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Exploring the impacts of climate change on agriculture is one of important topics with respect to climate change. We quan-
titatively examined the impacts of climate change on winter wheat yield in Northern China using the Cobb–Douglas production
function. Utilizing time-series data of agricultural production and meteorological observations from 1981 to 2016, the impacts of
climatic factors on wheat production were assessed. It was found that the contribution of climatic factors to winter wheat yield per
unit area (WYPA) was 0.762–1.921% in absolute terms. Growing season average temperature (GSAT) had a negative impact on
WYPA for the period of 1981–2016. A 1% increase in GSATcould lead to a loss of 0.109% of WYPA when the other factors were
constant. While growing season precipitation (GSP) had a positive impact on WYPA, as a 1% increase in GSP could result in
0.186% increase inWYPA, other factors kept constant. ,en, the impacts onWYPA for the period 2021–2050 under two different
emissions scenarios RCP4.5 and RCP8.5 were forecasted. For the whole study area, GSAT is projected to increase 1.37°C under
RCP4.5 and 1.54°C under RCP8.5 for the period 2021–2050, which will lower the averageWYPA by 1.75% and 1.97%, respectively.
GSP is tended to increase by 17.31% under RCP4.5 and 22.22% under RCP8.5 and will give a rise of 3.22% and 4.13% in WYPA.
,e comprehensive effect of GSAT and GSP will increase WYPA by 1.47% under RCP4.5 and 2.16% under RCP8.5.

1. Introduction

In recent years, the frequency of various meteorological
disasters such as drought, flood, and frost has increased due
to climate change, which seriously impaired many climate-
sensitive sectors [1]. It is understood that agriculture is
likely to be affected most by climate change and variability
because of its high dependence and sensitivity to climatic
conditions [2–5]. Nevertheless, the impacts of climate
change on crops in different regions are not the same [6].
Previous studies have shown that the warming caused by
greenhouse gases is more pronounced at higher latitudes
[7], which could lengthen growing seasons and reduce the
risk of freezing injury due to low temperature and have
positive effects on crops here [8, 9]. In contrast, higher
temperature will adversely affect growing conditions in
lower latitudes, especially in areas where temperatures are

close to or at the optimal level for crop growth to begin with
[10, 11]. Impacts on agriculture are likely to be especially
severe in developing countries because of their low agri-
cultural investment, technological levels, and capability to
cope with climate change [12, 13]. China is the most
populous developing country as well as one of the largest
agricultural production countries. Agriculture in China
feeds 22% of the global population with only 7% of the
world’s arable lands [14]. However, some studies have
shown that China’s agriculture might suffer from climate
change. ,e loss in yield for each degree Celsius increase in
global mean temperature is about 8.0% for maize and 2.6%
for wheat [15]. It is urgent for us to understand the possible
impacts of climate change on China’s agriculture pro-
duction, so that the planting strategies can be provided
timely to avoid or mitigate the negative impacts from
climate change.
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,ere is now a substantial number of assessment studies
demonstrating the link between climate change and agri-
culture, with the study methods ranging from simple
equations to complex models, the study scope ranging from
single sector to multiple sectors, and the study core ranging
from intuitive phenomenon to mechanism analysis [16].
Crop models and statistical models are two main tools for
quantitatively assessing the effects of climate change on
crop yields [17]. Crop models such as DSSAT (America),
APSIM (Australia), and CCSODS (China) can integrate
knowledge on physiology, agronomy, soil science, and
agrometeorology to the models using mathematical
equations to quantitatively and dynamically describe the
process of crop growth, development, and yield formation.
Crop models are dominant tools for the ,ird and Fourth
Assessment Reports of the IPCC to assess the impacts of
climate change on agricultural sector because of their
relatively clear ecological mechanism [18]. However, the
results of crop models are highly sensitive to soil, mete-
orology, and field management and require extensive input
data. ,ese models also can be very difficult to calibrate
because of complex model structures and a large number of
uncertain parameters [19–22]. Statistical models such as
time-series models, panel data models, and cross section
models can predict crop indicators by using historical data
on crop indicators and weather data to develop a regression
equation [23]. However, the statistical data of Food and
Agriculture Organization of the United Nation (FAO)
showed that global wheat yield did not reduce with climate
warming in the premise of stable planting areas (http://
www.fao.org/faostat/zh/#data/QC/visualize), which in-
dicated that with the development of agricultural tech-
nology, agricultural production is not only related to
meteorological factors such as temperature and pre-
cipitation but also to economic factors such as labor and
fertilizer. ,erefore, researchers combined meteorological
factors and economic factors as independent variables to
establish regression models so as to explore the impacts of
climate change on agricultural production [24–27]. Chou
et al. [28, 29] developed a new model (C-D-C) for assessing
and predicting the effect of climate change on grain yield by
introducing climatic factors into the C-D (Cobb–Dauglas)
production function, and the preliminary simulation and
verification of the model were performed.

In terms of planting area and yield, wheat is the third
most important crop in China, only behind rice and maize,
and winter wheat accounts for approximately 95% of the
total (winter and spring) wheat yields. ,e northern winter
wheat production areas (NWPA) are the main areas that
produce winter wheat and make up approximately 80.1% of
the wheat production (National Bureau of Statistics of
China, http://data.stats.gov.cn/easyquery.htm?cn�E0103).
Winter wheat is mainly used for food in this region because
of its high quality and flour yield. ,e goal of this paper was
to quantitatively study the impacts of climate change on the
winter wheat yield per unit area (WYPA) in NWPA by
introducing growing season average temperature (GSAT)
and precipitation (GSP) for winter wheat into the C-D
production function, so as to provide reference for planting

strategies and wheat import and export trade strategies in
the future.

2. Materials and Methods

2.1. Study Area and Data. Our study area covers Jing-Jin-Ji
region (including Beijing, Tianjin, and Hebei provinces),
Shanxi, Shaanxi, Shandong, and Henan provinces (Figure 1),
located in the midlatitude temperate zones of northern
hemisphere (32–42°N) and influenced by East Asian mon-
soon climate. Crops are harvested twice a year or three times
every two years. ,e climatic conditions in the region are
suitable for planting winterness or strong-winterness wheat
varieties with an annual precipitation of 440–980mm, an-
nual average temperature of 9–15°C, and active accumulated
temperature ranges from 2750 to 4900°C. ,e growing
season of winter wheat in this area is from this September to
next June [30, 31].

