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derivatives: Potent and selective inhibitors of [3H]dopamine 
uptake at the vesicular monoamine transporter-2

Emily R. Hankoskya, Shyam R. Joolakantib, Justin R. Nickella, Venumadhav Janganatib, 
Linda P. Dwoskina, and Peter A. Crooksb

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 
Lexington, KY 40536, USA

bDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for 
Medical Sciences, Little Rock, AR 72205, USA

Abstract

A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl 

piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit 

[3H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine 

transporter (DAT), [3H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and 

[3H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of 

the compounds exhibited potent inhibition of [3H]DA uptake at VMAT2, with Ki values in the 

nanomolar range (Ki = 0.014–0.073 μM). Compound 15d exhibited the highest affinity (Ki = 

0.014 μM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, 

SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for 

VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (Ki = 

0.073 μM). Compound 15b was considered the lead compound from this analog series due to its 

high affinity and selectivity for VMAT2.
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Psychostimulant use disorders are serious and escalating problems globally, and 

methamphetamine (METH) is one of the most addictive psychostimulant drugs of abuse1, 

causing dopaminergic neuronal damage in humans following long-term METH use.2 METH 

use disorders result in severe health consequences, including mood disturbances, infectious 

diseases (e.g., HIV and hepatitis C), cardiovascular complications, oral disease, and death.
3–7 Currently, there are no FDA-approved drugs for the treatment of METH use disorder.

The vesicular monoamine transporter-2 (VMAT2) plays a major role in mediating the 

neurochemical and behavioral effects of psychostimulants.8 VMAT2 is recognized as an 

important target for the discovery of therapeutics for METH use disorder.9 Small molecules 

that modulate VMAT2 function and inhibit the pharmacological effects of METH may prove 

to be efficacious pharmacotherapies for METH use disorder. In this respect, lobeline (1, Fig. 

1), the major alkaloid of Lobelia inflata, has been shown to inhibit dopamine (DA) uptake 

into synaptic vesicles via an interaction with VMAT2.10,11 Evaluation of lobeline’s effects in 

clinical trials revealed some minor side-effects, including bitter taste and nausea, likely the 

result of an action as an antagonist at nicotinic acetylcholine receptors (nAChRs).12,13 

Another limitation was the short plasma half-life of lobeline (~50 min in rodents),14 which 

would require the administration of multiple doses per day to maintain efficacy, and multiple 

dosing would likely result in diminished compliance.

Our research program set out to identify analogs with enhanced affinity and selectivity for 

VMAT2. The structure of lobeline was modified to remove the oxygen functionalities, 

resulting in the symmetrical molecule, lobelane (2, Fig. 1). Lobelane exhibited high affinity 

(Ki = 0.045 µM) for inhibition of [3H]DA uptake at VMAT2 with 43-, 35-, and 2.5-fold 

greater selectivity for VMAT2 relative to DAT, SERT, and hERG respectively.11,15,16,21 

Moreover, lobelane dose-dependently decreased METH self-administration in rats, without 

decreasing sucrose-maintained responding, revealing behavioral specificity and affording 

enhanced potential as a novel treatment for METH use disorder.17

Lobelane was modified further to provide two families of analogs, one based on a 2,6-

disubstituted piperidine scaffold and another incorporating a 1,4-disubstituted piperidine 

scaffold, both of which afforded potent inhibitors of DA uptake at VMAT2.18,19 To further 

evaluate structure activity relationships around these scaffolds, 1,4-diphenethylpiperidine 

and 1,4-diphenethylpiperazine analogs have been modified to incorporate aromatic 

fluoroethoxy moieties. Incorporation of fluorine atoms into strategic positions in a drug 

molecule can improve electronic and metabolic properties. In addition, fluorinated analogs 

incorporating an 18F positron-emitting isotope have additional value as potential ligands for 

positron emission tomography (PET) studies. Also, the substitution of the piperidine moiety 

with a piperazine moiety in these molecules also may afford improved drug-likeness 

properties.

Fluoroethoxy-containing 1,4-diphenethylpiperidine derivatives were synthesized starting 

with benzaldehyde. As illustrated in Scheme 1, a variety of variously substituted 

benzaldehydes (3) were reacted with 4-picoline (4) via Aldol condensation in acetic 

anhydride at reflux temperature to afford the corresponding (E)-4-styrylpyridine (5). 

Compound 5 then was hydrogenated with Adams catalyst (PtO2) in acetic acid under 
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hydrogen gas (50 psi) at room temperature to afford the corresponding 4-

phenethylpiperidino intermediate (6). Intermediate 6 was alkylated with various substituted 

phenethyl bromides (7) in the presence of K2CO3 in acetonitrile at reflux temperature to 

yield the corresponding 1,4-diphenethylpiperidine analogs 8a–8k; these compounds were 

further O-alkylated utilizing ethylfluorotosylate and Cs2CO3 in DMF at reflux temperature 

to yield the corresponding fluoroethoxy-substituted 1,4-diphenethyl-piperidine derivatives 

9a–9k (Scheme-1).

As illustrated in Scheme 2, the fluoroethoxy-substituted 1,4-diphenethylpiperazine 

derivatives were synthesized starting from 1,4-piperazine. 1,4-Piperazine (10) was reacted 

with a variety of substituted phenethylbromides (11) in toluene at reflux temperature to 

afford 1-phenethylpiperazine (12), which was alkylated with various 

hydroxyphenethylbromides using K2CO3 in acetonitrile at reflux temperature, to yield the 

corresponding 1,4-diphenethylpiperazine analogs 14a–14f. These compounds were O-
alkylated utilizing ethylfluorotosylate and Cs2CO3 in DMF at reflux temperature to yield the 

corresponding fluoroethoxy-substituted 1,4-diphenethylpiperazine derivatives 15a–15f 
(Scheme 2).

All synthesized compounds were fully characterized by 1H NMR, 13C NMR and high 

resolution mass spectral analysis.

