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ABSTRACT OF DISSERTATION

COMPOSITE NONPARAMETRIC TESTS IN HIGH DIMENSION

This dissertation focuses on the problem of making high-dimensional inference for
two or more groups. High-dimensional means both the sample size (n) and dimen-
sion (p) tend to infinity, possibly at different rates. Classical approaches for group
comparisons fail in the high-dimensional situation, in the sense that they have in-
correct sizes and low powers. Much has been done in recent years to overcome
these problems. However, these recent works make restrictive assumptions in terms
of the number of treatments to be compared and/or the distribution of the data.
This research aims to (1) propose and investigate refined small-sample approaches
for high-dimension data in the multi-group setting (2) propose and study a fully-
nonparametric approach, and (3) conduct an extensive comparison of the proposed
methods with some existing ones in a simulation.

When treatment effects can meaningfully be formulated in terms of means, a
semiparametric approach under equal and unequal covariance assumptions is inves-
tigated. Composites of F-type statistics are used to construct two tests. One test is
a moderate-p version – the test statistic is centered by asymptotic mean – and the
other test is a large-p version asymptotic-expansion based finite-sample correction
for the mean of the test statistic. These tests do not make any distributional as-
sumptions and, therefore, they are nonparametric in a way. The theory for the tests
only requires mild assumptions to regulate the dependence. Simulation results show
that, for moderately small samples, the large-p version yields substantial gain in the
size with a small power tradeoff.

In some situations mean-based inference is not appropriate, for example, for data
that is in ordinal scale or heavy tailed. For these situations, a high-dimensional
fully-nonparametric test is proposed. In the two-sample situation, a composite
of a Wilcoxon-Mann-Whitney type test is investigated. Assumptions needed are
weaker than those in the semiparametric approach. Numerical comparisons with the
moderate-p version of the semiparametric approach show that the nonparametric
test has very similar size but achieves superior power, especially for skewed data
with some amount of dependence between variables.



Finally, we conduct an extensive simulation to compare our proposed methods
with other nonparametric test and rank transformation methods. A wide spectrum
of simulation settings is considered. These simulation settings include a variety of
heavy tailed and skewed data distributions, homoscedastic and heteroscedastic co-
variance structures, various amounts of dependence and choices of tuning (smoothing
window) parameter for the asymptotic variance estimators. The fully-nonparametric
and the rank transformation methods behave similarly in terms of type I and type
II errors. However, the two approaches fundamentally differ in their hypotheses. Al-
though there are no formal mathematical proofs for the rank transformations, they
have a tendency to provide immunity against effects of outliers. From a theoretical
standpoint, our nonparametric method essentially uses variable-by-variable ranking
which naturally arises from estimating the nonparametric effect of interest. As a
result of this, our method is invariant against application of any monotone marginal
transformations. For a more practical comparison, real-data from an Encephalogram
(EEG) experiment is analyzed.

KEYWORDS: Multivariate Analysis, High Dimension, Statistical Tests.
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Chapter 1 Introduction

This dissertation encompasses the comparison of two or more groups of vectors.

This comparison can be achieved with a parametric approach by comparing the

means of the different groups. When data is not continuous or it is heavily skewed,

comparing means may not be appropriate and a nonparametric approach might be

more reasonable, i.e. comparing nonparametric quantities such as relative effects.

For the two sample comparison of means, the T 2-statistic is defined in Hotelling

(1931) (see also Anderson (2003)) as

T 2 = [X1 −X2]>
[
(

1

n1

+
1

n2

)Spooled

]−1

[X1 −X2] (1.1)

where Spooled is the pooled sample covariance matrix, X1 and X2 are the sample

mean vectors. This test is invariant under linear transformations. Its exact distribu-

tion under the Null hypothesis is known and it is powerful when dimension is small

compared to sample size. The test is, however, not well defined when dimension is

larger than sample sizes.

For the multiple group comparison of means, one classical approach uses the

statistic

Λ∗ =
|W |

|B +W |
(1.2)

where B =
∑a

i=1 ni(X i−X)(X i−X)> and W =
∑a

i=1

∑ni
j=1(Xij−X i)(Xij−X i)

>

with subindex i corresponding to group and j the subject within sample group. This

test has similar advantages and disadvantages to Hotelling’s T 2, in that it requires

the sample size to be larger than the dimension. Furthermore, the statistical power

would be weak if sample size is not relatively small compared to dimension (Bai

and Saranadasa, 1996). When data comes from ordinal variables or data is heavily

skewed, comparing means may not be optimal. A more suitable comparison for the

two group case would be comparing relative effects. The univariate version of relative

effect is defined by Brunner and Munzel (2000) as ω = P (X11 < X21) + 1
2
P (X11 =

X21). The interpretation for this univariate version is that a random variable in the
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first group is said “to tend to have smaller values” than a random variable in the

second group if ω > 1/2. This quantity can be naturally extended to the multivariate

context as the vector ω = (ω1, ω2, ..., ωp)
>. A test for this extension was proposed

by Brunner, Munzel, and Puri (2002) as

T 2
R = n(ω̂ − 1

2
1p)
>V −1

n (ω̂ − 1

2
1p)

where ω̂ is an estimate of ω based on ranks, 1p = (1, 1, ..., 1)> and V −1
n is also a

sample covariance matrix based on ranks. This test is appropriate for skewed and

ordinal data, but it is also underpowered or even not defined when sample size is not

relatively small to dimension.

The high availability of large datasets has forced science and specifically Statis-

tics to develop new methods. Classical methods solve the comparisons satisfactorily

when the sample size is large compared to the dimension. However, in contempo-

rary data analysis, cases in which the dimension far exceeds the sample size are

frequently encountered. In recent years, not only has availability to store data in-

creased exponentially but also smartphones and other electronic devices have made

it significantly easier to gather information of every activity registered in them. An

example of this is geospatial data, time series, and many others. Another example

of a larger dimension is genetic data, more specifically microarray gene expressions,

where there are thousands of observations per subject and a handful of subjects per

group.

To address this need, many different methods have been proposed in the last

two decades. Bai and Saranadasa (1996) devised a test to compare two groups that

relaxes the restrictions on dimension and size. However, this test is still not powerful

when dimension is much larger than sample size. It also assumes a fast decay of

covariance structure and higher order dependence. Cai, Liu, and Xia (2013) proposed

a test that solves the problem of high p and small n. It is particularly powerful

against sparse alternative since its statistic is supremum-based. It also assumes

equal covariance matrix for the two groups which is restrictive. Chen and Qin

(2010) innovated by not assuming equal covariance in their test, relaxed the higher
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order dependence and the relationship between n and p. Srivastava, Katayama,

and Kano (2013) proposed an invariant test under units of measurement in which

it still made some restrictive assumptions in terms of covariance sparsity, but made

no assumptions in higher order dependence. All these tests make assumptions on

the covariance structures that make them somehow restrictive. Gregory et al. (2015)

proposed a test that has milder assumptions than the previous tests in the two sample

case setting. The multiple group case has been treated by recent papers as well.

Yamada and Srivastava (2012) tackle the multiple group comparison assuming equal

covariance matrix. They also make restrictive assumptions in terms of covariance and

higher order dependence. Hu, Bai, et al. (2015) and Zhang, Guo, and Zhou (2017)

have not assumed equal covariance matrix but still make restrictive assumptions in

terms of the dependence structure.

We propose two composite tests that are powerful against weak and dense signal

and have milder assumptions and restrictions than the previous methods. One of

the tests undertakes the parametric approach and the other test focuses on the

nonparametric one. Both make very few distributional assumptions, which makes

them very competitive and versatile for various data types. These tests are backed

with theoretical results along with extensive simulations.

This dissertation contains six chapters. In Chapter 1, an introduction to the

high-dimensional inference is provided. Chapter 2 reviews recent researches done to

overcome the issues that arise from high dimensionality. In Chapters 3 and 4, we

propose and study a number of new semi-parametric and fully nonparametric tests

for high-dimensional group comparison. We conduct an extensive simulation study

in Chapter 5. The conclusion of the researches of the dissertation are summarized

in Chapter 6 Also, in Chapter 6, future research directions are pointed out.

Copyright c© Alejandro G. Villasante Tezanos, 2019.
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Chapter 2 The High Dimensional Problem

2.1 Introduction

To contextualize the tests presented in Chapters 3 and 4, influential papers in the

topic will be reviewed. In particular, their scope of applications and shortcomings

will be discussed. We will divide the review into four sections including this one.

Section 2.2 will introduce the classical approach to the problem, followed by the

high dimensional approach in Section 2.3. Finally, Section 2.4 will summarize the

information and the gaps that we will fill with our proposed tests and simulations.

Let us first set up the model and notations used in the sequel. AssumeXi1, ...,Xini

be independent samples, where Xij = (xij1, ..., xijp)
>, with mean µi and covariance

Σi, for i = 1, ..., a. Here, a is the number of groups or populations to be compared.

Also, let ni, X i and Si be the sample size, mean and covariance matrix respectively

for the ith sample, with n =
∑a

i=1 ni.

2.2 Classical Approach

The classical approach for this problem extends what is known for unidimensional

outcomes to multidimensional outcomes. First, if interest lies in comparing the

mean vectors of two populations, i.e. testing the hypothesis of H0 : µ1 = µ2. A T 2-

statistic to test for the equality of mean vectors from two multivariate populations

can be developed by analogy to the univariate square of the t-statistic. Similarly

to the univariate case, depending on the sample sizes more assumptions may be

needed. If sample size is not large enough both populations may need to be assumed

normally distributed or even both covariance structures may need to be assumed

equal Σ1 = Σ2. Given the dimensionality of the problem this assumption is much

stronger than the univariate counterpart. For this situation the T 2-statistic is defined

in Hotelling (1931) as in 1.1.
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Then, the T 2-statistic is distributed as

T 2 ∼ n1 + n2 − 2

n1 + n2 − p− 1
Fp,n1+n2−p−1

where p is the dimension and Fp,n1+n2−p−1 refers to the Snedecor’s F distribution

with p and n1 + n2 − p− 1 degrees of freedom.

If equal covariance cannot be assumed for both populations, then we cannot find

an easy statistic whose distribution doesn’t depend on the covariance structures. If

sample sizes are large enough, p fixed, such that even n1 − p and n2 − p are large,

then a test similar to T 2 with some modifications is adequate. The statistic

T ∗
2

= [X1 −X2 − (µ1 − µ2)]>
[
(

1

n1

S1+
1

n2

S2)

]−1

[X1 −X2 − (µ1 − µ2)]

approximately follows a Chi-square distribution with p degrees of freedom. A finite

sample approximation is also available in Krishnamoorthy and Yu (2004).

If we want to extend to a > 2 populations or groups, then the univariate test

would be ANOVA. The multidimensional approach for this one is called Multivariate

Analisys of Variance (MANOVA) as it can be seen in Anderson (2003).
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MANOVA, analogically to ANOVA, has a summary table:

Table 2.1: MANOVA table

Source Matrix of Sum of Squares Degrees of freedom
of Variation and cross products

Treatment B =
∑a

i=1 ni(X i −X)(X i −X)> a− 1

Residual(Error) W =
∑a

i=1

∑ni
j=1(Xij −X i)(Xij −X i)

> ∑a
i=1 ni − a

Total(corrected
for the mean) B +W =

∑a
i=1

∑ni
j=1(Xij −X)(Xij −X)>

∑a
i=1 ni − 1

Table 2.1 has the same form as the ANOVA table only involving sums of squares

and cross-product matrices instead of just scalar numbers. A statistic proposed by

Wilks 1.2 is a likelihood ratio test that will reject the Null hypothesis when

−(n− 1− (p− a)

2
) ln Λ∗ = −(n− 1− (p− a)

2
) ln

|W |
|B +W |

> χ2
p(a−1)(α)

where χ2
p(a−1)(α) is the Chi-square distribution with p(a− 1) degrees of freedom for

test size α.

2.3 High Dimensional Approach

The classical approach in Section 2.2 to the test that we are interested in relies

heavily in having a large sample size relative to the dimension of the problem.

Given the actual interest for high dimensional data, it is often questioned whether

the vector means of multiple populations are the same or different. It is usually the

case that the number of dimensions of such vectors exceeds by far the sample sizes.

This is a situation where conventional test statistics such as the previously discussed

are not feasible or well defined. When dimension is much larger than the sample

size, estimating mean and covariance structure of the vectors is impossible through

regular methods such as maximum likelihood. The main difficulty to find tests
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that are viable for the task is to estimate the dependence relationship between the

different observations within subjects. Given the high dimensionality of the problem

p(p+ 1)/2 estimates of the variance-covariance matrix are to be found.

Some assumptions will have to be made so that estimation problem can be sim-

plified. Interest in tests for such situations is steadily growing, specially in biological

applications (Gadbury et al. (2004), Liao and Chin (2007), Zhang, Zhang, and Wells

(2008)).

In these applications, the classical approaches such as Hotelling’s T 2-test for two

groups or Lawley-Hotelling trace test, Pillai’s trace test or Wilks’ lambda for multiple

groups are no longer powerful or well defined.

Two Sample Problem a = 2

Equal Covariance Matrices

The high-dimensional two sample mean comparison was first was first formally stud-

ied by Bai and Saranadasa (1996) in the two sample problem where the asymptotic

power of the Hotelling’s test and Dempster’s non-excact test Dempster (1958) are

also discussed and a strong dependence on normality assumption is pointed out. A

new asymptotic test is proposed without relying on normality of the data:

Mn = (X1 −X2)>(X1 −X2)− 1

n1n2

tr(Spooled).

Under the Assumption 2.3.1- Assumption 2.3.5 , Mn conveniently scaled has asymp-

totic Normal distribution, i.e.

Zn =
Mn√

VarMn

d→N (0, 1), as n, p→∞.

The variance is consitently estimated by

v̂ar(Mn) =
2(n+ 1)

n
B2
n

and

B2
n =

1

(n+ 2)(n− 1)
(trSpooled

2 − 1

n
(trSpooled)2).

The following assumptions were needed for the asymptotic results.
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Assumption 2.3.1. Xij = ΓZij + µj where Γ is a p × m matrix (m ≤ ∞) such

that ΓΓ′ = Σ , Zij = (zij1, ..., zijm)> are iid with mean 0 and covariance matrix

Im, E(z4
ijk) = 3 + ∆ ≤ ∞ and E(Πm

k=1z
νk
ijk) = 0 when at least one νk = 1 or

E(Πm
k=1z

νk
ijk) = 1 when there are two νk’s equal to 2, whenever ν1 + ..+ νm = 4.

Assumption 2.3.2. (µ2 − µ1)>Σ(µ2 − µ1) = o(n1+n2

n1n2
Σ2).

Assumption 2.3.3. λmaxΣ = o(
√

trΣ2), where λmax(Σ) is the maximum eigenvalue

of the covariance matrix.

Assumption 2.3.4. p/n→ y > 0.

Assumption 2.3.5. and n1/(n1 + n2)→ κ ∈ (0, 1).

This test is based on the squared Euclidean norm of the difference between the

sample mean vectors. Assumption 2.3.1 defines Xij as linear transformations of

uncorrelated variables (zijk) that are centered at 0, along with these properties,

moments and moments of cross-products are meant to guarantee a certain pseudo-

independence between the components. Not restricting the value of m to be less

than p assures certain flexibility on the dependency structure. Assumption 2.3.2

and Assumption 2.3.3 are related to the covariance structure to restrict it so that

none of the eigenvalues is too big with respect to the dimension. Assumption 2.3.4

is restricting p and n to be of the same order of magnitude. Assumption 2.3.5 is

restricting n1 and n2 so that they grow proportionally, avoiding too unbalanced

situations.

This test behaves better than the other two classical approaches under non nor-

mality but it assumes equal covariance structure. A criticism for this test comes

from Assumption 2.3.4. It is commonly the case where p is large and n is small.

Another approach for the two sample problem under equal covariance assumption

was introduced by Cai, Liu, and Xia (2013). They proposed the test statistic:

MΩ̂ =
n1n2

n1 + n2

max
1≤i≤p

Ẑ2
i

ω̂
(0)
ii

, (2.1)
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where Ẑi = (Ẑ1, Ẑ2, ..., Ẑp)
> = Ω̂(X1 −X2), ω̂

(0)
ii = n1

n1+n2
ω̂

(1)
ii + n2

n1+n2
ω̂

(2)
ii

(ω̂
(l)
ij ) :=

1

n1

n1∑
k=1

(Ω̂Xlk −X lΩ̂)(Ω̂Xlk −X lΩ̂)>, X lΩ̂ =
1

nl

nl∑
k=1

Ω̂Xlk,

and Ω̂ estimate of the precision matrix Ω = Σ−1.

Let Λ = (λij) be the correlation matrix for X1j and X2j and Λ(t) = (λ
(t)
ij )

be the correlation matrix for ΩX1j and ΩX2j. Cai, Liu, and Xia (2013) make the

assumptions:

Assumption 2.3.6. There exist C0 < ∞ such that C−1
0 ≤ λmin(Σ) ≤ C0 where

λmin(Σ) is the smallest eigenvalue of Σ.

Assumption 2.3.7. max1≤i<j≤p
∣∣λij∣∣ ≤ r1 < 1 for some constant 0 < r1 < 1.

Assumption 2.3.8. max1≤i<j≤p

∣∣∣λ(t)
ij

∣∣∣ ≤ r2 < 1 for some constant 0 < r2 < 1.

The assumptions made in this test are basically more specific restrictions in

the eigenvalues and entries of both correlation matrices involved. The minimum

eigenvalue is bounded so that matrix has full rank and correlations are bounded

above by a number smaller than one, which guarantees no perfect correlation between

variables.

This test statistic under the null hypothesis follows asymptotically an extreme

value type I distribution and hence a test can be performed. This test which is

based on a linear transformation of the data by the precision matrix (Ω) is especially

advised in the case of sparse alternative (i.e. the mean difference happens only in a

small proportion of the variables).

In the case of sparse alternative simulation shows that even though size is similar

to the other tests, power is higher.

Tests such as the ones proposed by Bai and Saranadasa (1996), Srivastava and

Du (2008), Srivastava (2009) and Chen and Qin (2010) are based on sum of squares

statistics which are known to have good power against dense alternatives. However,

for a number of applications especially in biology, e.g. imaging anomaly detection
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and genomics, the means for both groups are the same or almost the same in the

sense that the may only differ in a small number of variables.

The main criticism in these tests is the assumption of equal covariance matrix

which, as mentioned earlier, is rather strong.

Unequal Covariance Matrices

A step further in the development of these types of tests was introduced by Chen

and Qin (2010). This paper is also dealing with two samples but Assumption 2.3.4

is no longer assumed. The test statistic is

Tn :=

∑n1

i 6=jX
>
1iX1j

n1(n1 − 1)
+

∑n2

i 6=jX
>
2iX2j

n2(n2 − 1)
− 2

∑n1

i=1

∑n2

j=1X
>
1iX2j

n1n2

(2.2)

Here also, Assumption 2.3.5 is required. Further, the model is similar to that of

Bai and Saranadasa (1996) given in Assumption 2.3.1 with a few changes. Now m

is restricted to be greater than p. In addition, the following assumptions are made.

Assumption 2.3.9. E(zα1
ijl1
zα2
ijl2
...z

αq
ijlq

) = E(zα1
ijl1

)E(zα2
ijl2

)...E(z
αq
ijlq

) for a positive inte-

ger q such that
∑q

l=1 αl ≤ 8 and l1 6= l2 6= ... 6= lq.

Assumption 2.3.10. (µ1 − µ2)>Σi(µ1 − µ2) = o[n−1tr(Σ1 + Σ2)2] as n, p→∞.

Assumption 2.3.11. tr(ΣiΣjΣlΣh) = o(tr2(Σ1 + Σ2) for i, j, l, h = 1 or 2, as p→

∞.

The idea for this test originated from the test from Bai and Saranadasa (1996),

by eliminating terms in the test statistic that impose size and dimension restrictions

but are not useful.

It uses a relaxed version of the model from Bai and Saranadasa (1996) expressed in

Assumption 2.3.1 since pseudo-independence property of the components is extended

to cross products of up to 8 variables. The test statistic normalized asymptotically

follows a standard Normal distribution.

Both Chen and Qin (2010) and Bai and Saranadasa (1996) are invariant under

the group of orthogonal transformations but they are not invariant under changes
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of scale, e.g. changes of units of measurement. Orthogonal transformations preserve

angles and distance between points. Examples of such transformations are rotations,

symmetries, translations. Units may vary when applying a scale or projection trans-

formations. To overcome the limitations with scale invariance Srivastava, Katayama,

and Kano (2013) introduced the test

T =
q̂n√

V̂ar(q̂n)cp,n

=
(X1 −X2)>D̂−1(X1 −X2)− p√

pV̂ar(q̂n)cp,n

(2.3)

where

D̂ =
D̂1

n1

+
D̂2

n2

, D̂i = diag(si11, ..., sipp) and cp,n = 1 +
trR

p3/2
.