,e data used in this study included meteorological data
and agricultural data. ,e meteorological data consisted of
observations data for estimating the parameters of models
and scenario data for forecasting future climate change.
Observations data were available from ChinaMeteorological
Administration (CMA), which provided time series on the
daily temperature and precipitation of meteorological sta-
tions (black dots in Figure 1) across the study area from 1981
to 2016, so as to calculate the GSAT and GSP for winter
wheat. Greenhouse gas emission scenarios are the basis for
future climate change projections, and one of the most
important scenarios is RCPs (representative concentration
pathways). RCPs include four greenhouse gases concen-
tration trajectories adopted by the IPCC AR5, which rep-
resent integrated socioeconomic standards, emissions, and
climate scenarios to construct the definite mitigation sce-
nario. ,e four RCPs including RCP2.6, RCP4.5, RCP6.0,
and RCP8.0 stabilized the radiative forcing at approximately
490, 650, 850, and 1370 ppm CO2-equivalent in 2100, re-
spectively [32]. RCP4.5, a medium emissions scenario, is
possibly consistent with the future economic development of
China and meets the mitigation plan for responding to
climate change [33]. RCP8.5 corresponds to a high green-
house gas emissions pathway and also to the upper bound of
the four RCPs. ,e greenhouse gases emissions and con-
centrations in this scenario increase considerably over time,
and there is not any specific climate mitigation target [34].
,erefore, the RCP4.5 and RCP8.5 were used in this study.
Climate scenario data from the RCP4.5 and RCP8.5 for
2021–2050 were downloaded from the Inter-Sectoral Impact
Model Intercomparison Project (ISI-MIP). ,e data include
5 climate models simulation outputs: HadGEM2-ES
(MOHC, England), IPSL-CM5A-LR (IPSL, France),
MIROC-ESM-CHEM (MIROC, Japan), GFDL-ESM2M
(GFDL, America), and NorESM1-M (NCC, Norway),
which have been bias-corrected based on the raw data from
the 5 CMIP5 models listed above. ,e variability of the
simulated data about their monthly means is modified to
match the observed data to preserve the long-term absolute
or relative trend of the simulated data. ,en, these data are
bilinearly interpolated in space to 0.5° × 0.5° grid [35]. ,e
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multimodel ensemble (MME) of the climate variables was
used in this paper, including daily mean temperature and
precipitation.

Agricultural data were available from the National Bu-
reau of Statistics of the People’s Republic of China and an
agricultural statistical datasets [36], which included pro-
vincial WYPA and related inputs from 1981 to 2016, that is,
fertilizer use, machinery, labor, and irrigated area for winter
wheat.

2.2. Model Specification and Evaluation. Cobb–Douglas
production function is a multifactor analysis model, which
can effectively describe the relationship between production
factors and output.,e production factors used in this study
included both agricultural inputs and climatic factors, and
we introduced climatic factors GSAT and GSP into the
Cobb–Douglas production function to quantitatively in-
vestigate the impacts of climate change on wheat yield for
the five provinces (region) in Northern China. We specified
the empirical production function where the WYPA was a
function of the meteorological variables and agricultural
inputs for any province (region) i at year t:

Yit � α0 × F
α1
it × M

α2
it × L

α3
it × I

α4
it × T

β1
it × P

β2
it × e

cTeit × e
εit .

(1)

We linearized the equation by taking the logarithm of
both sides:

ln Yit(  � α0 + α1 ln Fit(  + α2 ln Mit(  + α3 ln Lit( 

+ α4 ln Iit(  + β1ln Tit(  + β2 ln Pit(  + cTeit + εit,
(2)

where Y was the WYPA (kg/ha) and the agricultural inputs
F, M, L, and I were fertilizers used (10,000 tons), machinery
(10,000 kw), labor (10,000 persons), and irrigated area
(1000 ha) for winter wheat, respectively. More importantly,
we introduced average temperature (T, °C) and precipitation
(P, 100mm) during winter wheat growing season (from this

September to next June) as climatic factors to the model.
Additionally, we allowed for time varying effects on winter
wheat production, represented by a time series, Te, and
intended to capture the factor of technological progress
influence. ε was white noise. ,e α, β, and c were the co-
efficients to be estimated.

One should note that the agricultural inputs for winter
wheat were included in the total agricultural inputs and
needed to be calculated by some formulas. ,ey can take the
following form:

Fit � TFit × RAit,

Mit � TMit × RAit,

Lit � TLit × RGit × RAit,

Iit � TIit × RAit,

(3)

where TF was total fertilizer use of farm crops; TM was total
power of agricultural machinery; TL was total labor of ag-
riculture, forestry, animal husbandry, and fishery; TI was
total agricultural irrigated area; RA was sown area of winter
wheat/total sown area of farm crops; RG was gross output of
agriculture/gross output of agriculture, forestry, animal
husbandry, and fishery.

Panel data involved two dimensions: a cross-sectional
dimension and a time-series dimension [37], which re-
quired testing the temporal stability of variables before
establishing a regression model to avoid spurious re-
gressions. ,e approaches of LLC that assumes common
unit root process [38] and ADF-Fisher that assumes in-
dividual unit root process [39] were used in this study to
test for a unit root. ,e regression analysis can be carried
out when all of the variables are stationary time series.
However, as analyzed by Zhao [40], we can also establish a
regression model if the variables pass the cointegration
criterion in the premise that the integrated order of de-
pendent variable is not more than that of independent
variables and there are at least two independent variables
having the integrated orders more than that of dependent
variable, although some of the variables are nonstationary
time series.

We adopted “leave-one-out cross validation” [41], the
measures of “normalized root mean square error” (NRMSE),
and “index of agreement” (IA) [42] to evaluate model
performance. ,e two measures, NRMES and IA, summa-
rize the average difference and agreement between observed
and model-predicted values, respectively. ,ey can take the
following form:

NRMSE �

�����������


n
1 Pi −Oi( 

2

n



×
100
O

,

IA � 1−


n
1 Pi −Oi( 

2


n
1 Pi −O


 + Oi −O


 

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(4)

where Pi is the model-predicted value,Oi is observed value, n
is the number of cases, and O is the average of observed
values. Following Yang et al. [43], we considered
NRMSE≤ 15% as “good” agreement; 15–30% as “moderate”
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Figure 1: Location of study area and the distribution of meteo-
rological stations.
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agreement; and ≥30% as “poor” agreement. IA is intended to
be a descriptive measurement, and it is both a relative and
bounded measure [42], with IA� 0 indicating no agreement
and IA� 1 indicating perfect agreement or zero error. Also
as recommended by Yang et al. [43], when IA≥ 0.9, it is
considered as “excellent” agreement; 0.8≤ IA< 0.9 as “good”
agreement; 0.7≤ IA< 0.8 as “moderate” agreement; and
IA< 0.7 as “poor” agreement.

,e impacts of climate trends and agricultural inputs
changes on the WYPA were calculated in the following
processes. First, we set three scenarios: (i) actual climatic
factors and actual agricultural inputs for each province
(region) for the period 1981–2016; (ii) detrended climatic
factors and actual agricultural inputs; (iii) actual climatic
factors and fixed agricultural inputs. We obtained the
detrended datasets of GSATand GSP for winter wheat in the
five provinces (region) by the method of “linear detrending”
[44]. For the agricultural inputs, we fixed them at the values
in 1980. ,ey can take the following form:

Cdi,t � detrended climatic variable � Ci,t − si ∗ t,

AFi,t � fixed agricultural input � Ai,1980,
(5)

where Ci,t is the climatic variable for province (region) i at
year t, including GSAT and GSP; si is the slope of one cli-
matic variable for province (region) i, based on linear fit for
1981–2016; and Ai,1980 is the agricultural inputs for province
(region) i in 1980, including fertilizer use, machinery, labor,
irrigated area, and technological progress. We then used the
“Climate-Economy” model F(C, A) to compute the
following:

(i) F(C, A)� predicted WYPA with observed climatic
data and agricultural inputs

(ii) F(Cd, A)� predicted WYPA with detrended cli-
matic data and observed agricultural inputs

(iii) F(C, AF)� predicted WYPA with observed climatic
data and fixed agricultural inputs

We computed the trends of (i)-(ii) and (i)–(iii) to
quantify the yield effects of climate trends and agricultural
inputs changes, respectively.