Compounds 9a–9k and 15a–15f were evaluated for inhibition of [3H]DA uptake at VMAT2 

and DAT, [3H]5-HT uptake at the serotonin transporter (SERT), and affinity for the human 

ether-ago-go related gene (hERG) channel to determine cardiotoxicity. The results are 

provided in Table 1.

For inhibition of VMAT2 function, the [3H]DA uptake assay was conducted using 

preparations of isolated synaptic vesicles from rat brain.8,20 The majority of the analogs 

exhibited Ki values in the nanomolar range (Ki = 0.014–0.073 µM) for inhibition of VMAT2 

function. Compound 15d, 1-(2-chlorophenethyl)-4-(2-fluoroethoxyphenethyl)piperazine, 

was the most potent inhibitor of [3H]DA uptake at VMAT2, exhibiting a Ki value of 0.014 

µM and exhibiting 3-fold greater affinity for VMAT2 compared to lobelane (Ki = 0.045 µM). 

Compound 15d exhibited 160-, 5-, and 60-fold greater selectivity for VMAT2 versus DAT, 

SERT, and hERG, respectively.

Other notably potent compounds in this series were 1-(2-fluoroethoxy)phenethyl)-4-(4-

fluorophenethyl)piperazine (15e), 4-(2-fluoroethoxy)phenethyl)-1-(2-

ethoxyphenethyl)piperidine (9e), 4-(2-fluoroethoxy)phenethyl)-1-(4-

fluorophenethyl)piperidine (9h) and 1-(3-fluoroethoxy)phenethyl)-4-phenethyl piperidine 

(9k), which exhibited inhibition of [3H]DA uptake at VMAT2 with Ki values ranging from 

0.024–0.027 µM. Two other compounds, 4-(2-fluoroethoxy)phenethyl-1-phenethylpiperidine 

(9d) and 1-(2-fluoroethoxy)phenethyl-4-phenethylpiperazine (15a), also exhibited high 

affinities for VMAT2 (Ki’s = 0.035 µM), which were similar to that for lobelane.

In the 1,4-substituted piperidine series, compounds 9j and 9k are positional isomers. 

Compound 9k, a 1-(3-fluoroethoxyphenethyl) analog, exhibited 6-fold higher affinity (Ki = 
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0.024 µM) when compared to 9j, the 1-(4-fluoroethoxyphenethyl) analog, in the VMAT2 

assay. Ortho- and meta-fluoroethoxylphenyl analogs exhibited generally exhibited greater 

potency compared to para-fluoroethoxyphenyl analogs. Similarly, in the 1,4-piperazine 

series, compounds 15a, 15b, and 15c are all positional isomers involving the 

fluoroethoxyphenyl group. Compound 15a, a 2-fluoroethoxyphenethyl-containing analog, 

and compound 15b, a 3-fluoroethoxyphenethyl-containing analog, exhibited high affinity for 

VMAT2 (Ki = 0.035 and 0.073 µM, respectively), whereas compound 15c, a 4-

fluoroethoxyphenethyl-containing analog, was 8- to 17-fold less potent than its positional 

isomeric analogs, 15a and 15b. Compound 15d, containing a 2-fluoroethoxyphenethyl 

moiety, had the highest affinity (Ki = 0.014 µM) for VMAT2 in this series of analogs.

Interestingly, 15f, which contains a 4-fluoroethoxyphenethyl moiety, was 32-fold less potent 

than 15d. Thus, regiospecificity of the aromatic fluoroethoxy substituent plays an important 

role in influencing the affinity of these inhibitors for VMAT2.

Evaluation of 9a–9k and 15a–15f as inhibitors of [3H]DA uptake at DAT afforded Ki values 

in the range of 1.06–8.38 μM (Table 1), indicating that these compounds have good 

selectivity for VMAT2 over DAT. In the SERT assay,20 Ki values were in the range of 0.070 

µM to 6 μM (Table 1). Thus, for the majority of the compounds in this series, good 

selectivity for VMAT2 over SERT also was found. While 15d was the most potent (Ki = 

0.014 µM) compound in the series as an inhibitor of VMAT2, 15d exhibited 160-fold and 5-

fold selectivity for VMAT2 over DAT and SERT, respectively. Thus, 15d was one of the 

least selective compounds in the series.

Compounds 9a–9k and 15a–15f were evaluated also for affinity at the hERG channel to 

determine potential cardiotoxicity.21 Although the majority of the analogs exhibited 

moderate affinity for hERG (Ki = 0.28–0.85 μM), most had at least 10-fold greater 

selectivity for VMAT2 relative to hERG. However, inclusion of a piperazine ring, rather than 

a piperidine ring in the scaffold, while having minimal impact on affinity for VMAT2 and 

DAT (as evidenced in comparing 9j with 15c, and 9k with 15b), resulted in markedly greater 

selectivity for VMAT2 over SERT and hERG. These findings suggest that the piperazine-

containing scaffold has important advantages with respect to off-target activity (e.g., 

cardiotoxicity) relative to the piperidine-containing scaffold in the pursuit of potent and 

selective VMAT2 inhibitors as therapeutics for METH use disorder.

We carried out in silico evaluation of several drug-like and physicochemical properties of the 

above fluoroethoxy analogs and compared them to those of their parent compounds (i.e. 

molecules in which the fluoroethoxy moiety has been replaced with a methoxy group) 

utilizing appropriate predictive algorithms (ACD Profiler Suite); these properties included 

LogP, water-solubility, pKa, Lipinski compliance, drug-likeness, and ADME profiling 

(Caco-2, CNS penetration, and human intestinal absorption). The fluoroethoxy-1,4-

diphenethylpiperidine and piperazine analogs generally exhibited good lipophilicity with 

logP values in the range of 5.21–5.80 and 3.91–4.56, respectively, and had moderate to good 

water-solubility (0.41–6.14 and 0.37–3.70 mg/mL, respectively). The piperidine analogs 

exhibited pKa values in the range 9.1–9.3, whereas the piperazine analogs had pKa values in 

the range 7.4–7.8. Lipinski compliance and drug-likeness were moderate (1 violation) for 
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the piperidine analogs and moderate to good (0–1 violations) for the piperazine analogs. The 

ADME profiling data indicated that both the piperidine and the piperazine analogs were 

predicted to be highly absorbed (100%) from the human intestine, to be highly permeable in 

the Caco-2 cell assay, and were classified as CNS penetrants. These data are provided in 

Tables S1 and S2 in the Supporting Information. Comparison of the above properties of the 

fluoroethoxy-1,4-diphenethyl piperidine and piperazine analogs with those of their 

corresponding parent methoxy analogs indicated that replacing the aromatic methoxy 

substituent with an aromatic fluoroethoxy substituent had little overall effect on these 

properties.