The quantity cp,n is a correction term needed for a faster convergence and was

given in Srivastava and Du (2008) in connection with a test when the covariance

matrices of the two groups are equal. This test makes the following assumptions in

addition to Assumption 2.3.5.

Assumption 2.3.12. 0 < c1 < min1≤k≤p σikk ≤ max1≤k≤p σikk < c2 <∞ uniformly

in p where σikk is the kth diagonal entry of Σi.

Assumption 2.3.13. limp→∞ trΛp
4/(trΛp

2)2 = 0, where Λp = D−1/2(Σ1

n1
+ Σ2

n2
)D−1/2.

Assumption 2.3.14. nm = O(pδ), δ > 1/2, nm = min(n1, n2).

In this test, Assumption 2.3.13 is weaker than Assumption 2.3.11. However,

Assumption 2.3.12 is made in exchange, but this assumption is weaker and more

reasonable. Recall that, the main advantage of this test with respect to Chen and

Qin (2010) and Bai and Saranadasa (1996) is that the test is scale invariant and it

should not be affected by the choice of units. Likewise, Feng et al. (2015) proposed

a variation of Bai and Saranadasa (1996) and Chen and Qin (2010) that it is also

scale invariant using very similar assumptions to those described in Chen and Qin

(2010) (Assumptions 2.3.9, 2.3.10 and 2.3.11). For that reason details of this test

are omitted.
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Another approach was Gregory et al. (2015) based on an average of the t2 statistic

for each variable. Conditions and assumptions for this test are described in depth in

Sections 3.1 and 3.2.

More Than Two Samples a > 2

Equal Covariance Matrices

An step towards extending the problem from the previous papers to more than two

groups was considered among others, by Srivastava and Kubokawa (2013) and Hu,

Bai, et al. (2015).

The model studied by Srivastava and Kubokawa (2013) is very similar but ex-

tending to multiple groups a regression notation is being used.

They proposed the statistic

T1 =
tr( BD−1

s ) −Np(a− 1)(N − 2)−1

2cp,N(a− 1)(tr( R2) −N−1p2)] 1/2
(2.4)

where cpN = 1 + (tr[ R2] /p3/2) and Ds = diag(S).

As in Srivastava, Katayama, and Kano (2013), this test is also invariant under

scale transformations. Assumption 2.3.1 extended to multiple groups is assumed

here. In addition, the following assumptions are required.

Assumption 2.3.15. limp→∞(tr[ Λ2] /p) <∞.

Assumption 2.3.16. limp→∞(tr[ Λ4] /p2) = 0.

Assumption 2.3.17. N = O(pδ),δ > 1/2,a <∞.

Assumption 2.3.18. lim(n,p)→∞{(p(a− 1))−1tr[ ΛM ] } = 0

where

M = (µ1, ...,µa)

 Ia−1

−1>k−1

B

(
Ia−1 −1a−1

)
µ>1

...

µ>a


and matrix B is defined in Chapter 3 as (3.6).
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These assumptions are adaptations from Srivastava, Katayama, and Kano (2013)

to an environment where equal covariance matrix is not assumed for all groups. The

main criticism to this extension is that equal covariance matrix is assumed.

Cai and Xia (2014) extended the test Cai, Liu, and Xia (2013) to multiple groups

with similar adapted conditions which led to the same characteristics.

Under the assumptions of multivariate normality, Schott (2007) , Srivastava

(2007), Srivastava and Fujikoshi (2006) and Yamada and Himeno (2015) developed

test for the multigroup mean comparison hypothesis. These tests are not invariant

under change of units of measurement which we will not consider further.

Unequal Covariance Matrices

Hu, Bai, et al. (2015) is a multiple group test that in the particular case of a = 2

coincides with the one proposed by Chen and Qin (2010). The statistic they studied

is

T (a)
n =

a∑
i<j

(X i −Xj)
>(X i −Xj)− (a− 1)

a∑
i=1

n−1
i trSi. (2.5)

They assume multiple group generalizations of Assumption 2.3.2, Assumption

2.3.9, Assumption 2.3.10 and Assumption 2.3.5. Further, they make the following

assumptions.

Assumption 2.3.19. tr(ΣlΣdΣlΣh) = o[tr(ΣlΣd)tr(ΣlΣh)] , l, d, h ∈ {1, 2, ..., a}.

Assumption 2.3.20. (µd − µl)>Σd(µd − µh) = o[n−1tr{(
∑a

i=1 Σi)
2}] for l, d, h ∈

{1, 2, ..., a}.

Assumption 2.3.21. ni/n→ κi ∈ (0, 1) for i = 1, ..., a, as n→∞.

Under these assumptions they conclude

T
(a)
n −

∑a
i<j

∥∥µi − µj∥∥2√
Var(T

(a)
n )

d→ N (0, 1) (2.6)

as n, p→∞.
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In numerical studies this test has shown better performance than the test pro-

posed by Srivastava and Kubokawa (2013).

A multiple group test is prosposed by Aoshima and Yata (2013) in which they

use some alternative assumptions to normality that don’t differ considerably from

those used by Chen and Qin (2010) and for that reason details are omitted. It is

worth noting however that in this paper they also proposed a confidence region and

sample size formula.

Zhang, Guo, and Zhou (2017) implemented a general linear Hypothesis test of

mean vectors that has Hu, Bai, et al. (2015) and Yamada and Himeno (2015) as

particular cases. It is based on a linear combination of U-statistics and it is appli-

cable to non-normal data without assuming common covariance matrix. This paper

innovates in the hypotheses to be tested but assumptions include those in Hu, Bai,

et al. (2015) except Assumption 2.3.20 and hence the result does not vary much from

the previous tests in terms of the strength of the assumptions.

2.4 Objective of the Dissertation

Most of the tests discussed in Section 2.3 impose restrictions on the covariance struc-

ture that are somehow strong. Essentially, they assume factoring of expectations for

mixed moments of up to the eight order, they basically assume a certain correlation

structure in which variables are linear combinations of pseudo-independent variables

such that there is no dependency for higher moments. Gregory et al. (2015) also use

the moment of an asymptotic expansion of the statistic to increase rate of conver-

gence. Our proposed test in Chapter 3 is based on this approach but extended to

multiple groups.

The same problem has been treated much less extensively in the nonparametric

framework for two samples. Wang, Peng, and Li (2015) proposed a test based on

mean differences with restrictions such as equal covariance structure and populations

coming form certain generalized elliptical distributions. Ghosh and Biswas (2015)

studied a distribution free statistic but restricting to elliptical distibutions as well.

Wang, Peng, and Li (2015) and Ghosh and Biswas (2015) have other approaches,
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but these and other different approaches have made similar assumptions for the

covariance structure as in the papers discussed in this chapter and are based on mean

differences. Our test proposed in Chapter 4 is built as a composite test like in Gregory

et al. (2015) using weaker dependency assumptions than the other nonparametric

approaches and with difference based on the nonparametric concept of relative group

effect defined in 4.2 as opposed to mean differences. The test is distribution free as

well but no assumptions on elliptical populations are made. Further, the test admits

populations with distributions that could be anything but degenerate.

In order to complement the results discussed in this chapter we propose the

following items that will be considered in the remaining part of this dissertation:

• Extend the moment based finite sample correction as it is shown in Section 3.1

to the multigroup.

• Propose a new rank based approach for comparing high-dimensional groups.

• Compare recent High-dimensional tests and their rank-based analogous in an

extensive simulation study.

Copyright c© Alejandro G. Villasante Tezanos, 2019.
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Chapter 3 Semiparametric High Dimensional Tests

3.1 Introduction

Consider the multiple sample problem in which the dimension far exceeds the sample

sizes. We are especially interested in the situation where data can be considered to

be ordered in space, time or some other index in such a way that the dependence

between two components depends on their displacement. This has applications in

biology, as it occurs in chromosomal datasets, and many time series datasets.

In the search for statistics that fit our data assumptions, two statistics are inves-

tigated. Each of them will have two versions, One designed for groups with common

second and higher moments, and another one for groups with different second and

higher moments. As it is briefly stated in Chapter 2, the statistics proposed in this

chapter can be seen as a multiple group extensions of two group test proposed by

Gregory et al. (2015). More specifically, Gregory et al. (2015) proposed a test based

on the average of each variable t2 test called “Generalized Component Test”.

The test statistic is based on Tn which is defined as:

Tn =
1

p

p∑
k=1

t2nk

where t2nk is the square of the t-statistic for the kth variable. That is,

t2nk =
(X1i −X2i)

2

s21i
n1

+
s22i
n2

where X1k and X2k are the sample means and s2
1k and s2

2k are the sample variances

, respectively, of the kth variable.

Then, the test statistic is defined by:

G(L)
n ≡ p1/2(Tn − (1 + n−1ân + n−2b̂n))/ζ̂n (3.1)
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where ân = (ĉn1 + ...+ ĉnp)/p, b̂n = (d̂n1 + ...+ d̂np)/p, and ĉnk and d̂nk for k = 1, ..., p

are functions of the sample moments described in Gregory et al. (2015).

While (3.1) is meant for large-p version, there is another statistic defined as

G(M)
n ≡ p1/2(Tn − 1)/ζ̂n (3.2)

which is designed for a moderate p. The large-p statistic is based on finite sample

approximation for the center via asymptotic expansion of the first moment of Tn

rather than using the mean of the limiting distribution. More precisely, the main

difference between (3.2) and (3.1) is that (3.1) centers Tn with its mean correct up

to order O(n−2) which is achieved by asymptotically expanding E(Tn) whereas (3.2)

centers by the asymptotic mean.

Dependency between the variables keeps the Central Limit Theorem from guar-

anteeing asymptotic normality of the test statistics. It was shown that the statistics

G
(L)
n and G

(M)
n each will converge to a Normal distribution if α-mixing dependence

structure holds among the t2nk, k = 1, 2, ..., p.

Let Gn be either one of the statistics (3.2) or (3.1). Then

Gn ≡ p1/2(Tn − ξ̂n)/ζ̂n
d−→ N(0, 1) as n→∞

as n → ∞ where ζ̂n is a consistent estimator of the asymptotic variance τ∞ and ξ̂n

is the centering term from (3.2) or (3.1).

This test is a sum-of-squares based test and can be sensitive to dense but oth-

erwise weak alternatives. Gregory et al. (2015) mentions that it would be better to

find a sumpremum-based alternative test in situations when the signal is strong but

sparse.

We aim to propose and prove similar results for the general multiple sample

situation based on an F-type statistic. To that end, the chapter will be structured

in eight sections including this introduction, Section 3.2 sets notation for the model

and the hypothesis and assumptions. In Section 3.3, the test statistics are defined.

Then, Section 3.4 will contain the main results. Simulations will be presented in

Section 3.5 using a variety of sample sizes, dimensions and distributions to describe
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the situations where the test is more useful. This type of problem will be illustrated

with a real data example in the subsequent Section 3.6. Conclusions will be presented

in Section 3.7. Proofs of the main results and some relevant intermediate results

and lemmas are given in the Appendix (Section 3.8).

3.2 Model and Hypothesis

For each i = 1, 2, ..., a, let Xij = (Xij1, ..., Xijp)
> be iid for j = 1, 2, ..., ni with mean

µi and covariance matrix Σi. Denote by n =
∑a

i=1 ni the total sample size and

assume the a samples are independent.

The hypothesis of interest is H0 : µ1 = µ2 = ... = µa versus H1 :at least

∃i, j ∈ {1, .., a} : µi 6= µj . For testing this hypothesis, let

Fn = (Fn1, Fn2, ..., Fnp)
> (3.3)

where Fnk = MSTk
MSEk

is the F statistic for an ANOVA test on the kth variable. We will

use two different versions of MSEk depending on the comparison of the second and

further moments for the different groups.

When equal second and further moments are assumed we will refer to (3.3).

Alternatively, when second and further moments are not assumed to be equal we

will refer to vector

F ′n = (F ′n1, F
′
n2, ..., F

′
np)
>. (3.4)

For the development of the theory, we will assume a notion of sparsity for the

dependence between the variables. Let

αij(s) = sup
k≥1
{|P (A ∩B)− P (A)P (B)| : A ∈ Fk1 (i, j) and B ∈ F∞k+s(i, j), }

for i = 1, ..., a and j = 1, ..., ni where F ba(i, j) ≡ σ({Xijk : a ≤ k ≤ b}). Here

αij(s) is a dependence coefficient that measures the strength of dependence between

variables that are at least s indices apart. It provides a measure of the strenght of

dependence between variables that are at least s time points (space units) apart.

For notation purposes, the subindices in the coefficients αij(s) are added for the
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different sequences of variables, but it will be dropped when the sequence is clear by

the context.

The following conditions are needed for later use:

Assumption 3.2.1. For some δ > 0
∑∞

s=1 αij(s)
δ/(2+δ) <∞.

Assumption 3.2.2. For some δ > 0, E|Fnk|2s+δ < b < ∞ for all k = 1, ..., p for

some integer s ≥ 1.

Assumption 3.2.3. limn→∞
1
p−s
∑p−s

k=1 Cov(Fnk, Fn(k+s)) = γ(s) exists ∀s > 0.

Assumption 3.2.4. max{E|X11k|16,E|X21k|16, ...,E|Xa1k|16, k = 1, ..., p} = O(1).

Assumption 3.2.5. min{Var(X11k),Var(X21k), ...,Var(Xa1k), k = 1, ..., p} > b > 0.

Assumption 3.2.1 appeals to the dependency structure between variables, assum-

ing dependency fades away as variables are further away from each other, at a rate

that is not exponential but rather polynomial . Assumption 3.2.2 refers to the fact

that the F-type statistic has a finite second or higher moment. Assumption 3.2.3

is needed to control the sum of covariances of the Fnk’s and, ultimately, along with

Assumption 3.2.2 assure the finiteness of the variance of the statistic Fn. Assump-

tion 3.2.4 implies that the 16th moment of each variable is finite and bounded. In

Assumption 3.2.5 all variable variances are bounded below by a number greater than

0. Assumption 3.2.4 is used in the proof of Theorem 3.4.1 since some expected values

of this power are used and need to be finite. Assumption 3.2.5 is needed since the

F -type statistic has the second moment of the variables in the denominator. Very

small values of this variances will promote very large values of the F -type statistic.

Since the scaling ζ̂n in F
(M)
n and F

(L)
n (defined in the next section) is a function of

autocovariance of the Fnk’s, large values of Fnk will shrink F
(M)
n or F

(L)
n toward 0

when they should be producing the opposite effect.

3.3 Test Statistic

We will define the statistic proposed for the multiple group problem under equal

and unequal covariance. We consider these two different cases separately since the
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denominators of the Fnk statistics would vary slightly in order to enhance the power

of the test statistics under their respective assumptions.

Test Statistic Under Equal Covariance

Under the assumption that second and higher moments are common between the

different groups, the statistic in this subsection is based on an average of the usual

ANOVA F statistic for each variable considered separately. Let

Fn =
1

p
(Fn1 + Fn2 + ...+ Fnp) (3.5)

where Fnk for k = 1, ..., p is the F statistic for the kth variable and defined by

Fnk = MSTk/MSEk. Here, MSTk = Xk
′
BXk/(a− 1) , Xk = (X1k, X2k, ..., Xak)

>,

B =



n1 − n2
1

n
−n1n2

n
.. .. −n1na

n

−n1n2

n
n2 − n2

2

n
.. .. −n2na

n

.. .. .. .. ..

.. .. .. .. ..

−n1na
n

−n2na
n

.. .. na − n2
a

n


(3.6)

and MSEk =
∑a

i=1(n− a)−1(ni − 1)s2
ik, where s2

ik the unbiased sample variance for

the kth variable in the ith sample and X ik the sample mean for the kth variable in

the ith sample.

Scaling and centering Fn in a manner analogous to (3.1) and (3.2) we propose

two test statistics F
(M)
n and F

(L)
n .

The moderate-p version of the statistic is

F (M)
n =

Fn − 1

ζ̂n

and the large-p version of the statistic is

F (L)
n =

Fn − (ân + b̂n
n

)

ζ̂n

where, ân = p−1(ĉn1 + ĉn2 + ...+ ĉnp) and b̂n = p−1(d̂n1 + d̂n2 + ...+ d̂np).
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The sample quantities ĉnk and d̂nk are estimates from cnk and dnk defined in (3.19)

and (3.20). They are estimated using sample moments described in Subsection 3.8.

The scaling factor will consider the dependence structure between elements of the

vector, it is defined as

ζ̂2
n ≡

∑
|s|<L

w(s/L)γ̂(s),

where γ̂(s) is the sample autocovariance defined by

γ̂(s) =
1

p− s

p−s∑
k=1

(Fnk − Fn)(Fn(k+s) − Fn)

and the covariance between variables are weighted according to the lag separation

between them. A possible choice for the weight function is w(s/L),

w(x) =


1− 6|x|2 + 6|x|3 if |x| < 1/2

2(1−|x|)3 if 1/2 ≤ x ≤ 1

0 if |x| > 1

which is the Parzen window discussed in Brockwell and Davis (2013), s is the distance

away from the diagonal in the covariance matrix and L is the distance from the

diagonal where covariance becomes negligible.

The function w(x) is graphed in Figure 3.1 along with −x2 + 1, −|x|3 + 1 and

Trapezoid windows from Politis and Romano (1995) to emphasize the pace at which

the weight decreases as you move away from 0.
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Figure 3.1: Plot of Parzen window function,−x2 +1, −|x|3 +1 and Trapezoid window
from Politis and Romano (1995).

As a function of the ratio between s and L, w(x) gives a reasonable weight for

the covariance estimates. Recall that assumptions of α-mixing guarantee that as we

move away from any given element in the vector, the dependence and , hence, the

correlation fades away. Introducing this weight will lead to a consistent estimator

of the asymptotic variance by taking advantage of the assumed α-mixing structure.

No further window functions have been investigated.

Test Statistic Under Unequal Covariance

When the group covariance matrices are unequal, we modify MSEk so that its

expectation equals that of MSTk under the null hypothesis. Then, similarly to the

statistic defined in the previous section, we define

F
′

n = p−1(F
′

n1 + F
′

n2 + ...+ F
′

np)

where

F
′

nk =
MST

′

k

MSE
′
k

for k = 1, ..., p,

with

MST
′

k =
1

a− 1

a∑
i=1

(X ik −X .k)
2 , MSE

′

k =
1

a

a∑
i=1

1

ni
s2
ik and X .k =

1

a

a∑
i=1

X ik.
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The test statistics F
′(M)
n and F

′(L)
n are defined similarly to F

(M)
n and F

(L)
n . Two

different centering options are used.

The moderate-p version of the statistic is

F
′(M)
n =

F ′n − 1

ζ̂n
and the large-p version of the statistic is

F
′(L)
n =

F ′n − (1 + b̂′n
n

)

ζ̂n

where b̂′n = 1
p
(d̂′n1 + d̂′n2 + ...+ d̂′np).

Population quantity d′nk defined in Subsection 3.8 is estimated as d̂′nk. Estimates

are calculated by substituting sample moments (Subsection 3.8) in population pa-

rameters. The estimator ζ̂n is defined in exactly the same way as in Subsection 3.3

except using the quantities F ′n and F ′nk.

3.4 Main Results

We will establish the asymptotic normality of the centered and scaled test statistic

Fn. A similar statement is also true for F ′n. The following will be proved:

Theorem 3.4.1. : Let us assume that p ≡ pn = o(n4) and Assumptions 3.2.1,3.2.2

3.2.3, 3.2.4 and 3.2.5 hold with s = 1. Then,

supx∈R|P (Fn − an < x)− Φ{√p(x− n−1bn)/τ∞}| = o(1)

where

τ 2
∞ = γ(0) + 2

∞∑
s=1

γ(s) <∞

an =
cn1 + cn2 + ...+ cnp

p
and bn =

dn1 + dn2 + ...+ dnp
p

where cnk and dnk are defined in (3.19 and 3.20) and satisfy

an → 1 and bn = O(1) as n→∞.
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The proof for this theorem is given in the Appendix, Subsection 3.8. The state-

ment and proof for the statistic under the assumption of non equal variance and

higher moments remains the same and it is omitted.

Expansion for the First Moment of Fn and F ′n

Proposition 3.4.1. : Assuming {X1jk, j = 1, ..., n1}, {X2jk, j = 1, ..., n2}, ...,

{Xajk, j = 1, ..., na} are independent and identically distributed random samples for

all k = 1, .., p, E[X1jk] = E[X2jk] = ... = E[Xajk] = µk, Var[X1jk] = σ2
1k,

Var[X2jk] = σ2
2k, ...,Var[Xajk] = σ2

ak and Assumptions3.2.4 and 3.2.5.