3. Results

3.1. Panel Regression and Model Evaluation. ,e results of
unit root test suggested that a cointegration test should be
carried out, and the variables passed the cointegration cri-
terion (Table 1), which indicated that we can establish a
regression model and the model will not be spurious. F test
suggested us to choose a fixed-effects model, and the esti-
mation results are presented in Table 2. We also reported the
adjusted R2, F statistic, NRMSE, and IA used to evaluate the
model performance in Table 2. ,e value of adjusted R2 was
0.91, and F statistic was significant at the 1% level, which
indicated that the model had the feature of high fitting
precision. NRMSE and IA were 8.14% and 0.98, respectively,
showing a high extrapolating performance of the model. ,e
coefficients on all of the agricultural inputs were positive and
significant as expected for WYPA, except the labor with a

negative coefficient. ,is indicated that WYPA increased
with more fertilizer use, machinery, and irrigation but de-
creased with more labor. ,e reason why labor had a
negative impact on YWPA was explicable that, since 1980,
the agricultural mechanization improved rapidly, which
resulted in a large surplus of agricultural labor. For climatic
factors, the sign was negative for GSATand was positive for
GSP. ,is suggested that WYPA increased with more pre-
cipitation and decreased with higher temperature during the
growing season.

3.2. Impacts of Climate Change on the Fluctuation of Winter
Wheat Yield. From Table 2, the elastic coefficient of tem-
perature was −0.109, which indicated that the WYPA will
decrease 0.109% for each 1% increase in GSAT. Higher
temperature negatively affect winter wheat yield, both di-
rectly and indirectly. With the increase of temperature,
wheat tends to overgrow due to excessive accumulated
temperatures before the winter, which makes wheat seed-
lings weak and lack resistance to the cold [45]. Higher
temperature will also shorten winter wheat growing season,
leading to the decrease of 1000-grain weight and damaging
the quality of grain [46]. In addition, the occurrence
probability of extreme high temperature events in the later
stage of winter wheat growing season will increase, which is
not conducive to the formation of wheat yield. However, due
to the large demand of winter wheat for water and the low
precipitation in study area, GSP had a positive and signif-
icant impact on WYPA, with the elastic coefficient of 0.186,
that is, each 1% increase in GSP will increase WYPA by
0.186%. However, in the terms of the whole study area,
GSAT for winter wheat experienced a significant increase by
0.49°C per decade since 1980; yet, the GSP had a slight but
inconspicuous increasing trend with the slope of 1.138
(Figure 2).

Figure 3 showed the model-simulated results of F(C, A),
F(Cd, A), and F(C, AF) for each province (region), so as to
measure the impacts of climatic factors and agricultural
inputs on WYPA. From Figure 3, agricultural inputs and
technological progress played an important role in the
formation of wheat yield. If these variables have remained at
the values of the 1980s, the WYPA would be stagnant (green
arrows). We computed the differences of F(C, A) and F(C,
AF) for each province (region) to quantify the impacts of
agricultural inputs on wheat yield variability and found that
Shandong province was most influenced by agricultural
inputs, followed by Jing-Jin-Ji region and Henan province,
with the WYPA increase rate of 60.438%, 59.279%, and
56.369%, respectively. ,e effects of agricultural inputs on
WYPA for Shanxi and Shaanxi provinces were less, and the
WYPA only increased by 28.448% for Shanxi province and
by 27.193% for Shaanxi province. However, the effects of
climate trend on wheat yield were relatively low, and the
degree of the effects was different within the five provinces
(region). ,e actual climate change in Jing-Jin-Ji region and
Shandong province, that is relatively weak rise in temper-
ature (Jing-Jin-Jislope � 0.032; Shandongslope � 0.034) and
large increase in precipitation (Jing-Jin-Jislope � 1.775;
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Shandongslope � 1.116), positively affected the wheat yield in
the two regions during 1981–2016. ,e WYPA increased by
1.884% for Jing-Jin-Ji region and by 0.762% for Shandong
province, relative to those without the climate trend. On the
contrary, due to relatively rapid temperature rise and
insignificant or negative precipitation change trend,
wheat yield exhibited negative impacts for Shaanxi
(GSATslope � 0.04; GSPslope �−0.013), Shanxi (GSATslope �

0.063; GSPslope � 0.92), and Henan (GSATslope � 0.039;
GSPslope � 0.071), with the loss of 0.917%, 1.316%, and
1.921%, respectively. If just from the aspect of quantitative
values above, agricultural inputs were likely to be more
important factors contributing to the formation of wheat
yield. Nevertheless, one should note that agricultural inputs
changes are mainly controlled by technological development
level, and the impacts of agricultural inputs on crops can be
stable in the premise that social and technological devel-
opment are stable and the government pays more attention
to the agricultural harvests, whereas climate change itself
and its impacts on crops are both more complicated. Short-
term extreme weather events such as flood, drought, and
frost will directly exert deadly effects on crops and sharply
decrease their yield, while the effects of long-term trend of
climate change is gradual and potential. Long-term climate

changes can greatly influence the cropping system, planting
boundary, and planting structure and further influence the
allocation and trade of national agricultural products.
,erefore, the impacts of climatic factors on crops cannot be
ignored, although apart from extreme climate events, it may
be small in the short term.

3.3. Scenario Simulation Analysis of Climate Change.
Figure 4 and Table 3 show the differences of GSATand GSP
projected for 2021–2050 relative to the baseline period of
1981–2005 for the medium emission scenario (RCP4.5) and
high emission scenario (RCP8.5). ,e GSATwill increase by
1.33–1.44°C under RCP4.5 and by 1.43–1.68°C under RCP8.5
for the five provinces (region), relative to the baseline period.
Shanxi province will experience the most warming. In terms
of the whole study area, GSAT is projected to experience a
rise of about 1.37°C for RCP4.5°C and 1.54°C for RCP8.5.
,e results also suggested that there will be an increasing
trend in GSP for the majority of the regions under the two
RCP scenarios, except for a slight decrease in western
Shaanxi province. Shandong province will experience the
most precipitation increasing. ,e precipitation increment

Table 1: Unit root test and cointegration test.

lnY lnF lnM lnL lnI lnT lnP

LLC −5.73∗∗∗ −8.08∗∗∗ −4.21∗∗∗ −1.63∗ −0.30 −6.48∗∗∗ −7.28∗∗∗
−11.28∗∗∗ −10.33∗∗∗

ADF 48.25∗∗∗ 47.05∗∗∗ 18.24∗∗ 12.22 7.23 77.30∗∗∗ 79.58∗∗∗
94.82∗∗∗ 86.39∗∗∗

Cointegration Test
ADF −6.78a

∗, ∗∗, and ∗∗∗ represent that the null hypothesis of nonstationary is rejected at 10%, 5%, and 1% level, respectively. When there are two statistics in a cell, the
top number is for the test on the original variable, and the bottom number is for the test on the variable after it has been differenced once. a represents that the
null hypothesis of no cointegration is rejected at 1% level.