Compound 15b was considered the lead compound based on its high affinity for VMAT2 

and due to it having the greatest selectivity for VMAT2 in the compound series (Fig. 2, 

Table 1). Compound 15b had a Ki value of 0.073 µM for VMAT2 and exhibited 115-, 82-, 

and 59-fold greater selectivity for VMAT2 compared to DAT, SERT and hERG, respectively. 

Based on these characteristics, 15b selectively interacts with VMAT2 and is predicted to 

have low abuse liability and cardiotoxicity.

In Summary, a small library of fluoroethoxy-containing analogs of 1,4-

diphenethylpiperidine and 1,4-diphenethylpiperazine were synthesized and evaluated for 

inhibition of VMAT2 function, as well as for inhibition of DAT and SERT function and 

interaction with the hERG channel. The parent compound, lobelane, has a high affinity (Ki = 

0.045 µM) for VMAT2 with 43-, 35-, and 2.5- fold greater selectivity relative to DAT, SERT, 

and hERG respectively. Most of the compounds tested in this study exhibited affinity for 

VMAT2 (Ki <0.075 µM), similar to lobelane.

Most of the compounds tested in this study exhibited affinity for VMAT2 (Ki <0.075 μM), 

similar to lobelane. However, many of the compounds exhibited improved selectivity for 

VMAT2 relative to DAT (45- to 160-fold), SERT (46- to 161-fold), and hERG (11- to 156-

fold). Generally, the piperazine and piperidine scaffolds confer affinity at VMAT2 similar to 

lobelane, while improving selectivity over off target proteins. Notably, the piperazine 

scaffold may be beneficial for reducing cardiotoxicity.

Compound, 15d exhibited the highest affinity (Ki = 0.014 μM) at VMAT2 relative to the 

other compounds in the series; however, 15d was not selective for VMAT2, exhibiting only 

5-fold greater selectivity for VMAT2 versus SERT. Among the compounds in this series, 

15b was the most selective compound for VMAT2, with good affinity (Ki = 0.073 µM) at 

VMAT2 and 115-, 82-, and 59-fold greater selectivity for VMAT2 relative to DAT, SERT, 

and hERG, respectively. In particular, it was observed that the piperazino analogs generally 

exhibited lower affinity for the hERG channel when compared to their piperidino 

counterparts.

Compound 15b is considered the lead compound from this series of analogs due to its 

nanomolar affinity at VMAT2, as well as its >60-fold selectivity for VMAT2 over other the 

off target proteins. Currently, 15b is being investigated further for in vivo activity in 

preclinical models of METH self-administration as a potential treatment for METH use 

