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1H, 15N, and 13C Chemical Shift Assignments of the Regulatory 
Domain of Human Calcineurin

Dinesh K. Yadav1, Sri Ramya Tata1, John Hunt1, Erik C. Cook2, Trevor P. Creamer2, and 
Nicholas C. Fitzkee1

1Department of Chemistry, Mississippi State University

2Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of 
Kentucky

Abstract

Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development and 

nervous system function. Previous studies have demonstrated that the regulatory domain (RD) of 

CaN binds calmodulin (CaM) towards the N-terminal end. Calcium-loaded CaM activates the 

serine/threonine phosphatase activity of CaN by binding to the RD, although the mechanistic 

details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the 

auto-inhibitory domain (AID) from the active site of CaN, activating phosphatase activity. In the 

absence of calcium-loaded CaM, the RD is disordered, and binding of CaM induces folding in the 

RD. In order to provide mechanistic detail about the Ca…aN interaction, we have undertaken an 

NMR study of the RD of CaN. Complete 13C, 15N and 1H assignments of the RD of CaN were 

obtained using solution NMR spectroscopy. The backbone of RD has been assigned using a 

combination of 13C-detected CON-IPAP experiments as well as traditional HNCO, HNCA, 

HNCOCA and HNCACB-based 3D NMR spectroscopy. A 15N-resolved TOCSY experiment has 

been used to assign Hα and Hβ chemical shifts.
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Biological Context

Calcineurin (CaN), also known as protein phosphatase 2B, is a Ca2+ and calmodulin (CaM)-

dependent serine/threonine phosphatase protein (Wang and Desai 1976). CaN participates in 

various roles associated with cardiac, vascular, and nervous system development, making 

CaN-mediated signaling very important for learning and memory, skeletal muscle growth, 

Corresponding Author: Nicholas C. Fitzkee, Department of Chemistry, Mississippi State University, Hand Lab 1115, 310 Presidents 
Circle, Mississippi State, MS 39762, nfitzkee@chemistry.msstate.edu, Phone: (662) 325-1288, Fax: (662) 325-1618, ORCID: 
0000-0002-8993-2140. 

Ethical Standards
The authors declare that all experiments performed comply with current US law.

Conflict of Interest
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Biomol NMR Assign. Author manuscript; available in PMC 2018 October 01.

Published in final edited form as:
Biomol NMR Assign. 2017 October ; 11(2): 215–219. doi:10.1007/s12104-017-9751-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and immune system activation (Rusnak and Mertz 2000). Because of its roles in these 

signaling pathways, dysregulation of CaN has been implicated in many pathological states, 

e.g. Alzheimer’s disease (Ermak and Davies 2013), Down syndrome (Hoeffer, Dey et al. 

2007), and cardiac hypertrophy (Vega, Bassel-Duby et al. 2003). CaN has the ability to 

dephosphorylate and activate the nuclear factor of activated T-cells (NFAT). NFAT proteins 

are a family of transcription factors that activate genes involved in immune response 

(Macian 2005). CaN is therefore an important target for immunosuppressant drugs like 

cyclosporin A (CspA) and FK506 (Liu, Farmer et al. 1991).

CaN is a heterodimer consisting of a 60-kDa A chain and a 19-kDa B chain. There are three 

isoforms of the CaN A chain: the α-isoform (the dominant form in neurons), the β-isoform 

(broadly distributed) and the testis-specific γ-isoform (Rusnak and Mertz 2000). The CaN A 

chain consists of the catalytic domain, the B-chain binding domain, the regulatory domain 

(RD, residues 388–458), the autoinhibitory domain (AID), and a short C-terminal tail 

(Hubbard and Klee 1989). The B chain is homologous to CaM and binds four calcium ions 

(Stemmer and Klee 1994). The AID keeps CaN in an inactive state at low concentrations of 

Ca2+, but at increased levels, CaM binds calcium and then binds to the calmodulin-binding 

region (CaMBR) of CaN, located in the RD. In the absence of calcium-loaded CaM, the RD 

is disordered (Manalan and Klee 1983, Yang and Klee 2000, Rumi-Masante, Rusinga et al. 

2012). Binding of CaM to CaN causes a structural ordering in the RD that removes the AID 

from the catalytic site of CaN, thereby activating the enzyme (Shen, Li et al. 2008, Dunlap, 

Cook et al. 2013, Dunlap, Guo et al. 2014, Zhao, Yang et al. 2014).

Several three-dimensional structures of CaN have been obtained at high resolution by X-ray 

diffraction methods as a means of understanding its catalytic mechanism. The original 

structure included residues 21–372 of CaN complexed with the inhibitory compound FK506 

(Griffith, Kim et al. 1995). Subsequent work has investigated CaN bound to cyclosporin A 

(Jin and Harrison 2002), and a solution NMR structure has been obtained for the catalytic 

domain of CaN bound to an NFAT-derived PVIVIT peptide (Takeuchi, Sun et al. 2015). The 

structure of the CaM-CaN complex is of high interest (Ye, Wang et al. 2008, Ye, Feng et al. 

