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Abstract

Vapor intrusion (VI) is well-known to be difficult to characterize because indoor air (IA) 

concentrations exhibit considerable temporal and spatial variability in homes throughout impacted 

communities. To overcome this and other limitations, most VI science has focused on subsurface 

processes; however there is a need to understand the role of aboveground processes, especially 

building operation, in the context of VI exposure risks. This tutorial review focuses on building air 

exchange rates (AERs) and provides a review of literature related building AERs to inform 

decision making at VI sites. Commonly referenced AER values used by VI regulators and 

practitioners do not account for the variability in AER values that have been published in indoor 

air quality studies. The information presented herein highlights that seasonal differences, short-

term weather conditions, home age and air conditioning status, which are well known to influence 

AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in 

combination with relevant AER values reveal that IA concentrations can vary more than one order 

of magnitude due to air conditioning status and one order of magnitude due to house age. 

Collectively, the data presented strongly support the need to consider AERs when making 

decisions at VI sites.

Graphical Abstract

Variations in building air exchange rates influence indoor air concentrations and vapor intrusion 

exposure risks.
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INTRODUCTION

Vapor intrusion (VI) involves indoor air (IA) contamination resulting from the migration of 

volatile organic compounds (VOCs) from contaminated groundwater and soil into overlying 

buildings, and can pose health risks to building occupants. Measuring IA concentrations to 

evaluate VI exposure risks is complicated by many factors, including temporal variations in 

VOC concentrations, multiple chemical sources (some of which are not related to VI), as 

well as changes in building operation, among others. One of the most challenging aspects of 

collecting IA data is related to spatial and temporal variability of VOC concentrations1–3, 

and there is a lack of definitive guidance for indoor air sampling strategies that effectively 

address this variability2.

Amidst the variability in IA concentration, VI site investigations often focus on the 

collection and analysis of subsurface samples along with IA data, and, in some cases VI 

modeling, as part of a multiple lines of evidence approach to evaluate the potential for VI 

exposure riskse.g.4. Recently, the importance of building operation has gained recognition 

within the VI community5–15. Newer approaches for characterizing VI exposure risks have 

begun focusing on building operation (e.g. 11–13); however, the United States (US) federal 

and state regulatory documents (e.g. 1) lack well-defined guidance about how to incorporate 

building operation into site-specific investigations.

The goal of this tutorial review paper is to connect the field of VI characterization with the 

established field of indoor air quality research related to building air exchange rates (AERs). 

AERs are widely acknowledged throughout the indoor air literature as an important 

parameter controlling indoor air quality 16–26. Here, we provide information for the VI 

community about the importance of considering the role of building AERs when evaluating 

VI exposure risks.
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BACKGROUND

VI Conceptual Model

VOC migration from contaminated groundwater and soil into overlying buildings includes 

three main processes: 1) vapor transport through soil from a chemical source; 2) VOC vapor 

entry into building; and, 3) dilution/dispersion within the building. Vapor transport through 

the soil is predominantly governed by vapor diffusion and is determined by the properties of 

contaminant and the soil. Vapor entry into the building occurs by combination of diffusion 

and convective transport mechanisms. The convective transport is driven by the pressure 

difference between the inside of the building and the outside of the building. This pressure 

difference, known as the driving force for vapor entry, is caused by a combination of the 

stack effect (which occurs due to air density gradient due to the temperature difference 

between the outside and inside of the building), wind effects, and building ventilation 

processes. Once soil vapors enter the building, it undergoes a mixing that is influenced by 

the AER. A detailed description of VI conceptual model is provided in 2015 USEPA VI 

guidance1.

Current VI Site-specific Exposure Risk Assessment Approach

USEPA1 recommends using multiple lines of evidence to make decisions at VI sites. This 

approach includes the collection of many types of data and may include modeling, with a 

strong interest in characterizing IA exposure risks. Field data have shown substantial spatial 

(house-to-house) and temporal variability in IA concentrations. For instance, Johnston and 

Gibson3 found a one-order-of-magnitude variability in tetrachloroethylene (PCE) 

concentrations in IA across both space and time among the residential study homes in San 

Antonio, Texas. Holton et al2 conducted extensive IA sampling for 2.5 years in a single 

house overlying a dilute chlorinated solvent plume (10–50 μg/L TCE). IA concentrations 

varied by 3 orders of magnitude (>0.01–10 ppbv TCE). One source of IA variability has 

been linked to preferential pathways, in particular the unintentional entry of sewer gas 

entering indoor spaces e.g. 12,27. However, experimental results have also shown that induced 

building-pressure variations influence the temporal and spatial variability of both radon and 

VOC concentrations in sub-slab and IA7. Factors that may be responsible for variations in 

building pressures include, among others, changes in atmospheric conditions (e.g., 

temperature, wind and barometric pressure) and changes in building conditions (e.g., 

fluctuation in building AER due to resident behavior/heating, ventilation and air-

conditioning (HAVC) system operation) 8–15. Numerical results using 3D model and actual 

field barometric pressure and wind data as input have shown two to four orders of magnitude 

variability across the instantaneous IA concentrations and about an order of magnitude 

variability for 24 h averages for a month-long simulation and non-degrading chemical 14.

The conceptual understanding of VI is predominately focused on subsurface transport and 

this perspective has been incorporated into many VI models 5, 28–32, with few exceptions 

e.g. 10, 14. Virtually all VI models use Equation 1 to calculate IA concentration, which relies 

on two parameters that describe the building characteristics; building AER and the indoor 

space volume5. Many simulations will use a default value such as of 0.528–35 or 0.2533 for 
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AER; however, as will be discussed later, these default values do not adequately account for 

the uncertainty and variability in AER.