disorder.
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Cs2CO3 (0.91 mmol) were added at ambient temperature. Reaction mixtures were heated at 120°C 
for 6 h. After completion of the reactions (monitored by TLC), reaction mixtures were diluted with 
water and extracted with dichloromethane (2 × 30 mL). Organic layers were dried over Na2SO4 
and concentrated under reduced pressure to afford crude products. Crude products were purified by 
column chromatography (silica gel, 3–5% methanol in dichloromethane) to afford pure products 
(yield 65–70%). These products were further converted to HCl salts by treatment with a 2M HCl 
solution in diethyl ether.4-(3-(2-fluoroethoxy)phenethyl)-1-phenethylpiperidine hydrochloride 
(9a)1H NMR (CD3OD, 400 MHz) δ 7.30–7.15 (m, 6H), 6.80–6.74 (m, 3H), 4.76 (t, J = 4.0 Hz, 
1H), 4.64 (t, J = 4.0 Hz, 1H), 4.21 (t, J = 4.0 Hz, 1H), 4.14 (J = 4.0 Hz, 1H), 3.17 (d, J = 11.6 Hz, 
2H), 2.88–2.84 (m, 2H), 2.76–2.72 (m, 2H), 2.64–2.60 (m, 2H), 2.27 (t, J = 11.2 Hz, 2H), 1.85 (d, 
J = 10 Hz, 2H), 1.61–1.56 (m, 2H), 1.39–1.33 (m, 3H) ppm. 13C NMR (CD3OD, 100 MHz) δ 
160.1, 145.4, 140.4, 130.4, 129.6, 129.6, 127.4, 122.2, 115.8, 112.7, 84.0, 82.3, 68.5, 68.3, 61.2, 
54.5, 39.1, 35.7, 33.9, 33.3, 32.2 ppm. HRMS (ESI) m/z calcd. for C23H31FNO (M + H)
+ 356.2384, found 356.2393.4-(3-(2-fluoroethoxy)phenethyl)-1-(2-methoxyphenethyl)piperidine 
hydrochloride (9b)1H NMR (CD3OD, 400 MHz) d 7.14–7.06 (m, 3H), 6.85–6.79 (m, 2H), 6.73–
6.68 (m, 3H), 4.69 (t, J = 3.6 Hz, 1H), 4.57 (t, J = 3.2 Hz, 1H), 4.12 (t, J = 4.0 Hz, 1H), 4.05 (t, J = 
3.6 Hz, 1H), 3.73 (s, 3H), 3.01 (d, J = 10.8 Hz, 2H), 2.80–2.76 (m, 2H), 2.56–2.51 (m, 4H), 2.05 
(t, J = 10.8 Hz, 2H), 1.71 (d, J = 8.8 Hz, 2H), 1.49 (s, 2H), 1.26 (s, 3H) ppm. 13C NMR (CD3OD, 
100 MHz) δ 160.0, 158.7, 145.4, 131.2, 130.4, 128.8, 128.5, 122.2, 121.5, 115.8, 112.6, 111.4, 
84.0, 82.3, 68.4, 68.2, 59.7, 55.7, 54.5, 39.1, 35.8, 33.9, 32.3, 28.2 ppm. HRMS (ESI) m/z calcd. 
for C24H33FNO2 (M + H)+ 386.2490, found 386.2504.4-(3-(2-fluoroethoxy)phenethyl)-1-(4-
methoxyphenethyl)piperidine (9c)1H NMR (CD3OD, 400 MHz) δ 7.17–7.11 (m, 3H), 6.83–6.71 
(m, 5H), 4.73 (t, J = 4.0 Hz, 1H), 4.61 (t, J = 4.0 Hz, 1H), 4.17 (t, J = 4.0 Hz, 1H), 4.10 (t, J = 4.0 
Hz, 1H), 3.71 (s, 3H), 3.17 (J = 11.2 Hz, 2H), 2.81–2.73 (m, 4H), 2.57 (t, J = 8.0 Hz, 2H), 2.31 (t, 
J = 10.8 Hz, 2H), 1.81 (d, J = 10 Hz, 2H), 1.56–1.51 (m, 2H), 1.35–1.33 (m, 3H) ppm. 13C NMR 
(CD3OD, 100 MHz) δ 160.0, 159.7, 145.3, 131.7, 130.6, 130.4, 122.2, 115.8, 115.0, 112.7, 84.0, 
82.3, 68.4, 68.2, 60.9, 55.6, 54.3, 38.8, 35.3, 33.8, 32.1, 31.8 ppm. HRMS (ESI) m/z calcd. for 
C24H33FNO2 (M + H)+ 386.2490, found 386.2501.4-(2-(2-fluoroethoxy)phenethyl)-1-
phenethylpiperidine (9d)1H NMR (CD3OD, 400 MHz) δ 7.28–7.10 (m, 7H), 6.87 (t, J = 8.0 Hz, 
2H), 4.75 (t, J = 3.6 Hz, 1H), 4.63 (t, J = 4.0 Hz, 1H), 4.17 (t, J = 4.0 Hz, 1H), 4.10 (J = 4.0 Hz, 
1H), 3.11 (d, J = 11.2 Hz, 2H), 2.86–2.82 (m, 2H), 2.72–2.62 (m, 4H), 2.23 (t, J = 10.8 Hz, 2H), 
1.82 (d, J = 10 Hz, 2H), 1.55–1.50 (m, 2H), 1.36–1.34 (m, 3H) ppm. 13C NMR (CD3OD, 100 
MHz) d 157.6, 140.2, 132.2, 130.9, 129.6, 129.5, 128.1, 127.4, 122.0, 112.6, 84.0, 82.3, 68.7, 68.5, 
61.0, 54.4, 37.6, 35.7, 33.2, 32.0, 28.3 ppm. HRMS (ESI) m/z calcd. for C23H31FNO (M + H)
+ 356.2384, found 356.2390.4-(2-(2-fluoroethoxy)phenethyl)-1-(2-methoxyphenethyl)piperidine 
(9e)1H NMR (CD3OD, 400 MHz) δ 7.29–7.14 (m, 4H), 6.99–6.87 (m, 4H), 4.81 (t, J = 3.6 Hz, 
1H), 4.69 (t, J = 4.0 Hz, 1H), 4.25 (t, J = 4.0 Hz, 1H), 4.18 (t, J = 4.0 Hz, 1H), 3.87 (s, 3H), 3.65 
(d, J = 13.2 Hz, 2H), 3.25–3.21 (m, 2H), 3.08–3.04 (m, 2H), 2.97 (t, J = 12.4 Hz, 2H), 2.71 (t, J = 
