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ABSTRACT OF THESIS 

TARGETED ILLUMINATION STRATEGIES FOR 
HYDROGEN PRODUCTION FROM PURPLE NON-SULFUR BACTERIA 

 

The movement towards a more sustainable energy economy may require not only 
the generation of cleaner fuel sources, but the conversion of waste streams into value-added 
products. Phototrophic purple non-sulfur bacteria are capable of metabolizing VFAs 
(volatile fatty acids)and generate hydrogen as a byproduct of nitrogen fixation using energy 
absorbed from light. VFAs are easily produced from dark anaerobic fermentation of food, 
agricultural, and municipal wastes, which could then be fed into photobioreactors of purple 
bacteria for hydrogen production.  

The process of photofermentation by purple bacteria for hydrogen production 
remains attractive due to the capability of reaching high substrate conversions under mild 
operating conditions, but increasing the efficiency of converting light energy into hydrogen 
remains challenging. Purple bacteria cannot utilize the entire solar spectrum, and the 
dominant region of absorption lies in the near-infrared region above 800 nm. 

In this work, the model purple non-sulfur bacteria  Rhodopseudomonas palustris 
was used to study different strategies to increase light utilization and hydrogen production. 
Near-infrared LED arrays were selected to match the target bacteriochlorophyll absorption 
range, and were tested to be used as a sole illumination source for photofermentation. 
Additionally, plasmonic nanoparticles with resonant frequencies matching bacterial 
absorbance were added in solution to increase light utilization through scattering and near 
field electric enhancement effects at intensities around 100 W/m2. Both of these approaches 
proved to increase cellular growth rate and hydrogen production, which opens the door to 
utilizing more advanced photonic structures for use in bacterial phototrophic processes.  
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plasmonic nanoparticles    
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

 

1.1  Introduction 

Progress towards a sustainable energy economy requires not only the production of 

clean energy sources, but more sustainable means of organic waste disposal. Certain 

waste streams from food and agricultural processes, as well as municipal sludge contain 

substantial quantities of substrates which can be digested by anaerobic organisms into 

volatile fatty acids (VFAs). Microbial hydrogen production processes utilize the catalytic 

enzymes and light absorption processes found in certain microorganisms to generate 

hydrogen as a result of either water splitting from photophosphorylation or as a 

byproduct of nitrogen fixation1.   

Purple non-sulfur bacteria (PNSB) are able to utilize VFAs2, sugars3 and lignin 

monomers4 as carbon sources, and use light energy to drive hydrogen production by the 

nitrogenase enzyme. In addition, because PNSB are able to absorb near-infrared (NIR) 

light, they can be preferentially stimulated in cocultures with other phototrophic bacteria 

which cannot utilize near-infrared light5. Although this process of photofermentation by 

PNSB is attractive due to the ability to utilize a wide range of substrates and capabilities 

of reaching high conversions of substrates to hydrogen, increasing the efficiency of 

converting light energy to hydrogen remains a challenge1.  

NIR LEDs are an attractive option for illumination as they can be selected to match 

the NIR absorption of PNSB. Additionally, LEDs are more power efficient than widely 

used broadband tungsten light sources6. Although some researchers previously found 
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improvements for targeting visible absorbance of PNSB around 590nm7, works using 

NIR LEDs found different levels of improvements compared to broadband tungsten 

sources6,8.   

One potential method for increasing light utilization of photofermentation 

processes that has not been reported is to exploit the photonic properties of plasmonic 

nanoparticles. These nanoparticles, often made from noble metals like gold and silver, are 

characterized by the collective oscillations of free electrons at the metal surface at 

resonant frequencies9. Gold nanoparticles in particular have found wide use in 

biosensing, cellular imaging, cancer therapy, and solar-cell enhancements 10-13. These 

localized plasmon oscillations enhance the electric near-field around the particle, and 

they strongly depend on the particle’s material and the surrounding media.14 Plasmonic 

nanoparticles also often exhibit absorption and scattering cross sections significantly 

greater than their cross-sectional areas. The combination of targeted illumination with 

scattering and near-field enhancement effects from plasmonic nanoparticles, see Figure 

1.1, could serve to increase light utilization and improve hydrogen production in PNSB. 
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Figure 1.1 Combination of NIR light and plasmonic nanoparticles for hydrogen 
production form organic acids 

