to early-onset myocardial infarction, which is 

indicative of hyper-reactive or perhaps “hyper-secretory” platelets [36, 37]. Additional 
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genetic studies identified a microRNA that controls VAMP-8 expression and correlates with 

increased platelet response to epinephrine [38]. This microRNA affected VAMP-8 levels in a 

tissue culture system, but the effects on secretion were not tested. From the mouse models 

and the implications of the human genetic data, it seems possible that VAMP-8 levels 

directly affect platelet secretion efficacy.

VAMP-7 is structurally distinct from other, shorter VAMP isoforms (VAMP-2,-3, and -8). It 

contains a characteristic domain at its N terminus, called a Longin domain, which interacts 

with cytoskeleton regulators, specifically with VPS9 and ankyrin repeat containing protein 

(VARP) [29, 39]. VAMP-7 positive structures localize to the periphery of spreading 

platelets, while VAMP-8 and VAMP-3 positive granules concentrate in the central 

granulomere [40]. These data imply that VAMP-7 mediates secretion at the periphery where 

it is needed for platelet spreading. VAMP-8 (and perhaps VAMP-2 or - 3) mediates fusion in 

the centralized granulomere, which is needed for thrombus growth. VAMP-8’s role in 

platelet spreading has not been directly tested. Similar studies in neutrophils [41] and mast 

cells [42] also show a polarization of VAMP isoform-positive structures during the 

exocytosis process.

The spatial differences between VAMP-7 and VAMP-8 positive granules suggest the 

potential for differential cargo release mediated by the two isoforms. At present, it is unclear 

if the two VAMPs associate specifically with distinct cargo or mediate differential release in 

response to different secretagogues. However, the existing data offer intriguing hints about 

the spatial nature of platelet exocytosis. Future experiments using microfluidics and/or 

enhanced-resolution imaging, in vivo, will be needed to resolve these questions.

t-SNAREs in Platelets

Platelets contain Syntaxin 2, 4, 6, 7, 8, 11 12, 16, 17, and 18 and SNAP-23, 25 and 29 (Table 

1) [23, 43]. SNAP-23 is thought to be the functionally relevant Qbc t-SNARE, based on 

studies using permeabilized platelets with inhibitory antibodies and peptides [26, 44–46]. 

SNAP-25 is much less abundant and platelets from SNAP-29 KO mice show no significant 

secretion defect [47]. The Qa t-SNAREs, Syntaxin 2 and 4, were previously reported to be 

important [26, 44–46]. However, these findings were not consistent with data from KO mice 

[48]. Secretion from Syntaxin 2/4 double KO platelets is unaffected (though endocytosis is 

defective, Ye and Whiteheart unpublished). Analysis of platelets from a Familial 

Hemophagocytic Lymphohistiocytosis type 4 (FHL-4) patient, lacking Syntaxin 11, indicate 

its role in secretion from all three granules. Consistently, Syntaxin 11 forms complexes with 

SNAP-23 and VAMP-8. To explain previous data, Ye et al., showed that the original anti-

Syntaxin 2 antibodies, which inhibited release from permeabilized platelets, cross-reacted 

with Syntaxin 11. Recently, another report demonstrated that Syntaxin 8 influences dense 

granule but not α-granule or lysosome release [49]. The authors showed that Syntaxin 8 

interacts with Syntaxin 11 but not with SNAP-23. This shows that Syntaxin 8’s Qb SNARE 

motif forms different complexes with the Qa motif of Syntaxin 11 than the complexes 

formed with SNAP-23’s Qbc motifs.
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SNARE Regulatory Proteins

SNAREs are essential for membrane fusion, but their associations to form membrane-fusing 

complexes are controlled temporally and spatially by several types of regulatory proteins and 

also by post-translational modifications of the SNAREs themselves (Figure 1 and Table 1). 