7.6 Hz, 2H), 2.09 (d, J = 13.6 Hz, 2H), 1.63–1.49 (m, 5H) ppm. 13C NMR (CD3OD, 100 MHz) δ 
158.8, 157.7, 131.7, 131.5, 131.0, 129.9, 128.3, 125.4, 122.1, 121.9, 112.7, 111.7, 84.2, 82.5, 68.8, 
68.6, 57.8, 55.8, 54.2, 37.4, 34.3, 30.8, 28.0, 26.6 ppm. HRMS (ESI) m/z calcd. for C24H33FNO2 
(M + H)+ 386.2490, found 386.2499.4-(2-(2-fluoroethoxy)phenethyl)-1-(4-
methoxyphenethyl)piperidine (9f)1H NMR (CD3OD, 400 MHz) δ 7.16–7.12 (m, 4H), 6.90–6.83 
(m, 4H), 4.79 (t, J = 4.0 Hz, 1H), 4.67 (t, J = 4.0 Hz, 1H), 4.23 (t, J = 4.0 Hz, 1H), 4.16 (t, J = 4.0 
Hz, 1H), 3.75 (s, 3H), 3.19 (d, J = 11.6 Hz, 2H), 2.84–2.65 (m, 6H), 2.32 (t, J = 10.8 Hz, 2H), 1.89 
(d, J = 9.6 Hz, 2H), 1.59–1.54 (m, 2H), 1.39–1.35 (m, 3H) ppm. 13C NMR (CD3OD, 100 MHz) δ 
159.6, 157.5, 132.0, 131.8, 130.7, 130.4, 127.9, 121.8, 114.8, 112.4, 83.9, 82.2, 68.6, 68.4, 61.0, 
55.4, 54.3, 37.5, 35.6, 32.1, 31.9, 28.1 ppm. HRMS (ESI) m/z calcd. for C24H33FNO2 (M + H)
+ 386.2490, found 386.2489. 1-(2-chlorophenethyl)-4-(2-(2-fluoroethoxy)phenethyl)piperidine 
(9g)1H NMR (CD3OD, 400 MHz) δ 7.44–7.42 (m, 2H), 7.33–7.29 (m, 2H), 7.18–7.15 (m, 2H), 
6.93–6.88 (m, 2H), 4.81 (t, J = 4.0 Hz, 1H), 4.69 (t, J = 3.6 Hz, 1H), 4.26 (t, J = 4.0 Hz, 1H), 4.19 
(t, J = 4.0 Hz, 1H), 3.70 (d, J = 12.8 Hz, 2H), 3.32–3.23 (m, 5H), 3.03 (t, J = 12 Hz, 2H), 2.72 (t, J 
= 7.6 Hz, 2H), 2.11 (d, J = 11.6 Hz, 2H), 1.64–1.54 (m, 4H) ppm. 13C NMR (CD3OD, 100 MHz) 
δ 157.7, 135.2, 134.9, 132.3, 131.7, 131.0, 130.8, 130.2, 128.7, 128.3, 122.1, 112.7, 84.2, 82.5, 
68.8, 68.6, 57.2, 54.2, 37.4, 34.3, 30.7, 29.2, 28.0 ppm. HRMS (ESI) m/z calcd. for C23H30ClFNO 
(M + H)+ 390.1994, found 390.1993.4-(2-(2-fluoroethoxy)phenethyl)-1-(4-
fluorophenethyl)piperidine (9h)1H NMR (CD3OD, 400 MHz) d 7.26–7.23 (m, 2H), 7.16–7.13 (m, 
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2H), 7.02 (t, J = 8.4 Hz, 2H), 6.92–6.86 (m, 2H), 4.80 (t, J = 4.0 Hz, 1H), 4.68 (t, J = 4.0 Hz, 1H), 
4.25 (t, J = 4.0 Hz, 1H), 4.18 (t, J = 4.0 Hz, 1H), 3.22 (d, J = 11.2 Hz, 2H), 2.90–2.77 (m, 4H), 
2.69 (t, J = 7.2 Hz, 2H), 2.37 (t, J = 10 Hz, 2H), 1.92 (d, J = 9.6 Hz, 2H), 1.60–1.55 (m, 2H), 1.39–
1.33 (m, 3H) ppm. 13C NMR (CD3OD, 100 MHz) d 164.3, 161.8, 157.7, 132.2, 131.4, 131.3, 
131.0, 128.1, 122.0, 116.3, 116.1, 112.6, 84.1, 82.4, 68.8, 68.6, 60.9, 54.5, 37.7, 35.7, 32.3, 32.1, 
28.3 ppm. HRMS (ESI) m/z calcd. for C23H30F2NO (M + H)+ 374.2290, found 374.2300.1-(2-
chlorophenethyl)-4-(4-(2-fluoroethoxy)phenethyl)piperidine (9i)1H NMR (CD3OD, 400 MHz) d 
7.45–7.41 (m, 2H), 7.33–7.30 (m, 2H), 7.14–7.11 (m, 2H), 6.89–6.86 (m, 2H), 4.76 (t, J = 4.0 Hz, 
1H), 4.64 (t, J = 4.0 Hz, 1H), 4.21 (t, J = 4.4 Hz, 1H), 4.14 (t, J = 4.4 Hz, 1H), 3.70 (d, J = 12.8 Hz, 
2H), 3.32 (m, 4H), 3.03 (t, J = 12.4 Hz, 2H), 2.63 (t, J = 4.8 Hz, 2H), 2.08 (d, J = 12.4 Hz, 2H), 
1.64–1.53 (m, 5H) ppm. 13C NMR (CD3OD, 100 MHz) d 158.3, 135.6, 135.1, 134.9, 132.3, 
130.8, 130.3, 130.2, 128.7, 115.6, 84.0, 82.3, 68.7, 68.5, 57.2, 54.2, 38.7, 34.1, 32.7, 30.7, 29.2 
ppm. HRMS (ESI) m/z calcd. for C23H30ClFNO (M + H)+ 390.1994, found 390.2010.1-(4-(2-
fluoroethoxy)phenethyl)-4-phenethylpiperidine (9j)1H NMR (CD3OD, 400 MHz) d 7.24 (t, J = 
4.0 Hz, 2H), 7.17–7.11 (m, 5H), 6.88 (d, J = 8.8 Hz, 2H), 4.74 (t, J = 4.0 Hz, 1H), 4.62 (t, J = 4.0 
Hz, 1H), 4.19 (t, J = 4.0 Hz, 1H), 4.12 (t, J = 4.4 Hz, 1H), 3.11 (d, J = 11.2 Hz, 2H), 2.80–2.76 (m, 
2H), 2.65–2.61 (m, 4H), 2.16 (t, J = 7.6 Hz, 2H), 1.82 (d, J = 10 Hz, 2H), 1.58–1.56 (m, 2H), 
1.39–1.23 (m, 3H) ppm. 13C NMR (CD3OD, 100 MHz) d 158.6, 143.7, 133.2, 130.7, 129.3, 
129.3, 126.7, 115.7, 84.0, 82.3, 68.7, 68.5, 61.6, 54.6, 39.4, 35.9, 33.9, 32.7, 32.5 ppm. HRMS 
(ESI) m/z calcd. for C23H31FNO (M + H)+ 356.2384, found 356.2395.1-(3-(2-