Table 2: Estimated parameters for fixed-effects model.

Variables Coefficient Prob.
C 6.192∗∗∗ <0.001
lnF 0.094∗∗ 0.026
lnM 0.157∗∗∗ 0.004
lnL −0.223∗∗ 0.016
lnG 0.265∗∗∗ 0.008
lnT −0.109 0.327
lnP 0.186∗∗∗ <0.001
Te 0.003 0.361
Fixed Effects (corss)
Jing-jin-ji_C −0.088
Shanxi_C 0.110
Shaanxi_C 0.048
Shandong_C −0.042
Henan_C −0.028
Model Performance Evaluation
Adj R2 0.91
F-statistic 167.70∗∗∗ <0.001
NRMSE 8.14%
IA 0.98
∗∗ and ∗∗∗ represent the parameters are significant at the 5% and 1%
levels, respectively.
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Figure 2: GSAT and GSP for winter wheat in 1981–2016. ,e red
and blue dashed lines represent linear fitting of GSAT and GSP.
∗indicates that the slope is significant at the 1% level.
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Figure 3: Model-predictedWYPAwith observed climatic data and agricultural inputs (black squares) detrended climatic data and observed
agricultural inputs (red dots) and observed climatic data and fixed agricultural inputs (green triangles). Yellow triangles (lines) and blue
diamonds (lines) represent the (trends of) GSATand GSP for winter wheat. ∗ represents the trends are significant at 5% level. (a) Jing-jin-ji.
(b) Shanxi. (c) Shaanxi. (d) Shandong. (e) Henan.
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under high emissions scenario is muchmore than that under
medium emissions scenario. ,e GSP increment for the five
provinces (region) under RCP4.5 and RCP8.5 are 2.72–
31.82% and 4.53–33.0%, respectively. In terms of the whole
study area, precipitation is projected to increase by 17.31%
for RCP4.5 and by 22.22% for RCP8.5.

Finally and for perspective, we used the estimates of
climate change under RCP4.5 and RCP8.5 (Table 3) to
obtain estimates of the effects of projected GSAT and GSP
changes on WYPA variance in the five provinces (region)
(Table 4). ,e change tendency of WYPA is opposite to
GSAT but is consistent with GSP. For RCP4.5, temperature
rising gives a decrease of 1.75% in average WYPA for the
whole study area and a decrease of 1.46% (Jing-Jin-Ji re-
gion) to 2.71% (Shanxi province) for the selected five

provinces (region). However, precipitation increasing is
beneficial to the improvement of WYPA, with the increase
of 3.22% for the whole study area and 0.51% (Shaanxi
province) to 5.92% (Shandong province) for the five
provinces (region). For RCP8.5, WYPA decreases by 1.97%
for the whole study area and by 1.51% (Jing-jin-ji region) to
3.16% (Shanxi province) for the selected five provinces
(region). Precipitation increasing gives a rise of 4.13% in
WYPA for the whole study area, and 0.84% (Shaanxi
province) to 6.14% (Shandong province) for the five
provinces (region). In terms of the comprehensive effect of
GSAT and GSP, the majority of study area experiences a
WYPA increase, due to the substantial increase of GSP
counteracting the negative effect of GSAT rising. However,
the small increase in Shaanxi’s GSP is not enough to offset
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Figure 4:,e differences of GSATand GSP projected for 2021–2050 relative to 1981–2005 under RCP4.5 and RCP8.5. (a) GSATunder RCP
4.5. (b) GSP under RCP 4.5. (c) GSAT under RCP 8.5. (d) GSP under RCP 8.5.

Table 3: ,e differences of GSAT and GSP for each province
(region) in 2021–2050 relative to that in 1981–2005 under RCP4.5
and RCP8.5.

GSAT (°C) GSP (%)
RCP4.5 RCP8.5 RCP4.5 RCP8.5

Jing-jin-ji 1.38 1.43 25.13 30.38
Shanxi 1.44 1.68 17.12 19.33
Shaanxi 1.33 1.63 2.72 4.53
Shandong 1.40 1.55 31.82 33.00
Henan 1.34 1.47 17.14 25.30
All 1.37 1.54 17.31 22.22

Table 4: Effects of climate change on WYPA for each province
(region) in 2021–2050 under RCP4.5 and RCP8.5.

Effects of GSAT
(%)

Effects of GSP
(%)

Comprehensive
effect (%)

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5
Jing-jin-ji −1.46 −1.51 4.67 5.65 3.22 4.14
Shanxi −2.71 −3.16 3.18 3.60 0.47 0.43
Shaanxi −1.80 −2.21 0.51 0.84 −1.30 −1.37
Shandong −1.79 −1.98 5.92 6.14 4.13 4.16
Henan −1.56 −1.72 3.19 4.71 1.62 2.99
All −1.75 −1.97 3.22 4.13 1.47 2.16
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the negative effects driven by the large increase in GSAT,
which causes Shaanxi to be the only province whoseWYPA
suffering from the projected changes of GSATand GSP. For
RCP4.5, WYPA increases by 1.47% for the whole study area
and by 0.47–4.13% for Shanxi, Henan, Jing-Jin-Ji, and
Shandong provinces, but decreases by 1.3% for Shaanxi
province. For RCP8.5, WYPA increases by 2.16% for the
whole region and by 0.43–4.16% for Shanxi, Henan, Jing-
Jin-Ji, and Shandong provinces, while Shaanxi province
experiences a wheat yield decrease of 1.37%.

4. Discussion

4.1. Climate Model Uncertainty. Climate models are one of
the most important tools to simulate and forecast future
climate change, but there exists uncertainty about the results
simulated by different climate models, which represents a
key challenge for adaptation planning. For example, Ding
et al. [47] simulated the climate change of China by the 40
models and suggested that there is a potential significant
warming in China in the twenty-first century under different
emission scenarios. However, large uncertainty exists in the
projection of precipitation, and further studies are needed.
Xu and Xu [48] assessed the performance in simulating the
climate over China based on the CMIP3 and CMIP5 ex-
periments and found that models appeared to have a good
performance on reproducing the warming tendency but
showing limited skills for precipitation, and most models
overestimate precipitation. Uncertainty in future climate
change derives from various sources such as emission sce-
narios, model structure, downscaling/bias-correction
methods, and impact models [49].