Some SNARE regulators are chaperones (e.g., the Sec/Munc proteins), while others promote 

the apposition of fusing membranes, indirectly (or directly) affecting SNARE association 

(e.g., Munc13, Rabs, STXBP5/Tomosyn 1, SLP4/granuphilin, etc.). These so-called docking 

factors also affect where fusion occurs.

Munc18b

The Sec1/Munc18 (SM) family of cytosolic proteins is crucial for membrane trafficking and 

exocytosis. In mammals, the seven SM proteins act as syntaxin chaperones, targeting and 

directing the t-SNARES to form specific SNARE complexes [50, 51]. Platelets contain 

VPS33a and 33b, which are involved in dense and α-granule biogenesis, respectively [52, 

53]. Platelets also contain Munc18a, Munc18b and Munc18c (STXBP1, 2, 3); however, 

Munc18b is significantly more abundant [54]. Previous studies suggested that Munc18c 

contributes to platelet secretion by interacting with Syntaxin 4 [55]; however, platelets from 

Munc18c+/− mice have normal secretion indicating that partial loss (~30%) of this isoform is 

insufficient to depress secretion [56]. Recent studies of FHL type 5 patients, which have 

defects in the gene encoding Munc18b, show that Munc18b is critical for platelet secretion 

from all three granule types [54]. Consistent with Munc18b’s role as a chaperone, deficient 

platelets showed a decrease in Syntaxin 11; no other syntaxins were affected. Platelets from 

biallelic patients have robust secretion defects and heterozygous patients have intermediate 

deficits. Such haploinsufficiency suggests that Munc18b is limiting for the secretion process 

in platelets. Consistently, semi-quantitative western blotting data suggest that Syntaxin 11 

and SNAP-23 are in molar excess over Munc18b in human platelets [48, 54]. Several reports 

suggest that the Munc18s are phosphorylated in platelets and that phosphorylation affects 

Munc18/Syntaxin interactions [55, 57, 58]. However, many of the studies focused on 

Munc18c, whose role in secretion is uncertain. Detailed studies of Munc18b 

phosphorylation in platelets have not been done.

STXBP5/Tomosyn 1

Another t-SNARE regulator is Syntaxin Binding Protein 5 (STXBP5), also known as 

Tomosyn 1, meaning friend (tomo) of syntaxin [59]. In neurons, STXBP5 is a negative 

regulator of exocytosis. STXBP5 contains WD-40 repeats, which are thought to interact with 

the cytoskeleton [60]. C-terminal of these repeats is a variable linker region with multiple 

predicted phosphorylation sites. Adjacent to the linker, is a v-SNARE-like domain that 

interacts with t-SNARE heterodimers (e.g., Syntaxin 11/SNAP-23) and is thought be a 

regulatory “place-holder”. Consistently in platelets, STXBP5 antibody only precipitated t-

SNAREs but no VAMPs [61]. Surprisingly, platelet secretion is significantly diminished in 

platelets lacking STXBP5. Mice lacking STXBP5 showed a robust bleeding diathesis that 

exceeded expectations based on their secretion defect. The bleeding was due to defective 

platelet secretion based on bone marrow transplantation studies.
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A recent GWAS linked polymorphisms in the STXBP5 gene to increased plasma vWF and 

thus to increased risk of cardiovascular diseases [62, 63], which conflicts with the phenotype 

of the KO mice. Lowenstein and colleagues resolved this inconsistency by showing that 

STXBP5 negatively regulates Weibel Palade Body release from endothelial cells. 

Consistently, the KO mice had increased plasma vWF [64]. Interestingly, rs1039084, a non-

synonymous single nucleotide polymorphism (SNP) in the STXBP5 gene, correlated with 

increased bleeding [65]. Taken together, these data suggest that STXBP5 is a critical 

regulator of vascular health and plays distinct roles in both endothelial cells and platelets.