fluoroethoxy)phenethyl)-4-phenethylpiperidine (9k)1H NMR (CD3OD, 400 MHz) d 7.27–7.14 
(m, 6H), 6.91–6.84 (m, 3H), 4.76 (t, J = 4.0 Hz, 1H), 4.64 (t, J = 4.0 Hz, 1H), 4.24 (t, J = 3.6.0 Hz, 
1H), 4.17 (t, J = 4.0 Hz, 1H), 3.64 (d, J = 12.8 Hz, 2H), 3.32–3.28 (m, 3H), 3.07–2.93 (m, 4H), 
2.66 (t, J = 7.6 Hz, 2H), 2.05 (d, J = 13.2 Hz, 2H), 1.64–1.51 (m, 4H) ppm. 13C NMR (CD3OD, 
100 MHz) d 160.5, 143.1, 139.3, 131.1, 129.4, 129.3, 126.9, 122.4, 116.3, 114.2, 84.0, 82.3, 68.6, 
68.4, 59.1, 54.1, 38.6, 34.2, 33.6, 31.3, 30.7 ppm. HRMS (ESI) m/z calcd. for C23H31FNO (M + 
H)+ 356.2384, found 356.2394.1-(2-(2-fluoroethoxy)phenethyl)-4-phenethylpiperazine (15a)1H 
NMR (CD3OD, 400 MHz) d 7.37–7.26 (m, 7H), 7.03–6.95 (m, 2H), 4.91–4.89 (m, 1H), 4.79–4.77 
(m, 1H), 4.36–4.34 (m, 1H), 4.29–4.26 (m, 1H), 4.09–3.58 (m, 7H), 3.54–3.47 (m, 5H), 3.20–3.14 
(m, 4H) ppm. 13C NMR (CD3OD, 100 MHz) d 157.7, 137.1, 131.8, 130.2, 130.0 129.8, 128.4, 
125.2, 122.6, 113.1, 84.2, 82.6, 68.9, 68.7, 31.2, 26.5 ppm. HRMS (ESI) m/z calcd. for 
C22H30FN2O (M + H)+ 357.2337, found 357.2307.1-(3-(2-fluoroethoxy)phenethyl)-4-
phenethylpiperazine (15 b)1H NMR (CD3OD, 400 MHz) d 7.37–7.24 (m, 7H), 6.96–6.93 (m, 2H), 
4.76 (t, J = 4.0 Hz, 1H), 4.64 (t, J = 4.0 Hz, 1H), 4.23 (t, J = 4.0 Hz, 1H), 4.16 (t, J = 4.0 Hz, 1H), 
4.09–3.59 (m, 7H), 3.54–3.47 (m, 5H), 3.18–3.08 (m, 4H) ppm. 13C NMR (CD3OD, 100 MHz) d 
158.0, 135.7, 129.5, 128.6, 128.4, 127.9, 127.0, 114.7, 82.5, 80.8, 67.3, 67.1, 33.9, 29.7, 28.9 ppm. 
HRMS (ESI) m/z calcd. for C22H30FN2O (M + H)+ 357.2337, found 357.2301.1-(4-(2-
fluoroethoxy)phenethyl)-4-phenethylpiperazine (15 c)1H NMR (CD3OD, 400 MHz) d 7.38–7.26 
(m, 6H), 6.96–6.87 (m, 3H), 4.78–4.76 (m, 1H), 4.66–4.64 (m, 1H), 4.27–4.20 (m, 1H), 4.20–4.18 
(m, 1H), 4.11–3.59 (m, 7H), 3.55–3.48 (m, 5H), 3.17–3.11 (m, 4H) ppm. 13C NMR (CDCl3, 100 
MHz) d 159.1, 137.3, 135.6, 129.7, 129.6, 128.6, 128.4, 127.0, 121.0, 119.3, 115.2, 114.9, 113.0, 
82.5, 80.8, 67.2, 67.0, 29.7 ppm. HRMS (ESI) m/z calcd. for C22H30FN2O (M + H)+ 357.2337, 
found 357.2348.1-(2-chlorophenethyl)-4-(2-(2-fluoroethoxy)phenethyl)piperazine dihydrochloride 
(15d)1H NMR (CDCl3, 400 MHz) d 13.87 (brs, 1H), 13.62 (brs, 1H), 7.34–7.24 (m, 6H), 6.94 (d, 
J = 6.8 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 4.88 (s, 1H), 4.76 (s, 1H), 4.27–4.09 (m, 6H), 3.64 (brs, 
4H), 3.44–3.25 (m, 8H) ppm. 13C NMR (CDCl3, 100 MHz) d 156.0, 133.8, 132.7, 131.2, 130.9, 
130.0, 129.4, 129.2, 127.7, 123.8, 121.8, 111.8, 82.8, 81.1, 67.4, 56.5, 56.1, 48.3, 28.3, 25.7 ppm. 
HRMS (ESI) m/z calcd. for C22H29ClFN2O (M + H)+ 391.1947, found 391.1947.1-(2-(2-
fluoroethoxy)phenethyl)-4-(4-fluorophenethyl)piperazine dihydrochloride (15e)1H NMR (CDCl3, 
400 MHz) d 13.87 (brs, 1H), 13.59 (brs, 1H), 7.29–7.20 (m, 4H), 7.02 (t, J = 8.4 Hz, 2H), 6.95 (t, J 
= 7.2 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 4.90 (s, 1H), 4.79 (s, 1H), 4.29–4.02 (7H), 3.68–3.59 (m, 
4H), 3.31–3.24 (m, 7H) ppm. 13C NMR (CDCl3, 100 MHz) d 163.5, 161.1, 156.1, 131.4, 130.4, 
129.6, 123.8, 122.1, 116.4, 111.9, 82.9, 81.2, 67.6, 58.3, 56.7, 48.3, 29.5, 25.9 ppm. HRMS (ESI) 
m/z calcd. for C22H29F2N2O (M + H)+ 375.2242, found 375.2215.1-(2-chlorophenethyl)-4-(4-(2-
fluoroethoxy)phenethyl)piperazine (15f)1H NMR (CDCl3, 400 MHz) d 7.35–7.10 (m, 6H), 6.84 
(d, J = 8.4 Hz, 2H), 4.78 (t, J = 4 Hz, 1H), 4.66 (t, J = 4 Hz, 1H), 4.20 (t, J = 4 Hz, 1H), 4.13 (t, J = 
4 Hz, 1H), 2.95–2.91 (m, 3H), 2.76–2.72 (m, 3H), 2.62–2.54 (m, 10H) ppm. 13C NMR (CD3OD, 
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100 MHz) d 157.9, 133.6, 130.9, 129.6, 129.5, 129.0, 127.9, 127.4, 114.8, 82.5, 80.8, 67.3, 67.1, 
29.0, 27.8 ppm. HRMS (ESI) m/z calcd. for C22H29ClFN2O (M + H)+ 391.1947, found 391.1940.