Let

Fnk =
Xk
′
BXk/(a− 1)∑a
i=1

(ni−1)s2ik
n−a

where s2
ik is the sample variance of the kth variable in the ith group and

n/ni = O(1) ∀i = 1, ..., a as n→∞.

Then

E[Fnk] = cnk + n−1dnk + o(n−
3
2 ).

The proof for this proposition is presented in the Appendix, in Subsection 3.8.

The rationale for choosing the centering values is based on the finite sample approx-

imation for the center via asymptotic expansion of the first moment. Depending on

how many terms are included in the expansion, the rate of convergence will vary.

E[Fn] = an +
1

n
bn + o(n−

3
2 ) and E[F ′n] = 1 +

1

n
b′n + o(n−

3
2 ).

This implies,

E[
√
p(Fn − (an +

1

n
bn))] =

√
po(n−

3
2 ) and E[

√
p(F ′n − (1 +

1

n
b′n))] =

√
po(n−

3
2 ).

When only the first term is kept, p needs to grow at the rate p = o(n2). On the

other hand, if the first two terms are included, p needs to grow at the rate p = o(n4).

Therefore, when only an is included, Fn is expected to have lower rate of convergence

than when both an and bn are included. This shows that as more terms are included

in the expansion, the higher theoretical precision as n and p increase. This means
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that more terms in the expansion lead to a potentially better approximation for the

null distribution in smaller sample size situations.

Large-p version of the tests allow for p = o(n4), but since large-p versions of

the tests include higher-order sample moments, they are more sensitive to outliers

and their performance under heavy tailed distributed data could be worse than the

moderate-p version.

All statements in this section can be applied to F ′n and b′n as well.

3.5 Simulation

We aim to show the performance of the proposed statistics in terms of size and power

under various settings. More precisely, we investigate how the large-p versions of the

tests (from now on also called “VH-lgp”) compare to the moderate-p versions of the

tests (from now on also called “VH-mdp”), in particular in the case of small sample

sizes. Since we derived an approximation for the expected value of the statistic,

that has a potential to improve the rate of convergence than the method without

expansion, we would expect the approximation to perform better in the small sample

size environment.

In order to make the simulation as thorough as possible, we have investigated

multiple combinations of parameter values. Specifically, effects in the number of

groups a, sample sizes ni and dimension p are investigated. Parzen Smoothing

Window parameter (L) is used and needs to be specified before hand to estimate

the variance of the test statistic, it dictates the extent to which the dependency is

estimated in the variance. In the power simulation, there are other parameters used:

δ which expresses the shift of the mean and β, which controls the proportion of the

means shifted for the alternative hypothesis.

The results of the simulations are given in Tables 3.1-3.4 for the statistics with

equal covariance matrices and in Tables 3.5-3.8 for the statistics with unequal co-

variance matrices. Power is also compared and displayed in Figures 3.2 to 3.7. The

settings for these simulations are more restricted and specified in each figure.
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Simulation Design

Sizes were compared for VH-mdp and VH-lgp under the following settings:

• Sample sizes of (n1, n2, n3) = {(12, 15, 18), (30, 35, 40)} and

(n1, n2, n3, n4, n5) = {(12, 15, 18, 13, 16),(30, 35, 40, 25, 28)}.

• Dimensions: p = {300, 1000}.

• Two values for the parameter L are also used. L = {10, 20}.

• Dependence model: Independence and ARMA structure for the errors for the

p dimensions.

• Error distribution: N(0,1), centered Gamma(4,2), Uniform(-5,5) and Double

exponential(0,1).

For the dependency structure, we used ARMA(q1,q2) errors in which each element

in the vector depends on the closest elements following the formula:

Xt = εt +

q1∑
k=1

ϕkXt−k +

q2∑
k=1

θkεt−k

where εt is a white noise error term and ϕk and θk are the coefficients that define

the structure. The simulation used here is an ARMA(2,2) model with coefficients

ϕ1 = 0.8897, ϕ2 = −0.4858, θ1 = −0.2279 and θ2 = 0.2488.

In order to compare power, samples under the alternative hypothesis were gen-

erated by shifting half of the means (β = 0.5) of the largest group by a δ amount.

Power was simulated under the same settings as size with the exception of distri-

butions and L. Distribution of errors for power were simulated from Normal and

Gamma distributions, Parzen Smoothing Window is set to L = 20.

Simulation Results

Size Simulation

The actual size is set to α = 0.05 in all the simulations. All tables represent result

for 7000 simulations. In all tables there is a mix result for the parameter L. We
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could not find any pattern or setting for which any of the two values of L picked was

more advantageous than the other. We speculate that it might be due to the fact

that the dependency structure of the setting is not long range, the pick of L might

be more important in that case.

Simulations for size show the following results:

Table 3.1: Achieved type I error rates for three groups with nominal size α = 0.05 for
the moderate and large p versions of the equal variance test under Parzen Smoothing
Window L. Values L=10, L=20. Sizes (n1, n2, n3) = (30, 35, 40).

Type-I error rates× 100

Error distr. Dependence Structure ξ̂n p = 300 p = 1000
L=10 L=20 L=10 L=20

Normal indep VH-mdp 6.26 7.53 8.30 8.90
VH-lgp 5.89 6.63 4.83 5.94

ARMA VH-mdp 7.27 6.56 7.74 6.76
VH-lgp 7.03 7.80 6.11 5.77

Gamma indep VH-mdp 6.10 7.16 8.51 6.70
VH-lgp 5.86 6.90 5.30 5.94

ARMA VH-mdp 6.17 12.21 7.91 7.47
VH-lgp 7.11 7.03 6.09 5.93

Uniform indep VH-mdp 6.54 7.37 8.13 8.86
VH-lgp 6.13 7.39 5.63 5.70

ARMA VH-mdp 6.74 7.06 7.81 7.39
VH-lgp 7.69 7.53 5.90 5.54

Double exp indep VH-mdp 6.01 6.91 8.96 8.46
VH-lgp 5.61 6.69 5.26 5.89

ARMA VH-mdp 6.93 6.83 7.71 6.90
VH-lgp 7.19 7.16 6.19 5.81

Pooled variance. As it can be seen on Table 3.1, the proposed test for VH-lgp is

closer to nominal α than the test for VH-mdp in most settings. It is especially more

accurate for p = 1000 since it performs better under all other settings.
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Table 3.2: Achieved type I error rates for three groups with nominal size α = 0.05 for
the moderate and large p versions of the equal variance test under Parzen Smoothing
Window L. Values L=10, L=20. Sizes (n1, n2, n3) = (12, 15, 18).

Type-I error rates× 100

Error distr. Dependence Structure ξ̂n p = 300 p = 1000
L=10 L=20 L=10 L=20

Normal indep VH-mdp 10.49 12.60 28.83 29.09
VH-lgp 6.07 6.99 5.54 5.71

ARMA VH-mdp 9.17 9.01 17.59 17.81
VH-lgp 7.56 7.13 6.50 6.61

Gamma indep VH-mdp 10.56 7.00 28.60 28.51
VH-lgp 6.01 7.11 5.67 6.66

ARMA VH-mdp 8.70 8.79 17.97 17.30
VH-lgp 7.29 6.46 6.16 5.70

Uniform indep VH-mdp 11.41 12.14 29.49 30.04
VH-lgp 6.23 6.50 5.07 5.21

ARMA VH-mdp 9.61 9.20 19.07 18.26
VH-lgp 6.73 7.36 5.69 5.81

Double exp indep VH-mdp 11.50 12.21 28.53 27.56
VH-lgp 6.16 6.76 6.90 7.89

ARMA VH-mdp 9.00 8.87 17.57 16.19
VH-lgp 6.49 6.89 5.56 6.00

In Table 3.2 the setting changes in sample sizes. As can it be seen, in this setting

the proposed VH-lgp version of the test performs much better than the VH-mdp

versions. In all instances, except under Gamma independent setting with p = 300,

the VH-lgp version is closer to nominal size. Especially when p = 1000, the sizes are

in the double digits for the test VH-mdp version and are very close to the nominal

value in the VH-lgp version of the test statistic.
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Table 3.3: Achieved type I error rates for five groups with nominal size α = 0.05 for
the moderate and large p versions of the equal variance test under Parzen Smoothing
Window L. Values L=10, L=20. Sizes (n1, n2, n3, n4, n5) = (30, 35, 40, 25, 28).

Type-I error rates× 100

Error distr. Dependence Structure ξ̂n p = 300 p = 1000
L=10 L=20 L=10 L=20

Normal indep VH-mdp 6.51 6.77 8.79 8.34
VH-lgp 5.73 6.90 5.11 5.40

ARMA VH-mdp 6.91 7.10 7.94 7.47
VH-lgp 7.07 7.37 5.97 5.90

Gamma indep VH-mdp 6.16 7.07 8.80 7.91
VH-lgp 5.77 6.47 5.79 5.81

ARMA VH-mdp 6.70 7.00 7.17 6.94
VH-lgp 6.73 7.16 5.86 5.89

Uniform indep VH-mdp 5.94 7.34 8.57 8.79
VH-lgp 6.29 6.47 5.39 5.80

ARMA VH-mdp 7.11 7.73 8.09 6.56
VH-lgp 6.71 7.07 6.24 5.96

Double exp indep VH-mdp 6.86 7.33 8.64 8.84
VH-lgp 5.96 7.01 5.49 5.77

ARMA VH-mdp 7.03 7.67 7.21 6.67
VH-lgp 7.11 7.41 6.10 5.86

Table 3.3 shows results as the number of groups changes with relatively larger

sample sizes. The difference in this case is not as large as in Tables 3.1 and 3.2 but

VH-lgp is still getting closer to the nominal α than VH-mdp under settings when

p = 1000. When p = 300 there are more instances where VH-lgp is closer to nominal

α but the results are more mixed even though both tests have values that differ only

by 0.04 from nominal α.
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Table 3.4: Achieved type I error rates for five groups with nominal size α = 0.05 for
the moderate and large p versions of the equal variance test under Parzen Smoothing
Window L. Values L=10, L=20. Sizes (n1, n2, n3, n4, n5) = (12, 15, 18, 13, 16).

Type-I error rates× 100

Error distr. Dependence Structure ξ̂n p = 300 p = 1000
L=10 L=20 L=10 L=20

Normal indep VH-mdp 10.00 10.97 23.01 23.23
VH-lgp 5.84 6.64 5.66 5.04

ARMA VH-mdp 8.80 8.46 15.50 14.20
VH-lgp 6.87 7.30 5.96 5.89

Gamma indep VH-mdp 9.81 10.17 22.44 22.53
VH-lgp 6.10 6.19 5.13 5.51

ARMA VH-mdp 8.77 8.71 15.23 14.33
VH-lgp 8.77 7.03 6.31 5.93

Uniform indep VH-mdp 10.44 10.93 22.20 24.24
VH-lgp 5.76 6.79 5.41 5.49

ARMA VH-mdp 8.80 8.41 16.10 15.63
VH-lgp 7.19 7.33 6.03 6.44

Double exp indep VH-mdp 10.19 11.51 22.49 22.21
VH-lgp 5.61 6.94 5.46 6.17

ARMA VH-mdp 7.86 8.06 15.70 14.03
VH-lgp 7.06 6.97 7.19 5.60

When the sample size is reduced in the five group case, the result is very similar

to the three group case. In all instances, VH-lgp is closer to nominal α. Especially in

the p = 1000 case, the performance of the VH-lgp is clearly superior with achieved

sizes that are very close to α compared to double digit sizes in VH-mdp.
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Table 3.5: Achieved type I error rates for three groups with nominal size α = 0.05
for the moderate and large p versions of the unequal covariance test under Parzen
Smoothing Window 3.3. Values L=10, L=20. Sizes (n1, n2, n3) = (30, 35, 40).

Type-I error rates× 100

Error distr. Dependence Structure ξ̂n p = 300 p = 1000
L=10 L=20 L=10 L=20

Normal indep VH-mdp 6.34 7.36 8.94 9.37
VH-lgp 5.66 7.11 5.90 5.37

ARMA VH-mdp 6.61 7.16 7.47 7.73
VH-lgp 6.70 7.50 6.69 6.10

Gamma indep VH-mdp 5.97 7.39 9.59 9.44
VH-lgp 6.93 7.50 5.83 6.19

ARMA VH-mdp 7.14 6.63 7.63 6.70
VH-lgp 7.20 7.50 6.46 5.91

Uniform indep VH-mdp 6.53 7.14 9.34 9.50
VH-lgp 5.79 7.64 5.49 5.34

ARMA VH-mdp 6.47 6.63 7.59 6.90
VH-lgp 7.36 7.50 6.39 6.07

Double exp indep VH-mdp 6.13 6.90 8.97 8.89
VH-lgp 6.96 7.49 7.34 6.36

ARMA VH-mdp 6.76 7.06 7.89 7.51
VH-lgp 7.94 8.56 6.56 6.69

Unpooled variance. Table 3.5 shows simulation results for settings with the

statistics for unequal covariance matrix. In this table we can see that, for p = 300,

all values are similar even though the VH-mdp is consistently better. In the case of

p = 1000, the VH-lgp is consistently better.
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Table 3.6: Achieved type I error rates for three groups with nominal size α = 0.05
for the moderate and large p versions of the unequal covariance test under Parzen
Smoothing Window L. Values L=10, L=20. Sizes (n1, n2, n3) = (12, 15, 18).

Type-I error rates× 100

Error distr. Dependence Structure ξ̂n p = 300 p = 1000
L=10 L=20 L=10 L=20

Normal indep VH-mdp 11.76 13.27 33.26 34.17
VH-lgp 7.76 8.70 7.81 8.54

ARMA VH-mdp 9.27 9.41 21.87 20.07
VH-lgp 8.71 9.11 8.96 8.64

Gamma indep VH-mdp 12.17 15.62 35.39 35.71
VH-lgp 9.29 10.52 13.36 13.84

ARMA VH-mdp 8.59 8.87 22.49 21.64
VH-lgp 9.50 9.37 9.54 10.00

Uniform indep VH-mdp 12.39 13.66 35.94 35.04
VH-lgp 6.74 7.37 6.33 6.70

ARMA VH-mdp 10.96 9.63 21.33 21.04
VH-lgp 8.47 8.59 8.14 7.24

Double exp indep VH-mdp 11.67 13.86 31.63 31.99
VH-lgp 13.21 14.54 23.24 24.30

ARMA VH-mdp 9.04 9.39 20.20 19.54
VH-lgp 10.09 10.61 12.03 11.51

Table 3.6 provides another example where for smaller samples sizes, VH-lgp has

a clear advantage, especially in large p settings. Even though the errors for the two

tests were further from α, the comparison in almost every situation is double digits

(VH-mdp) vs single digits (VH-lgp). In the case of moderate p the results are again

mixed.
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Table 3.7: Achieved type I error rates for five groups with nominal size α =
0.05 for the moderate and large p versions of the unequal covariance test under
Parzen Smoothing Window L. Values L=10, L=20. Sizes (n1, n2, n3, n4, n5) =
(30, 35, 40, 25, 28).

Type-I error rates× 100

Error distr. Dependence Structure ξ̂n p = 300 p = 1000
L=10 L=20 L=10 L=20

Normal indep VH-mdp 6.86 7.59 9.23 9.40
VH-lgp 6.34 6.61 5.36 5.73

ARMA VH-mdp 7.06 7.26 7.61 7.26
VH-lgp 7.24 7.45 6.54 6.01

Gamma indep VH-mdp 6.94 7.43 9.07 9.89
VH-lgp 7.63 8.99 10.43 10.61

ARMA VH-mdp 7.23 7.30 7.43 7.96
VH-lgp 7.77 8.06 6.97 6.71

Uniform indep VH-mdp 6.61 7.64 8.71 9.31
VH-lgp 5.29 6.69 5.64 5.71

ARMA VH-mdp 6.64 7.07 8.93 7.76
VH-lgp 6.79 7.61 6.30 5.80

Double exp indep VH-mdp 6.66 7.16 9.37 9.30
VH-lgp 6.84 7.11 6.16 6.59

ARMA VH-mdp 7.09 6.83 8.26 7.43
VH-lgp 7.06 7.87 6.33 6.44

Table 3.7 contains results comparing the performance of the tests for the unequal

covariance in the large sample size and five group (a = 5) case. As we can see,

performance of both tests is similar with VH-lgp being consistently closer to α when

p = 1000 and being consistently conservative ( below α) when p = 300.
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Table 3.8: Achieved type I error rates for five groups with nominal size α =
0.05 for the moderate and large p versions of the unequal covariance test under
Parzen Smoothing Window L. Values L=10, L=20. Sizes (n1, n2, n3, n4, n5) =
(12, 15, 18, 13, 16).

Type-I error rates× 100

Error distr. Dependence Structure ξ̂n p = 300 p = 1000
L=10 L=20 L=10 L=20

Normal indep VH-mdp 11.00 11.69 26.44 26.06
VH-lgp 6.63 7.80 7.10 7.14

ARMA VH-mdp 8.91 9.10 17.56 16.67
VH-lgp 7.24 7.94 7.44 6.91

Gamma indep VH-mdp 11.16 11.61 25.74 26.16
VH-lgp 13.79 15.44 28.13 28.03

ARMA VH-mdp 8.73 9.09 16.79 16.29
VH-lgp 9.91 9.37 10.19 11.01

Uniform indep VH-mdp 11.27 11.84 26.00 26.64
VH-lgp 6.34 7.04 5.90 6.50

ARMA VH-mdp 9.11 8.74 17.34 16.61
VH-lgp 7.49 7.83 7.13 6.27

Double exp indep VH-mdp 10.84 11.23 24.54 24.44
VH-lgp 10.49 11.44 16.24 16.87

ARMA VH-mdp 8.30 8.73 17.26 15.66
VH-lgp 8.57 9.04 8.96 8.21

In Table 3.8 we can see, similar to the version of the test with equal covariance,

that the proposed version of the test is better especially when p = 1000. We thought

it was worth noting that VH-mdp has sizes closer to α in all settings for centered

Gamma except when p = 1000 and the dependence has ARMA structure.
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Power Simulation

Figures comparing power for the two tests will be shown in some of the settings

that were represented in the size tables. Figures are based on 3200 simulations and

Parzen Smoothing Window value L = 20. The simulation for the alternative was

picked by shifting half (β = 0.5) of the errors in the largest group by δ. For a better

organization, we present the results for pooled and unpooled variances separately.

(a) (b)

Figure 3.2: Power plot for equal variance statistic. Errors are generated for three
groups from Normal distribution. Sample sizes are (n1, n2, n3) = (12, 15, 18), propor-
tion of shifted means in larger group β = 0.5, dimension is p = 1000. Independence
structure is shown on panel (a) and ARMA(2,2) structure is shown on panel (b).

Pooled variance Figure 3.2 shows that for both, independent and ARMA errors

for standard Normal distribution, the tests get to a high degree of power when the

largest sample shifted by 0.2 units. Independent errors increase power a little faster

than ARMA. We observed that for p = 1000 both tests perform similar with VH-lgp

version trading off some loss of power in compensation for a much better size.

The power plots in Figure 3.3 for Normal distribution where p = 300 behave

similar to those in Figure 3.2. There is the same trade off in the VH-lgp version of

the test with even some initial drop of power in the ARMA simulation.

35



(a) (b)

Figure 3.3: Power plots for equal variance statistic. Errors are generated for three
group from Normal distribution. Sample sizes are (n1, n2, n3) = (12, 15, 18), pro-
portion of shifted means in larger group is β = 0.5 and dimension is p = 300.
Independence structure is shown on panel (a) and ARMA(2,2) structure on panel
(b).

(a) (b)

Figure 3.4: Power plots for equal variance statistic. Errors are generated for three
groups from Gamma distribution. Sample sizes are (n1, n2, n3) = (12, 15, 18), propor-
tion of shifted means in larger group is β = 0.5 and dimension p = 300. Independence
structure is shown on panel (a) and ARMA(2,2) structure on panel (b).
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Figure 3.4 illustrates the behavior of the statistics under skewed conditions. We

can observe the same trade off as in Figures 3.3 and 3.2. Also, power grows at

a slower pace for both tests. That slower pace is much more pronounced under

dependence structure.

(a) (b)

Figure 3.5: Power plots for unequal variance statistic. Errors are generated for
three groups from Normal distribution. Sample sizes are (n1, n2, n3) = (12, 15, 18)
, proportion of shifted means in larger groups is β = 0.5 and dimension p = 1000.
Independence structure is shown on panel (a) and ARMA(2,2) structure on panel
(b).