In this study, we dealt with the uncertainty of the model
from the following three aspects. Firstly, in emissions sce-
narios, we selected RCP4.5 as the lower one because it is
possibly most consistent with the future economic develop-
ment of China and meets the mitigation plan for responding
to climate change [33]. ,e upper bound of four RCPs,
RCP8.5, was used as the contrast scenario. Secondly, the
climate simulation datasets used in this study were obtained
from the ISI-MIP, which have been bias-corrected in the fast-
track of ISI-MIP using the trend-preserving method and can
reproduce the observed climate very well [35]. Several studies
have demonstrated the value of using the same projections by
the 5 GCMs in climate change impact assessments for dif-
ferent sectors at the global and regional scales [50–54].
,irdly, we used the MME to reduce the uncertainty because
combining models can generally increase the skill, reliability,
and consistency of model forecasts [55]. ,e combined in-
formation of an equally weighted average of several models
(themethod used in this study) is usually found to agree better
with observations than any single model [56]. ,ese solutions
can effectively reduce the uncertainty of the models and
improve the accuracy of our analysis.

4.2. Food Security andAdaptation Strategies. China is a large
producer and consumer of food. China’s domestic demand
for food maintained a self-sufficiency rate of 95%, while the

other 5% depended on the international market for balance,
since joining the WTO in 1980 [57]. However, with the
growing population and rising consumption levels, China
needs more food to feed itself. According to the forecast of the
DRC (Development Research Center of the State Council),
total domestic grain demand will reach 584.87–592.02 million
tons, and the gap between food supply and demand will be up
to 40–50 million tons [58]. ,e problem of food shortage has
become more and more serious in recent years, and the
reasons for food shortage are various factors, among which
included are the increase of population, the decrease of
cultivated land area, and the degradation of cultivated land
quality. In addition, climate change has altered the agro-
meteorological conditions and posed a certain impact on
crops growth. As shown in the results of this paper, the
contribution of temperature rising to winter wheat yield in
Northern China was negative since 1981, and the degree of
influence will increase with the temperature rising further,
while precipitation had a positive impact.

It is suggested that China could take the following two
aspects to ensure the supply of domestic wheat, i.e., domestic
wheat production and international wheat trade. From the
aspect of domestic wheat production, climate change has
been a concern of policy-makers, scientists, and farmers due
to its far-reaching impacts on agriculture, and appropriate
adaptation strategies should be taken immediately. Because
Northern China is the principal wheat production base, the
climate adaptation measures proposed in the following are
based on the climate change of this region. Firstly, one of the
most realistic and convenient measures for the local farmers
is adjusting the sowing dates of winter wheat. Studies found
that the suitable sowing dates of winter wheat in the region
have been delayed in the last few decades and are projected
to be further delayed in the future due to the temperature
rising [59, 60]. ,e properly delayed sowing dates could
result in significant differences in environmental conditions
during crop grain filling and usually help the grains grow
with increasing temperatures, which will minimize the de-
creasing rate of wheat yield under global warming [61, 62]. It
is noticeable, however, that the freeze injury before winter
wheat overwintering must be considered in this region, so
the sowing dates cannot be delayed too late. Secondly, the
strategy that copes with the challenges of climate change is to
plant new grains which have higher heat requirement and
longer duration of reproductive growth period. Better
adaption to warmer climatic conditions makes these new
grains more favorable than old ones under climate change
and significantly increases wheat yield [63, 64]. ,irdly,
converting the tillage system from conventional plow tillage
to rotary tillage is beneficial to improve the efficiency of local
agriculture production and enhance crop yield. ,e con-
ventional plow tillage is time-consuming and energy-
intensive, and farmers prefer to burn crop residues in or-
der to save time for seeding the next crop, which has some
adverse impacts on soil and hinders crops growth. However,
rotary tillage can chop crop residue and mix it into the soil,
which will increase retention of rainfall in the soil and
enhance SOC sequestration. ,is can enhance the ability of
wheat to cope with climate change during its growing period
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[65]. Fourthly, it is necessary to expand irrigation in-
frastructure for Northern China. Although this study found
that the precipitation likely increases during wheat growing
season over the region, winter wheat is generally cultivated
under irrigation conditions due to the small amount and
large fluctuation of precipitation [66]. Optimizing irrigation
facilities can ensure the water supply for wheat during the
critical growth period, which is beneficial to improve its
ability to cope with adverse climatic conditions and reduce
the losses of wheat yield. In addition, there are many other
options of agricultural adaptation to climate change for the
region, such as developing crop diversity, improving fer-
tilization, and natural resource management. Finally, we
should be aware that the negative impacts of climate change
could be moderated by implementing these adaptations duly
and steadily rather than missing the appropriate timing to
implement adaptations.

In terms of international wheat trade, China should
make full use of the grain production resources in other
countries and regions and expand the sources of domestic
food supply through food trade and cooperation, so as to
keep the balance between food supply and demand and
guarantee the quantity of the grain stored. However, China’s
import market of wheat in international trade mainly fo-
cuses in the United States, Canada, and Australia. For in-
stance, China imported 99% of its wheat from the three
countries in 2011, which will raise the potential risk for
China’s wheat import market in the future. China should try
to reduce the risk of wheat imports by analyzing the po-
tential of wheat yield increase and export in various
countries and seeking more stable sources for wheat
importing. For example, from climate perspective, the
United States, the largest wheat exporter to China, is pro-
jected to experience a wheat yield decrease in the future
while Canada is inversed [15, 67–70]. ,is indicates that
China’s wheat import market center in North America may
slowly shift from the United States to Canada. Moreover, as
emerging export countries in the international wheat trade
market, Russia, Ukraine, and Kazakhstan have witnessed a
rapid increasing in the proportion of wheat export and a
growing market influence [71]. Climate change has effec-
tively increased their grain production potential because of
the location in mid- and high-latitudes [72, 73]. ,e food
self-sufficiency rate of the three countries has been stable at
more than 100%, and the export potential is also increasing
(FAOSTAT food balance sheet). ,erefore, China can in-
crease its wheat import from these countries to ensure the
domestic food security in the future.

5. Conclusion

,e relative contribution of climatic factors to wheat yield was
about 0.762–1.921% in absolute terms for the period 1981–
2016, which was smaller than the contribution of agricultural
inputs and technological progress that ranged from 27.193 to
60.438%.Warming trends during winter wheat growing season
had a negative effect onWYPA, whereas the increasing trend of
precipitation had a positive effect in 1981–2016, and the elastic
coefficients were −0.109 and 0.186, respectively. ,is indicated