23. Assay procedures for Vesicular [3H]DA Uptake, Synaptosomal [3H]DA, [3H]5-HT Uptake and 
hERG BindingVesicular [3H]DA Uptake Assays: Inhibition of [3H]DA 
(dihydroxyphenylethylamine,3,4-[7-3H], 27.8 Ci/mmol; Perkin-Elmer) uptake was conducted 
using a preparation of isolated synaptic vesicles as previously described.10,20 In brief, rat striata 
were homogenized with 10 up-and-down strokes of a Teflon pestle homogenizer (clearance ~ 
0.003 inch) in 14 ml of 0.32 M sucrose solution. Homogenates were centrifuged (2000g for 10 min 
at 4°C) and the resulting supernatants were centrifuged again (10,000g for 30 min at 4°C). Pellets 
were re-suspended in 2 ml of 0.32 M sucrose solution and subjected to osmotic shock by adding 7 
ml ice-cold water, followed by restoration of osmolality 5 min later by transferring suspensions to 
tubes containing 900 µl of 0.25 M HEPES buffer and 900 µl of 1.0 M potassium tartrate solution. 
Samples were centrifuged (20,000g for 20 min at 4°C) and the resulting supernatants were 
centrifuged again (55,000g for 1 h at 4°C), followed by the addition of 100 µl of 1.0 M MgSO4, 
100 µl of 0.25 M HEPES, and 100 µl of 1.0 M potassium tartrate solution before the final 
centrifugation (100,000g for 45 min at 4°C). Final pellets were re-suspended in 2.4 ml of assay 
buffer (25 mM HEPES, 100 mM potassium tartrate, 50 µM EGTA, 100 µM EDTA, 1.7 mM 
ascorbic acid, 2 mM ATP-Mg2+, pH 7.4). Aliquots of the vesicular suspension (100 µl) were 
added to tubes containing assay buffer, various concentration of analog (1 nM to 0.1 mM) and 0.1 
µM [3H]DA to afford a final volume of 500 µl. Nonspecific uptake was determined in the presence 
of Ro4-1284 (10 µM). Reactions were terminated by filtration using a cell harvester (MP-43RS; 
Brandel Inc.) and radioactivity retained by Whatman GF/B filters (presoaked for 2 h in 0.5% 
polyethyleneimine) was determined by scintillation spectrometry.Synaptosomal [3H]DA and 
[3H]5-HT Uptake Assays: Analog-induced inhibition of [3H]DA and [3H]5-HT (5-
hydroxytryptamine creatine sulfate 5-[1,2-3H[N]], 29.5 Ci/mmol; Perkin-Elmer) uptake into rat 
striatal synaptosomes was determined using methods previously described.20 Briefly, striata were 
homogenized in 20 ml of ice-cold 0.32 M sucrose solution containing 5 mM NaHCO3, pH 7.4, 
with 16 up-and-down strokes of a Teflon pestle homogenizer (clearance ~0.005 inch). 
Homogenates were centrifuged at 2000g for 10 min at 4°C, and resulting supernatants were 
centrifuged at 20,000g for 17 min at 4°C. Pellets were re-suspended in 1.5 ml of Krebs’ buffer, 
containing 125 mM NaCl, 5 mM KCl, 1.5 mM MgSO4, 1.25 mM CaCl2, 1.5 mM KH2PO4, 10 
mM a-d-glucose, 25 mM HEPES, and 0.1 mM EDTA, with 0.1 mM pargyline and 0.1 mM 
ascorbic acid, saturated with 95% O2/5% CO2, pH 7.4. Synaptosomal suspensions (20 µg of 
protein/50 µl) were added to duplicate tubes containing 50 µl of analog (1 nM to 0.1 mM, final 
concentration) and 350 µl of buffer and incubated at 34 °C for 5 min in a total volume of 450 µl. 
Samples were placed on ice, and 50 µl of [3H]DA or [3H]5-HT (10 nM, final concentration) was 
added to each tube for a final volume of 500 µl. Reactions proceeded for 10 min at 34 °C and were 
terminated by the addition of 3 ml of ice-cold Krebs’ buffer. Nonspecific [3H]DA and [3H]5-HT 
uptake were determined in the presence of 10 µM GBR 12909 and 10 µM fluoxetine, respectively. 
Samples were rapidly filtered through Whatman GF/B filters. Filters were washed three times with 
4 ml of ice-cold Krebs’ buffer containing catechol (1 mM). Complete counting cocktail was added 
to the filters, and radioactivity was determined by scintillation spectrometry.hERG Binding 
Assays: Binding assays were conducted as described previously using membranes from HEK-293 
cells, which specifically and stably express hERG channel protein (Millipore, Billerica, MA).21,24 