 

 

1.2 Organisms for Hydrogen Production 

PNSB are not the only organisms available for microbial hydrogen production; 

green algae, cyanobacteria, and certain dark fermentative bacteria such as members of the 

genus Clostridium are capable of substantial rates of hydrogen production15.   All of these 

organisms are capable of enzymatic production of hydrogen from either hydrogenase or 

nitrogenase enzymes. Hydrogenase enzymes are widely spread across many 

microorganisms due to the critical need to control the proton motive force which can be 

used to drive important transmembrane proteins, including certain transport processes 

and the generation of ATP.16 

Dark fermentative bacteria play an important role in microbial hydrogen processes. 

These organisms are capable of metabolizing a wide array of complex substrates and 

biomass, and the organic acids they produce from fermentation can be used to drive the 



4 
 

growth and hydrogen production in phototrophic organisms. These species produce 

hydrogen through the hydrogenase enzyme, and vary in their efficacy and whether or not 

they are reversible. Hydrogen production yields from dark fermentative are low, with the 

max around 33% of the expected H2 production from glucose alone17. Nevertheless, these 

organisms could play an important role in waste stream processes. 

Oxygenic phototrophic bacteria suitable for hydrogen production are primarily 

composed of two broad groups; cyanobacteria and green algae. Both groups have similar 

photocenters are capable of using water as an electron donor, generating oxygen in the 

process. Both of these groups are capable of hydrogen production from the hydrogenase 

enzyme, but only cyanobacteria also use the nitrogenase enzyme18. The metal cofactor of 

nitrogenase, usually iron or molybdenum, is oxidized and made inactive in aerobic 

environments19. Cyanobacteria deal with oxygen sensitive processes by forming 

heterocysts, specialized compartments to carry out anaerobic reactions. Under nitrogen 

starved conditions, transmembrane proteins selectively transport nitrogen across the gas 

impermeable membrane. Light conversion efficiencies form cyanobacterial heterocysts 

are typically lower than non-oxygenic phototrophic bacteria, less than 1% compared to 

~1-10%, because the substrates used to drive energy production within the heterocyst 

must be supplied by nearby phototrophic cells.17 Algae also face a limitation in hydrogen 

production due to oxygen production diminishing the activity of their reversible 

hydrogenase. Instead of spatially separating the processes like cyanobacteria, algae can 

be grown in a sulfur rich medium and transferred to a sulfur deficient medium for 

hydrogen production, since sulfur is needed to replenish damaged photocenters which 

oxidize water20.  
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Purple non-sulfur bacteria are attractive organisms for microbiological hydrogen 

production because they can utilize unidirectional nitrogenase enzymes for hydrogen 

production like cyanobacteria, but they are not oxygenic. These organisms are capable of 

high substrate conversion to hydrogen (75%>) for suitable substrates.1 Because light 

utilization is often seen as the primary challenge with PNSB, evaluating different lighting 

strategies should give valuable insight into how to improve the process. 

1.3 Objectives 

1. Describe modes of growth and the impact of illumination on purple non-sulfur 

(PNSB) growth and development. 

2. Culture model PNSB Rhodopseudomonas palustris for use in hydrogen 

production from acetate and investigate strategies for developing photobioreactors 

3. Compare use of targeted near-infrared illumination to widely used broadband 

illumination as a light source of hydrogen production by phototrophic PNSB 

using acetate as an organic substrate. 

4. Investigate the effect of supplementing culture media for hydrogen production 

with optically resonant nanoparticles. 
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CHAPTER 2. BIOLOGICAL MECHANISMS OF PNSB AND GROWTH 
EXPERIMENTS 

2.1 Introduction 

The total process of photofermentation in PNSB passes through multiple critical 

steps to result in the production of H2 from organic substrates. Light energy absorbed by 

the bacteria is harvested by light harvesting complexes and directed towards electron 

carrier reduction and generating proton motive force for ATP synthesis. These energetic 

molecules are used to drive nitrogenase activity in catalyzing the production of hydrogen 

under nitrogen limited conditions.21 Meanwhile, CO2 produced from the degradation of 

VFA metabolites can also be fixed by the bacteria into biomass.22 A better understanding 

of these processes helps to put photofermentation into perspective, and provides insight 

into proper culturing conditions. See Figure 2.1 for a scheme of important biopathways.  