(1)

Where,

JT – Soil gas flux from the subsurface into the building (M/L2/t)

AER – Air exchange rate (1/t)

Ack – Area of the crack in the floor that permits soil gas entry (L2)

Qck – Soil gas flow through crack into building (L3/t)

Vb – Volume of the enclosed building space (L3)

AER is a controlling factor for energy consumption and IA quality for all buildings, not only 

at VI sites. Air quality studies have shown variation in AER based on geographical 

differences in weather conditions, building characteristics, and occupant behavior16–26. AER 

depends on many factors including meteorological conditions (e.g. indoor/outdoor 

temperature differences and wind speed) building characteristics (e.g. tightness of the 

building envelope, type of mechanical ventilation, surrounding terrain, and local wind 

sheltering) and occupant behavior (e.g. opening windows and the mechanical ventilation 

operating manner). As will be discussed later these factors are related to the physical driving 

forces of the airflows.

Typical AER values reported in VI literature (presented in Table 1) show that most studies 

are restricted to the range of values recommended by USEPA1 as part of the screening 

process to identify “at-risk” buildings for VI exposures. The range that USEPA recommends 

is at the lower end of typical AER distributions found in the air quality literature (presented 

in Table 3 and Figure 2). This lower range is reasonable for conservative risk assessment 

screening purposes but does not adequately reflect the AER values published literature (e.g., 

Isaacs et al.19).

USEPA’s conservative AER range (0.18–1.26 1/h) is not intended to be used as an 

assumption when interpreting IA concentration data or evaluating a range of possible 

exposure scenarios. However, this range has been commonly used during VI studies (Table 

1). The assumption that a building has a low AER value (i.e. 0.18–1.26 1/h) when a building 

has a low measured IA VOC concentration may incorrectly suggest that a building has a low 

potential for VI exposure risks. As shown in Equation 1, a high AER may result in a low 

indoor air concentration. But, in this scenario, the potential for VI exposure risks could 

actually be quite high.

It is important to note that when AERs are altered, then the indoor air concentration could 

change. While the general trends can be expected to be inverse (e.g. as AER increases, IA 

decrease and vice versa), exact relationships cannot be easily extracted because as discussed 

Reichman et al. Page 4

Environ Sci Process Impacts. Author manuscript; available in PMC 2018 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



below, AERs are influenced by many factors; and, some of those factors also impact JT 

(Equation 1). But, by understanding that AERs can span much broader ranges (Table 3 and 

Figure 2) than conservative risk screening values, the VI community can become better 

informed when making decisions at VI sites.

Further, the challenge of house-to-house variability has long been reported as a risk 

communication challenge during VI investigations. When engaging with VI communities 

and communicating exposure risks to homeowners and building occupants, regulators and 

practitioners could share broader perspectives about the well-established variability of 

AERs, and the role that AERs play in the variability of IA quality.

Building Air Exchange Rates (AER)

AER is the rate at which the whole house volume air exchanges with the outdoor air. When 

the time unit is hours, AER is referred to as air changes per hour (ACH, 1/h). Air exchange 

is the combination of two processes: infiltration and ventilation. As shown in Equation 1, the 

VI community often shows Qck (first term in denominator) as separate from total air flow 

rate through the building envelope (second term in denominator); however Qck is included in 

that as part of the formal definition of infiltration.

Infiltration refers to uncontrolled outdoor air flow through unintentional openings in the 

building envelope, that is, leaks. These leaks include the cracks and penetrations that exist in 

all buildings, including those that are of importance for VI (e.g. Qck). In residential 

buildings, many common leak locations have been established as major sources of 

infiltration, including: the main envelope area; wall, roof and floor junctions; doors and 

windows; penetrations through the envelope, including electrical components, as well as 

chimneys, wood burning stoves, etc17, 36. An extensive study by Bailly et al.36 conducted at 

over 35,000 French single family houses reported that leaks through windows and doors 

were responsible for the majority of total measured building leaks, followed closely by leaks 

through electrical components. Over the period of one year, this same study showed little 

fluctuation in infiltration rates (reported as airtightness) based on monthly measurements, 

suggesting that building tightness is not (typically) biased by measurement season.

Ventilation includes natural ventilation and mechanical ventilation; and can be highly 

variable depending on a range of factors. For purposes herein, natural ventilation is outdoor 

airflow through intentional openings such as open windows, and is driven by weather 

condition. Mechanical ventilation is airflow induced by powered equipment. These 

definitions are fairly commonly accepted; however alternate definitions do exist. A detailed 

description of infiltration and ventilation is provided in the ASHRAE Handbook - 
Fundamentals17.

In residential construction, energy-saving trends have resulted in homes being tighter and 

less prone to infiltration. As a result, ventilation systems are an important part of providing 

adequate AERs. ASHRAE standard 62.2 37 establishes ventilation airflow and measurement 

requirements for residential buildings. The required whole house ventilation rate is based on 

the number of bedrooms in the house, and the number of occupants. There are a variety of 

ways to meet the airflow requirements set forth by this standard, either through mechanical 
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systems or via natural forces. The exact nature of a residential ventilation system will play 

important role in the overall AER; however, because of the complexity of residential 

ventilation systems, a thorough discussion is beyond the scope of this work. The reader is 

directed to Russell (2005)38 which provides a review of residential ventilation systems.

In 2012, Stratton et al.39 conducted a study in California to evaluate whole house ventilation 

rates, as well as air flow from various components (exhaust fans, hoods, etc.) and 

documented the accuracy of measurement techniques that comply with ASHRAE 62.237. 

Thirteen (13) of the fifteen (15) homes met the ASHRAE 62.2 requirements. As an example, 

to be compliant with ASHRAE 62.2, a 2000 ft2 home with 3 bedrooms would require a 

whole building airflow of 50 ft3/min. In the 15 houses (3–4 bedroom homes) that were 

measured, the whole-building ventilation rates ranged from 32 to 116 ft3/min, which 

demonstrates the variability in ventilation rates among housing stocks.