2013, Dunlap, Guo et al. 2014); however, no structure to date has been obtained that 

includes the complete CaN RD. Here, we present backbone and side-chain assignments of 

the RD of CaN (residues 388–468) in the solution phase, obtained using 2D and 3D NMR 

techniques. The chemical shifts support a largely disordered conformation, although 

secondary shifts suggest that some helical propensity may be present in the RD in the 

absence of Ca2+-loaded CaM.

Methods and Experiments

RD Expression and Purification

The calmodulin-containing pETCaMI plasmid, and the RD-containing pETRD plasmid were 

co-transformed into Escherichia coli BL21(Star) DE3 competent cells (Invitrogen) for 

expression. In this system, the Human Calcineurin A domain (Isoform 1) RD protein 

sequence (residues 388–468) is flanked by three residues on the N-terminus (MAG) and a C-

terminal Histidine tag (GWGGGLEHHH HHH). For simplicity, the first three residues 

(385–387) and the C-terminal Histidine tag residues (469–481) are numbered as part of the 
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sequence, even though they are not part of the wild-type RD domain. The total RD 

construct, containing 97 residues, corresponds to constructs used previously for the study of 

the RD, and purification proceeded as described previously (Dunlap, Cook et al. 2013, 

Dunlap, Guo et al. 2014). Transformed cells were incubated in 100 ml terrific broth (TB; 12 

g/L tryptone, 24 g/L yeast extract, 4.0 ml glycerol, 0.17 M KH2PO4, 0.72 M K2HPO4, 75 

μg/ml ampicillin and 50 μg/ml kanamycin) overnight at 37°C. These starter cultures were 

then added to 1L of M9 minimal media (containing 75 μg/ml ampicillin and 50 μg/ml 

kanamycin). The starter culture in TB was used to inoculate the M9 media such that the 

initial OD600 was 0.05. This larger culture was incubated at 37°C in a 200 rpm shaker. When 

the culture reached an OD600 of 0.6–0.7, expression was induced with a final concentration 

of 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and harvested after 4 hours (OD600 

≈ 1.6). These cells were pelleted by centrifugation for 30 minutes at 8,000 × g, and then re-

suspended in lysis buffer (20mM HEPES pH 7.5, 200 mM NaCl, 0.1mM PMSF, 125μg/ml 

lysozyme). One tablet of Roche Complete EDTA-free protease inhibitor was added to the 

lysis buffer, and the re-suspended cells were sonicated on ice in a Branson Sonifier 250 at 

power level 6 for 3 repetitions of a 2 minute pulse/2 minute rest. Processed lysate was 

centrifuged at 18,000 × g for 45 minutes at 4°C, with CaN remaining in the soluble fraction. 

The CaN RD was purified on a Ni-NTA column (GE Life Sciences) using urea-thiourea 

buffer to separate the co-expressed CaM protein from the RD. The Ni-NTA column was 

equilibrated with 5 column volumes (CV) of 7M urea/thiourea buffer (10mM HEPES pH 

7.5, 200mM NaCl, 2M thiourea, 5M urea) at room temperature. Centrifuged lysate mixed 

with 3X volume of urea/thiourea buffer for 10 minutes and then applied to the Ni-NTA 

column. The urea/thiourea concentration was reduced to zero by washing the column with 

binding buffer (20mM HEPES pH 7.5, 200mM NaCl). The protein was eluted with 20mM 

HEPES pH 7.5, 200mM NaCl, 2mM CaCl2 and 250mM imidazole. Eluted protein was 

mixed with 50ml of column buffer (20mM HEPES pH 7.5, 200mM NaCl, 2mM CaCl2). 

Final purification was performed with a CaM-Sepharose column (GE Life Sciences) 

equilibrated with 5 CV of column buffer. Protein was eluted with a gradient from 0 – 100% 

elution buffer (20mM Tris pH 7.5, 200mM NaCl, 2mM EGTA) and pooled protein fractions 

(where the absorbance at 280 nm was higher than at 260 nm) were dialyzed in dialysis 

buffer (20 mM PIPES pH 5.5, 10 mM DTT and 100 mM NaCl) overnight and stored at 4°C. 

The molecular weight and purity of the 97-residue CaN RD were confirmed by LC-MS and 

SDS-PAGE.