Tethering and Docking Factors

The factors discussed above directly control SNAREs; however, there are other factors that 

control secretion by affecting docking/tethering of granules to exocytosis sites. Many of 

these regulators are recruited from the cytosol through interactions with lipids and/or 

membrane proteins and once positioned, they promote SNARE engagement and enhance 

membrane fusion.

Rab27

Rab27a/b are small GTPases that direct granule docking and tethering in a number of 

secretory systems [66]. In a seminal study using Rab 27a−/− (ashen), Rab27b−/− and Rab 

27a/b−/− mice, Seabra and colleagues [67] showed that only mice, homozygous for Rab 27b 

loss, had a significant bleeding diathesis. Loss of Rab27a, alone, affected pigmentation but 

not bleeding. Detailed studies showed that Rab27b was important for dense granule release, 

but its loss had no effect on P-selectin exposure (α-granule release). Rab27b did appear to 

contribute to dense granule biogenesis since endogenous serotonin levels were lower in 

Rab27b−/− platelets, irrespective of Rab27a’s presence. Given the interactions between 

Rab27 and other elements discussed below (i.e. SLPs and Munc13-4), this small GTPase is a 

key to dense granule release in platelets.

Munc13-4

Munc13 proteins are a family of multi-domain proteins, which contain a characteristic Munc 

Homology Domain (MUN) domain and, at least, two calcium/lipid-binding C2 domains. 

Some also contain calmodulin and diacylglcerol (DAG) binding sites [68]. Munc13-4 is a 

known Rab27 effector [69]. In vitro studies with liposomes show that Munc13-4 bridges, but 

does not fuse, membranes in a calcium-dependent manner [70]. This clustering requires both 

C2 domains. Secretion is dramatically abolished in Munc13-4−/− platelets. Consistently, 

Munc13-4−/− mice have a significant bleeding diathesis [71]. Quantitative analysis suggests 

that Munc13-4 may be limiting, which was confirmed by titration experiments using 

permeabilized Munc13-4−/− platelets and in Munc13-4+/− mice which had an intermediate 

phenotype. Loss of Munc13-4 also increased the in situ mobility of dense granules, which is 

consistent with its role as a docking/tethering factor [70]. Parenthetically, these results imply 

that dense granules are pre-docked in resting platelets, perhaps accounting for their rapid 

release rates.

Although Munc13-4 clearly plays a role in dense granule release, its role in α-granule and 

lysosome release is less certain. Ren et al. [71] showed that the α-granule and lysosome 
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release defects in Munc13-4−/− platelets are less apparent at higher secretagogue 

concentrations. Poole and colleagues showed that ADP addition overrides much of the α-

granule secretion defect [72]. These data underline the fact that dense granule secretion 

deficiency precipitates defects in α-granule and lysosome release; a point that has been 

noted by others [73, 74]. Thus, the autocrine signaling from released ADP plays a critical 

role in modulating α-granule and lysosome release.

Synaptotagmin-Like Proteins

Rab effectors such as synaptotagmin-like-proteins (SLPs) are present in platelets and appear 

to have both stimulatory and inhibitory roles [66]. Using a yeast two-hybrid assay, 

Smolenski and colleagues showed that SLP1 forms a trimeric complex with Rap1, a ras-like 

GTPase, and the Rap nucleotide exchange factor RAP1GEF2. SLP1 had a negative effect on 

dense granule release from permeabilized platelets while RAP1GEF2 addition increased 

release [75]. The same group showed that SLP4/granuphilin interacts with Rab8 in human 

platelets and its addition to permeabilized platelets enhanced dense granule release [76]. 

This enhancement required SLP4 binding to Rab8. SLP4 is also a Rab27 effector [66] and 

also interacts with Munc18/Syntaxin complexes in platelets [61]. SLP proteins contain 

calcium/lipid-binding, C2 domains and thus could serve as calcium sensors. Despite these 

data, a clear mechanistic understanding of their function is still lacking.