 

 

 

 

 



7 
 

 

Figure 2.1: PNSB Biopaths for Photofermentation.  LH2, LH1: light harvesting complex 

units. RC: reaction center. Fdox, Fdred: ferredoxin electron carrier. Pi: inorganic phosphate. 

TCA: tricarboxylic acid cycle. 

2.2 Light Harvesting Mechanisms 

Light harvesting complexes located either on the bacteria membrane or on 

intracytoplasmic membranes, see Figure 2.1, are comprised of superstructures of 

pigments to absorb light energy and transfer it to a reaction center and subsequently into 

the electron transport chain. Each light harvesting complex has one transmembrane 

reaction center inside a primary ring of bacteriochlorophyll, the LH1 subunit. Satellite 

light harvesting subunits, LH2, surround LH1 and transfer energy through LH1 towards 

the reaction center.23 In addition to near-IR absorbing bacteriochlorophyll, the light 

harvesting complexes also include carotenoids which serve both to harvest UV-visible 

light and protect the cell from the photoinhibitory effects of ultraviolet light.24 Figure 2.2 

Shows a schematic of the transfer from LH2 to LH1 and the reaction center RC. 
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Bacteriochlorophyll are typically labeled as B800 or B850 to signify the wavelength of 

maximum absorbance.   

 

Figure 2.2: Intracytoplasmic Membranes (LaSarre 2018)25 Left: Vesicular (Rhodobacter 
sphaeroides). Right: Lamellar (Rhodopseudomonas palustris)  (reprinted with permission 
from publisher) 
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Figure 2.3: Light Transfer in a Light Harvesting Complex (Luer 2012)23  (reprinted with 

permission from publisher) 

 Light harvesting complexes and the associated pigments do not grow 

constitutively in PNSB. Instead, only under illuminated, anaerobic conditions will 

bacteria develop characteristic red pigmentation associated with the development of light 

harvesting complexes. Additionally, energy absorbed from light spurs photoheterotrophic 

growth, which increases the growth rate compared to chemoheterotrophic growth in 

nutrient sparse medium. 

 To demonstrate these effects, 20 mL vials of minimal media, Defined Media 1 in 

Appendix 1, were inoculated with R. palustris and grown either under 2000 lux white 

LED or covered in aluminum foil and grown in the dark. Further, the growth curves were 

fit with a modified Gompertz model, shown in equation (5) below, to compare the effect 

of light intensity on cell growth.26 The modified Gompertz model is a simple sigmoidal 
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growth model which has been expressed in terms of y, the cell density at time t (g/L); A, 

the maximum cell density (g/L); 𝜇𝜇𝑚𝑚, the maximum growth rate (g/L/h); 𝜆𝜆, the initial lag 

phase (h); and t, time (h). The data was fit using Matlab’s fitnlm function, seen in 

Appendix 2.  

𝑦𝑦 = 𝐴𝐴exp �−exp �
𝜇𝜇𝑚𝑚𝑒𝑒

𝐴𝐴
(𝜆𝜆 − 𝑡𝑡)� + 1� (5) 

 All model parameters, shown in Table 2.1, were significant with p<0.05. The 

increase in cell growth under illumination resulted in a 10x increase in the maximum 

growth rate and 6x increase in maximum cell density. Although the lag phase was shorter 

for cultures grown in the dark, this is likely due to noise at low cell density and the low 

maximum growth rate in dark cultures. Higher sampling rates in the initial growth period 

also made the noise at low cell densities have a larger impact on the model fit.  

The final absorption spectrum shown in Figure 2.4b shows strong absorbance 

associated with bacteriochlorophyll at 590, 800, and 850-875nm. Carotenoid absorption 

is partially shown from 550-500nm, but not fully resolved. The dark spectrum, as 

expected, does not show any significant development of light harvesting complexes. An 

example picture of the final culture pigmentation is shown in Figure 2.5. 
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Figure 2.4: Cell growth and Spectra under Illuminated and Dark Conditionsa) Anaerobic 
growth of R. palustris in 20 mL minimal media at 30 °C using 70mM acetate as a carbon 
source and white LED (20 W/m2) for samples grown in light. Samples grown in dark 
covered in aluminum foil. Inset) Left to right: blank media, dark anaerobic growth, light 
anaerobic growth. b) Example extinction spectrum for R. palustris grown anaerobically 
under dark and light conditions after 90 hours. Bacteriochlorophyll (*) = B800  (**) = 
B850, B875 

 

 
 

Table 2.1: Modified Gompertz Parameters y, the cell density at time t (g/L); A, the 
maximum cell density (g/L); μm, the maximum growth rate (g/L/h); λ, the initial lag 

phase (h); and t, time (h). 