that a 1% rise in GSATtends to lower yield of 0.109%, and a 1%
increase inGSP increases yield of 0.186%, up to a point at which
further rainfall becomes harmful. ,e GSATand GSP are both
projected to increase in the study area for the period of
2021–2050, the increment of which for high emission scenario
(RCP8.5) is more than that for medium emission scenario
(RCP4.5). GSAT is projected to rise 1.37°C under RCP4.5
scenario and 1.54°C under RCP8.5 scenario for the whole study
area, which will lower the averageWYPA by 1.75% and 1.97%,
respectively. GSP is tended to increase by 17.31% under RCP4.5
scenario and 22.22% under RCP8.5 scenario for the whole
region, which will give a rise of 3.22% and 4.13% in WYPA,
respectively. In terms of the comprehensive effect of GSATand
GSP, average WYPA will increase by 1.47% under RCP4.5
scenario and 2.16% under RCP8.5 scenario for the whole study
area. At provincial scale, the changes of climatic factors will
have a positive effect on WYPA for Jing-Jin-Ji region, Shanxi,
Shandong, and Henan provinces, while they will have a
negative effect for Shaanxi province.
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data.cma.cn/data/cdcindex/cid/6d1b5efbdcbf9a58.html. ,e
climate scenario data were downloaded from https://esg.pik-
potsdam.de/search/isimip-ft/. ,e agricultural data were
provided by http://data.stats.gov.cn/. ,e other data used to
support the findings of this study are available from the
corresponding author upon request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is research was supported by the grants (to IGSNRR) from
the Ministry of Science and Technology of the People’s
Republic of China (2016YFA0602704) and the National
Natural Science Foundation of China (41831174 and
41671201).

References

[1] IPCC, Climate Change 2013: the Physical Scientific Basis.
Contribution of Working Group Ι to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, UK, 2013.

[2] R. P. Motha and W. Baier, “Impacts of present and future
climate change and climate variability on agriculture in the
temperate regions: North America,” Climatic Change, vol. 70,
no. 1-2, pp. 137–164, 2005.

[3] M. J. Salinger, “Climate variability and change: past, present
and future: an overview,” Climatic Change, vol. 70, no. 1-2,
pp. 9–29, 2005.

[4] K. Boomiraj, S. P. Wani, K. K. Garg, P. K. Aggarwal, and
K. Palanisamp, “Climate change adaptation strategies for
agro-ecosystem—a review,” Journal of Agrometeorology,
vol. 12, no. 2, pp. 145–160, 2010.

Advances in Meteorology 9

http://data.cma.cn/data/cdcindex/cid/6d1b5efbdcbf9a58.html
http://data.cma.cn/data/cdcindex/cid/6d1b5efbdcbf9a58.html
https://esg.pik-potsdam.de/search/isimip-ft/
https://esg.pik-potsdam.de/search/isimip-ft/
http://data.stats.gov.cn/


[5] C. Rosenzweig, J. Elliott, D. Deryng et al., “Assessing agri-
cultural risks of climate change in the 21st century in a global
gridded crop model intercomparison,” Proceedings of the
National Academy of Sciences, vol. 111, no. 9, pp. 3268–3273,
2014.

[6] R. Mendelsohn, W. Morrison, M. E. Schlesinger, and
N. G. Andronova, “Country-specific market impacts of cli-
mate change,” Climatic Change, vol. 45, no. 3-4, pp. 553–569,
2000.

[7] C. Baker-Austin, J. A. Trinanes, N. G. H. Taylor, R. Hartnell,
A. Siitonen, and J. Martinez-Urtaza, “Emerging vibrio risk at
high latitudes in response to ocean warming,” Nature Climate
Change, vol. 3, no. 1, pp. 73–77, 2013.

[8] C. Rosenzweig and D. Hillel, Climate Change and the Global
Harvest: Potential Impacts on the Greenhouse Effect on Ag-
riculture, Oxford University Press, New York, NY, USA, 1998.

[9] J. Wilcox and D. Makowski, “A meta-analysis of the predicted
effects of climate change on wheat yields using simulation
studies,” Field Crops Research, vol. 156, no. 2, pp. 180–190,
2014.

[10] P. Kurukulasuriya and S. Rosenthal, Climate Change and
Agriculture: A Review of Impacts and Adaptations, World
Bank, Washington, DC, USA, 2003.

[11] G. Fischer, M. Shah, F. N. Tubiello, and H. van Velhuizen,
“Socio-economic and climate change impacts on agriculture:
an integrated assessment, 1990–2080,” Philosophical Trans-
actions of the Royal Society B: Biological Sciences, vol. 360,
no. 1463, pp. 2067–2083, 2005.

[12] B. Smit and O. Pilifosova, “Adaptation to climate change in
the context of sustainable development and equity,” in Cli-
mate Change 2001: Impacts, Adaptations and Vulnerability.
CeCird Assessment Report of the Intergovernmental Panel on
Climate Change, J. McCarthy, O. Canziana, N. Leary,
D. Dokken, and K. White, Eds., pp. 879–967, Cambridge
University Press, Cambridge, UK, 2001.

[13] D. S. G. ,omas and C. Twyman, “Equity and justice in
climate change adaptation amongst natural-resource-
dependent societies,” Global Environmental Change, vol. 15,
no. 2, pp. 115–124, 2005.

[14] National Bureau of Statistics of China, China Statistical Year
Book 2009, China Statistics Press, Beijing, China, 2009, in
Chinese.

[15] C. Zhao, B. Liu, S. Piao et al., “Temperature increase reduces
global yields of major crops in four independent estimates,”
Proceedings of the National Academy of Sciences, vol. 114,
no. 35, pp. 9326–9331, 2017.

[16] J. X. Song, “A review of research methods of the effect of
climate change on agriculture,” Science and Technology for
Development, vol. 12, no. 6, pp. 765–776, 2016.

[17] W. Shi, F. Tao, and Z. Zhang, “A review on statistical models
for identifying climate contributions to crop yields,” Journal
of Geographical Sciences, vol. 23, no. 3, pp. 567–576, 2013.

[18] H. Gitay, W. Easterling, and B. Jallow, “Ecosystems and their
goods and services,” in Climate Change 2001: Impacts, Ad-
aptation, and Vulnerability. Ce Cird Assessment Report of
the Intergovernmental Panel on Climate Change, J. McCarthy,
O. Canziana, N. Leary, D. Dokken, and K. White, Eds.,
pp. 235–342, Cambridge University Press, Cambridge, UK,
2001.

[19] D. B. Lobell and C. B. Field, “Global scale climate–crop yield
relationships and the impacts of recent warming,” Environ-
mental Research Letters, vol. 2, no. 1, article 014002, 2007.

[20] W. Schlenker and D. B. Lobell, “Robust negative impacts of
climate change on African agriculture,” Environmental Re-
search Letters, vol. 5, no. 1, article 014010, 2010.

[21] F. Tao and Z. Zhang, “Adaptation of maize production to
climate change in North China Plain: quantify the relative
contributions of adaptation options,” European Journal of
Agronomy, vol. 33, no. 2, pp. 103–116, 2010.

[22] S. Asseng, F. Ewert, P. Martre et al., “Rising temperatures
reduce global wheat production,” Nature Climate Change,
vol. 5, no. 2, pp. 37–64, 2014.

[23] D. B. Lobell and M. B. Burke, “On the use of statistical models
to predict crop yield responses to climate change,” Agricul-
tural and Forest Meteorology, vol. 150, no. 11, pp. 1443–1452,
2010.