Another important aspect in ventilation variability is occupant behavior. Bathroom fans, 

kitchen hoods and other airflow devices can have relatively high flow rates (10s of ft3/min), 

as compared to whole-house ventilation rates. While these components may only be 

operated intermittently, their operation should be considered, especially if IA concentrations 

are being measured while they may be operating.

In terms of natural ventilation, opening windows and doors also can have an important 

impact on AERs. Reed et al.40 reported that opening windows were substantially more 

important than stack or wind effects in changing AERs in building. They also reported that 

the effect of opening windows was important for homes located in both the east and west 

geographical areas of the US; and quantified the effect based on the dimensions of the 

opened area. The effect of opening windows was more recently investigated by Jeong et al.41 

and highlighted the role of building occupants seeking to control their own environments. 

Opening windows is an effective way to control temperature when mechanical ventilation 

systems are ineffective, inefficient or too expensive. Within VI communities, building 

occupants also desire to control their indoor environments and VI practitioners should 

anticipate IA concentrations may be influenced by changes in AER due to building occupant 

behaviors.

Driving Forces for AER

AER is driven by pressure differences across the building envelope caused by: 1) air density 

differences due to temperature differences between indoor and outdoor air (stack effect); 2) 

wind; and, 3) the operation of mechanical equipment. A brief description of these forces is 

given in the following subsections, further information can be found in ASHRAE Handbook 
- Fundamentals17.

Stack effect—Temperature difference between indoor and outdoor causes density 

differences, and results in a pressure difference. During the heating season (winter), indoor 

air is warmer and therefore lighter than outdoor air, thereby creating a pressure difference 

across the building envelope. As a simple representation, the building acts like a chimney, 

exhausting warm air in the upper part of the building, and drawing in cool outdoor air in the 

lower part of the building (Figure 1A). During the cooling season (summer), the flow 
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directions are reversed and generally lower, because the indoor-outdoor temperature 

differences are smaller. The height at which the interior and exterior pressures are equal is 

called the neutral pressure level (NPL). Above this point (during the heating season) the 

interior pressure is greater than the exterior, below this point, the greater exterior pressure 

causes airflow into the building (Figure 1A). The location of the NPL at zero wind speed is a 

structure dependent parameter. If the openings are uniformly distributed vertically, they have 

the same resistance to airflow, and there is no internal airflow resistance, the NPL is at the 

mid-height of the building (Figure 1A).

Pressure difference (Ps, (M/L.t2)) caused by stack effect at height H is computed using 

equation 2 based on ASHRAE Handbook - Fundamentals 17.

(2)

Where ρ (M/L3) is outdoor air density, g (L/t2) is gravitational acceleration, HNPL (L) is the 

location in the building envelope where there is no indoor-to-outdoor pressure difference, 

and Tin (absolute temperature) and Tout (absolute temperature) are the indoor and outdoor 

temperatures, respectively.

Wind effect—As wind flows around a building, it generally produces a positive pressure 

(over-pressure) on the windward side of a building and negative pressure (under-pressure) on 

the leeward side. The pressure on the other sides can be either negative or positive, 

depending on wind angle, local terrain, and building shape. These pressure differences (as 

compared to the inside of the building) cause inflow (infiltration) on the windward side(s) 

and outflow (exfiltration) on the leeward side(s) (Figure 1B).

Pressure difference (Pw, (M/L.t2)) caused by wind effect at height H is calculated using 

equation 3 based on ASHRAE Handbook - Fundamentals 17:

(3)

Where CP,out (dimensionless) is the wind pressure coefficient at a leakage point on the 

building, Cp,in (dimensionless) is the interior wind pressure coefficient, Cp values are a 

function of location of the paths on a building surface and wind direction. A detailed 

description about Cp values is provided in ASHRAE Handbook - Fundamentals 17.

UH (L/t) is the wind velocity at the reference height H (L) that can be calculated as follows:

(4)
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In which, Umet (L/t) is the wind velocity at the height of Hmet (L), Hmet is the reference 

height at the meteorological station (Usually 10m above ground level); δmet (L) and αmet 

(dimensionless) are the atmospheric boundary layer thickness and the exponent at 

meteorological station, respectively. δ (L) and α (dimensionless) are the corresponding 

values for the local building terrain which can be found in table 1, chapter 24 of ASHRAE 
Handbook - Fundamentals 17.

Mechanical systems—Mechanical systems can be “unbalanced” (e.g., exhaust fans that 

force air out, or supply fans that force it into the building) or “balanced” (e.g., systems that 

have both exhaust and supply fans). Excess exhaust airflow depressurizes the building by 

creating a net negative pressure and excess supply airflow pressurizes the building by 

creating a net positive pressure. If a perfect balanced ventilation system is installed (which is 

rare on-site), the internal pressure of the building does not change, but an unbalanced system 

changes the internal pressure and consequently affects infiltration rate through the leaks.

Combining driving forces—The flow rate through an opening in the building envelope 

is a subject to the total pressure differences at the location, which is the sum of all the 

driving forces. Figure 1C qualitatively shows the addition of stack (Fig. 1A) and wind (Fig. 

1B) driving forces for a simplified case where the NPL is in the mid-height, there is no 

mechanical ventilation, the wind pressure coefficients are uniform on each side, and the 

magnitude of pressure differences caused by stack effect and wind are equal (which is rare in 

reality). Total airflow is similar to that with the wind acting alone, but significantly larger 

than the airflow due only to the stack effect. The total pressure difference through each 

opening due to stack and wind effects can be estimated by adding Ps and Pw as follows:

(5)

The infiltration rate (Qf (L3/t)) created by wind- and stack-induced pressure differential can 

be estimated using a power law relationship42:

(6)

Where,

κ – Leakage coefficient ((L3/t).(M/L.t2)−n)

n – Power law flow exponent.