Mode A (g/L) 𝜇𝜇𝑚𝑚 (g/L/h) 𝜆𝜆 (h)  adjR2 

Light 1.81 0.035 57.1 0.992 

Dark 0.26 0.003 29.8 0.924 
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Figure 2.5: Culture Pigmentation Example 

 

2.3 Nitrogen Fixation and Hydrogen Production 

The production of hydrogen in PNSB is normally a side reaction of nitrogen 

fixation. Under nitrogen limited conditions, the nitrogenase enzyme reduces N2 into NH3 

according to reaction (1). In the absence of N2, nitrogenase acts only to produce H2 

reaction (2)1. This process is energy intensive and highly regulated; aerobic conditions or 

excess NH3 result in downregulation of nitrogenase activity and reduced hydrogen 

production19. For this reason, PNSB grown for hydrogen production are often pregrown 

in a nitrogen rich medium for maximum growth rate, which can then be used as an 
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inoculant in nitrogen deficient medium to study hydrogen production.  

  

N2 + 8H+ + 8e- + 16 ATP → 2NH3 + H2 + 16ADP (1) 

8H+ + 8e- + 16ATP → 4H2 + 16ADP  (2) 

 

2.4 CO2 Utilization 

Photofermentation of organic acids produces both H2 and CO2 in varying amounts 

depending on the substrates used, shown in reaction (3) for acetate and reaction (4) for 

malate. Subsequent fixation of CO2  by the Calvin cycle reduces the net rate of CO2 

production and results in biogas more concentrated in H2 2. The Calvin cycle also serves 

as a competing process to hydrogen generation from nitrogenase activity, as both 

processes consume large amounts of reducing power within the cell. Mckinlay et al. 

compared TCA cycle and Calvin cycle fluxes in R. palustris mutants with and without 

nitrogenase activity and found that the Calvin cycle flux was significantly depressed 

when nitrogenase activity was high 22. These electron sink processes have a secondary 

role in the metabolic activity of anaerobic phototrophs to help maintain redox 

homeostasis within the cell.  

 

C2H4O2 + 2H2O →  2CO2 + 4H2 (3) 

C4H6O5 + 3H2O →  4CO2 + 6H2 (4) 
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 In addition to the Calvin cycle, CO2 production from PNSB is suppressed during 

growth using certain VFA substrates, notably acetate, because the TCA cycle shifts 

towards the glyoxylate shunt. This process results in reduced CO2 and NADH output, but 

enables the organism to assimilate short chain organic acids into biomass. The glyoxylate 

shunt is also preferred during growing stages of the culture, and nongrowing cultures 

have been shown to have higher TCA cycle fluxes. Sustained hydrogen production from 

non-growing cultures has been suggested to be due to excess reducing power generated 

from the shift towards TCA cycle in non-growing cultures21.  

To test the extent of CO2 production we compared H2 and CO2 production using 

malate as a carbon source, seen in Figure 2.4. The final cumulative ratio of H2:CO2 was 

indeed lower than expected, with experimental results showing a ratio of 36:1 compared 

to the expected yield of 3:2, see reaction (4). As the CO2 production remains low 

throughout the culture growth phase, it is likely that CO2 production is repressed both by 

the predominance of the glyoxylate cycle over the TCA cycle, and some degree of 

subsequent fixation of CO2 from the Calvin cycle. Likewise, many researchers have 

reported low CO2 concentrations in biogas from PNSB hydrogen production from VFAs, 

with Turon et al. claiming the evolved gas was 97-99% H2 8. 
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Figure 2.6: H2 and CO2 Profile Using Malate as a Carbon Source.300mL cultures of R. 
Palustris grown anaerobically at 22 °C using 850nm LED array illumination adjusted to 

82-91 W/m2. 70mM malate was used as a carbon source. For each measurement the 
headspace was flushed with N2. 