Unpooled variance Figure 3.5 illustrates the behavior of VH-lgp and VH-mdp

when variance is not assumed equal under Normal distribution and p = 1000. The

size of VH-lgp is considerably better, once again, trading it by initial loss of power

even more pronounced than in the pooled variance version of the test.

Figure 3.6 illustrates the behavior of the tests when variance is not assumed equal

under Normal distribution. Similar pattern is observed as in Figures 3.2, 3.3, and

3.4. In the case of ARMA structure, both size a power are worse for the VH-lgp

version.

Figure 3.7 is illustrating the behavior of the statistics for unequal variance under

skewed conditions. We can observe the same trade off as in 3.4 . Also power grows
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(a) (b)

Figure 3.6: Power plots for unequal variance statistic. Errors are generated for
three groups from Normal distribution. Sample sizes are (n1, n2, n3) = (12, 15, 18)
, proportion of shifted means in larger group is β = 0.5 and dimension p = 300.
Independence structure is shown on panel (a) and ARMA(2,2) structure on panel
(b).

(a) (b)

Figure 3.7: Power plots for unequal variance statistic. Errors are generated for
three groups from Gamma distribution. Sample sizes are (n1, n2, n3) = (12, 15, 18),
proportion of shifted means in larger group is β = 0.5 and dimension p = 300.
Independence structure is shown on panel (a) and ARMA(2,2) structure on panel
(b).
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at a slower pace for both tests. That slower pace is much more pronounce under

dependence structure. The plot on the right illustrates that VH-mdp version of the

test is better in both size and power.

Summary

The sizes under normality are considerably better for VH-lgp in the smaller sam-

ple setting. In the larger sample setting, both versions are very similar. Power is

generally better in VH-mdp, which is the trade off of VH-lgp for better Type I error.

Under skewness, size is considerably higher than the nominal value in smaller

sample size simulation for VH-mdp but VH-lgp it is not too affected. The power is

diminished considerably, especially in VH-lgp.

The utility of VH-lgp is especially noticeable in Type I error when sample sizes

are small and dimension is large with a trade for initial loss in power. Otherwise VH-

mdp seems to have comparable sizes and slightly better power to detect differences.

3.6 Real Data Example

Considering the proposed test is targeting at dense but weak differences as opposed

to sparse but strong, a real data example of precipitation at a single station over years

comes handy to illustrate. Data was obtained from a database from the National

Centers for Environmental Information 1.

Data for 30 years (1986-2016) of precipitation in a single weather station in Miami

was obtained. The precipitation records were split into three groups of 10 years each.

Dependency is allowed for nearby days but not across years. Therefore, each group

is formed by ten years of daily precipitation values. Since comparison is made for

each single day of the year, if there are differences over the years they would be weak

but dense to describe climate change. For this data set, number of groups is a = 3,

sample sizes are equal to ni = 10 and dimension is p = 365. Time series plot of the

group average is shown in Figure 3.8.

1https://www.ncdc.noaa.gov/ accessed on October 2018
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Figure 3.8: Time series plot of precipitation daily averages per group

As it can be observed, there seems to be more spikes that are black or red which

come from the earlier groups of years and more blue drops that correspond to the

most recent group. The proposed test has a pvalue< 0.001. This would suggest that

precipitation is decreasing over the last thirty years.

Table 3.9: Statistics and pvalues from precipitation example

Tests in the example
Test Test statistic pvalue

VH-mdp 1.721664 0.08513045
VH-lgp 4.800884 1.57967e-06

As we can see in Table 3.9, VH-mdp does not achieve significance but VH-lgp is

highly significant.

3.7 Conclusions

We proposed two statistics to test multiple group differences. The proposed tests are

VH-mdp and VH-lgp. Versions under two different assumptions are developed, as-

suming equal covariance matrix in all groups or assuming unequal covariance matrix

in all groups.

Proposed tests in this chapter are shown to asymptotically follow a Normal dis-

tribution. The assumption of α-mixing is made in the sample as opposed to the

Fnk, i = k, 2, ..., p. Gregory et al. (2015) assumed α-mixing between the t2nk, k =

1, 2, ..., p which is much less logical, since α-mixing in the sample could be natural
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and in the statistics would be more artificial. This makes the result from Theorem

3.4.1 slightly stronger to that of Gregory et al. (2015).

We also showed that the rate of convergence for the statistics from the asymptotic

expansion is higher as we develop the expansion further. The drawback of further

expansions is having to estimate further moments with the corresponding sensitivity

to outliers.

The proposed tests are competitive in the large-p small-n environment when

p admits an ordering. Sizes and power were investigated using simulations under

various settings. In the simulations, for large p settings, we generally observed better

performance of the statistic coming from asymptotic expansion and mixed results

when p is moderate. VH-lgp is more robust under skewness, especially when p is

larger.

In the example of precipitation over 30 years, we can see that the test picks

the difference between the time groups with high significance. This illustrates the

statement that this type of test is specially fit when signal is weak and dense.

3.8 Appendix

In this section, we include the complete proof of Proposition 3.4.1 showing the com-

plete expression for ân and b̂n, and the rate of convergence of the asymptotic expan-

sion. We also show expression for the value b̂′n for the statistic under the assumption

of not equal covariance matrix.

Also included in this appendix are Theorem 3.8.1 from Bradley (2005) and Lem-

mas 3.8.1 and 3.8.2, along with the Lindeberg’s CLT theorem for triangular arrays

(Theorem 3.8.2 from Billingsley (1995)), which are all used in the proof of our main

result, Theorem 3.4.1.

Calculations for the unbiased sample moments up to the fourth order can be found

in Subsection 3.8 which are used to estimate the parameters from Proposition 3.4.1.

Estimations for the parameters are also included in (3.19) and (3.20) in Subsection

3.8.
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Preliminary Lemmas and Theorem

Theorem 3.8.1. Suppose that for each n = 1, 2, 3, ...., X(n) := (X
(n)
k , k ∈ Z) is a

sequence of random variables. Suppose these sequences X(n), n = 1, 2, 3, .... are

independent of each other. Suppose that for each k ∈ Z, hk;R × R × R × ... → R

is a Borel function. Define the sequence X := (Xk, k ∈ Z) of random variables by

Xk := hk(X
(1)
k , X

(2)
k , X

(3)
k , ...), k ∈ Z.

Then for each m ≥ 1, α(m) ≤
∑∞

n=1 α(n)(m).

The following lemma is useful to take advantage of the α-mixing properties to

make sure that variables for which their indices are apart from each other are rela-

tively uncorrelated.

Lemma 3.8.1. If Y ∈ σ(X1, ..., Xi) and bounded by B1, and if Z ∈ σ(Xi+n, Xi+n+1...)

and bounded by B2, then∣∣E[Y Z] − E[Y ] E[Z]
∣∣ ≤ 4B1B2α(n). (3.7)

Lemma 3.8.1 is used to prove the following lemma which we will need in our

proof. The following lemma is going a little further than the previous one. If fourth

moment of any random variable from the σ-algebra generated by the sequences is

bounded, then the correlation also decays according to how far the indexes are from

each other.

Lemma 3.8.2. If Y ∈ σ(X1, ..., Xi) and E[Y 4] ≤ B1, and if Z ∈ σ(Xi+n, Xi+n+1...)

and E[Z4] ≤ B2, then

∣∣E[Y Z] − E[Y ] E[Z]
∣∣ ≤ 8(1 +B1 +B2)α(n)1/2. (3.8)

The following theorem is needed to show convergence of a triangular array in

which size (n) and dimension (p) are simultaneously increasing.

Theorem 3.8.2. Suppose that for each n the sequence Xn1, ...., Xnrn, where rn →∞,

is independent and satisfies

E[Xnk] = 0, σ2
nk = E[X2

nk], s
2
n =

rn∑
k=1

σ2
nk
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and

lim
n→∞

rn∑
k=1

1

s2
n

∫
|Xnk|≥εsn

X2
nkdP = 0 for every ε > 0.

Then
Sn
sn

d→ N

where Sn = Σrn
k=1Xnk.

Proof of Theorem 3.4.1

In this section, we show details of the proof for the main result Theorem 3.4.1.

Proof. The proof is divided into four main steps. Step 1 appeals to Bradley (2005)

to show that α-mixing in the sample transfers to α-mixing in the Fij’s. Then, Step

2 shows the finiteness of the quantity τ∞ that corresponds to the variance of the

statistic. Step 3, from a modification of the big block little block argument found

in Billingsley (1995), will show the asymptotic equivalence of the series of Fij’s to

a series of variables that are independent. Step 4, applies Lindeberg’s Theorem for

triangular arrays and concludes asymptotic normal convergence of the statistic,i.e.

p−1/2

p∑
k=1

(Fnk − E[Fnk])
d→ N(0, τ 2

∞)

where

τ 2
∞ = lim

n→∞
Var(p−1/2

p∑
k=1

F 2
nk) = lim

n→∞
p−1

p−1∑
s=0

∑
|k1−k2|=s

Cov(Fnk1 , Fnk2)

= γ(0) + 2
∞∑
s=1

γ(s)

(3.9)

and

γ(s) = lim
n→∞

(p− s)−1

p−s∑
k=1

Cov(Fnk, Fn(k+s)) , s > 0.

Step 1 The assumption of α-mixing in the sample implies that the resulting Fij’s

are also α-mixing by Bradley (2005). Bradley’s result can be seen in Theorem

3.8.1. Bradley’s theorem is defined in an infinite sample but we can take X(n) to be
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degenerate 0 for n >
∑
ni and the Borel function to be the function that defines the

statistic Fij. Hence, Assumption 3.2.1 that was tied to the samples can now be tied

to the test statistics.

Step 2 The proof for (3.9) uses the conditions for the moment and α-mixing to

show that for any M ≥ 1

p−1

p−1∑
s=M+1

∑
|k1−k2|=s

∣∣Cov(Fnk1 , Fnk2)
∣∣ ≤ 2

∑
s>M

p−1(p−s){α(s)δ/(2+δ)

p∨
k=1

(E|Fnk|2+δ)
2

2+δ }

≤
∞∑

s=M+1

α(s)δ/(2+δ) → 0 as M →∞.

This implies the finiteness of τ∞.

Step 3 Thus, applying the arguments from Billingsley (1995), we split the sum of

Fn1 + ...+ Fnp into alternate blocks of length bp and lp.

We will call

Unpi = Fn(i−1)(bp+lp)+1 + ...+ Fn(i−1)(bp+lp)+bp , 1 ≤ i ≤ rp, (3.10)

where rp = max{i : (i− 1)(bp + lp) + bp < p}

and let

Vnpi = Fn(i−1)(bp+lp)+bp+1 + ...+ Fni(bp+lp) , 1 ≤ i < rp (3.11)

Vnprp = Fn(rp−1)(bp+lp)+bp+1 + ...+ Fnp. (3.12)

Then

Snp =

rp∑
i=1

Unpi +

rp∑
i=1

Vnpi

and we will choose lp small enough so that the second term in the RHS is small in

comparison with the first but large enough so that the variables Unpi are nearly inde-

pendent to be able to use an adaptation of Lyapunov’s theorem to show asymptotic

normality.
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WLOG we will assume E[Fni] = 0.

E[S4
np] ≤ 4!

∑
i,j,k,l≥0,i+j+k+l<p

∣∣E[Fn(1+i)Fn(1+i+j)Fn(1+i+j+k)Fn(1+i+j+k+l)]
∣∣

then, grouping the last three elements in each term and, by Lemma 3.8.2, the RHS

is less than or equal to

8(1 + E[F 4
n(1+i)] + E[F 4

n(1+i+j)F
4
n(1+i+j+k)F

4
n(1+i+j+k+l)] )α(j)1/2

and applying Holder’s inequality twice in the last expected value and taking

E[F 4
n∗] = max{E[F 4

n(1+i)],E[F 4
n(1+i+j)],E[F 4

n(1+i+j+k)],E[F 4
n(1+i+j+k+l)]}

then, the above expression is at most

8(1 + E[F 4
n∗] + E[F 12

n∗ ] )α(j)1/2 = K1α(j)1/2.

Similarly, grouping the first three elements of each term, K1α(l)1/2 is a bound. The

quantity K1 is also bounded by Assumption 3.2.4.

So,

E[S4
np] ≤ 4!p2

∑
j,l≥0,j+l<p

K1 min{α(j)1/2, α(l)1/2}

≤ K1p
2
∑

0≤j≤l

α(l)1/2 = K1p
2

∞∑
l=0

(l + 1)α(l)1/2

by the convergence of the series of α(k) the above series converges and

E[S4
np] ≤ K2p

2 (3.13)

and K2 independent of p.

Now, let call bp = bp4/5c and lp = bp1/5c.

From the definition of rp

bp ≈ p4/5 , lp ≈ p1/5 , rp ≈ p1/5. (3.14)
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Then using Markov’s inequality and triangular inequality twice

P [

∣∣∣∣∣∣ 1

τ∞
√
p

rp−1∑
i=1

Vnpi

∣∣∣∣∣∣ ≥ ε] ≤
E[
∣∣∣ 1
τ∞
√
p

∑rp−1
i=1 Vnpi

∣∣∣]
ε

≤

∑rp−1
i=1 E[

∣∣∣ 1
τ∞
√
p
Vnpi

∣∣∣]
ε

≤

∑rp−1
i=1

∑i(bp+lp)

j=(i−1)(bp+lp)+bp+1E[
∣∣∣ 1
τ∞
√
p
IiFnj

∣∣∣]
ε

≤ lprpK
′

τ∞
√
pε

(3.15)

and this last sequence converges to 0 as p converges to infinity.

Similarly occurs with the last term Vnprp . Therefore,

rp∑
i=1

Vnpi/τ∞
√
p

p→ 0. (3.16)

Let’s show now that

rp∑
i=1

Unpi/τ∞
√
p

d→ N(0, 1). (3.17)

There is a set of independent random variables U ′npi that have common distribu-

tions with Unpi.

Let us apply Lemma 3.8.1 iteratively to the ratio of the characteristic functions

of both sets of variables minus 1.

ϕU1τ∞
√
p(t)

ϕU ′
1τ∞
√
p(t)
− 1 = 0.

ϕ(U1+U2)/τ∞
√
p(t)

ϕ(U ′
1+U ′

2)/τ∞
√
p(t)
− 1 = E[

eit(U1+U2)/τ∞
√
p

eit(U
′
1+U ′

2)/τ∞
√
p
− 1]

= E[ (eit(U1−U ′
1)/τ∞

√
peit(U2−U ′

2)/τ∞
√
p − 1)]

≤ E[ eit(U1−U ′
1)/τ∞

√
peit(U2−U ′

2)/τ∞
√
p − 1]

≤ 4αln .
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In this last step Lemma 3.8.1 is used, 1 is the bound of the absolute value of the

characteristic function and the fact that the characteristic function of a degenerate

variable in 0 is 1.

Iteratively, if we add another variable

ϕ(U1+U2+U3)/τ∞
√
p(t)

ϕ(U ′
1+U ′

2+U ′
3)/τ∞

√
p(t)
− 1 = E[

eit(U1+U2+U3)/τ∞
√
p

eit(U
′
1+U ′

2+U ′
3)/τ∞

√
p
− 1]

= E[ eit((U1+U2)−(U ′
1+U ′

2))/τ∞
√
peit(U3−U ′

3)/τ∞
√
p − 1] .

E[ eit((U1+U2)/τ∞
√
p−(U ′

1+U ′
2)/τ∞

√
peit(U3−U ′

3)/τ∞
√
p − 1]

≤ E[ eit((U1+U2)/τ∞
√
p−(U ′

1+U ′
2)/τ∞

√
peit(U3−U ′

3)/τ∞
√
p

− ϕ(U1+U2)/τ∞
√
p−(U ′

1+U ′
2)/τ∞

√
p(t)

+ ϕ(U1+U2)/τ∞
√
p−(U ′

1+U ′
2)/τ∞

√
p(t)− 1]

≤ 4α(ln) + 4α(ln) = 4× 2× α(ln).

By induction, the ratio of

rp∑
i=1

Unpi/τ∞
√
p and

rp∑
i=1

U ′npi/τ∞
√
p

differ from 1 at most by 4(rp − 1)α(lp).

Since α(p) = O(p−5), this difference is O(n−1) and the ratio converges uniformly

to one. Both sums converge in distribution to a common distribution. So, if we show

that the sum of the independent sample converges, the other sum does too.

We know E[
∣∣∣U ′npi∣∣∣2] ≈ bpτ∞ and E[

∣∣∣U ′npi∣∣∣4] ≤ Kb2
p by (3.13).

Step 4 From the previous two expressions, we see that Lyapunov’s conditions are

met for δ = 2. Therefore, Lindeberg condition is met and we can appeal to The-

orem 3.8.2(proof can be seen in Theorem 27.2, Billingsley (1995)) for the sequence

U ′np1,...,U ′nprp which show the normal convergence of a triangular array and we have

the needed result. Finally applying Polya’s theorem
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sup
x∈<

∣∣∣∣∣∣P (
√
p[Fn − p−1

p∑
k=1

E(Fnk)] ≤ x)− Φ(x/τ∞)

∣∣∣∣∣∣ = o(1)

⇒ sup
x∈<

∣∣∣∣∣∣P (Fn − p−1

p∑
k=1

E(Fnk) ≤ x)− Φ(
√
px/τ∞)

∣∣∣∣∣∣ = o(1)

⇒ sup
x∈<

∣∣P (Fn − an ≤ x)− Φ(
√
p[x− n−1bn]/τ∞)

∣∣ = o(1)

where an and bn are asymptotically bounded sequences and

p−1

p∑
k=1

E(Fnk) = an + n−1bn + o(n−3/2).

Proof of Proposition 3.4.1

Proof. Let’s prove it for a fixed j and this is valid for any j.

We will assume WLOG that E[X1jk] = E[X2jk] = ... = E[Xajk] = 0.

Let

∆nk =
a∑
i=1

(ni − 1)

(n− a)
(s2
ik − σ2

ik)

and

τ−2
k = (

a∑
i=1

(ni − 1)

(n− a)
σ2
ik)
−1

then Fnk can be approximated using Taylor’s expansion for the denominator by

F̃nk = (Xk
′
BXk/(a− 1))(τ−2

k − τ
−4
k ∆nk + τ−6

k ∆2
nk)

so

Fnk − F̃nk = o(n−
3
2 ). (3.18)

To approximate the expected value otherwise complicated to find, E[F̃nk] is cal-

culated in the following Subsection 3.8. Proof for (3.18) is shown next.

Let
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Fnk =
MSTk
MSEk

= (X
′
kBXk/(a− 1))(

a∑
i=1

(ni − 1)s2
ik

n− a
)−1.

Asymptotic expansion will be performed by developing a Taylor’s series up to

the third term. We will call f(x) = x−1 and we have

a∑
i=1

(ni − 1)s2
ik

n− a
= x

from sample that we want to evaluate at

a∑
i=1

(ni − 1)σ2
ik

n− a
= x0

from population.

Then, developing Taylor’s expansion, we will initially look at the first three ele-

ments of this expansion, hence

f(
a∑
i=1

(ni − 1)s2
ik

n− a
) =(

a∑
i=1

(ni − 1)σ2
ik

n− a
)−1

− (
a∑
i=1

(ni − 1)σ2
ik

n− a
)−2(

a∑
i=1

(ni − 1)(s2
ik − σ2

ik)

n− a
)

+ (
a∑
i=1

(ni − 1)σ2
ik

n− a
)−3(

a∑
i=1

(ni − 1)(s2
ik − σ2

ik)

n− a
)2 +R2(

a∑
i=1

(ni − 1)s2
ik

n− a
)

where

R2(
a∑
i=1

(ni − 1)s2
ik

n− a
) =

f 3(ξL)

3!
(
a∑
i=1

(ni − 1)

(n− a)
(s2
ik − σ2

ik))
3

is the Lagrange remainder and

ξL ∈ (σ2
ik, s

2
ik).

Then,

R2(
a∑
i=1

(ni − 1)s2
ik

n− a
) =

f 3(ξL)

3!
(
a∑
i=1

(ni − 1)

(n− a)
(s2
ik − σ2

ij))
3

=
f 3(ξL)

3!
(
a∑
i=1

O(n−
1
2 ))(

a∑
i=1

O(n−
1
2 ))(

a∑
i=1

O(n−
1
2 ))

=
f 3(ξL)

3!
(O(n−

1
2 ))(O(n−

1
2 ))(O(n−

1
2 ))

=O(1)O(n−
1
2 )O(n−

1
2 )O(n−

1
2 ) = O(n−

3
2 ).
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Calculations of cnk’s and dnk’s

We will find the values of cnk and dnk that are used in Proposition 3.4.1. We will

look at one variable of the vector so we will ignore the corresponding index since

result is the same for all vector variables.