Accurate calculation of flow rates through a real building envelop based on the driving 

forces described above requires a considerable computational capability and excessive 

amount of input that makes it non-realistic for large scale usage. To overcome this difficulty 

simplified models were developed (e.g., see AER Estimation Models).

The relative importance of the wind and stack pressures in a building depends on building 

characteristics (e.g., height, shape, internal resistance to vertical airflow and location of 

openings), local terrain and the immediate shielding of the building. For any building, there 
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will be ranges of wind speed and temperature difference for which the building’s infiltration 

is dominated by the stack effect, the wind or a regime in which the driving pressures of both 

must be considered.

The effect of mechanical ventilation on the total envelope pressure difference depends on the 

direction of the ventilation flow and differences in these ventilation flows among the zones 

of the building. Pressurizing or depressurizing all levels uniformly has little effect on the 

pressure differences across floors and vertical shaft enclosures, but pressurizing individual 

stories increases the pressure drop across these internal separations. In a balanced system, 

the total flow rate (Qt) is the addition of flow created by balanced mechanical system and the 

infiltration.

(7)

In which, Qf is the flowrate through the leaks in a building caused by wind and stack effects 

and Qbm is the flow rate created by balanced mechanical systems.

An unbalanced system influences the indoor air pressure in a building which consequently 

interacts with flows induced by wind and stack effect (infiltration). There are several 

numerical approaches that attempt to combine infiltration and unbalanced mechanical 

ventilation rates (Table 1 in Hurel et al.43). These models exhibit a wide range of errors, 

which demonstrates the difficulty in capturing the complexity of various factors, including: 

building envelop leakage, weather conditions, leakage distributions and strengths of 

mechanical ventilation. Hurel et al.43 used a subadditivity function to calculate the total 

airflow caused by infiltration and unbalanced mechanical ventilation in single family 

detached buildings which reduced the long-term errors to 1% or less.

Summary of Residential AERs

AER Distributions—AER distributions are usually expressed using the lognormal 

distribution. Several key existing datasets for US residential AER distribution are 

summarized in Table 2. These datasets are a collection of various projects at different 

regions in the US that were collected on the course of two types of programs: human 

exposure programs and residential energy efficiency (e.g. BNL, DEAR, and RIOPA) and 

weatherization assistance programs (WAPs) (e.g. LBNL). In human exposure programs, 

AER is measured using the perfluorocarbon tracer method (PFT). WAPs are assessing the 

building leakage or airtightness and the metric used is the normalized leakage (NL). AER 

and NL can be related using the scaling factor (SF) model20 (e.g., Empirical models, see 

AER Models). None of the AER datasets statistically represent the characteristics of houses 

in the US as a whole16; however these data have been collected at locations across the US 

located in key geographic areas and provide considerable insight about how AER values 

vary across the US. Within the indoor air quality community, many research analyses have 

been published (Table 3) to evaluate these datasets recognizing that AERs are a key 

determinant in understanding inhalation exposures.
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Characteristic examples of US residential AER distributions are presented in Table 3 and 

Figure 2. In Figure 2, Isaacs’ study is presented with curves for Detroit as the data for this 

case account for the greatest variability in AER values. Values for the other cities, indicating 

similar trends, are included in Table 3. The data for Murray and Burmaster21 and Koontz 

and Rector22 are shown for region 2 and Midwest cities, respectively, which include Detroit 

data. Koontz and Rector22 data was not reported for different seasons. Murray and 

Burmaster21 data for region 2 summer was not available.

Measured AER varies by an order of magnitude among 90% (5th to 95th percentile) of US 

homes due to a number of factors, including housing characteristics and meteorological 

conditions. AER distribution depends mainly on house age, the central air condition (AC) 

status and weather (e.g. season, ambient temperature and humidity, wind speed and 

direction, and climate zone). Older19, 23 and low income20 homes, tend to have higher 

AERs. Conversely, homes that are newer19, 23 and conventional20 tend to have lower AERs. 

AERs in homes with central AC is much lower compared to homes without central AC19. 

The lower AER curves were obtained in the cold weather (Figure 2). Homes without central 

AC in warm weather tend to have the highest AERs19. Regression analyses23 on updated 

LBNL database with home built more recently predicts for whole US a slightly (15–30%) 

higher NL values compared to previous study20, as well as some between-state differences 

that can be explained by the climate zones and the year built. USEPA’s median residential 

AER of 0.45 is based on Koontz and Rector22. However, this median value is not 

representative of more recent datasets, as shown in Figure 2 and Table 3.

Factors Controlling Between-House AER Variations—The AER variations across 

residences in the same geographical region are due to differences in occupant behavior (e.g., 

opening windows, operating mechanical ventilation, indoor temperature from thermostat 

setting during heating and cooling seasons), and building characteristics (e.g., leakage of 

building envelope, type of mechanical ventilation) 18,24–25. For residences in different 

geographical regions, the AER variations can also include differences in wind speed (near 

coast versus inland) and outdoor temperature18.

Continuous measuring of AER in single home during a VI study indicated slow seasonal 

oscillation accompanied by daily brief transients (e.g., positive and negative spikes)2. The 

seasonal AER temporal variations are primary due to variations of the indoor-outdoor 

temperature differences while the spikes correspond primarily to the wind speed variations, 

and secondarily to indoor-outdoor temperature difference variations. Generally, temporal 

AER variability of individual homes tends to decrease with decreasing median AER (e.g., 

tighter building envelop) 25.

RELEVANCE FOR VI STUDIES

IA concentrations calculated using Equation 8 with recent AER values (Table 3) and 3D VI 

model simulations (ṁi) demonstrate the importance of AER uncertainty on VI exposure 

risks. Equation 8 is a slight revision to Equation 1, reflecting the new understanding that Qck 

in Eq. 1 is included in the formal definition of AER as defined by the ASHRAE Handbook - 
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Fundamentals 17. Equation 8 also explicitly accounts for chemical entry via exchanged air, if 

chemicals are present.