Briefly, cell membrane suspension (5 µg) was added to duplicate tubes containing assay buffer (50 
mM Tris, 10 mM KCl, and 1 mM MgCl2, pH 7.4), 25 µl of a single concentration (10 nM to 100 
µM) of analog or amitriptyline (positive control)25,26, and 25 µl (5 nM, final concentration) of 
[3H]dofetilide (dofetilide [N-methyl-3H], 80 Ci/mmol; American Radiolabeled Chemicals) for a 
final assay volume of 250 µl. Samples were incubated for 60 min at 25 °C and reactions terminated 
by rapid filtration through Whatman GF/B filters pre-soaked for 2 h in 0.5% polyethyleneimine. 
Filters were washed 3 times with 1 ml of ice-cold assay buffer. Radioactivity retained by the filters 
was determined by scintillation spectrometry.

24. Sviripa VM, Zhang W, Balia AG, Tsodikov OV, Nickell JR, Gizard F, Yu T, Lee EY, Dwoskin LP, 
Liu C, Watt DS. J Med Chem. 2014; 57:6083. [PubMed: 24950374] 

25. Jo S-H, Youm JB, Lee CO, Earm YE, Ho WK. Br J Pharmacol. 2000; 129:1474. [PubMed: 
10742304] 
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26. Teschemacher AG, Seward EP, Hancox JC, Witchel HJ. Br J Pharmacol. 1999; 128:479. [PubMed: 
10510461] 
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Figure 1. 
Structures of lobeline (1), lobelane (2), which incorporate a 2,6-disubstituted piperidine 

scaffold. Structures A and B represent 1,4 disubstituted piperidine and piperazine scaffolds, 

respectively.
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Figure 2. 
Compound 15b selectively inhibits specific [3H]DA uptake into striatal vesicles relative to 

inhibition of [3H]DA and [3H]5-HT uptake into striatal synaptosomes and [3H]dofetilide 

binding to the hERG channel protein in HEK-293 cells. Data are the mean (± S.E.M.) 

specific [3H]DA or [3H]5-HT uptake or [3H]dofetilide binding presented as a percentage of 

the control condition (VMAT2 [3H]DA uptake: 36.8 ± 11.8 fmol/mg; DAT [3H]DA uptake: 

13.4 ± 2.71 pmol/mg/min; SERT [3H]5-HT uptake: 0.87 ± 0.25 fmol/mg; hERG 

[3H]dofetilide binding: 1215.8 ± 353.0 fmol/mg; n=3–4 rats/uptake assay and 3 individual 

preparations of HEK-293 stock).
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Scheme 1. 
Synthesis of fluoroethoxy-substituted 1,4-diphenethylpiperidine analogs. Reagents and 
conditions: (a) Ac2O, reflux, 24 h, 36–48%; (b) 10% (w/v) PtO2/H2, AcOH, 50 psi, rt,12 h, 

75%; (c) K2CO3/acetonitrile, 80°C, 8 h, 75–80%; (d) F-CH2-CH2-OTs Cs2CO3, DMF/

reflux, 6 h, 65–70% (e) 2M HCl in diethyl ether.

Hankosky et al. Page 13

Bioorg Med Chem Lett. Author manuscript; available in PMC 2018 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Synthesis of fluoroethoxy-substituted 1,4-diphenethylpiperazine analogs. Reagents and 
conditions: (a) toluene/reflux, 8–12 h, 70–75% (b) K2CO3/acetonitrile, 80°C, 8–10 h, 75–

80%; (c) F-CH2-CH2-OTs, Cs2CO3, DMF/reflux, 6 h, 60–65% (d) 2M HCl in diethyl ether.
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Table 1

Fluoroethoxy-containing 1,4-diphenethylpiperidine and 1,4-diphenethylpiperazine analog inhibition of 

[3H]DA uptake at VMAT2 and DAT, [3H]5-HT uptake at SERT, and [3H]dofetilide binding

Compound
VMAT2

[3H]DA Uptake
Ki, μM

DAT
[3H]DA Uptake

Ki, μM

SERT
[3H]5-HT Uptake

Ki, μM

hERG
[3H]Dofetilide

Binding
IC50, μM

0.053 ± 0.0059a 3.14 ± 0.16

(60-fold)b
2.41 ± 0.37
(46-fold)

0.75 ± 0.31
(14-fold)

0.061 ± 0.0052 4.79 ± 1.35
(79-fold)

0.47 ± 0.09
(8-fold)

0.80 ± 0.13
(13-fold)

0.067 ± 0.0020 3.70 ± 0.92
(56-fold)

0.66 ± 0.07
(10-fold)

0.28 ± 0.06
(4-fold)

0.035 ± 0.0043 2.75 ± 0.24
(78-fold)

5.68 ± 1.92
(161-fold)

0.76 ± 0.16
(22-fold)

0.025 ± 0.0017 2.31 ± 0.39
(94-fold)

1.16 ± 0.32
(47-fold)

0.43 ± 0.15
(17-fold)

0.073 ± 0.0058 5.58 ± 0.87
(77-fold)

2.13 ± 0.71
(29-fold)

0.35 ± 0.07
(5-fold)

0.062 ± 0.0033 2.76 ± 0.65
(45-fold)

1.45 ± 0.10
(24-fold)

0.69 ± 0.12
(11-fold)

0.027 ± 0.0028 2.14 ± 0.26
(78-fold)

3.66 ± 0.86
(134-fold)

0.38 ± 0.09
(14-fold)

0.19 ± 0.012 2.71 ± 0.57
(15-fold)

3.62 ± 0.95
(20-fold)

2.20 ± 0.65
(12-fold)

0.15 ± 0.013 1.06 ± 0.04
(7-fold)

0.39 ± 0.09
(3-fold)

0.35 ± 0.16
(2-fold)
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Compound
VMAT2

[3H]DA Uptake
Ki, μM

DAT
[3H]DA Uptake

Ki, μM

SERT
[3H]5-HT Uptake

Ki, μM

hERG
[3H]Dofetilide

Binding
IC50, μM

0.024 ± 0.0047 1.96 ± 0.23
(81-fold)

0.47 ± 0.18
(19-fold)

0.41 ± 0.05
(17-fold)

0.035 ± 0.0046 4.57 ± 0.66
(130-fold)

0.26 ± 0.04
(7-fold)

5.49 ± 2.23
(156-fold)

0.073 ± 0.017 8.38 ± 1.61
(115-fold)

5.96 ± 1.01
(82-fold)

4.31 ± 0.63
(59-fold)

0.60 ± 0.091 2.74 ± 0.13
(5-fold)

3.37 ± 0.81
(6-fold)

3.05 ± 0.93
(5-fold)

0.014 ± 0.0026 2.24 ± 0.10
(160-fold)

0.072 ± 0.01
(5-fold)

0.85 ± 0.15
(61-fold)

0.024 ± 0.0027 1.57 ± 0.07
(65-fold)

0.30 ± 0.01
(13-fold)

1.12 ± 0.21
(47-fold)

0.45 ± 0.026 5.36 ± 0.12
(12-fold)

0.48 ± 0.04
(1-fold)

1.40 ± 0.34
(3-fold)

a
Mean ± SEM for n=3–4/analog/assay

b
Number within the parentheses represents fold selectivity relative to inhibition of VMAT2 function
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