Gregory et al. (2015) approached the calculation of this moments using cumulant

properties as in Leonov and Shiryaev (1959). Calculations will be made from defini-

tions and other properties rather than cumulants in this case. Please note that an

extra index for the variables and moments should be added to agree with previous

notation.

E[Fn] =E[
MST

MSE
]

=E[(X
′
BX/(a− 1))(

a∑
i=1

(ni − 1)S2
i

n− a
)−1]

≈E[(X
′
BX/(a− 1))τ−2] + E[(X

′
BX/(a− 1))τ−4∆n]

+ E[(X
′
BX/(a− 1))τ−6∆2

n]

=T1 + T2 + T3.

The expected value of each one of the three terms is calculated separately.

T1 = E[(X
′
BX/(a− 1))τ−2] =

τ−2

a− 1
E[

a∑
i=1

a∑
j=1

bijXiXj] =
τ−2

a− 1
E[

a∑
i=1

biiXiXi]

bij are elements from (3.6). By independence between groups and within groups,the

expression simplifies to

T1 =
τ−2

a− 1
E[

a∑
i=1

biiXiXi] =
τ−2

a− 1

a∑
i=1

biiE[XiXi] =
τ−2

a− 1

a∑
i=1

(ni −
n2
i

n
)
σ2
i

ni

=
τ−2

a− 1

a∑
i=1

(1− ni
n

)σ2
i

equality follows from definition of bij and expected value.
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Once T1 is calculated,

T2 =τ−4E[(X
′
BX/(a− 1))∆n] = τ−4E[X

′
BX/(a− 1))

a∑
i=1

(ni − 1)

(n− a)
(S2

i − σ2
i )]

=
τ−4

(a− 1)(n− a)
E[X

′
BX)

a∑
i=1

(ni − 1)(S2
i − σ2

i )]

=
τ−4

(a− 1)(n− a)
(E[(X

′
BX)

a∑
i=1

(ni − 1)S2
i ]− E[X

′
BX)

a∑
i=1

(ni − 1)σ2
i ])

developing matrix from the first element

T2 =
τ−4

(a− 1)(n− a)
E[

a∑
j=1

a∑
k=1

a∑
i=1

bjkXjXk(ni − 1)S2
i ]− E[X

′
BX)

a∑
i=1

(ni − 1)σ2
i ])

distinguishing between cross product of same index and different index

T2 =
τ−4

(a− 1)(n− a)
(
∑
i 6=j

(nj −
n2
j

n
)(ni − 1)E[X

2

jS
2
i ] +

a∑
i=1

(ni −
n2
i

n
)(ni − 1)E[X

2

iS
2
i ]

− E[(X
′
BX)

a∑
i=1

(ni − 1)σ2
i ])

substituting by different index cross product extected values

T2 =
τ−4

(a− 1)(n− a)
(
∑
i 6=j

(nj −
n2
j

n
)(ni − 1)

1

nj
σ2
jσ

2
i

+
a∑
i=1

(ni −
n2
i

n
)(ni − 1)E[X

2

iS
2
i ]−

a∑
j=1

(1− nj
n

)σ2
j

a∑
i=1

(ni − 1)σ2
i )

developing E[X
2

iS
2
i ]

T2 =
τ−4

(a− 1)(n− a)
(
∑
i 6=j

(nj −
n2
j

n
)(ni − 1)

1

nj
σ2
jσ

2
i

+
a∑
i=1

(ni −
n2
i

n
)(ni − 1)(

1

n2
i (ni − 1)

(

ni∑
j=1

ni∑
k=1

ni∑
l=1

E[XijXikX
2
il]

− 1

ni

ni∑
j=1

ni∑
k=1

ni∑
l=1

ni∑
m=1

E[XijXikXilXim]))−
a∑
j=1

(1− nj
n

)σ2
j

a∑
i=1

(ni − 1)σ2
i )
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using again independence between groups and within groups

T2 =
τ−4

(a− 1)(n− a)
(
∑
i 6=j

(nj −
n2
j

n
)(ni − 1)

1

nj
σ2
jσ

2
i

+
a∑
i=1

(ni −
n2
i

n
)(ni − 1)(

1

n2
i (ni − 1)

(niE[X4
i1] + ni(ni − 1)E[X2

i1]2 − E[X4
i1]

− 3(ni − 1)E[X2
i1]2))−

a∑
j=1

(1− nj
n

)σ2
j

a∑
i=1

(ni − 1)σ2
i )

from definition of moments, results

T2 =
τ−4

(a− 1)(n− a)
(
∑
i 6=j

(nj −
n2
j

n
)(ni − 1)

1

nj
σ2
jσ

2
i

+
a∑
i=1

(ni −
n2
i

n
)(ni − 1)(µ

(4)
i /n2

i +
ni − 3

n2
i

σ4
i )−

a∑
j=1

(1− nj
n

)σ2
j

a∑
i=1

(ni − 1)σ2
i )

=
τ−4

(a− 1)(n− a)
(
∑
i 6=j

(1− nj
n

)(ni − 1)σ2
jσ

2
i

+
a∑
i=1

(1− ni
n

)(ni − 1)(µ
(4)
i /ni +

ni − 3

ni
σ4
i )−

a∑
j=1

(1− nj
n

)σ2
j

a∑
i=1

(ni − 1)σ2
i ).

With T1 and T2 calculated, now T3 will be calculated. In this term the same

arguments than in previous terms are used. The only difference is the number of

cross product sums is increased.

T3 =E[(X
′
BX/(a− 1))τ−6∆2

n]

=
τ−6

(a− 1)(n− a)2
E[(X

′
BX)(

a∑
i=1

(ni − 1)(S2
i − σ2

i ))
2]

developing the square

T3 =
τ−6

(a− 1)(n− a)2
E[(X

′
BX)(

a∑
i=1

(ni − 1)(S2
i − σ2

i ))(
a∑
j=1

(nj − 1)(S2
j − σ2

j ))]

factoring

T3 =
τ−6

(a− 1)(n− a)2
E[(X

′
BX)(

a∑
i=1

a∑
j=1

(ni − 1)(S2
i − σ2

i )(nj − 1)(S2
j − σ2

j ))]

developing the product

T3 =
τ−6

(a− 1)(n− a)2
E[(X

′
BX)(

a∑
i=1

a∑
j=1

(ni − 1)(nj − 1)(S2
i S

2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j )]
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separating independent cross products from dependent cross products

T3 =
τ−6

(a− 1)(n− a)2
E[(X

′
BX)(

a∑
i=1

(ni − 1)2(S4
i − 2S2

i σ
2
i + σ4

i )

+
a∑
j 6=i

(ni − 1)(nj − 1)(S2
i S

2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j ))]

developing the first quadratic form

T3 =
τ−6

(a− 1)(n− a)2
(E[(X

′
BX)(

a∑
i=1

(ni − 1)2(S4
i − 2S2

i σ
2
i + σ4

i ))]

+ E[(X
′
BX)(

a∑
j 6=i

(ni − 1)(nj − 1)(S2
i S

2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j ))])

factoring out sums

T3 =
τ−6

(a− 1)(n− a)2
(E[

a∑
j=1

a∑
k=1

a∑
i=1

(ni − 1)2bjkXjXk(S
4
i − 2S2

i σ
2
i + σ4

i )]

+ E[(
a∑
l=1

a∑
k=1

a∑
j 6=i

(ni − 1)(nj − 1)blkXlXk(S
2
i S

2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j ))])

separating independent cross products from dependent cross products in the second

term

T3 =
τ−6

(a− 1)(n− a)2
(E[

a∑
j=1

a∑
k=1

a∑
i=1

(ni − 1)2bjkXjXk(S
4
i − 2S2

i σ
2
i + σ4

i )]

+ E[(
a∑
l=1

a∑
j 6=i

(ni − 1)(nj − 1)bllX2
l (S2

i S
2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j ))]

+ 2E[
a∑
j 6=i

(ni − 1)(nj − 1)bijXiXj(S
2
i S

2
j ))])

doing the same for the first term

T3 =
τ−6

(a− 1)(n− a)2
(E[

a∑
j=1

a∑
k=1

a∑
i=1

(ni − 1)2bjkXjXk(S
4
i − 2S2

i σ
2
i + σ4

i )]

+ E[(
a∑

l 6=j 6=i

(ni − 1)(nj − 1)bllX2
l (S2

i S
2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j ))]

+ 2E[(
a∑
j 6=i

(ni − 1)(nj − 1)biiX2
i (S2

i S
2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j ))]

+ 2E[
a∑
j 6=i

(ni − 1)(nj − 1)bijXiXj(S
2
i S

2
j ))])
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substituting bij

T3 =
τ−6

(a− 1)(n− a)2
(E[

a∑
j=1

a∑
i=1

(ni − 1)2(nj −
n2
j

n
)X2

j (S4
i − 2S2

i σ
2
i + σ4

i )]

+ E[(
a∑

l 6=j 6=i

(ni − 1)(nj − 1)(nl −
n2
l

n
)X2

l (S2
i S

2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j ))]

+ 2E[(
a∑
j 6=i

(ni − 1)(nj − 1)(ni −
n2
i

n
)X2

i (S2
i S

2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j ))]

+ 2E[
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

XiXj(S
2
i S

2
j ))])

calculating expected values of independent cross products

T3 =
τ−6

(a− 1)(n− a)2
(E[

a∑
j=1

a∑
i=1

(ni − 1)2(nj −
n2
j

n
)X2

j (S4
i − 2S2

i σ
2
i + σ4

i )]

+ (
a∑

l 6=j 6=i

(ni − 1)(nj − 1)(nl −
n2
l

n
)
σ2
l

nl
(σ2

i σ
2
j − σ2

i σ
2
j − σ2

i σ
2
j + σ2

i σ
2
j ))

+ 2E[(
a∑
j 6=i

(ni − 1)(nj − 1)(ni −
n2
i

n
)X2

i (S2
i S

2
j − S2

i σ
2
j − σ2

i S
2
j + σ2

i σ
2
j )]

+ 2E[
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

XiXj(S
2
i S

2
j ))])
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T3 =
τ−6

(a− 1)(n− a)2
(E[

a∑
j=1

a∑
i=1

(ni − 1)2(nj −
n2
j

n
)X2

j (S4
i − 2S2

i σ
2
i + σ4

i )]

+ 2E[(
a∑
j 6=i

(ni − 1)(nj − 1)(ni −
n2
i

n
)X2

i (S2
i σ

2
j − S2

i σ
2
j − σ2

i σ
2
j + σ2

i σ
2
j )]

+ 2E[
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

XiXj(S
2
i S

2
j ))])

=
τ−6

(a− 1)(n− a)2
(E[

a∑
j=1

a∑
i=1

(ni − 1)2(nj −
n2
j

n
)X2

j (S4
i − 2S2

i σ
2
i + σ4

i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

E[XiS
2
i ]E[XjS

2
j ])

=
τ−6

(a− 1)(n− a)2
(E[

a∑
j=1

a∑
i=1

(ni − 1)2(nj −
n2
j

n
)X2

j (S4
i − 2S2

i σ
2
i + σ4

i )]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

(
1

ni
µ

(3)
i

1

nj
µ

(3)
j ))

=
τ−6

(a− 1)(n− a)2
(E[
∑
i 6=j

(ni − 1)2(nj −
n2
j

n
)X2

j (S4
i − 2S2

i σ
2
i + σ4

i )]

+ E[
a∑
i=1

(ni − 1)2(ni −
n2
i

n
)X2

i (S4
i − 2S2

i σ
2
i + σ4

i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

(
1

ni
µ

(3)
i

1

nj
µ

(3)
j ))

=
τ−6

(a− 1)(n− a)2
(E[
∑
i 6=j

(ni − 1)2(nj −
n2
j

n
)
σ2
j

nj
(S4

i − 2S2
i σ

2
i + σ4

i )]

+ E[
a∑
i=1

(ni − 1)2(ni −
n2
i

n
)X2

i (S4
i − 2S2

i σ
2
i + σ4

i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

(
1

ni
µ

(3)
i

1

nj
µ

(3)
j ))

=
τ−6

(a− 1)(n− a)2
(E[
∑
i 6=j

(ni − 1)2(nj −
n2
j

n
)
σ2
j

nj
(S4

i − 2σ4
i + σ4

i )]

+ E[
a∑
i=1

(ni − 1)2(ni −
n2
i

n
)X2

i (S4
i − 2S2

i σ
2
i + σ4

i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

(
1

ni
µ3
i

1

nj
µ3
j))
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T3 =
τ−6

(a− 1)(n− a)2
(
∑
i 6=j

(ni − 1)2(nj −
n2
j

n
)
σ2
j

nj
((
n2
i − 2ni + 6

(ni − 1)2ni
)µ

(4)
i

+ (
n2
i − 2ni + 6

ni(ni − 1)
)σ4

i )− σ4
i ) + E[

a∑
i=1

(ni − 1)2(ni −
n2
i

n
)X2

i (S4
i − 2S2

i σ
2
i + σ4

i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(−ninj
n

(
1

ni
µ

(3)
i

1

nj
µ

(3)
j ))

=
τ−6

(a− 1)(n− a)2
(
∑
i 6=j

(ni − 1)2(1− nj
n

)σ2
j ((

n2
i − 2ni + 6

(ni − 1)2ni
)µ

(4)
i

+ (
n2
i − 2ni + 6

ni(ni − 1)
)σ4

i − σ4
i ) + E[

a∑
i=1

(ni − 1)2(ni −
n2
i

n
)X2

i (S4
i − 2S2

i σ
2
i + σ4

i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(− 1

n
(µ

(3)
i µ

(3)
j ))

=
τ−6

(a− 1)(n− a)2
(
∑
i 6=j

(ni − 1)2(1− nj
n

)σ2
j ((

n2
i − 2ni + 6

(ni − 1)2ni
)µ

(4)
i + (

−ni + 6

ni(ni − 1)
)σ4

i )

+
a∑
i=1

(ni − 1)2(1− ni
n

)(
1

n2
i

µ
(6)
i +

n2
i (ni − 2)− 6ni(ni − 2) + 15(ni − 2)

n2
i (ni − 1)

(σ2
i )

3

+
2n2

i − 8ni + 10

n2
i (ni − 1)

(µ
(3)
i )2 +

3n2
i − 14ni + 15

n2
i (ni − 1)

µ
(4)
i σ2

i )

− 2(
a∑
i=1

(ni − 1)2(1− ni
n

)((µ
(4)
i /ni +

ni − 3

ni
σ4
i )σ

2
i )

+
a∑
i=1

(ni − 1)2(1− ni
n

)σ6
i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(− 1

n
(µ

(3)
i µ

(3)
j )).

So, then putting all terms together:

E[F ] =E[
MST

MSE
]

=E[(X
′
BX/(a− 1))(

a∑
i=1

(ni − 1)S2
i

n− a
)−1]

≈E[(X
′
BX/(a− 1))τ−2] + E[(X

′
BX/(a− 1))τ−4∆n]+

E[(X
′
BX/(a− 1))τ−6∆2

n]

=T1 + T2 + T3
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E[F ] =
τ−2

a− 1

a∑
i=1

(1− ni
n

)σ2
i

− τ−4

(a− 1)(n− a)
(
∑
i 6=j

(1− nj
n

)(ni − 1)σ2
jσ

2
i +

a∑
i=1

(1− ni
n

)(ni − 1)(µ
(4)
i /ni +

ni − 3

ni
σ4
i )

−
a∑
j=1

(1− nj
n

)σ2
j

a∑
i=1

(ni − 1)σ2
i )

+
τ−6

(a− 1)(n− a)2
(
∑
i 6=j

(ni − 1)2(1− nj
n

)σ2
j ((

n2
i − 2ni + 6

(ni − 1)2ni
)µ

(4)
i + (

−ni + 6

ni(ni − 1)
)σ4

i )

+
a∑
i=1

(ni − 1)2(1− ni
n

)(
1

n2
i

µ
(6)
i +

n2
i (ni − 2)− 6ni(ni − 2) + 15(ni − 2)

n2
i (ni − 1)

(σ2
i )

3

+
2n2

i − 8ni + 10

n2
i (ni − 1)

(µ
(3)
i )2 +

3n2
i − 14ni + 15

n2
i (ni − 1)

µ
(4)
i σ2

i )

− 2(
a∑
i=1

(ni − 1)2(1− ni
n

)((µ
(4)
i /ni +

ni − 3

ni
σ4
i )σ

2
i ) +

a∑
i=1

(ni − 1)2(1− ni
n

)σ6
i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(− 1

n
(µ

(3)
i µ

(3)
j )).

Given the expression we are going to call

cn =
τ−2

a− 1

a∑
i=1

(1− ni
n

)σ2
i (3.19)

dn =− τ−4

(a− 1)(n− a)
(
∑
i 6=j

(1− nj
n

)(ni − 1)σ2
jσ

2
i (3.20)

+
a∑
i=1

(1− ni
n

)(ni − 1)(µ
(4)
i /ni +

ni − 3

ni
σ4
i )−

a∑
j=1

(1− nj
n

)σ2
j

a∑
i=1

(ni − 1)σ2
i )

+
τ−6

(a− 1)(n− a)2
(
∑
i 6=j

(ni − 1)2(1− nj
n

)σ2
j ((

n2
i − 2ni + 6

(ni − 1)2ni
)µ

(4)
i + (

−ni + 6

ni(ni − 1)
)σ4

i )

+
a∑
i=1

(ni − 1)2(1− ni
n

)(
1

n2
i

µ
(6)
i +

n2
i (ni − 2)− 6ni(ni − 2) + 15(ni − 2)

n2
i (ni − 1)

(σ2
i )

3

+
2n2

i − 8ni + 10

n2
i (ni − 1)

(µ
(3)
i )2 +

3n2
i − 14ni + 15

n2
i (ni − 1)

µ
(4)
i σ2

i )

− 2(
a∑
i=1

(ni − 1)2(1− ni
n

)((µ
(4)
i /ni +

ni − 3

ni
σ4
i )σ

2
i ) +

a∑
i=1

(ni − 1)2(1− ni
n

)σ6
i ))]

+ 2
a∑
j 6=i

(ni − 1)(nj − 1)(− 1

n
(µ

(3)
i µ

(3)
j )).
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Values for d′nk

The statistic for the unpooled variance is calculated similarly to the previous. The

calculation steps are omitted since the steps are very similar to the above section.

The moment calculation in this case is:

E[F ′] =E[
MST ′

MSE ′
] = E[(X

′
BX/(a− 1))(

a∑
i=1

(ni − 1)S2
i

n− a
)−1]

≈E[(X
′
BX/(a− 1))τ−2] + E[(X

′
BX/(a− 1))τ−4∆n]

+ E[(X
′
BX/(a− 1))τ−6∆2

n]

=1− ((
a∑
i=1

σ2
i

ni
)−2)(

a∑
i 6=j

σ2
i

ni

σ2
j

nj
+

a∑
i=1

(µ
(4)
i + (ni − 3)

(σ2
i )

2

n3
i

)

+ 1 + ((
a∑
i=1

σ2
i

ni
)−3)(

a∑
i=1

((ni(ni − 1)(ni − 2)(σ2
i )

3) + 2ni(ni − 1)(µ
(3)
i )2

+ 4ni(ni − 1)µ
(4)
i σ2

i + niµ
(6)
i ) +

1

n2
i

(15ni(ni − 1)(ni − 2)(σ2
i )

3

+ 15ni(ni − 1)(σ2
i )

3 + 15ni(ni − 1)σ2
i µ

(4)
i + 20ni(ni − 1)(µ

(3)
i )2

+ niµ
6
i )

1

(ni − 1)2n4
i

)− 2

a− 1
(
a∑
i 6=j

µ
(3)
i

n2
i

µ
(3)
j

n2
j

) + 2(
a∑
i 6=j

(ni − 3)(σ2
i )

2 + µ
(4)
i

n3
i

σ2
j

nj
)

+
a∑
i 6=j

((
σ2
i

ni
)

1

(nj − 1)n3
j

((n2
j − 2nj + 3)(σ2

j )
2 + (nj − 1)µ

(4)
j ))

+
a∑

i 6=j 6=k

σ2
i

ni

σ2
j

nj

σ2
k

nk
)− 2(

a∑
i=1

σ2
i

ni
)−2(

a∑
i 6=j

σ2
i

ni

σ2
j

nj
) +

1

n3
i

a∑
i=1

(µ
(4)
i + (ni − 3)(σ2

i )
3) + 1).

Estimates for unequal covariance in this case c′n = 1 and d′n is the remaining

expression in the above equation.