 

2.5 Conclusions 

Understanding the metabolic processes driving PNSB is a critical first step to 

improving the process, and gives some insight into standard practices for culturing 

PNSB. Because light harvesting complexes necessary for hydrogen production only 

develop under sufficient illumination, cultures are typically pregrown under light before 

inoculation of cultures for experiments. This ensures that experimental cultures have 

already adapted to develop light harvesting complexes, and controls for the time it would 

otherwise take for cells to adapt to illuminated conditions. The utilization of CO2 by the 

bacteria is also an exciting result of metabolic activity that serves to enrich the produced 

biogas from photofermentation. 
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CHAPTER 3. CULTURING PURPLE NON-SULFUR BACTERIA 

3.1 Introduction 

Hydrogen production from purple non-sulfur bacteria requires appropriate culturing 

media and reactor setup to establish a suitable anaerobic environment. Additionally, 

comparing the effects of different light sources on photofermentation from PNSB 

requires accurate quantification of culture densities, hydrogen concentrations, and light 

intensities. This chapter covers microbiological and analytical techniques used in this 

work as well as considering potential improvements for photobioreactors for future work.  

3.2 Media Selection 

R. Palustris (CGA 009) cultures were grown using various media types at the 

outset of the project to select growth conditions for further experiments. Complex media 

types suggested by ATCC 27 provide a rich media for pregrowth of bacterial cultures, but 

preclude certainty in the molecular source of carbon and nitrogen due to the use of yeast 

extract or soy broth. Defined media types are used either to control the specific nutrients 

used by microbes or as a means of limiting contamination. Further for metabolically 

versatile organisms like R. Palustris the media content determines not only the efficacy 

of growth, but whether or not the organism grows in a phototrophic / chemotrophic or 

heterotrophic / autotrophic domain. Complex media types with excess fixed nitrogen in 

particular are useful for pregrowth of bacterial cultures, but this fixed nitrogen content 

results in downregulation of nitrogenase activity required for hydrogen production.  

 Growth from various media types, see recipes in Appendix 1,  is shown in Figure 

3.1 for cultures illuminated with white LED, and in Figure 3.2 for cultures grown in the 
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dark. Complex media types 1 and 2 resulted in the shortest lag phase, which was 

expected for rich complex cultures. Complex type 3 showed little growth, likely due to a 

low concentration (0.2 g/L) of yeast extract. Both defined media types showed increased 

lag phase, but Defined 1, which was chosen for hydrogen production experiments, 

resulted in a higher cell density. Notably only complex media types 1 and 2 showed 

significant growth without illumination, indicating that these media types were able to 

sustain chemotrophic growth.  

 

Figure 3.1: Growth in Various Media - Light. 20mL culture vials of R. palustris in 
various media, illuminated with 2000 lx white LED. For recipes see Appendix 1. 
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Figure 3.2: Growth in Various Media – Dark. 20mL culture vials of R. palustris in 
various media, illuminated with 2000 lx white LED. For recipes see Appendix 1.  

3.3 Culture Preservation 

Bacteria are able to adapt to different environments, incorporate plasmids into their 

genetic code, and accumulate mutations of many generations. In order to ensure adequate 

replicability of experiments using microbiological organisms it is important to preserve 

cultures for future use. A flowchart of efforts taken to maintain culture purity for 

experiments is shown in Figure 3.3. 

Rhodopseudomonas palustris CGA 009  was obtained from ATCC in a freeze 

dried powder form. The resuspended culture was then used to inoculate petri dishes of 

tryptic soy agar using a streaking technique to isolate single cultures. Isolated bacterial 

cultures from these plates are assumed to be the exact strain sent by ATCC, which are 

then used to inoculate and grow liquid cultures. From here, liquid cultures could either be 
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used to inoculate other agar plates to save for future experiments or used to make freezer 

stocks for long term storage. Freezer stocks were made by adding glycerol up to a final 

concentration of 20% glycerol. This freezer stock can be separated into small freezer 

tubes and stored in a -20 °C freezer and used to inoculate cultures for future experiments.  