[24] C.-C. Chen, B. A. McCarl, and D. E. Schimmelpfennig, “Yield
variability as influenced by climate: a statistical investigation,”
Climatic Change, vol. 66, no. 1-2, pp. 239–261, 2004.

[25] S. Barrios, B. Ouattara, and E. Strobl, “,e impact of climatic
change on agricultural production: is it different for Africa?,”
Food Policy, vol. 33, no. 4, pp. 287–298, 2008.

[26] M. Dell, B. F. Jones, and B. A. Olken, “What do we learn from
the weather? ,e new climate-economy literature,” Journal of
Economic Literature, vol. 52, no. 3, pp. 740–798, 2014.

[27] E. Blanc and W. Schlenker, “,e use of panel models in
assessments of climate impacts on agriculture,” Review of
Environmental Economics and Policy, vol. 11, no. 2,
pp. 258–279, 2017.

[28] J. Chou, W. Dong, and D. Ye, “Construction of a novel
economy-climate model,” Chinese Science Bulletin, vol. 51,
no. 14, pp. 1735-1736, 2006.

[29] J. Chou, W. Dong, and G. Feng, “,e methodology of
quantitative assess economic output of climate change,”
Chinese Science Bulletin, vol. 56, no. 13, pp. 1333–1335, 2011.

[30] G. C. Zhao, “Study on Chinese wheat planting re-
gionalization,” Journal of Triticeae Crops, vol. 30, no. 5,
pp. 886–895, 2010.

[31] S. B. Jin, Wheat Science in China, China Agriculture Press,
Beijing, China, 1996, in Chinese.

[32] D. P. van Vuuren, J. Edmonds, M. Kainuma et al., “,e
representative concentration pathways: an overview,” Cli-
matic Change, vol. 109, no. 1-2, pp. 5–31, 2011.

[33] C. Gao, Z. T. Zhang, S. Chen, and Q. Liu, “,e high-resolution
simulation of climate change model under RCP4.5 scenarios
in the Huaihe River Basin,” Geographical Research, vol. 33,
no. 3, pp. 467–477, 2014.

[34] K. Riahi, S. Rao, V. Krey et al., “RCP 8.5—a scenario of
comparatively high greenhouse gas emissions,” Climatic
Change, vol. 109, no. 1-2, pp. 33–57, 2011.

[35] S. Hempel, K. Frieler, L. Warszawski, J. Schewe, and
F. Piontek, “A trend-preserving bias correction &ndash; the
ISI-MIP approach,” Earth System Dynamics, vol. 4, no. 2,
pp. 219–236, 2013.

[36] National Bureau of Statistics of China, China Compendium of
Statistics 1949–2008, China Statistical Press, Beijing, China,
2010, in Chinese.

[37] C. Hsiao, Ce Analysis of Panel Data, Cambridge University
Press, Cambridge, UK, 2003.

[38] A. Levin, C.-F. Lin, and C.-S. J. Chu, “Unit root tests in panel
data: asymptotic and finite-sample properties,” Journal of
Econometrics, vol. 108, no. 1, pp. 1–24, 2002.

[39] G. S. Maddala and S. Wu, “A comparative study of unit root
tests with panel data and a new simple test,”Oxford Bulletin of
Economics and Statistics, vol. 61, no. s1, pp. 631–652, 1999.

10 Advances in Meteorology



[40] G. Q. Zhao, Econometrics, China Renmin University Press,
Beijing, China, 2012, in Chinese.

[41] K.-C. Li, “Asymptotic optimality for $C_p, C_L$, cross-
validation and generalized cross-validation: discrete index
set,”Ce Annals of Statistics, vol. 15, no. 3, pp. 958–975, 1987.

[42] C. J. Willmott, “Some comments on the evaluation of model
performance,” Bulletin of the AmericanMeteorological Society,
vol. 63, no. 11, pp. 1309–1313, 1982.

[43] J. M. Yang, J. Y. Yang, S. Dou, X. M. Yang, and
G. Hoogenboom, “Simulating the effect of long-term fertil-
ization on maize yield and soil C/N dynamics in Northeastern
China using DSSAT and CENTURY-based soil model,”
Nutrient Cycling in Agroecosystems, vol. 95, no. 3, pp. 287–
303, 2013.

[44] J. Moncrieff, R. Clement, J. Finnigan, and T. Meyers, “Av-
eraging, detrending, and filtering of eddy covariance time
series,” in Handbook of Micrometeorology, X. Lee,
W.Massman, and B. Law, Eds., vol. 29, pp. 7–31, Atmospheric
and Oceanographic Sciences Library, Springer, Dordrecht,
Netherlands, 2004.

[45] Z. Sun, S. F. Jia, A. F. Lv, K. J. Yang, J. Svensson, and Y. C. Gao,
“Impacts of climate change on growth period and planting
boundaries of winter wheat in China under RCP4.5 scenario,”
Earth System Dynamics Discussions, vol. 6, no. 2, pp. 2181–
2210, 2015.

[46] S. ,aler, J. Eitzinger, M. Trnka, and M. Dubrovsky, “Impacts
of climate change and alternative adaptation options on
winter wheat yield and water productivity in a dry climate in
Central Europe,” Journal of Agricultural Science, vol. 150,
no. 5, pp. 537–555, 2012.

[47] Y. Ding, G. Ren, Z. Zhao et al., “Detection, causes and
projection of climate change over China: an overview of
recent progress,” Advances in Atmospheric Sciences, vol. 24,
no. 6, pp. 954–971, 2007.

[48] Y. Xu and C. H. Xu, “Preliminary assessment of simulations of
climate changes over China by CMIP5 multi-models,” At-
mospheric and Oceanic Science Letters, vol. 5, no. 6,
pp. 489–494, 2012.

[49] G. Leng, Q. Tang, and S. Rayburg, “Climate change impacts on
meteorological, agricultural and hydrological droughts in
China,” Global and Planetary Change, vol. 126, pp. 23–34,
2015.

[50] F. Piontek, C. Müller, T. A. M. Pugh et al., “Multisectoral
climate impact hotspots in a warming world,” Proceedings of
the National Academy of Sciences, vol. 111, no. 9, pp. 3233–
3238, 2014.

[51] J. Elliott, D. Deryng, C. Müller et al., “Constraints and po-
tentials of future irrigation water availability on agricultural
production under climate change,” Proceedings of the National
Academy of Sciences, vol. 111, no. 9, pp. 3239–3244, 2014.

[52] Y. Yin, D. Ma, S. Wu, and T. Pan, “Projections of aridity and
its regional variability over China in the mid-21st century,”
International Journal of Climatology, vol. 35, no. 14,
pp. 4387–4398, 2015.

[53] K. Frieler, S. Lange, F. Piontek et al., “Assessing the impacts of
1.5°C global warming—simulation protocol of the inter-
sectoral impact model intercomparison project (ISI-
MIP2b),” Geoscientific Model Development, vol. 10, no. 12,
pp. 4321–4345, 2017.