Unbiased Sample Moments

In order to calculate the statistic the values of an, bn and b′n need to be estimated

from the expressions with population moments. Calculations found the following
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estimated moments:

µ̂i =X i. (3.21)

σ̂2
i =

ni
ni − 1

ni∑
j=1

(xij −X i)
2/ni. (3.22)

µ̂
(3)
i =

n2
i

(ni − 1)(ni − 2)

ni∑
j=1

(xij −X i)
3/ni. (3.23)

µ̂
(4)
i =

n3
i

(n2
i − 3ni + 3)(ni − 1)

ni∑
j=1

1

ni
(xij −X i)

4 − 6ni − 9

(n2
i − 3ni + 3)ni

ni∑
j 6=k

x2
ijx

2
ik.

(3.24)

These moments are substituted in the expressions with population moments re-

sulting in the final statistics.

Copyright c© Alejandro G. Villasante Tezanos, 2019.

59



Chapter 4 Nonparametric Method for Two Samples High Dimensional

Tests

4.1 Introduction

Nonparametric methods are well known for being more robust against nonnormality

and other general conditions than their parametric counterparts. In our interest to be

as general as possible, we will introduce a nonparametric test statistic in this chapter

for quantifying group or treatment differences. The core test statistic in Chapter 3

is a composite version of the square of student’s t statistic. For a nonparametric

test, a composite Wilcoxon-Mann-Whitney test (Brunner and Munzel, 2000) will be

used.

Classical nonparametric tests formulate tests in terms of distribution functions

rather than parameters. The challenges with this formulation are (a) alternative

hypothesis is difficult to interpret (b) tests can not easily be inverter to construct

confidence intervals. To overcome these challenges some characteristic of the dis-

tribution functions is often investigated to compare treatments. In this respect, we

will use the concept of nonparametric relative group effect that we define in (4.1)

to motivate the use of the univariate test from Brunner and Munzel (2000). The

variable-by-variable univariate tests are combined to propose a multivariate compos-

ite test in the same way as in Chapter 3.

Let us first introduce the concept of relative group effect as it applies to the

marginal distributions of the kth variable in the ith group. The random variable Xijk

where i = 1, 2 , j = 1, ..., ni and k = 1, ..., p is the kth variable for the jth subject

from the ith sample group. Suppose

Xijk ∼ Fik

for j = 1, ..., ni. The distribution functions Fik(x) are arbitrary non-degenerate dis-

tributions. In our investigation to compare group effects, we study the so-called

nonparametric relative treatment effect. In the nonparametric literature, the nota-
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tion tipically used for this quantity is p but to avoid confusion with the notation for

the dimension, we denote this relative treatment effect by ω. In order to accomodate

binary, ordered categorical, discrete and continuous data types in a unified manner

we will use the normalized version of the distribution function, defined as

Fik(x) =
1

2
{F+

ik (x) + F−ik (x)} = P (Xi1k < x) +
1

2
P (Xi1k = x),

where F−ik (x) = P (Xi1k < x) and F+
ik (x) = P (Xi1k ≤ x) are the left and right

continuous versions of the distibution function. The relative effect for the jth variable

is defined by

ωk = P (X11k < X21k) +
1

2
P (X11k = X21k). (4.1)

The relative effect has the interpretation that if ωk is greater than 1/2, obser-

vations on the kth variable in the first sample tend to have smaller values than

observations on the kth variable in the second sample and viceversa if ωk is smaller

than 1/2. If ωk = 1/2 the two variables are tendentiously equal. For example, for

Normal distribution functions, where Fik has expectations µik and variances σ2
ik, it

can be shown that µ1k = µ2k if and only if ωk = 1
2
. Therefore, ωk = 1/2 does

not necessarily imply that F1k = F2k. In some cases, it could contain a parametric

hypothesis as a special case.

For convenience we express ωk in terms of distribution functions. It can be easily

shown that:

ωk =

∫
F1kdF2k.

In this chapter we consider a hypothesis testing about ωk’s in the high-dimensional

asymptotic framework. To that end, the chapter will be organized in seven sections

including this Introduction Section 4.1. Section 4.2 introduces the model and hy-

pothesis of interest. We propose the test statistic in Section 4.3. In Section 4.4

asymptotic results for the test statistic are stated and the results are used to con-

struct asymptotic tests. The finite sample performance of the tests is investigated

via simulation study in Section 4.5. Finally, we will end the chapter with some

conclusions in Section 4.6. All technical details are shifted to the Appendix 4.7.
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4.2 Model and Hypothesis

Model can also be formulated in terms of independent random vectors. Let

Xij = (Xij1, Xij2, ..., Xijp)
>

be independent random vectors for i = 1, 2 and j = 1, ..., ni with n = n1 + n2.

From the definition of the marginal relative group effects (see Section 4.1), the

multivariate nonparametric effect of interest is:

ω = (ω1, ..., ωp)
>.

The global hypothesis of interest is

H0 : ω =
1

2
1.

The statistic used to test this hypothesis is defined in Section 4.3 but to state as-

sumptions, the univariate version of the statistic will be presented here. Let

Wnk =

√
n(ω̂k − 1

2
)

σ̂nk

where

ω̂k =
1

n1

(R2.k −
n2 + 1

2
), σ̂2

nk = n · [ σ̂2
1k/n1 + σ̂2

2k/n2] , (4.2)

σ̂2
ik = S2

ik/(n− ni)2 and S2
ik =

1

ni − 1

ni∑
j=1

(Rijk −R(i)
jk −Ri.k +

n1 + 1

2
)2.

Here, Rijk refers to the mid-rank of Xijk among all values on the kth variable

in the two samples and R
(i)
jk refers to the rank of Xijk among the ni observations of

the kth variable in the ith sample. Further, Ri.k is the mean of the ranks in the ith

sample for the kth variable (see also Section 4.7 for formal definitions).

The assumptions for this new statistic are stated analogously to those in Chapter

3. Recall,

αij(s) = sup
k≥1
{|P (A ∩B)− P (A)P (B)| : A ∈ Fk1 (i, j) and B ∈ F∞k+s(i, j)},

where F ba(i, j) ≡ σ({Xijk : a ≤ k ≤ b}). Here αij(s) is a dependence coefficient that

measures the strength of dependence between two groups of variables that are at

least s indices apart.
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Assumption 4.2.1. For some δ ∈ (0,∞),
∑∞

s=1 αij(s)
δ/(2+δ) < ∞ for i = 1, 2 and

j = 1, ..., ni.

Assumption 4.2.2. For some δ ∈ (0,∞),E|W 2
nk|2l+δ < b < ∞ for all k = 1, ..., p

for some integer l ≥ 1.

Assumption 4.2.3. limn→∞
1
p−s
∑p−s

i=1 Cov(W 2
nk,W

2
n(k+s)) = γ(s) exists ∀s > 0.

Assumption 4.2.4. supn≥1{E|Wnk|16, k = 1, ..., p} = O(1).

Assumption 4.2.5. infn≥1{Var(Wnk), k = 1, ..., p} > b > 0.

The assumptions are also made in Chapter 3 and they are needed here for the

same reasons.

4.3 Test Statistic

The test statistic will be built from the square of the statistic described in Section

4.2. More precisely,

W =
√
p
Wn − 1

ζ̂n
(4.3)

with

Wn =

p∑
k=1

W 2
nk

p
(4.4)

where ζ̂n is defined similarly to the definition given in Chapter 3 as

ζ̂n
2
≡
∑
|s|<L

w(s/L)γ̂(s),

where

γ̂(s) =
1

p− s

p−s∑
k=1

(W 2
nk −Wn)(W 2

n(k+s) −Wn)

and

w(x) =


1− 6|x|2 + 6|x|3 if |x| < 1/2

2(1−|x|)3 if 1/2 ≤ x ≤ 1

0 if |x| > 1
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is the Parzen Smoothing Window (see Brockwell and Davis (2013)). As men-

tioned in Chapter 3, introducing this weight (i.e.w(x)) leads to a consistent estimator

of the asymptotic variance under the assumed α-mixing structure.

4.4 Main Results

The theoretical results for this chapter can derived from Chapter 3. It needs to

be proved that the univariate statistic preserves (inherits) the α-mixing condition

from the samples. From Section 4.3 it can be seen (Subsection 4.7) that the test

statistic Wnk is a Lebesgue function of the data values fro the kth variable. By the

same argument as in Chapter 3 (see argument in Step 1 from Theorem 3.8, also

Bradley (2005)) α-mixing property transfers from the sequence {Xijk : k = 1, 2, ...}

to the statistics Wnk for k = 1, 2, .... To see this, note the statistics are in terms of

mid-ranks. Ranks are derived from empirical CDF’s, which are Lebesgue functions

of independent random variables. Therefore {(W 2
nk, k = 1, 2, ...} has the same α-

mixing property as {Xijk; k = 1, 2, ...}. By adjusting the Assumptions 4.2.1, 4.2.2,

4.2.3, 4.2.4 and 4.2.5 appropriately, results from Chapter 3 are applicable Wn.

Proposition 4.4.1. Let us assume that p ≡ pn = o(n2) and Assumptions 4.2.1,

4.2.2, 4.2.3, 4.2.4 and 4.2.5 hold with s = 1.

Then,

sup
x∈R
|P (Wn − 1 < x)− Φ{√p(x)/τ∞}| = o(1)

where τ 2
∞ = γ(0) + 2

∑∞
k=1 γ(k).

Proof. Conditions and assumptions are analogous to those in Theorem 3.4.1 except

the difference in the definitions of how Wnk, Wn and W . By the arguments discussed

in the beginning of this section, {(W 2
nk, k = 1, 2, ...} has the same α-mixing property

as {Xijk; k = 1, 2, ...}. Therefore, the result is a consequence of Theorem 3.4.1.
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4.5 Simulation

The aim of this section is to show the performance, in terms of size and power, of

the moderate-p version of the statistic from Gregory et al. (2015) (from now on also

referred to as “GCT-mdp”) and the nonparametric test proposed in this chapter

(from now on also referred to as “VH-np”), in particular in the case of small sample

sizes and large dimension. Since inference for two groups is of interest, we slightly

modify the settings from those used in the simulations in Chapter 3.

In order to make the simulation as thorough as possible, we have investigated

effects of diference in sample sizes ni and dimension p under multiple scenarios for

dependence, error distribution and hte parameter L. L is the size of the Parzen

Smoothing Window needed for the estimation of the asymptotic variance. In the

power simulation, δ quantifies the departure from null hypothesis. More precisely,

the groups compared have means µ1 = 0p and µ2 = δ1p.

Simulation Design

We compare the sizes of GCT-mdp and VH-np under the following settings:

• Sample sizes (n1, n2) = {(20, 18), (40, 38)}.

• Dimension p ∈ {300, 1000}.

• Size of the Parzen Smoothing Window L ∈ {10, 20}.

• Dependence model: Independence and ARMA models.

• Error distribution: GEV(0,1,0), Cauchy(0,3), N(0,1), centered Gamma(4,2),

Uniform(-5,5) and Double exponential(0,1).

The ARMA model is as defined in Section 3.5. We used ARMA(2,2) model with

coefficients ϕ1 = 0.8897 , ϕ2 = −0.4858, θ1 = −0.2279 and θ2 = 0.2488. Given the

nature of the statistic, we added two distributions to the list of distributions used in

the simulation in Chapter 3. We included Generalized Extreme Value distribution

(GEV (, µ, σ, ξ) with parameters µ = 0, σ = 1 and ξ = 0, and Cauchy distribution
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(Cauchy(µ, γ)) with parameters µ = 0 and γ = 3 to compare the sizes under skewed

and heavy tailed distributions. Another type of alternative points considered in the

power simulation is generated from GEV(λ,1,λ) in one group and from GEV(0,1,0)

in the other group. As λ gets large (λ > 1), none of the moments of GEV(λ,1,λ) exist

(Hosking, Wallis, and Wood, 1985). In this case, we anticipate that GCT-mdp may

behave poorly or worse than VH-np considering the assumptions that were made for

the two tests. Results are shown in Tables 4.1 and 4.2. Power is also investigated

for three types of distributions that we anticipated the nonparametric statistic could

perform better. Details on the settings for these power plots can be seen in captions

on Figures 4.1, 4.2, 4.3, 4.4 and 4.6. The nominal size is set to α = 0.05 in all

simulations.

Simulation Results

The number of simulations is set to 7000.

Size Simulation

When sample sizes are moderately small, Table 4.1, the sizes are very similar for

the two statistics except that VH-np shows a slightly better performance in the

moderate-p case and vice-versa in the large-p case.

The choice of the Parzen Smoothing Window size doesn’t appear to have a con-

siderable effect on the sizes, but the smaller value (L=10) consistently reduces the

size to make it closer to the nominal level, especially when the errors are indepen-

dent (white noise). The opposite effect is observed when errors have ARMA(2,2)

structure.

When sample sizes are small, Table 4.2, the test sizes are further away from the

nominal value and they are fairly comparable in the moderate p case. The sizes for

both statistics are inflated in the large p case, while VH-np is more inflated.

The choice of the Parzen Smoothing Window size doesn’t modify the tests sizes

considerably, but the comparison is almost identical to that when sample sizes are

moderately small. Both Tables 4.1 and 4.2 suggest that the choice of L may play
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a role in the size moderated by sample sizes and it is definitely a factor to consider

when some degree of dependence exists.

Table 4.1: Achieved type I error rates for two groups. Sample sizes are n1 = 40 and
n2 = 38. p stands for dimension and Parzen Smoothing Window is denoted by L.

Type-I error rates× 100
Error distr. Dependence Structure Statistic p = 300 p = 1000

L=10 L=20 L=10 L=20
GEV indep VH-np 6.13 7.08 7.59 8.67

GCT-mdp 5.67 6.75 7.61 8.50
ARMA VH-np 6.58 6.78 7.08 7.14

GCT-mdp 5.91 7.16 6.66 6.47
Normal indep VH-np 6.36 7.41 8.28 9.16

GCT-mdp 6.16 6.44 7.34 8.58
ARMA VH-np 6.66 6.50 7.28 7.16

GCT-mdp 6.92 6.92 6.64 8.05
Gamma indep VH-np 5.69 6.44 8.16 8.59

GCT-mdp 5.97 6.75 7.67 7.89
ARMA VH-np 6.91 7.09 7.69 6.84

GCT-mdp 6.72 6.92 6.67 6.44
Uniform indep VH-np 6.03 7.20 8.61 8.16

GCT-mdp 5.89 6.78 7.66 8.25
ARMA VH-np 7.00 7.14 7.08 6.63

GCT-mdp 6.55 7.17 6.56 6.86
Double exp indep VH-np 5.25 7.19 9.19 8.27

GCT-mdp 5.66 6.41 7.72 7.92
ARMA VH-np 7.09 7.30 6.92 6.44

GCT-mdp 6.63 7.06 6.94 6.69
Cauchy indep VH-np 6.08 7.27 8.45 8.88

GCT-mdp 5.56 6.17 6.00 6.17
ARMA VH-np 8.77 8.00 8.78 7.08

GCT-mdp 7.38 6.73 7.38 6.52
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Table 4.2: Achieved type I error rates for two groups. Sample sizes are n1 = 20, n2 =
18. p stands for dimension and Parzen Smoothing Window is denoted by L.

Type-I error rates× 100
Error distr. Dependence Structure Statistic p = 300 p = 1000

L=10 L=20 L=10 L=20
GEV indep VH-np 8.92 9.70 22.59 24.50

GCT-mdp 7.95 9.69 20.17 19.64
ARMA VH-np 7.48 8.02 14.94 14.64

GCT-mdp 8.03 8.25 13.81 12.56
Normal indep VH-np 8.84 9.34 23.81 24.95

GCT-mdp 9.13 9.73 20.95 20.89
ARMA VH-np 7.22 7.31 14.94 14.67

GCT-mdp 7.80 7.75 13.97 12.66
Gamma indep VH-np 8.94 9.48 22.30 24.33

GCT-mdp 9.55 9.52 20.28 21.13
ARMA VH-np 7.80 7.11 15.20 14.22

GCT-mdp 6.97 7.50 13.30 12.69
Uniform indep VH-np 8.00 9.38 23.81 24.09

GCT-mdp 8.36 9.72 20.20 21.61
ARMA VH-np 7.44 7.41 15.31 14.14

GCT-mdp 6.56 7.69 13.42 13.81
Double exp indep VH-np 8.72 9.47 23.47 23.63

GCT-mdp 8.25 9.97 18.55 20.14
ARMA VH-np 8.11 7.56 14.80 14.11

GCT-mdp 7.44 7.50 13.03 12.78
Cauchy indep VH-np 8.56 9.80 23.02 23.86

GCT-mdp 6.98 8.09 12.58 13.25
ARMA VH-np 8.78 7.86 15.63 12.55

GCT-mdp 8.30 7.98 10.39 9.22

Power Simulation

Power plots were generated to compare the performance of both statistics under

some of the settings that were represented in the size tables. Simulation size is 3200.

In Figure 4.1, dimension is p = 1000 and set equal for both plots. In these plots,

we can see a clear advantage of VH-np since it shows a lot more robustness against

dependence structure. It is also worth mentioning that size is inflated for both tests

if dimension is large and sample size is moderately small.

The setting in Figure 4.2, is very similar to that in Figure 4.3. Indeed, the only

difference being that errors follow an ARMA model in the former and are independent
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(a) (b)

Figure 4.1: Power plots for VH-np and GCT-mdp. Errors are generated from Cauchy
distribution with ARMA structure. Dimension is p = 1000. Sample sizes (n1, n2) =
(40, 38) are represented on panel (a) and (n1, n2) = (20, 18) on panel (b). δ is the
location shift.

(a) (b)

Figure 4.2: Power plots for VH-np and GCT-mdp. Errors are generated from Cauchy
distribution with ARMA structure. Dimension is p = 300. Sample sizes (n1, n2) =
40, 38 are represented on panel (a) and (n1, n2) = (20, 18) on panel (b). δ is the
location shift.
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in the latter. As we can see in these graphs, VH-np has a much better performance

compared to GCT-mdp. It looks like VH-np is more robust to dependence structure.

(a) (b)

Figure 4.3: Power plots for VH-np and GCT-mdp. Errors are generated from Cauchy
distribution with independence structure. Dimension is p = 300 . Sample sizes
(n1, n2) = (40, 38) are shown on panel (a) and (n1, n2) = (20, 18) on panel (b). δ is
the location shift.

In Figure 4.3, we can see that with sample size around 40 per group, the two tests

pick up power faster and have better sizes compared to smaller sample size cases,

otherwise the two tests compare very similarly.

The settings in Figure 4.4 are the same as in Figure 4.3 except the error distri-

bution is GEV. The results are also similar but it looks like GCT-mdp shows im-

provement compared to the settings in Figure 4.3. More specifically, it gains power

a little faster than VH-np. It is worth noting that the parameter λ corresponds to

location and shape i.e. µ = λ and ξ = λ and that makes alternative in one of the

samples to change location and shape at the same time.

In Figure 4.5, for ARMA setting, we observe that as λ gets larger than 1 the power

of GCT-mdp drops. On the contrary, power for VH-np stays up when moments don’t

exist any more. Size for VH-np is however inflated.

Finally, for small and equal sample sizes, Figure 4.6, the two tests perform well,
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(a) (b)

Figure 4.4: Power plots for VH-np and GCT-mdp. Errors are generated from GEV
distribution with independence structure. Dimension is p = 300. Sample sizes
(n1, n2) = (40, 38) is shown on panel (a) and (n1, n2) = (20, 18) on panel (b). λ is
the location and shape parameter and is set equal in the second group compared to
0 for both in the first group.

(a) (b)

Figure 4.5: Power plots for VH-np and GCT-mdp. Errors are generated from
GEV distribution with ARMA structure. Dimension is p = 300. Sample sizes
are (n1, n2) = (40, 38).β = 0.4 is shown on panel (a) and β = 0.8 is shown on panel
(b). λ is the location and shape parameter and is set equal in the second group
compared to 0 for both in the first group. β is the proportion of variables shifted.
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(a) (b)

Figure 4.6: Power plots for VH-np and GCT-mdp. Errors are generated from Normal
distribution with independence structure. Sample sizes are (n1, n2) = (20, 18). On
panel (a), dimension p = 300 is represented, p = 1000 is on panel (b). δ is the
location shift.

but the sizes for the two statistics are considerably inflated when p = 1000. We can

say that the two statistics behave similarly in a normal independent setting.

4.6 Conclusions

We investigated a nonparametric test statistic for two group comparison in high

dimensions. The test statistic was defined in manner similar to the one in Chapter

3, but motivated by the nonparametric Wilcoxon-Mann-Whitney type statistic of

Brunner and Munzel (2000).