(8)

Where, the mass flowrate of “i” into building (ṁi ) (M/t) is given by;

(9)

Where,

Qb – total flowrate through the building, which as discussed previously includes a 

combination of infiltration and ventilation (both mechanical and natural) (L3/t).

Ci,ex – chemical “i” concentration in exchanged air (M/L3)

ṁi,other – Mass flowrate of “i” into the building from sources other than VI and 

exchanged air. Similar formulation for ṁi was provided by others14.

For the purpose of the current study we assume that the only source of chemical “i” is the 

soil gas mass entry rate (JTAck) and the chemical concentration in exchanged air or from 

other sources is equal to zero (Ci, ex AER · Vb + ṁi,other = 0) As discussed above, AER (in 

the denominator of equation 8) is notably influenced by the stack and wind effects. The mass 

entry rate of contaminant into buildings (the numerator in equation 8) is theoretically 

influenced by these two factors, as well. However, there are currently no VI models that 

adequately account for stack and wind effects in both the numerator and the denominator in 

Equation 8. In fact, this is an active area of research for the authors and others. Therefore, to 

gain the mass entry rate, the research herein used a VI modeling approach that has been 

widely published28 and has been compared to field data4.

Single Building and Single Geology Evaluation

Figure 3 illustrates the effect of AER on a hypothetical single VI site where the geology is 

modeled as sandy soil (K = 10−11 m2). IA concentrations were calculated using equation 8 

and the AER values in this equation were taken from Isaacs et al.19 for Detroit, MI (Table 3 

and Figure 2). The soil gas mass entry rate was calculated using a 3-D VI model for the base 

scenario described by Pennell et al. that includes a single building (10 m × 10 m) with a 

basement (2 m deep) located in the center of an open field and depressurized (-5Pa) 28. 

Therefore, the mass entry rate in equation 8 was a constant across all scenarios in Figure 3. 

The results show greater Cindoor/Csource variability for warm weather compared to cold 

weather. The age of the house affected Cindoor/Csource by an order of magnitude (1.9×10−3 to 

2.4×10−4), indicating the older homes had lower Cindoor/Csource due to higher AERs. AC 

operational status resulted in more than one order of magnitude variability of Cindoor/Csource 
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(4.4×10−3 to 1.2×10−4). Previously field study data has reported similar observations for IA 

concentrations and AC status3.

AER Distribution and VI Field Data Comparison

Figure 4 illustrates the combined effect of an AER distribution that considers important 

building features within four geographic areas; and compares AER values to the USEPA VI 

Database. The need for a geographically diverse AER distribution that is a product of 

different home types, climate regions and weather conditions in US was a consequent of our 

goal to compare theoretical evaluations to USEPA VI database44. The soil gas mass entry 

rate was calculated using a 3-D VI model described above and considered sand, sandy loam, 

and clay loam geologies with a building depressurized (-5Pa). In addition, it considered a 

diffusion only VI scenario depressurization (0Pa)

The AER distribution, presented in Figure 5, combines the sixteen final categories 

distributions, given in Isaacs et al.19 and summarized in Table 3, using the weighted average 

formulation:

(10)

Where,

Aj - Combined AER value corresponding to percentile j (5, 25, 50, 75, 95),

Ai, j - AER value for case i (1–16) and percentile j,

Ni – Number of observation in case i.

Currently, USEPA’s VI Database represents the largest collection of VI data for chlorinated 

VOCs in the US; containing 2929 paired measurements from 42 vapor intrusion sites across 

the country though the majority of sites are from the North-east and Western portions of the 

country44. Groundwater attenuation factor (Cindoor/Csource) distribution (5th to 95th 

percentile) with a filter of groundwater VOCs 1000 times greater than background VOCs 

(Table 7, USEPA44), presented in Figure 6, show that 90% of groundwater attenuation 

factors vary over three orders of magnitude.

The results shown in Figure 4 suggests that the combined effect of AER and geology 

provide a possible explanation for 90% of the variability in the EPA database; and strongly 

supports the need to consider the implications of AERs when making decisions at VI sites. 

The simplest approach is to select AER measured value based on various factors (e.g., 

building characteristics, season, and geographical region) most similar to the investigated 

case. The main limitation is the uncertainty of using AER measurements from other 

buildings and from sampling periods with different weather conditions, natural ventilation, 

and mechanical ventilation.
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AER Measurement Methods

Building science and air quality science provide well established methods for estimating 

single home AER17–26, 45–50 that can be implemented as part of VI site investigations. One 

of the more robust techniques for measuring the actual AER of a building is using a tracer 

gas dilution method16,17,45, but measuring the actual AER is often limited due to costs of 

collecting site-specific field data, participant burden, and building access restrictions18, 24. 

Further, these methods are sensitive to current weather conditions18. Alternatively, AER can 

be estimated using “equivalent leakage area” methods, which compared to AER measuring 

methods are typically less expensive18, 24, easier and are similar to methods being 

implemented to measure VI fluxes into buildings11–13. However, leakage area methods only 

capture infiltration rates; therefore in order to estimate the total AER, numerical models 

must be incorporated. The section below describes leakage area measurement methods for a 

single-zone approach based on the assumption of a single, well mixed enclosure. Airflow 

between internal zones and between the exterior and individual internal zones has led to the 

development of multi-zone measurement techniques. A recent study suggests that multi-

zone air leakage considerations may play important roles in indoor air quality models51; 

however, these multi-zone measurement techniques are complex and beyond the scope of 

this review.

Air Leakage Area Measuring Method

The air leakage of a building characterizes the relationship between pressure difference (ΔP) 

across the building envelope and the airflow through it; and is an indication of building 

tightness. Leakier buildings will require higher airflow rates to pressurize the building to a 

certain level, whereas tighter buildings will require lower flow rates.