[54] X. Ma, C. Zhao, H. Tao, J. Zhu, and Z. W. Kundzewicz,
“Projections of actual evapotranspiration under the 1.5°C and
2.0°C global warming scenarios in sandy areas in Northern
China,” Science of the Total Environment, vol. 645, no. 15,
pp. 1496–1508, 2018.

[55] C. Tebaldi and R. Knutti, “,e use of the multi-model en-
semble in probabilistic climate projections,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 365, no. 1857, pp. 2053–2075,
2007.

[56] S. J. Lambert and G. J. Boer, “CMIP1 evaluation and in-
tercomparison of coupled climate models,” Climate Dy-
namics, vol. 17, no. 2-3, pp. 83–106, 2001.

[57] X. N. Ren, Ce Impacts of Climate Change on China’s Grain
Production and Trade, Chinese Academy of Agricultural
Sciences, Beijing, China, 2012, in Chinese.

[58] Development Research Center of the State Council, Research
on Modernization of Agriculture with Chinese Characteristics,
China Development Press, Beijing, China, 2012, in Chinese.

[59] D. Xiao, F. Tao, Y. Liu et al., “Observed changes in winter
wheat phenology in the North China Plain for 1981–2009,”
International Journal of Biometeorology, vol. 57, no. 2,
pp. 275–285, 2013.

[60] Z. Hao, X. Geng, F. Wang, and J. Zheng, “Impacts of climate
change on agrometeorological indices at winter wheat
overwintering stage in Northern China during 2021–2050,”
International Journal of Climatology, vol. 38, no. 15,
pp. 5576–5588, 2018.

[61] K. D. Subedi, B. L. Ma, and A. G. Xue, “Planting date and
nitrogen effects on grain yield and protein content of spring
wheat,” Crop Science, vol. 47, no. 1, pp. 36–44, 2007.

[62] D. Y. Ding, H. Feng, Y. Zhao, J. Q. He, Y. F. Zou, and J. M. Jin,
“Modifying winter wheat sowing date as an adaptation to
climate change on the loess plateau,” Agronomy Journal,
vol. 108, no. 1, pp. 53–63, 2016.

[63] F. Tao, S. Zhang, and Z. Zhang, “Spatiotemporal changes of
wheat phenology in China under the effects of temperature,
day length and cultivar thermal characteristics,” European
Journal of Agronomy, vol. 43, pp. 201–212, 2012.

[64] X. Zhang, S. Wang, H. Sun, S. Chen, L. Shao, and X. Liu,
“Contribution of cultivar, fertilizer and weather to yield
variation of winter wheat over three decades: a case study in
the North China Plain,” European Journal of Agronomy,
vol. 50, pp. 52–59, 2013.

[65] H.-L. Zhang, X. Zhao, X.-G. Yin et al., “Challenges and ad-
aptations of farming to climate change in the North China
Plain,” Climatic Change, vol. 129, no. 1-2, pp. 213–224, 2015.

[66] J. Li, S. Inanaga, Z. Li, and A. E. Eneji, “Optimizing irrigation
scheduling for winter wheat in the North China Plain,” Ag-
ricultural Water Management, vol. 76, no. 1, pp. 8–23, 2005.

[67] J. Tack, A. Barkley, and L. L. Nalley, “Effect of warming
temperatures on US wheat yields,” Proceedings of the National
Academy of Sciences, vol. 112, no. 22, pp. 6931–6936, 2015.

[68] B. Liu, S. Asseng, C. Müller et al., “Similar estimates of
temperature impacts on global wheat yield by three in-
dependent methods,” Nature Climate Change, vol. 6, no. 12,
pp. 1130–1136, 2016.

[69] B. Qian, H. Wang, Y. He, J. Liu, and R. De Jong, “Projecting
spring wheat yield changes on the Canadian Prairies: effects of
resolutions of a regional climate model and statistical pro-
cessing,” International Journal of Climatology, vol. 36, no. 10,
pp. 3492–3506, 2016.

[70] B. D. Qian, R. D. Jong, T. Huffman, H. Wang, and J. Y. Yang,
“Projecting yield changes of spring wheat under future climate
scenarios on the Canadian Prairies,” Ceoretical and Applied
Climatology, vol. 123, no. 3-4, pp. 651–669, 2016.

[71] I. Fehér and A. F. Fieldsend, Ce Potential for Expanding
Wheat Production in Kazakhstan. Analysis from a Food

Advances in Meteorology 11



Security Perspective, Publications Office of the European
Union, Luxembourg, Europe, 2019.

[72] P. Mitra, M. Selowsky, and J. Zalduendo, Turmoil at Twenty:
Recession, Recovery, and Reform in Central and Eastern
Europe and the Former Soviet Union, World Bank, Wash-
ington, DC, USA, 2009.

[73] W. Liefert, O. Liefert, G. Vocke, and E. Allen, “Former Soviet
Union region to play larger role in meeting world wheat
needs,” Amber Waves, vol. 8, no. 2, pp. 12–19, 2010.

12 Advances in Meteorology



Hindawi
www.hindawi.com Volume 2018

Journal of

ChemistryArchaea
Hindawi
www.hindawi.com Volume 2018

Marine Biology
Journal of

Hindawi
www.hindawi.com Volume 2018

Biodiversity
International Journal of

Hindawi
www.hindawi.com Volume 2018

Ecology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2018

Forestry Research
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 International Journal of

Geophysics

Environmental and 
Public Health

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

International Journal of

Microbiology

Hindawi
www.hindawi.com Volume 2018

Public Health  
Advances in

Agriculture
Advances in

Hindawi
www.hindawi.com Volume 2018

Agronomy

Hindawi
www.hindawi.com Volume 2018

International Journal of

Hindawi
www.hindawi.com Volume 2018

Meteorology
Advances in

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018
Hindawi
www.hindawi.com Volume 2018

Chemistry
Advances in

Scienti�ca
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Geological Research
Journal of

Analytical Chemistry
International Journal of

Hindawi
www.hindawi.com Volume 2018

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/archaea/
https://www.hindawi.com/journals/jmb/
https://www.hindawi.com/journals/ijbd/
https://www.hindawi.com/journals/ijecol/
https://www.hindawi.com/journals/aess/
https://www.hindawi.com/journals/ijfr/
https://www.hindawi.com/journals/ijge/
https://www.hindawi.com/journals/jeph/
https://www.hindawi.com/journals/ijmicro/
https://www.hindawi.com/journals/aph/
https://www.hindawi.com/journals/aag/
https://www.hindawi.com/journals/ija/
https://www.hindawi.com/journals/amete/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/scientifica/
https://www.hindawi.com/journals/jgr/
https://www.hindawi.com/journals/ijac/
https://www.hindawi.com/
https://www.hindawi.com/

	University of Kentucky
	UKnowledge
	6-19-2019

	Climate Change Impacts on Winter Wheat Yield in Northern China
	Xiu Geng
	Fang Wang
	Wei Ren
	Zhixin Hao
	Repository Citation
	Climate Change Impacts on Winter Wheat Yield in Northern China
	Notes/Citation Information
	Digital Object Identifier (DOI)


	tmp.1564784534.pdf.7ors9