NMR Spectroscopy

All samples for NMR experiments were prepared in 20mM PIPES (pH 5.5), 100 mM NaCl, 

6% D2O and 10 mM DTT. Protein concentrations ranged from 0.2 to 0.25 mM for all NMR 

experiments in a total volume of 550 μL. The samples were transferred into 5 mm NMR 

sample tubes and stored at 4°C until required for NMR experiments. All the NMR 

experiments were performed on a Bruker AVANCE III 600 MHz spectrometer, equipped 

with a multinuclear biomolecular (QCI) cryo-probe. All NMR spectra were acquired at 288 

K using Bruker TopSpin software. Experimental spectra were processed with NMRPipe 

(Delaglio, Grzesiek et al. 1995). Processed NMR spectra were assigned and visualized using 

Sparky.
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Protein backbone assignments were made using 3D HNCO, HNCA, HNCOCA 

CACBCONH, CBCANH and [1H-15N]-HSQC experiments (Grzesiek and Bax 1992). Side 

chain 1H and 13C assignments were obtained using a 3D TOCSY-HSQC and 3D 

HCCCONH spectra (Schleucher, Schwendinger et al. 1994, Carlomagno, Maurer et al. 

1996). While the initial amide-proton resolved experiments were promising, spectral overlap 

and crowding precluded the complete assignment using 15N-HSQC resolved experiments. In 

addition, the CaN RD contains three proline residues which are not detected in these spectra. 

Therefore, we also recorded an (HACA)N(CA)CON NMR experiment, which was 

instrumental in determining the complete backbone trace for this protein (Bastidas, Gibbs et 

al. 2015).

Assignments and Data Deposition

Complete backbone and side-chain 13C and 15N chemical shift assignments of RD CaN are 

presented here, and these assignments will provide insight into this disordered region of 

CaN. A 2D 1H-15N HSQC spectrum of the RD construct (residues 388–468, plus flanking 

residues), with assignments of the amide backbone, is shown (Fig. 1A). The chemical shifts 

of RD CaN have been deposited in the Biological Magnetic Resonance Data Bank (http://

www.bmrb.wisc.edu) under the accession number 26990. The 2D and 3D NMR spectra 

enabled the detection of the backbone and aliphatic side-chain resonances for the CaN RD. 

In the absence of calcium loaded CaM, the RD is fully disordered, and chemical shifts 

exhibit sharp lines and narrow dispersion in the 1H dimension (Fig. 1A), a characteristic 

typical of intrinsically disordered proteins (IDPs). Almost all non-proline residues in the 

construct have been assigned, except residues 385–387 (part of the N-terminal, non-RD 

flanking region), and residue R397 (likely because of spectral overlap). In addition, all three 

proline residues have been assigned in the CON-resolved spectra (Fig. 1B). Backbone 

sequential assignment was achieved for 95% of the amide resonances, 98% and 88% of 

the 13Cα and 13Cβ resonances respectively, and 97% of the 13CO resonances. Sets of signals 

originating from the non-RD flanking regions were more challenging to assign, likely 

because of elevated hydrogen exchange near the N-terminus (Bai, Milne et al. 1993) and 

degeneracy in the Histidine tag near the C-terminus.

Deviations from random coil chemical shifts are indicative of transiently-formed structure in 

intrinsically disordered proteins. Sequence-dependent random coil shifts have been corrected 

for pH and temperature and suggest weak structural preferences in the RD (Kjaergaard, 

Brander et al. 2011). For example, 13Cα chemical shifts (Fig. 2A) indicate a slight 

propensity for helix formation between residues 417–422 and 452–460, consistent with 

previous findings that indicate these regions adopt a helical conformation when bound to 

Calmodulin (Manalan and Klee 1983, Dunlap, Guo et al. 2014). This propensity, however, is 

not borne out by 13Cβ chemical shifts (Fig. 2B), which are quite random throughout the 

sequence. Secondary structure propensity (SSP) scores (Marsh, Singh et al. 2006) and δ2D 

population predictions (Camilloni, De Simone et al. 2012) are also consistent with a highly 

disordered RD (Fig. 2C, 2D), although a weak helical score is observed for residues 417–

422 and 452–460. The scores suggest less structural bias than has been observed in other 

IDPs, for example in the helical region of the ALS-related protein TDP-43 (Conicella, Zerze 
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et al. 2016). NMR assignments of the RD CaN will be valuable for future studies of CaN 

activation and its interaction with many target proteins.
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Figure 1. 
Assigned [1H-15N]-HSQC spectrum (A) and (HACA)N(CA)CON spectrum (B) of CaN RD 

in solution. All three proline residues in panel B are aliased.
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Figure 2. 
13Cα (A) and 13Cβ (B) secondary chemical shifts for the CaN RD. Secondary 13Cα shifts 

suggest a slight propensity for helix formation between residues 417–422 and 452–460. SSP 

scores (C) for the RD are also weakly helical in these regions. δ2D-predicted secondary 

structure propensities (D) based on experimental RD chemical shifts confirm that the RD 

overall is highly disordered. Secondary structure classifications for δ2D are designated in 

the legend.
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