Sorting Complexes

Tethering/Sorting complexes appear to be important for granule biogenesis [77]; however, it 

is unclear how such complexes influence exocytosis. One potential example, the Exocyst, is 

thought to be important for polarized secretion [78]. Exocyst is a conserved octameric 

complex that directly interacts with SNAREs and SM proteins [79]. Platelet proteomics 

studies show that the Exocyst subunits are expressed in stoichiometric amounts [23]. The 

Exocyst is targeted to mammalian cell membranes via an interaction with a prenylated, ras-

like GTPase called Ral [80]. Ral is expressed in platelets and is activated to its GTP-bound 

state following thrombin-treatment [81]. There are two Ral isoforms, A and B; both are 

present in platelets. Horiuchi and colleagues showed that by blocking Ral-GTP binding to 

the Sec5/Exoc2 subunit, they could inhibit GppNHp-induced dense granule release from 

permeabilized platelets [82]. Consistently Ral and Exocyst interact in thrombin-stimulated 

platelets. Despite these insights, there are many unanswered questions about the roles of Ral 

and Exocyst. Does the presence of Exocyst imply some polarization of platelet secretion? 

Ral A and B have distinct functions in other systems [83]. Will that be true in platelets as 

well? Given the development of Ral inhibitors as anti-cancer drugs [84], it seems important 

that the roles of this protein and the Exocyst be determined in order to appreciate how these 

drugs might affect platelet function.

NSF and SNAPs

The first membrane trafficking proteins purified were the AAA+ ATPase, N-ethylmaleimide 

Sensitive Factor (NSF) and its adaptors, the Soluble NSF Attachment Proteins (SNAPs) [85, 

86]. These proteins disassemble spent SNARE complexes, post fusion, and thus are critical 

for SNARE recycling [87]. Lemons et al. [88] first reported their presence in platelets and 

Polgar et al. [89] showed that inhibitory peptides that blocked NSF activity also blocked 
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release from permeabilized platelets. Consistently, nitrosylation reversibly inhibits platelet 

NSF, accounting for a portion of the inhibitory effect of NO on platelet exocytosis [90]. 

Initially, NSF’s role was contentious since platelet exocytosis was thought to be a “one shot” 

event; thus there was no need to recycle spent SNAREs. Subsequent studies suggest that 

platelets have multiple, membrane fusion/trafficking processes (i.e. endocytosis, autophagy, 

etc. [91, 92]) explaining the presence of NSF and SNAPs. However, their role in recycling 

SNAREs for exocytosis is still puzzling.

Post-Translational Modifications of the Secretory Machinery

There have been several reports of phosphorylation of platelet secretory machinery 

components (e.g, Syntaxin 4, Munc18, STXBP5, etc.), although few have definitively linked 

modifications to exocytosis control [55, 58, 93]. One example where phosphorylation clearly 

affects function is the phosphorylation of SNAP-23, by IκB kinase (IKK). Originally seen in 

mast cells, IKK phosphorylates specific serines (Ser95) on SNAP-23, which affects SNARE 

complex dynamics [42, 94–97]. Consistently, platelet-specific deletion of IKKβ or treatment 

with IKK inhibitors blocks platelet secretion from all three granules and leads to a bleeding 

diathesis [96]. In vitro studies with SNARE-containing proteoliposomes suggest that 

SNAP-23 phosphorylation enhances membrane fusion rates, though it is not required for 

fusion. Immunoprecipitation studies show that phosphor-SNAP-23 preferentially 

incorporates into SNARE complexes in activated platelets.