The proposed test statistic is shown to asymptotically follow a Normal distribu-

tion. Mild moment conditions and strong mixing (α-mixing) dependence is required

to establish this result. The new nonparametric test is compared with CGT-mdp

in a simulation. In finite samples, sizes are very similar for both statistics with a

little advantage for GCT-mdp. Both statistics are liberal when small sample size

and large dimension were combined. However, if sample size is not large enough, the

larger the dimension gets, it will make the size performance worse. As we showed in
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Chapter 3, this observation suggests that n and p have to be large enough and the

assumed rate p = o(n2) appears necessary, or else the approximate normality of the

test may not hold.

When comparing power, the simulations show a clear advantage for VH-np in

heavily tailed distributions such as Cauchy. The power simulation for Generalized

Extreme Value distribution is special in that λ varies both location and shape pa-

rameters. In this case, under ARMA structure, VH-np shows more robustness when

moments no longer exist (λ > 1). Simulations show a great advantage of VH-np

when there exist correlation between the variables.Otherwise, under independence

the two tests perform very similarly with CGT-mdp having a slight advantage.

In summary, VH-np has a better performance overall . In almost all cases, for

moderate p the sizes for both tests are comparable and the power is either very similar

or clearly advantageous for VH-np. This makes one think that the nonparametric

version of the statistic is preferable to the moderate p version of Gregory et al. (2015).

4.7 Appendix

Technical details needed for the main result in Section 4.4 are presented in this

section.

Some Definitions

To fix notation about mid ranks we define

Rijk = n · Ĥk(xij) +
1

2

is the rank among all elements in both samples admitting ties where

Ĥk(x) =
2∑
i=1

ni
n
F̂ik(x)

and we can write

F̂ik(x) =
1

ni

ni∑
j=1

c(x−Xijk), i = 1, 2.

where
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c(x) = 1
2
(c−(x) + c+(x)), c+(x) =

{
0 x < 0

1 x ≥ 0
, c−(x) =

{
0 x ≤ 0

1 x > 0
.

Also,

Ri.k =
1

ni

ni∑
j=1

Rijk

is the mean of the ranks in the ith sample for the kth variable and

R
(i)
jk = niF̂ik(Xijk) +

1

2

the rank of Xijk among the ni observations of the ith sample.

Statistic as a Lebesgue Function

The statistic W is an scaled average of the squared Wni’s, and the univariate statistics

can be written as

Wnk =

√
n(ω̂k − 1

2
)

σ̂nk

and ω̂k can be written, using definitions in Subsection 4.7, as

ω̂k =
1

n1

(R2.k −
n2 + 1

2
)

=
1

n1

(
1

n2

n2∑
j=1

R2jk −
n2 + 1

2
)

=
1

n1

(
1

n2

n2∑
j=1

(n · Ĥk(X2jk) +
1

2
)− n2 + 1

2
)

=
1

n1

(
1

n2

n2∑
j=1

n(·
2∑
i=1

ni
n
F̂ik(X2jk) +

1

2
)− n2 + 1

2
)

=
1

n1

(
1

n2

n2∑
j=1

(
2∑
i=1

ni∑
m=1

c(X2jk −Xijm) +
1

2
)− n2 + 1

2
).

As we can see the estimator for the relative effect is a Lebesgue function of the

random sample. Also, σ̂nk can be written as functions of S2
ik where, using again

definitions on Subsection 4.7, S2
ik can be written as:
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S2
ik =

1

ni − 1

ni∑
j=1

(Rijk −R(i)
jk −Ri.k +

n1 + 1

2
)2

=
1

ni − 1

ni∑
j=1

((
2∑
i=1

ni∑
m=1

c(Xijk −Ximk) +
1

2
)− ni(

1

ni

ni∑
m=1

c(Ximk −Xijl))+

1

2
− 1

ni

ni∑
j=1

(
2∑
r=1

ni∑
m=1

c(Xijk −Xrmk) +
1

2
) +

n1 + 1

2
)2

which is a Lebesgue function of the sample.
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Chapter 5 Comparison of Various High Dimensional Tests

5.1 Introduction

With a number of methods proposed in Chapters 3 and 4, we will explore the results

and some possible extensions compared to other alternative methods proposed in

literature. We will study numerically some parametric tests but using ranks instead

of raw values and other nonparametric methods. We will use ranks instead of the

raw values to illustrate numerically the effect of introducing dependency between

the observed samples. The results may suggest the possibility of a modification of

assumptions or even new statistics. We will also illustrate the tests’ application in

data analysis to real-data from an encephalograph (EEG) experiment.

5.2 Compared Methods of Analysis

Diagonal Likelihood Ratio Test (DLRT)

An interesting approach is taken by Hu, Tong, and Genton (2019). A composite

test statistic is derived from the likelihood ratio assuming that covariance matrices

follow a common diagonal matrix structure. To derive the asymptotic normality

under the null and local alternatives the assumption of diagonal covariance matrix

is not needed, α-mixing is then assumed. The following hypotheses are tested,

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

For these hypotheses, the likelihood ratio test statistic becomes,

T2 = n

p∑
k=1

log(1 +
t2nk
ν2

) :=

p∑
k=1

Vnk,

where t2nk is the regular version of t2 with pooled variance for the kth variable and

ν2 = n − 2. One difficulty of this approach is to calculate the mean and variance

of the log transformed. These quantities are calculated using the digamma function
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Ψ. Defining D(x) = Ψ{(x + 1)/2} − Ψ(x/2), G1 = nD(ν2) and G2 = n2{D2(ν2) −

2D′(ν2)}, then

E[Vnj] = G1 and Var(Vnj) = G2 −G2
1.

Further, the following is true,

T2 − pG1

τ2
√
p

d→ N(0, 1) as p→∞,

where τ 2
2 is the asymptotic variance of the statistic.

This result has a corollary in which T2 is corrected by an asymptotic expansion

of the moment rather than the asymptotic mean. In this case, a formula is reached

for any expansion level. The result is a little restrictive since it assumes the sequence

{Vnj} is stationary, along with α-mixing.

Nonparametric Test for Two samples

Our method proposed in Chapter 4 (called “VH-np”) is included for comparison.

One of the main advantages of this method is that no distributional assumptions are

made except that distributions are non-degenerate.

High-Dimensional Rank-Based Test

A different approach to VH-np was taken by Kong and Harrar (from now on “KH”).

The statistic is constructed naturally from the nonparametric concept of relative

effect defined in Chapter 4. The relative effect as defined in Chapter 4 is:

ωk = P (X11k < X21k) +
1

2
P (X11k = X21k),

for k = 1, ..., p. They use an average of the univariate distribution functions as a

baseline reference. The relative effect in this case is defined as:

ωik = E[Yi1k] =

∫
HdFik where H(x) =

1

2p

p∑
k=1

{F1k(x) + F2k(x)}.

It can be noted that one big difference with VH-np is that, instead of comparing the

distribution of one of the samples on the kth variable to the distribution of the second
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sample on the same variable, it is compared to the average distribution of all vari-

ables from both samples. Given these definitions, they estimated the parameters ωik

naturally using the empirical distribution in place of the unknown true distribution,

i.e.

ω̂ik =
1

2p
[
R

(i)

.k − 1/2

ni
+
Ri.k −R

(i)

.k

n− ni
] (5.1)

with notation as defined in Chapter 4. The test statistic (Tn) used is that defined

in Chen and Qin (2010) with the exception that mid-ranks are used instead of raw

values. A consistent estimator for the variance of this statistic is proposed and finally

the following result is presented.

σ̂−1
n Tn(Ŷ c)

d→ N(0, 1) as n, p→∞.

This test assumes α-mixing as VH-np along with some regularity conditions. There

are differences in definitions of the relative effect quantity and that affects the results.

General Component Tests

The methods GCT-mdp and GCT-lgp described in Gregory et al. (2015) are a spe-

cial two group case of our methods proposed in Chapter 3 for unequal covariance

matrices. They are also included for comparison but using mid-ranks instead of raw

values.

5.3 Simulation

We will explore the performance of the statistics proposed in Section 5.2 under var-

ious settings. In order to make the simulation as thorough as possible, we have

investigated multiple combinations of parameter values. Specifically, effects in the

number of groups a, sample sizes ni and dimension p are investigated. In the statis-

tics DLRT, VH and GCT, the Parzen Smoothing Window L needs to be specified

beforehand to estimate the asymptotic variance of the test statistic. In the power

simulation, δ expresses the shift of the variable means and β is the proportion of

means shifted.
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Simulation Design

When considering a = 2, we compare sizes for methods explained in Section 5.2

under the following settings:

• Sample sizes (n1, n2) = {(20, 20), (30, 30), (40, 40), (50, 50), (10, 15),

(20, 25), (30, 35)(40, 45), (50, 55)}.

These sizes cover balanced and moderately unbalanced situations.

• Dimension p ∈ {100, 150, 200, 250, 300, 350, 400, 450, 500}.

There are various assumptions in the methods discussed in this chapter about

the relationship between n and p. We expect this range of values to show the

possible interaction effects of sizes and dimension.

• For methods that require L to be defined, we will use L = 0.5p and fixed

L = 20.

• Covariance structure:

– Independence: Σ1 = Ip and Σ2 = Ip.

– Equi-Correlation: Σ1 = 0.5Ip + 0.5Jp and Σ2 = (1− ρ)Ip + ρJp.

– Auto-Regressive: Σ1 = (0.5|j−j1|) and Σ2 = (ρ|j−j1|).

– Square-Root-Decay: Σ1 = (0.5|j − j1|−1/2) and Σ2 = (ρ|j − j1|−1/2).

These settings cover situations from independence between variables to short

and long range dependence. The parameter ρ will take values 0.1, 0.2, 0.3, 0.4

and 0.5 to illustrate the behavior of tests in homoscedasticity and heteroscedas-

ticity.

• Marginal error distribution: Cauchy(0,3), N(0,1), centered Gamma(4,2). These

settings include error coming from symmetric distributions to heavily tailed

and heavily skewed distributions.

All combinations from these settings were simulated but we only present some

plots to avoid redundancy. The specific settings are described in each plot.
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Power is investigated for the different tests described in Section 5.2. We will

focus our interest in some specific settings listed below:

• sample sizes (n1, n2) = {(20, 20), (20, 25), (50, 50)}.

• Dimension p = {100, 500}.

• L = 20.

• Dependence model: Independence, Auto-Regressive and Square-Root-Decay.

• Correlation parameter ρ = {0.1, 0.5}.

• Error distribution: Cauchy(0,3), N(0,1), centered Gamma(4,2).

Two types of alternative hypotheses will be examined. We will explore a mean

shift in the two sample variables (δ) and we will investigate a change in the proportion

of variables shifted for a fixed change (β).

Size Simulation Results

Effect of Sample Size and Dimension

All statistics considered in this subsection are mostly compared in independence and

Square-Root-Decay structure to check their behaviour for sample size and dimension.

Other covariance structures followed similar patterns. Their differences are described

in Subsection 5.3.

Normal: In Figure 5.1, all tests converge to nominal value as size and dimension

increase simultaneously. KH and GCT-lgp are particularly accurate in the case where

n and p are relatively small.

Cauchy: For Cauchy distribution, Figure 5.2 shows that KH is performing well

under all values of sample sizes and dimensions. For fixed sample size, KH gets closer

to nominal size as p increases but it is not the case for all other tests. However, as

both sample size and dimension increase simultaneously, the trends shown by all

tests are similar.
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Figure 5.1: Achieved type-I error rates for all tests against sample size and dimension.
Errors are generated form Normal distribution with Square-Root-Decay as covariance
structure and heteroscedastic. Parzen Smoothing Window used is L=20. Sample
sizes are n1 = m and n2 = m. Panel (a) represents VH-np, panel (b) represents GCT-
mdp, panel (c) represents DLRT, panel (d) represents KH and panel (e) represents
GCT-lgp.

Gamma: In Figure 5.3, we can observe the behavior of all tests is remarkably good

for most sizes and dimensions. Seems specially good GCT-lgp in panel (e).

Effect of Unbalancedness

The behaviour of the statistics is explored under unbalanced samples.
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Figure 5.2: Achieved type-I error rates for all tests against sample size and dimension.
Errors are generated from Cauchy distribution with Square-Root-Decay as covariance
structure and heteroscedastic. Parzen Smoothing Window used is L=20. Sample
sizes are n1 = m and n2 = m. Panel (a) represents VH-np, panel (b) represents GCT-
mdp, panel (c) represents DLRT, panel (d) represents KH and panel (e) represents
GCT-lgp.

Normal: In Figure 5.4, we observe the behaviour of VH-np comparing unbalanced

and balanced samples. It seems that sizes are more affected in the balanced case

than in the unbalanced case. Especially when sample sizes are smaller. As we can

see in Figure 5.5, for fixed sample sizes, KH and GCT-lgp, maintain stable size as p

increases but the others tests increase the size. The difference is much less prominent
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Figure 5.3: Achieved type-I error rates for all tests against sample size and dimen-
sion. Errors are generated from Gamma distribution with Square-Root-Decay as
covariance structure and heteroscedastic. Parzen Smoothing Window used is L=20.
Sample sizes are n1 = m and n2 = m. Panel (a) represents VH-np, panel (b) repre-
sents GCT-mdp, panel (c) represents DLRT, panel (d) represents KH and panel (e)
represents GCT-lgp.

as sample sizes increase.

Gamma: For Gamma distributed errors, the unbalanced small sample sizes have

higher error rates than the balanced (see Figure 5.6) and the difference is increased

as dimension increases. When sample sizes are increased, both, balanced and unbal-
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Figure 5.4: Achieved type-I error rates for VH-np against sample size and dimension.
Errors are generated from Normal distribution. Parzen Smoothing Window used is
L=20. Covariance structures are Independence for panels (a) and (b) and Square-
Root-Decay heteroscedastic for panels (c) and (d) . For panels (b) and (d) sample
sizes are n1 = m and n2 = m+5 and panels (a) and (c) sample sizes are n1 = n2 = m.
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Figure 5.5: Achieved type-I error rates for all tests against dimension. Errors are
generated from Normal distribution, all tests are represented in all panels. Covari-
ance structure is Independence. Parzen Smoothing Window used is L=20. Sample
sizes are n1 = m and n2 = m + 5. m = 30 in panel (a), m = 40 in panel (b) and
m = 50 in panel (c).

anced error rates are fairly similar.
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Figure 5.6: Achieved type-I error rates for VH-np against sample size and dimension.
Errors are generated from Gamma distribution. Parzen Smoothing Window used is
L=20. Covariance structures are Independence for panels (a) and (b) and Square-
Root-Decay heteroscedastic for panels (c) and (d). Sample sizes are n1 = m and
n2 = m+ 5 for panels (b) and (d) and n1 = n2 = m for panels (a) and (c).

Effect of Size and Correlation

All plots shown to compare the effect of size and correlation are chosen to have

dimension p = 500 and covariance structure a Square-Root-Decay. we chose this

setting because it is a more appropriate setting for the real life problem that we are

trying to solve.

Normal: As we can see on panels from Figure 5.7, error rates increase as het-

eroscedasticity increases. KH and GCT-lgp tests seem to be less affected by het-

eroscedasticity. It is a common trend in the other settings’ plots.

Cauchy: The pattern in plots with Cauchy distributed errors (see Figure 5.8) seem

different to that of normal. KH behaves very well compared to the other tests. The
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Figure 5.7: Achieved type-I error rates for all tests against sample size and correlation
parameter (ρ). Errors are generated from Normal distribution. Square-Root-Decay
as covariance structure and dimension is p = 500. m is the increment in size which
is the same on both samples, so sample sizes are n1 = m and n2 = m. Parzen
Smoothing Window used is L=20. Panel (a) is VH test, panel (b) represents GCT-
mdp, panel (c) represents DLRT, panel (d) represents KH and panel (e) represents
GCT-lgp.

achieved sizes of all other tests are far from the nominal sizes for small sample sizes

and seem to be getting closer to nominal size as sample sizes increase but at a much

slower rate than for the normally distibuted errors.
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Figure 5.8: Achieved type-I error rates for all tests against sample size and correlation
parameter (ρ). Errors are generated from Cauchy distribution. Square-Root-Decay
as covariance structure and dimension is p = 500. m is the increment in size which
is the same on both samples, so sample sizes are n1 = m and n2 = m. Parzen
Smoothing Window used is L=20. Panel (a) represents VH test, panel (b) repre-
sents GCT-mdp, panel (c) represents DLRT, panel (d) represents KH and panel (e)
represents GCT-lgp.

Gamma: The results for Gamma distributed errors shown in Figure 5.9 are better

than normal errors for small sample sizes but get closer to nominal size at a slower

pace than the normal case. GCT-lgp and KH behave remarkably well for smaller

and larger n′s and under homoscedastic and heteroscedastic settings. All other test
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Figure 5.9: Achieved type-I error rates for all tests against sample size and correlation
parameter (ρ). Errors are generated from Gamma distribution. Square-Root-Decay
as covariance structure and dimension is p = 500. Sample sizes are n1 = m and
n2 = m. Parzen Smoothing Window used is L=20. Panel (a) represents VH test,
panel (b) represents GCT-mdp, panel (c) represents DLRT, panel (d) represents KH
and panel (e) represents GCT-lgp.

behave better under an homoscedatic setting than heteroscedastic.

Effect of Covariance Structure

The different covariance structures are compared on VH-np.The value of ρ is set to

0.1, which is the most heteroscedastic case. Error rates are plotted against sample
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size and dimension.

m

20
25

30
35

40
45

50

p

100

200

300

400

500

P
value

0.0

0.1

0.2

0.3

0.4

0.5

m

20
25

30
35

40
45

50

p

100

200

300

400

500

P
value

0.0

0.1

0.2

0.3

0.4

0.5

(a)

m

20
25

30
35

40
45

50

p

100

200

300

400

500

P
value

0.0

0.1

0.2

0.3

0.4

0.5

m

20
25

30
35

40
45

50

p

100

200

300

400

500

P
value

0.0

0.1

0.2

0.3

0.4

0.5

(b)

m

20
25

30
35

40
45

50

p

100

200

300

400

500

P
value

0.0

0.1

0.2

0.3

0.4

0.5

m

20
25

30
35

40
45

50

p

100

200

300

400

500

P
value

0.0

0.1

0.2

0.3

0.4

0.5

(c)

m

20
25

30
35

40
45

50

p

100

200

300

400

500

P
value

0.0

0.1

0.2

0.3

0.4

0.5

m

20
25

30
35

40
45

50

p

100

200

300

400

500

P
value

0.0

0.1

0.2

0.3

0.4

0.5

(d)

Figure 5.10: Achieved type-I error rates for VH-np against sample size and dimen-
sion. Errors generated from Normal distribution, under heteroscedasticity. Parzen
Smoothing Window used is L=20. Panel (a) represents independence covariance
structure and panel (b) represents Equi-Correlation and panel (c) represents Auto-
Regressive and panel (d) represents Square-Root-Decay. Sample sizes are n1 = m
and n2 = m and p is the dimension.

Normal: Comparing different covariance structures in Figure 5.10, we can see the

good behavior of VH test for all covariance structures except in the Equi-Correlation

structure case where we observe much slower convergence.

Cauchy: As we can see in Figure 5.11, in a similar way to errors generated

from other distributions, the proposed test (VH-np) behaves worst under the Equi-

Correlation covariance structure. In Figure 5.12 we observe that for smaller sample

size, the error rates increase in all tests except on KH and GCT-lgp. As sample size

increases, the difference between the tests fades away.
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Figure 5.11: Achieved type-I error rates for VH-np against sample size and di-
mension. Errors are generated from Cauchy distribution, under heteroscedasticity.
Parzen Smoothing Window used is L=20. Panel (a) represents Equi-Correlation co-
variance structure, panel (b) represents Auto-Regressive, panel (c) represents Square-
Root-Decay. Sample sizes are n1 = m and n2 = m and p is the dimension.
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Figure 5.12: Achieved type-I error rates for all tests against dimension. Errors
are generated from Cauchy distribution. Covariance structure is Auto-Regressive,
sample sizes are n1 = m and n2 = m. Parzen window parameter used is L=20.
m = 30 in panel (a), m = 40 in panel (b) and m = 50 in panel (c).

Gamma: As Figure 5.13 shows, the Gamma distribution has a similar effect on

VH-np as Cauchy for the different covariance structures.
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Figure 5.13: Achieved type-I error rates for VH-np against sample size and dimen-
sion. Errors are generated from Gamma distribution, under heteroscedasticity(ρ =
0.1). Parzen Smoothing Window used is L=20. Panel (a) represents independence
covariance structure, panel (b) represents Equi-Correlation, panel (c) represents
Auto-Regressive and panel (d) represents Square-Root-Decay, m is the increment
in size which is the same on both samples, so sample sizes are n1 = m and n2 = m
and p is the dimension.

Effect of L (Parzen Smoothing Window)

Heteroscedastic autocorrelated setting. Error rates are plotted with size increment

and dimension.