Air leakage of a building is measured with pressurizing test known as “Blower Door” 

test47,52–53. A large fan or blower is mounted in a door or window and induces a large, 

roughly uniform ΔP across the building shell. This test is performed with natural ventilation 

openings closed and mechanical ventilation turned off. Airflow (through a calibrated orifice) 

is adjusted to generate various indoor–outdoor pressure difference (ΔP). The experimental 

results provide an estimate of the area of an opening which would be equivalent in size to 

lumping all the combined openings throughout the structure into one opening. This opening 

area is used in AER models described below.

Most commonly, airflow is measured at ΔP=50 Pa, which is insensitive to the influence of 

wind variation during the test, and therefore provides reproducible data sets. The resulting 

AER at 50 Pa (AER50) is calculated by dividing the resulting flow rate by the building 

volume. AER50 is a useful metric for comparing houses of different sizes and is used as an 

input for the SF leakage model.

The Lawrence Berkeley Laboratory (LBL) infiltration model48 and its extended version that 

include natural ventilation (LBLX) 24 uses the Effective Leakage Area (ELA) of a building, 

wind speed, and inside-outside temperature differences to estimate the AER.. The LBLX 

model will be described in a later section. The ELA of a building is defined as the area of a 

calibrated orifice that would have the same air flowrate as the house at a reference standard 
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pressure of 4 Pa. ELA is an estimate of the combined size of all the leaking areas in the 

building.

ELA is measured using the multipoint test where blower door flowrates, at a series of ΔPs 

ranging from about 10–70 Pa, are measured to determine the relationship between ΔP and 

leakage rate for the test home (Qf). Equation 6 is used to find κ and n based on the best fit of 

the data. Since ELA depends on the indoor–outdoor ΔP, it is necessary to extrapolate 

experimental results to determine the ELA at the reference pressure (Pr).

The relationship between the airflow rate through the fan orifice and the ΔP can be 

expressed as:

(11)

Combining and rearranging Eq. 6 and 11 allow determination of ELA at standard reference 

pressure:

(12)

There is uncertainty in ELA estimation which is due to 1) measurement errors and 2) model 

specification. Wind can be a source of measurement errors when pressure and flowrate are 

measured during pressurization test. The model specification error can be created by 

extrapolation to measure the flowrate at 4 Pa54–55. Walker et al. (2013) compared single 

point and multipoint testing approaches and showed that the multipoint testing described 

above is recommended for the conditions when there is a wind speed less than 6 m/s during 

the test. For wind speeds greater than 6 m/s, they suggest a single point testing at ΔP=50 Pa 

with a fixed pressure exponent (n=0.65) which is less sensitive to wind pressure fluctuations 

and cause reduction in experimental errors56.

AER Estimation Models

AER estimation models can be distinguished broadly into two categories; empirical models 

(e.g., data-driven approaches) and physically based models (e.g., based on fundamental 

physical theory). The physically-based models have been classified into: 1) single zone 

models and 2) multi-zone models. Various AER models have been described in the 

literature17–18. Selected models are described briefly below.

Empirical model

The SF model is an empirical model that relates the AER at 50 Pa (AER50) to AER at 

typical natural conditions (4 Pa) using a scaling factor (F) as:

(13)
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Chan et al.20 found that F = 16 gives the best fit for the national data. A commonly used 

metric for building leakage is the Normalized Leakage, NL, defined as:

(14)

Where,

Afloor – Floor area (L2)

H - The height of the building (L)

NL is ELA normalized with the building floor area and a correction factor for the 

building height.

It describes the relative leakage for a wide range of building sizes 20. To describe AER50 in 

terms of NL Eqs. 6, 11, and 14 are combined to yield:

(15)

NL can also be estimated from leakage area model such as20:

(16)

Where,

Ybuilt – year of construction

β0, β1and β2 - regression parameters, which were estimated for three housing types: 

low income, conventional, and energy efficient20.

A comparison of AER distribution curves measured with the PFT method (Isaacs) and 

AERSF based on air leakage method (Chan), given in Figure 7, show a good agreement 

between the two distributions; Isaacs’s newer homes curve is very close to Chan’s 

conventional curve, and Isaacs’s older homes curve is very close to Chan’s low income 

curve. Figure 7 supports the use of the SF model with air leakage measurement. 

Additionally, the SF model was evaluated with data from 642 daily (e.g., 24 h average) AER 

measurements across 31 detached homes in central North Carolina collected on seven 

consecutive days during each of four consecutive seasons and showed a median absolute 

difference of 50% (0.25 1/h), a slightly higher compared to physical based more 

sophisticated models (e.g., a median absolute difference of 43% (0.17 1/h) and 40% (0.17 

1/h) for the LBL and LBLX models, respectively)24. The main limitation of this simple 

model is the absent of sensitivity for meteorological conditions (e.g., stack and wind effects) 

and thus for hourly variations as well.
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Simplified single-zone models

LBL and LBLX model—The LBL model is widely used as a tool for predicting 

residential infiltration rates.17,48 Stack and wind effects, the driving forces for infiltration, 

are calculated separately, and then combined using superposition.50. The LBL model has 

been compared to AERs measured by tracer gas technique, which were measured during 

different time periods and different seasons. These comparisons showed that the LBL model 

predictions resulted in mean absolute errors of 25–46%24, 25, 57,58.

LBLX model is an extended version of LBL model that includes natural ventilation airflow 

through large intentional openings (e.g., windows, doors)24. The LBLX model predicts the 

AER due to infiltration and natural ventilation. The median absolute difference between 

LBLX model prediction, using Eq. 16 for leakage area, and data from 642 daily AER 

measurements across 31 detached homes in central North Carolina, with corresponding 

window opening and meteorological data was 40% (0.17 1/h) 24, and 29% (0.19 1/h) for 

data from a subset of 24 study homes on five consecutive days during two seasons in Detroit 

MI25.