Another noteworthy post-translational modification is acylation. Proteomics studies had 

identified a number of acylated proteins in platelets that have thioester-linked fatty acids 

attached to cysteines [98]. This is particularly important to Syntaxin 11 and SNAP-23, which 

lack classical transmembrane domains (TMD) but behave as membrane proteins. Both t-

SNAREs contain cysteine-rich domains (at the C-terminus for Syntaxin 11 and between the 

two SNARE domains in SNAP-23) that are thought to be acylated. Consistently, treatment of 

platelet membranes with a thioesterase releases SNAP-23 and affects secretion in 

permeabilized platelets [99]. The significance of t- SNARE acylation is yet to be 

understood; however, since neither SNARE has a classical TMD, acylation must affect 

membrane fusogenicity. Studies using reconstituted proteoliposome fusion assays show that 

t-SNARE TMDs can be functionally replaced by lipid moieties so long as they are 

hydrophobic enough. C15 prenyl groups are not sufficiently hydrophobic but C55 groups are 

[100]. Both SNAP-23 and Syntaxin 11 have multiple potential acylation sites; however, it 

remains to be determined the extent to which t-SNARE acylation occurs and is controlled in 

platelets. In other cell types, removal or modification of the t-SNARE cysteine-rich domains 

does affect secretion [101, 102].

Mechanistic Musings

Though the relevance of SNAREs is established, the protein-protein interactions leading to 

membrane fusion are not completely defined in platelets. Clearly, there are more secretory 

machine elements left to be identified, especially given that we have not filled the gaps 

between known signaling cascades and secretory machinery.
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As implied by the phenotypes of the platelets lacking specific SNAREs (VAMP-7−/−, 

VAMP-8−/−, Syntaxin 8−/− and Syntaxin 11/FHL4−/−), it seems possible that more than one 

SNARE complex may mediate granule release. Future studies should focus on determining 

if different SNARE combinations convey distinct properties to specific membrane fusion 

events. It seems possible that some complexes will be more fusogenic than others and thus 

could fine tune release kinetics and perhaps alter platelet releasate composition.

A major question is, “How is secretion controlled by calcium?”. Calcium is critical to most 

regulated secretory processes; yet in platelets, there are no clear calcium sensors that affect 

secretion. Synaptotagmins, which are calcium sensors in neurons have not been 

characterized in platelets [68]. Several proteins discussed in this review have calcium-

binding domains (C2 domains like synaptotagmins) or can be phosphorylated by Protein 

Kinase C. However, direct mechanistic data are lacking.

A second consideration is whether platelet exocytosis is polarized. While at first glance, it 

may seem unlikely, there is clear polarity once platelets are adherent. Given the core and 

shell architecture of a growing thrombus [103], it’s plausible that cargo release is oriented: 

either towards the vascular wall to affect wound healing or towards the vessel lumen to 

recruit more platelets. The work of Peters et al. [40] clearly shows that VAMP-8- and 

VAMP-7-positive granules spatially segregate; is that to mediate different release events? 

Given VAMP-7’s role in spreading and the importance of Ral and Exocyst, perhaps the 

answer is yes.

Finally, are granules the only things secreted from platelets? Cargo that are generally 

thought to be markers of cellular organelles (i.e., sugar nucleotides from Golgi; PDI from 

ER; etc.) are detected in platelet releasates and are functionally relevant [104–106]. Do these 

release events use the same machinery as granules? These are exciting questions that get to 

the very heart of platelet cell biology and its importance. Their answers are destined to 

change our views of platelet function and hemostasis.
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Figure 1. Pathway of SNARE-Mediated Platelet Granule Release
Platelet exocytosis is a pathway of protein-protein interactions leading from 1) granule 

docking, 2) SNARE engagement to 3) membrane fusion and 4) cargo release. The 

interactions and their proposed order of occurrence are depicted in the schematic. The 

machinery which could be on the granules includes: v-SNAREs (Vesicle Associated 

Membrane Protein/VAMPs); Munc13-4 and synaptotagmin like protein (SLP); small 

GTPases Rab and Ral; and the Exocyst complex. The machinery on the plasma membrane 

includes: t-SNARE heterodimer of Syntaxin 11 and SNAP 23; the Syntaxin-chaperone 

Munc18b; and the t-SNARE regulator STXBP5/Tomosyn-1. Also depicted are domains in 

each protein which contribute to protein function and thus platelet exocytosis: blue lines, C2 

domains in Munc13-4 and SLP; brown line, Munc homology domain in Munc13-4; red 

lines, SLP homology domain in SLP; rounded rectangles, SNARE domain.
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Table 1