Normal: Looking at Figure 5.14, we can see that increasing the L has a negative

impact on the error rates, more so as p and n increase.
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Figure 5.14: Achieved type-I error rates for VH-np against sample size and dimen-
sion. Errors are generated from Normal distribution, under heteroscedasticity. Panel
(a) represents parameter L = 20 and panel (b) represents L = p/2. Sample sizes are
n1 = m and n2 = m and p is the dimension.

Power simulation Results

Plots were generated for all settings described in the simulation design. We will focus

on settings where sample is unbalanced (n1 = 20, n2 = 25), errors are distributed

as Gamma and dimension is larger (p = 500). We are interested in data that is

homoscedastic and Auto-Regressive. Power plots in this section follow these settings

unless changes are noted.

Effect of δ and β

In Figures 5.15 and 5.16, there is a noticeable difference in the sizes of two homo-

geneous groups of test. One group includes VH-np, GCT-mdp and DLRT and the

other group has KH and GCT-lgp. Their power curves behave similarly but com-

paring the groups, type I error rates are more inflated for the former group. KH is

especially interesting since it has a good size and picks power faster than GCT-lgp.

We can see that for small proportion of variables shifted (β), the power grows at a

much slower pace. That pace increases for all tests as β increases. We also observe

in Figure 5.16 that for small signal the proportion of variables shifted doesn’t affect

much the behaviour of any of the tests. As signal increases we observe a similar

behaviour in the comparison of tests as we see in Figure 5.15. When shift is one unit

all tests reach full power considerably fast. When β = 0.5 all tests except GCT-lgp
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Figure 5.15: Power plot for all tests under shifting alternative. Errors are generated
from Gamma distribution. Sample sizes are (n1, n2) = (20, 25) and dimension p =
500. Covariance structure is Auto-Regressive and homoscedastic. Parzen Smoothing
Window used is L=20.
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Figure 5.16: Power plot for all tests against proportion of variables shifted al-
ternative. Errors are generated from Gamma distribution. Sample sizes are
(n1, n2) = (20, 25) and dimension p = 500. Parzen Smoothing Window used is
L=20. Covariance structure is Auto-Regressive and homoscedastic.
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Figure 5.17: Power plot for all tests under shifting alternative. Errors are generated
from Gamma distribution. Covariance structure is homoscedastic Auto-Regressive.
Parzen Smoothing Window used is L=20. Proportion of active variables is β = 0.5.

are whithin less than five hundredths from one.

Effect of Dimension and Size

In Figure 5.17, we notice that for smaller p there is a slight advantage of KH compared

to all of the others that behave similarly, even in the unbalanced case. When p is

larger, we see KH and GCT-lgp have noticeably better size compared to the other

methods. If sample sizes are relatively smaller or unbalanced, the size of VH-np,

DLRT and GCT-mdp are off and pick up power very similarly.
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Effect of Covariance Matrix
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Figure 5.18: Power plot for all tests under shifting alternative. Errors are gener-
ated from Gamma distribution. Proportion of active variables is β = 0.5. Size
is unbalanced (n1, n2) = (20, 25). Dimension is p = 500. Parzen Smoothing
Window used is L=20. Panel (a) corresponds to Independent covariance matrix,
panel (b)corresponds to Auto-Regressive heteroscedastic, panel (c) corresponds to
Auto-Regressive homoscedastic, panel (d) corresponds to Square-Root-Decay het-
eroscedastic and panel (e) corresponds to Square-Root-Decay homoscedastic.

In Figure 5.18, the comparison between the tests is almost the same as in other

settings but we can see that under independence, power curves are slightly steeper
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and in Auto-Regressive covariance structure power increases faster than in Square-

Root-Decay structure. When comparing homoscedastic to heteroscedastic, panels

are very similar.

Effect of Distribution and Homoscedasticity
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Figure 5.19: Power plot for all tests under shifting alternative. Errors are generated
from Gamma distribution. Sample sizes are (n1, n2) = (20, 25), dimension is p = 500,
covariance structure is Auto-Regressive with proportion of active variables is β = 0.5
. Parzen Smoothing Window used is L=20.

In Figure 5.19, we observe big differences in power curve plots for the different

distributions. Comparison between the different tests is still very similar to previous
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figures. For Normal distribution, the power curve is steeper and all tests are very

close to each other. For Gamma distribution, power is not so steep and sizes of

VH-np, DLRT and GCT-mdp are considerably off. For Cauchy, none of the tests

pick power for the differences investigated in this simulation. When comparing ho-

moscedastic to heteroscedastic, slightly better results are observed for homoscedastic

settings.

5.4 Area Under Reciever Operating Characteristic (ROC) Curve Anal-

ysis

We explored the sensitivity and specificity of the tests with ROC curves. We aimed

to see the behavior of the tests when the shift was large (δ = 4) and the proportion of

shifted means was small and slightly modified (β = 0, 0.025, 0.05). The ROC curve

plots 1-specificity in the x-axis and sensitivity in the y-axis. The good behavior of a

test is measured by the area under the curve. The higher the area, the better.

As we can see in Figure 5.20, the area under the curve is good for all tests but

it is extremely good for KH. Even when proportion of means shifted is small, KH

sensitivity is really high compared to all other methods. Among the rest of the

methods, it seems that GCT-lgp has the lowest area under the curve and the rest

have very similar behavior.

5.5 Effect of Scaling Transformation

From the simulations shown previously in this Chapter, it seems that KH is almost

unbeatable in all situations. However, knowing that KH uses overall average of CDF’s

as reference and overall ranks from all variables, we wonder if changes in scale or units

of measurement for different variables will have an effect in the test’s behavior. To

elicit some answers to this question we ran some simulations in which we introduced

a scale difference among the variables. This, in real data, would happen if variables

have different scales or units of measurement a frequent situation in microarray

data. We were interested in the effect of a scale difference among the variables

98



β
=

2.
5%

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−specificity

se
ns

iti
vi

ty

β
=

5%

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−specificity

se
ns

iti
vi

ty

Figure 5.20: ROC curves that plot sensitivity against 1-specificity. Errors are gen-
erated from Gamma distribution. Sample sizes are (n1, n2) = (20, 25) with δ = 4.
Dimension is p = 500. Covariance structure is Auto-Regressive and homoscedastic.
Parzen Smoothing Window used is L=20.

in skewed data for unbalanced samples with moderate sample sizes. Simulation

with settings similar to some of these in Section 5.3. We considered sample sizes

(n1, n2) ∈ {(30, 35), (50, 50)} since we know from Section 5.3 that for small sample

sizes, the Type-I error rates of VH-np, GCT-mdp and DLRT are slightly inflated. We

set dimension to p = 500. The parameters investigated for the alternative are δ and

β as described in Section 5.3. The scale difference among the variables introduced

in the covariance structure redefines them as:

• Independence: Σ1 = diag(0, ..., p− 1) and Σ2 = diag(0, ..., p− 1).
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• Square-Root-Decay: Σ1 = (0.5|j − j1|−1/2) + diag(0, ..., p− 1) and Σ2 = (ρ|j −

j1|−1/2) + diag(0, ..., p− 1).

β
=

0.
5

● ● ●
●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ

po
w

er

● ● ●
●

●

●

●

●

●

●

●

● ● ● ●
● ● ● ●

●
●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

β
=

1

● ●
●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ

po
w

er

● ●
●

●

●

●

●

●

●

●

●

● ●
● ● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

Figure 5.21: Power plots for all tests under shifting alternative. Errors are generated
from Gamma distribution. Sample sizes are (n1, n2) = (50, 50). Dimension is p =
500. Covariance structure is diag(1, ..., p−1) and homoscedastic. Parzen Smoothing
Window used is L=20.

From Figure 5.21, VH-np, DLRT and GCT-mdp are not affected by the scale

difference. The test GCT-lgp shows better size with some power trade off. KH is

affected considerably. Figure 5.22 shows that when dependence and reduction in

sample size is introduced, power is reduced but patterns shown by the tests remain

the same. We can also see that reducing sample size moderately affects the sizes of

VH-np, DLRT and GCT-mdp.
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Figure 5.22: Power plots for all tests under shifting alternative. Errors are generated
from Gamma distribution. Sample sizes are (n1, n2) = (50, 50). Dimension is p =
500. Covariance structure is Σ3i + diag(1, ..., p − 1) and homoscedastic. Parzen
Smoothing Window used is L=20.

5.6 Electroencephalogram Data Analysis

The Electroencephalogram (EEG) data1 we used in this analysis comes from a large

study to examine associations of genetic predisposition to alcoholism. This data

can be found at the University of California-Irvine Machine Learning Repository.

For this study, sixty-four electrodes were placed in the subjects’ scalps. Each one

of these electrodes or channels are named according to the anatomical location of

the placement of the electrode (Fp-Pre frontal, F-frontal lobe, T-temporal lobe, P-

parietal lobe, O-occipital lobe and C-central). The name also contains a number,

1 data can be found at https://archive.ics.uci.edu/ml/datasets/eeg+database
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which identifies the hemisphere of the brain (odd number for the left hemisphere, even

number for the right hemisphere and letter z (zero) for the mid-line). The electrodes

were used to measure Event-Related Potentials (ERP), which were recorded 256

times for one second.

In this study, there are two groups of subjects, the alcoholic and the control.

Subjects were exposed to pictures of objects selected from a picture set; each subject

was presented with either a single stimulus (S1) or to two stimuli (S1 and S2). For a

more in-depth account of the EEG data, see Harrar and Kong (2016). ERP reading

from an electrode indicates the level of electrical activity (in µvolts) in the region of

the brain where the electrode is placed. In this dissertation, we analyze the data only

for the single stimulus (S1) exposure using the methods investigated in this chapter.

ERP data averages from the different objects for the two groups are plotted in Figure

5.23.

FDR adjusted p-values for channel-by-channel results are displayed in Tables 5.1

and 5.2. A summary of the pvalues is represented in Figure 5.24. Nonparametric and

parametric tests are represented in different diagrams since they are testing different

hypotheses. Each number inside the circles reprsents the number of significant chan-

nels for each test and the number on the lower right corner represents the number

of channels that were not significant for any of the tests.

From panel (b) in Figure 5.24, we note that the VH-np declares the activity at

17 more channels to be significantly different compared to KH. Parametric methods

coincide in the channels for which they find significance, a total of 47. In Figure 5.25,

bar plot of the FDR adjusted p-values are shown for the nonparametric methods

(VH-np and KH). The horizontal reference line (black dashed line) marks = 0.05

level of significance. Magnitude of discrepancies can be seen in it. It can be noted

that KH declares significant differences in most locations (channels) that are away

from the frontal lobe. Our proposed VH-np find significance in all of those locations

and some more in the frontal lobe. It does not find significant difference in AF7, F8,

FC4 and FP2 which all contain the letter F referring to their location in the frontal

lobe.
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(a)

(b)

Figure 5.23: Plots of average ERP’s (brain activity) per electrode over time by the
Control and Alcoholic groups.

This experiment was described in Porjesz and Begleiter (2003). They report to

expect most differences between both groups to be in between 300 and 700 ms. More

recent studies such as Acharya, Sree, et al. (2012), Acharya, S, et al. (2014) and Bae

et al. (2017) have investigated the same experiment from different approaches and

concluded that groups have significant differences but did not get into details of
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(a) (b)

Figure 5.24: Venn diagram of counts of significant group effect differences for elec-
trodes.

Figure 5.25: Plot of pvalues of nonparametric tests by electrodes.

which channels were different and which were not. In this analysis, we corroborate

their results.

5.7 Discussion and Conclusion

The comparisons made in this chapter bring us to a few conclusions that can help

in this field. Kong and Harrar have extended a well known parametric result from

Chen and Qin (2010) to a nonparametric environment. Our proposed VH-np can

also be viewed as a nonparametric two group extension of GCT-mdp. We illustrated
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how nonparametric extensions of DLRT or GCT compare to KH and VH-np under

various settings.

It seems that tests statistics compared in simulation from Section 5.3 group in two

sets that have homogeneous group behavior, one contains DLRT, VH-np and GCT-

mdp, the other includes KH and GCT-lgp. DLRT, VH-np and GCT-mdp perform

very similarly in terms of size and power under all settings investigated. KH and

GCT-lgp perform very similarly in terms of size but KH shows a clear advantage

in terms of power under the smaller n and smaller p settings. Both groups of tests

behave similarly in larger setting for n and p, but sizes are clearly further from

nominal values in the group of VH-np when sample size and dimension are smaller.

Power is slightly advantageous in KH.

Mid-ranks were used instead of raw observations for the parametric tests in the

simulation study and we observed that their behaviour is very similar to the non-

parametric tests. This suggests that rank transforms of parametric tests might be

studied in the future; we did not investigate this further.

Parametric and nonparametric tests are usually testing different hypotheses. Hy-

potheses in parametric tests are stated in terms of the mean vectors and in nonpara-

metric tests are stated in terms of nonparametric relative effects. So, it is not fair

to compare them in many circumstances. When comparing numerical simulations of

the two strictly nonparametric methods, there is an apparent similarity under the

settings investigated that does not show a clear analytical difference. As we can see

in definitions of relative effect (4.2) and relative effect (5.1), there is one substantial

difference. VH uses variable-by-variable ranks and KH uses overall ranks for the

comparisons. This is a difference that could affect the behaviour of KH when vari-

ables have different scales. If there are no scale differences between variables, KH

seems slightly advantageous, specially for size. However, if variables have different

scales or units of measurements, it is shown in Section 5.5 that VH-np is not affected

when KH is. More extensive numerical simulations may clarify this issue but we did

not investigate it further.
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Table 5.1: List of pvalues from all tests by electrode for the EEG dataset.

Electrode VH-np DLRT KH GCT-mdp GCT-lgp
AF1 <0.001 <0.001 <0.001 <0.001 <0.001
AF2 <0.001 <0.001 0.0016 <0.001 <0.001
AF7 0.0587 1.0000 0.4273 1.0000 1.0000
AF8 0.0379 1.0000 0.3803 1.0000 1.0000
AFZ <0.001 <0.001 <0.001 <0.001 <0.001

C1 0.0150 0.8320 0.2560 0.8335 0.8775
C2 0.0347 0.0683 0.1142 0.0674 0.0830
C3 0.0058 0.0875 0.1955 0.0873 0.1222
C4 0.0077 0.0244 <0.001 0.0245 0.0262
C5 0.0395 0.1773 0.3591 0.1757 0.1985
C6 0.0188 0.0272 0.0078 0.0270 0.0289

CP1 0.0086 0.0078 <0.001 0.0083 0.0087
CP2 0.0076 0.0061 <0.001 0.0069 0.0071
CP3 0.0077 0.0056 <0.001 0.0061 0.0062
CP4 0.0095 0.0058 <0.001 0.0067 0.0068
CP5 0.0068 0.0061 <0.001 0.0067 0.0070
CP6 0.0077 0.0078 <0.001 0.0088 0.0090
CPZ 0.0071 0.0178 <0.001 0.0179 0.0249

CZ 0.0043 0.0045 0.2014 0.0049 0.0059
F1 <0.001 <0.001 <0.001 <0.001 <0.001
F2 <0.001 <0.001 <0.001 <0.001 <0.001
F3 <0.001 <0.001 <0.001 <0.001 <0.001
F4 <0.001 <0.001 0.0041 <0.001 <0.001
F5 <0.001 <0.001 0.0041 <0.001 <0.001
F6 0.0045 0.0046 0.0991 0.0050 0.0059
F7 0.0067 0.0986 0.1850 0.1002 0.1316
F8 0.2228 0.5982 0.4273 0.5995 0.6719

FC1 <0.001 <0.001 <0.001 <0.001 <0.001
FC2 <0.001 <0.001 0.0014 <0.001 <0.001
FC3 <0.001 <0.001 0.0013 <0.001 <0.001
FC4 0.3217 0.8169 0.4841 0.8192 0.8676
FC5 0.0188 0.2091 0.2303 0.2094 0.2496
FC6 0.0263 0.0199 0.1693 0.0197 0.0232
FCZ <0.001 <0.001 <0.001 <0.001 <0.001
FP1 0.0224 1.0000 0.3188 1.0000 1.0000
FP2 0.8405 1.0000 0.6014 1.0000 1.0000
FPZ 0.0020 0.6097 0.1515 0.6151 0.8136
FT7 0.0214 0.5667 0.2303 0.5629 0.6068
FT8 0.0347 0.1436 0.1336 0.1423 0.1599

FZ <0.001 <0.001 <0.001 <0.001 <0.001
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Table 5.2: List of pvalues from all tests by electrode for the EEG dataset cont.

Electrode VH-np DLRT KH GCT-mdp GCT-lgp
nd 0.0172 0.0178 0.1354 0.0179 0.0208
O1 0.0020 0.0022 <0.001 0.0026 0.0027
O2 0.0050 0.0045 <0.001 0.0049 0.0052
OZ 0.0068 0.0066 <0.001 0.0071 0.0074
P1 0.0077 0.0053 <0.001 0.0057 0.0059
P2 0.0086 0.0061 <0.001 0.0067 0.0068
P3 0.0068 0.0045 <0.001 0.0050 0.0056
P4 0.0088 0.0058 <0.001 0.0067 0.0068
P5 0.0067 0.0045 <0.001 0.0049 0.0052
P6 0.0072 0.0049 <0.001 0.0057 0.0059
P7 0.0019 0.0013 <0.001 0.0017 0.0018
P8 0.0045 0.0030 <0.001 0.0036 0.0038

PO1 0.0068 0.0046 <0.001 0.0050 0.0056
PO2 0.0067 0.0045 <0.001 0.0049 0.0052
PO7 0.0050 0.0025 <0.001 0.0032 0.0033
PO8 0.0058 0.0045 <0.001 0.0049 0.0052
POZ 0.0086 0.0078 <0.001 0.0083 0.0087

PZ 0.0067 0.0045 <0.001 0.0049 0.0052
T7 0.0331 0.1566 0.2853 0.1558 0.1752
T8 0.0058 0.0117 0.0674 0.0116 0.0184

TP7 0.0015 0.0033 <0.001 0.0036 0.0038
TP8 0.0052 0.0046 <0.001 0.0050 0.0056

X 0.9904 0.2091 0.6678 0.2094 0.4580
Y <0.001 <0.001 <0.001 <0.001 <0.001

108



Chapter 6 Discussion, Conclusion and Future Directions

In this dissertation, we studied parametric and nonparametric methods for high

dimensional inference. We proposed two parametric statistics to test multiple group

differences. We also proposed a fully nonparametric statistic to test two group

differences.

The parametric tests are composites of variable-by-variable F-type statistics. One

of them centers by an asymptotic mean value and is intended for moderate dimension.

The other centers by its expanded mean correct up to order n−3/2 and is devised for

large dimension. The tests do not assume equal covariance matrix for the groups and,

under weak dependence, follow asymptotic Normal distributions. We also showed

that the rate of convergence for the statistics from the asymptotic expansion is higher

as we develop the expansion further. The drawback of further expansions is having

to estimate further moments with the corresponding sensitivity to outliers.

We investigated a nonparametric composite test statistic for two-group compar-

isons based on a variable-by-variable Wilcoxon-Mann-Whitney type statistic. Under

mild moment conditions and weak dependence, the proposed test statistic is shown

to asymptotically follow a Normal distribution. There is a great advantage of this

method compared to the parametric methods when there exists correlation between

the variables, especially for heavy tailed distributions.

We illustrated, via extensive simulation, how nonparametric extensions of some

recent parametric methods and a nonparametric method compare to our proposed

nonparametric test. Mid-ranks were used instead of raw observations for the para-

metric tests showing that behaviour is very similar to the nonparametric tests. This

suggests that rank transforms of parametric tests might be studied successfully in

the future. Since parametric and nonparametric tests are devised to test different

hypotheses, we focused on nonparametric tests. When comparing numerical simula-

tions of the strictly nonparametric methods, there is one substantial difference: our

method uses variable-by-variable ranks and the other nonparametric method uses
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overall ranks for the comparisons. Therefore, if variables have different scales or

units of measurements, it is shown that our method is advantageous.

One possible criticism to these results is that they require data to be ordered or

indexed so that dependence decays based on index displacement.

Results presented make one ponder about what could be done to continue this

research. Edgeworth expansion can be developed for the large-p versions of the

parametric statistics. This expansion could lead to even more precision in the tests.

Also, for the nonparametric test, we see a possibility to reduce the assumptions for

the same conclusion. Consequently, working in this direction may produce a stronger

result. All proposed tests are L2 norm based which makes them competitive under

weak but dense alternatives. An extension to other types of alternatives could be

to add a power parameter to the univariate statistics instead of just having squared

statistics. We can use this parameter to construct an adaptive test that will be

powerful under various situations of sparsity and signal strength.

Copyright c© Alejandro G. Villasante Tezanos, 2019.
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