Multizone air flow models

Several multizone computational models have been developed to calculate air flows and 

contaminant distribution in multizone buildings59. In multizone models the building is 

divided into several zones (e.g. rooms) and each zone is assumed as a well-mixed zone to 

have uniform temperature, pressure and contaminant concentration. Zones are connected to 

each other by flow paths (e.g. cracks, openings, ducts). Two examples of well-known 

multizone air flow models are CONTAM and COMIS. CONTAM60 was developed by the 

“Building and Fire Research Laboratory of the National Institute of Standards and 

Technology” (NIST). COMIS61 was developed by an international group of experts (the 

Energy Performance of Buildings Group) at the Lawrence Berkeley National Laboratory. In 

both of these models, wind effect, stack effect and mechanical ventilation are taken into 

account in building air flow estimation.

COMIS61, like CONTAM60, uses a similar procedure in solving air flowrates through 

openings of a building. Both models use a conservation of mass in all zones to calculate the 

zonal pressures and air flow rates through flow paths. CONTAM and COMIS use 

dimensionless pressure coefficients and Bernoulli’s equation to gain the pressure distribution 

on building surfaces induced by wind speed and direction. These two models are widely 

used in indoor air quality studies and could be used in VI studies to estimate the total air 

exchange rate of the building and also indoor air concentration of contaminant considering 

air flows through the building induced by infiltration, natural and mechanical ventilation59.

CONCLUSIONS AND IMPLICATIONS

AERs commonly referenced in VI literature (Table 1) are not representative of the wider 

range of values present in IA quality literature (Table 3 and Figure 5). IA concentration data 

collected during VI investigations should be interpreted by considering how AERs may 

influence the measured IA concentration data. As show in Equation 8, IA concentrations 
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may be diluted by high AERs; if building operation is modified by a building occupant 

behavior and the AER is decreased, the IA concentration may respond by increasing.

An inaccurate assumption that AERs fall within USEPA’s conservative screening range 

(0.18–1.26 1/h) could result in a false understanding that residential buildings across the US 

have AERs within this narrow range. However, as shown on Figure 5, recent literature 

reports a broader range (up to 6.1 1/hr). While the majority of AERs do not deviate 

substantially from USEPA’s conservative screening range, careful consideration is warranted 

by the VI scientific community when evaluating and interpreting measured IA 

concentrations as part of VI site assessments.

VI communities continue to be impacted by decisions at VI sites, even after VI site specific 

risk assessments are completed. Therefore, as part of the USEPA multiple lines of evidence 

approach, practitioners and regulators should consider how building characteristics may 

influence AERs and VI exposures risks. The ASHRAE Handbook - Fundamentals 17 

highlights several building features that are known to influence AERs. For instance, older 

windows and doors, building penetrations, fireplaces, etc. are features that may increase 

infiltration. Bailly et al.36 summarizes the results of 65,000 air tightness tests conducted in 

Europe and reports several leak-prone characteristics for various building-types. 

Practitioners should consider these qualitative factors when making decisions and 

communicating risks at VI sites. In the absence of well-known ventilation rates, specific 

trends about the building’s AER cannot be easily extracted based on leakage information 

alone. However, leak-prone building features may play a role in potentially decreasing IA 

concentrations and these features can be identified and evaluated as part of VI investigations.

Mechanical and natural ventilation are also an important part of AERs. The exact 

contribution of ventilation to the total AER is not easily estimated. There may be a need to 

consider the role of occupant behavior on natural (e.g. open windows and doors) and 

mechanical ventilation systems, such as bathroom and kitchen exhaust fans. The VI 

community has not routinely considered the variability of ventilation systems during VI 

investigations. Most IA sampling is conducted during heating seasons, when windows and 

doors are closed to limit natural ventilation and when AERs are thought be low (most 

conservative); however even during “cold seasons” some regions of the US have been shown 

to have AERs > 4 1/hr (see New Jersey data, Table 3).

Further, AERs of buildings can vary considerably based on age and construction. Isaacs et 
al.19 showed that AERs for newer and older homes during heating seasons (e.g. “cold” data) 

varied as much as a factor of 4 for the 95 percentile (see New Jersey data, Table 3), with the 

older homes have the higher AERs (less conservative values). Importantly, Chan et al.20 

(Table 3) showed “low income” homes had higher AERs (less conservative values). These 

are important implications to consider when evaluating VI exposure risks at VI sites.

Risk management and communication at VI sites should continue to highlight the dynamic 

nature of VI exposure risks. Decisions that do not consider the possibility of higher AERs to 

decrease IA concentrations, may not be conservative in terms for future VI exposure risks. 

For example, energy-efficiency initiatives that target older homes and low-income 
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areas e.g.62 may reduce AERs at buildings after VI assessments have deemed IA 

concentrations are below risk levels. With many energy efficiency programs being 

implemented in neighborhoods, these types of temporal changes in AERs (and ultimately 

changes in VI exposure risks) should be considered. If a homeowner makes future 

modifications, perhaps as part of a weatherization program (or any other optional home 

improvement), the IA concentration may change. VI practitioners should engage in risk 

communication plans that communicate these types of related building issues to 

homeowners and regulators should consider follow up sampling requirements.

Field measurements could provide information to contextualize IA concentration data. VI 

practitioners may consider measuring building air leakage area to calculate infiltration in 

homes where vapor intrusion may be occurring. This information combined with knowledge 

about, or measurements of, building ventilation may inform vapor intrusion decisions. 

However, occupant behaviors that could influence building ventilation rates and influence IA 

concentrations should also be considered.

As discussed above, building features and other factors that influence AER should be taken 

into account when evaluating IA concentrations as part of the multiple lines of evidence 

approach at VI sites. Decisions about whether to qualitatively, and/or quantitatively consider 

AERs can be made on a case-by-case basis within the framework of the specific context of 

the exposure scenario.