Secretory Machinery in Platelets

Protein Gene Aliases (in Homo sapiens) Functional References

v-SNAREs (R - SNAREs)

VAMP-2 VAMP2 SYB2, VAMP-2 [30]

VAMP-3 VAMP3 CEB [25–28]

VAMP-4 VAMP4 VAMP-4, VAMP24

VAMP-5 VAMP5

VAMP-7 VAMP7 SYBL1, TIVAMP, VAMP-7, TI-VAMP [29]

VAMP-8 VAMP8 EDB, VAMP-8 [24, 30]

t - SNARES (Q-SNAREs)

Syntaxin 2 STX2 EPM, EPIM, STX2A, STX2B, STX2C [44, 45]

Syntaxin 4 STX4 STX4A, p35-2 [26, 44–46, 88]

Syntaxin 8 STX8 CARB [49]

Syntaxin 11 STX11 FHL4, HLH4, HPLH4 [48]

SNAP-23 SNAP23 SNAP-23, SNAP23A, SNAP23B, HsT17016 [26, 44–46, 88]

SNAP-25 SNAP25 SUP, RIC4, SEC9, SNAP, CMS18, RIC-4, SNAP-2,, bA416N4.2, 
dJ1068F16.2

SNAP-29 SNAP29 CEDNIK, SNAP-29 [47]

SNARE Regulators

Munc18a STXBP1 P67 NSEC1, UNC18, RBSEC1, MUNC18-1 [58]

Munc18 b STXBP2 FHL5, UNC18B, Hunc18b, UNC18-2, pp10122, MUNC18-2 [54]

Munc18c STXBP3 PSP, MUNC18C, UNC-18C, MUNC18-3 [57]

α-Synuclein SNCA PD1, NACP, PARK1, PARK4 unpublished

STXBP5/Tomosyn 1 STXBP5 LGL3, LLGL3, Nbla04300 [61, 64]

SLP4/Granuphilin SYTL4 SLP4 [76]

α-SNAP NAPA SNAPA unpublished

NSF NSF SKD2 [89] and unpublished

γ-SNAP NAPG GAMMASNAP

IKK-α CHUK IKK1, IKKA, IKBKA, TCF16, NFKBIKA, IKK-alpha

IKK-β IKBKB IKK2, IKKB, IMD15, NFKBIKB, IKK-beta [96]

IKK-γ IKBKG IP, IP1, IP2, FIP3, IKKG, IPD2, NEMO, FIP-3, Fip3p, IMD33, AMCBX1, 
IKKAP1, ZC2HC9, IKK-gamma

Tethering Factors

Munc13-4 UNC13D FHL3, HLH3, HPLH3, Munc13-4 [71]

Rab 27b RAB27B C25KG [67]

SLP1 SYTL1 JFC1, SLP1 [75]

Exocyst Components

Sec3 EXOC1 SEC3, SEC3P, BM-102, SEC3L1

Sec5 EXOC2 SEC5, Sec5p, SEC5L1 [82]
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Protein Gene Aliases (in Homo sapiens) Functional References

Sec6 EXOC3 SEC6, Sec6p, SEC6L1

Sec8 EXOC4 SEC8, Sec8p, SEC8L1

Sec10 EXOC5 SEC10, HSEC10, SEC10P, PRO1912, SEC10L1

Sec15 EXOC6 SEC15, EXOC6A, SEC15L, Sec15p, SEC15L1, SEC15L3

Exo70 EXOC7 EX070, EXO70, EXOC1, 2-5-3p, Exo70p, YJL085W

Exo84 EXOC8 EXO84, SEC84, Exo84p

Ral A RALA RAL [82]

Ral B RALB
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