Lastly, AERs are influenced by some of the factors that influence soil gas entry into 

buildings (wind and indoor-outdoor temperature differential (stack effect)). More research is 

needed to understand how above-ground and subsurface processes are coupled. This is an 

active area of research. While research results continue to emerge, VI practitioners can use 

multiple lines of evidence to make the best decisions possible given the information and 

evidence currently available.
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ENVIRONMENTAL IMPACT STATEMENT

This tutorial review draws connections between the well-established yet disparate fields 

of subsurface vapor intrusion (VI) and building air exchange rate (AER) studies. The 

main purpose of this review is to grow awareness within the VI scientific community 

about the potential importance of AERs when evaluating VI exposure risks. We show that 

AERs commonly referenced by the VI community are not representative of the wider 

range of AER values reported within the IA quality literature. A summary of recent AER 

values from the IA quality literature are summarized and implications for VI exposure 

risk assessment are discussed.
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Figure 1. 
Distribution of inside and outside pressures (green arrows) over height of a building, and 

airflow directions (blue arrows) for; (A) Stack effect only for case where inside air is 

warmer than outside air (winter) and NPL is at the mid-height, (B) Wind effect only, and (C) 

Wind and stack effects combined. For simplicity of illustration pressure differences due to 

the wind and stack effect have the same magnitude, which is rare in reality. Adapted from 

ASHRAE Handbook - Fundamentals17
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Figure 2. 
Characteristic examples of residential AER distribution curves.
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Figure 3. 
AER effect on Cindoor/Csource distribution curves for Detroit test case.
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Figure 4. 
Combined effect of AER distribution and geology on Cindoor/Csource in comparison to 

USEPA VI database range (shaded area). Error bar present maximum and minimum values.
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Figure 5. 
AER distribution that considers important building features within four geographic areas. 

The error bar show maximum and minimum values.
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Figure 6. 
USEPA VI database groundwater attenuation factor (Cindoor/Csource) distribution (5th to 95th 

percentile) for a filter of groundwater VOCs 1000 times greater than background VOCs.
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Figure 7. 
A comparison of AER distribution curves measured with the PFT method (Isaacs, Isaacs et 
al.19) and the air leakage method (Chan, Chan et al.20).
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Table 1

Typical Residential AER values reported in VI studies.

Study values (h−1) Comments

USEPA, 20151 • Typical range of values: 0.18 – 1.26.

• Range used for developing various protocols (e.g. sampling of 
indoor air, soil gas, etc.): 0.25 – 1.

• Values used to develop generic attenuation factors: 0.45 and 
0.18.

Values after EPA, 201113: table 
19–12 (after Koontz and Rector, 
199517).

USEPA, 20158 • April/May 2011: 0.56 – 0.74

• September: 0.34 – 0.72

Measured in a specific house 
(Indianapolis, IN).

EPA, 201229 • One home: 0.5.

• Multiple homes: 0.25 and 1.

Table B-1.

EPA, 200433 • Range of values for VI models: 0.1 – 1.5.

• Default value: 0.25.

Table 9.

Johnson, 200530 • Reasonable primary input values: 0.2–1.

• For various sensitivity analysis scenarios use values: 0.6 – 1.3.

Sensitivity analysis study.

Picone et al., 201234 • Values: 0.2 and 2. Sensitivity analysis study.

Moradi et al., 20156 • Range: 0.18 – 1.26. Sensitivity analysis study.

Shen and Suuberg, 
20169

• Fall: 0 – 0.6, [0.3 + 0.3 sin(2πt/12[h])].

• Summer: 0 – 2, [1 + sin(2πt/12[h])].

Sensitivity analysis study.

Patterson and Davis, 
200935

• Ambient building pressure, fully sealed: 0.66±0.04

• Ambient building pressure, partly sealed: 1.3±0.1

• Reduced building pressure (−12Pa): 2.0±0.1

Measured in a specific house 
(Perth, Western Australia).

Holton et al, 20132 • Fall to spring months:

– Typical daily averages: 0.6 – 1.

– Instantaneous excursions: 0.4 – 1.5.

• Summer:

– Typical daily averages: 0.2 – 0.4.

– Instantaneous excursions: 0.2 – 0.5.

Measured in a specific house 
(Layton, UT).
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Table 2

Summary of database sources for AER distribution.

Source Description Method

Brookhaven National 
Laboratory (BNL)16,21

• Containing over 4,000 measurements for single and multifamily dwelling units.

• Collected during the period of 1982–1987.

• Various projects.

PFT

Detroit Exposure and 
Aerosol Research 
Study (DEARS)19

• Homes in Wayne County Michigan.

• Collected during the period of 2004–2007.

• Two seasons: Summer (Jul–Aug), winter (Jan–Mar).

• A total of 128 homes:

– Summer: 105 homes

– Winter: 90 homes

– Both seasons: 67 homes.

• 24 h monitoring period.

PFT

Relationships in 
Indoor, Outdoor, and 
Personal Air 
(RIOPA)19

• Three US metropolitan cities located in different climate zones: Elizabeth NJ, Houston 
TX, and Los Angeles, CA.

• Collected during the period of 1999–2001.

• Four seasons

• 300 houses (about 100 homes in each city).

• Two seasons at each house.

• 48 h monitoring period.

PFT

Lawrence Berkley 
National Laboratory 
(LBNL)20

• Containing 73,000 measurement.

• Collected in 2001 and earlier.

• Contributors to the database:

– Ohio Weatherization Program that include houses occupied by low income 
households (77%)

– Energy-efficiency program in Alaska (11%)

– Wisconsin Energy Conservation Corporation (3%).

– Thirty-one other organizations from 30 states (9%).

Air leakagea

a
NL values were converted to AER using Eq. 13

PFT - perfluorocarbon tracer method
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