 

Figure 3.3: Culture Preservation Flowchart 

3.4 Analytical Methods 

 

3.4.1 H2 and CO2 Analysis 

Hydrogen gas produced in photofermentation experiments was quantified by 

using a GC (Agilent 6890N) with a Carboxen-1004 micropacked column (0.75 mm × 2 

m) equipped with TCD detector. The column temperature was hold at 50 °C for 1 min, 

then raised to 150 °C at 10 °C /min and kept for 5 min. Nitrogen was used as the carrier 

gas at 1.8 ml/min. The injector and the detector temperatures were set at 100 °C and 150 

°C, respectively. The retention times for hydrogen gas was 1.3 min. A calibration curve 

was obtained for hydrogen gas in the linear range of 100-1000 ppm, shown in Figure 3.4. 
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Helium is often used as a carrier gas for detection of light hydrocarbons and other gasses 

using a thermal conductivity detector, but the best sensitivity is obtained when the carrier 

gas and analyte have very different thermal conductivities. Helium and hydrogen both 

have high thermal conductivities, so nitrogen was used as a carrier gas. For the analysis 

of CO2, the same method was used and a two-point calibration between 200 and 400 ppm 

was used for analysis.  

 

Figure 3.4: Hydrogen Thermal Conductivity Calibration Curve 
 

3.4.2 Cell Density Measurement 

Cell density measurements are typically reported as dry cell mass (DCM g/L). 

Because the drying and weighing of bacterial cultures is laborious, it’s common to make 

a calibration curve with optical absorbance at a selected wavelength to quantify cell 
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density.  In this case we used the absorbance at 660nm (optical density 660nm or 

OD660nm) because it represented a flat region of the spectrum that would not be 

conflated with bacteriochlorophyll absorbance. A dense culture of R. palustris was 

serially diluted, and the optical density measured using a BioTek microplate reader 

(Synergy H1 Hybrid reader). Simultaneously, multiple aliquots of the dense culture in 

pre-weighed glass vials were gently dried in a vacuum oven at 80 °C until there was no 

mass change. The resulting calibration curve is shown below in Figure 3.5. The optical 

density is presented as the optical density minus that of the medium alone so that the 

calibration curve can be used for different media types.  

 

Figure 3.5: Cell Density Calibration Curve 
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3.4.3 Light Measurement 

The spectrum of both light sources (broad wavelength EVA 64623 bulb OSRAM 

HLX 100w single ended tungsten – halogen bulb and NIR-LED source, CM-Vision CM-

IR110 LED array) was measured with an Ocean Optics HR4000CG-UV-NIR 

spectrophotometer, shown in Figure 3.6. Note that the NIR source overlaps with the 

bacteriochlorophyll absorption maxima shown in Figure 2.4. The broadband tungsten light 

source has little UV content, but the results of this graph may underrepresent the infrared 

content, as the spectrophotometer was not calibrated for long wavelength sources. 

Regardless this broadband source has high intensity visible light content, and overlaps with 

the absorption of R. palustris at 590nm as well as the carotenoid absorption, but is not 

concentrated on bacteriochlorophyll like the NIR source.  

  The light power was measured using light power meter (LabMax-TOP, Coherent 

Inc.). For vial experiments the light intensity was measured at the bottom face of each 

illuminated vial. ??? shows the result of intensity measurements from the light same light 

sources in ??? after the intensity of both lights was adjusted to 140 W/m2. Although the 

central tendency of both light intensities is close to 130, the broadband tungsten source has 

significantly higher variance in intensity due to the geometry of a single light illuminating 

a flat surface area. On the other hand, the NIR-LED array had a surface area close to the 

surface area illuminated, so the intensity was more tightly controlled.   
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Figure 3.6: Spectra of Broadband tungsten and NIR-LED Array 
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Figure 3.7: Intensity Variance of Broadband Tungsten Lamp and NIR-LED Array 
  

3.5 Lab Scale Photobioreactor Selection 

Hydrogen production experiments using photobioreactors can be set up in a few 

different ways to collect and analyze biogas. Each reactor must be able to establish an 

anaerobic environment for hydrogen production, and allow sufficient illumination to 

grow the bacteria. This section lists some pros and cons of different gas collection 

methods. The 3 different types of collection systems are shown in Figure 3.8.  
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Figure 3.8: Different Types of Gas Measurement from Photobioreactors 
 

3.5.1 Batch Vials 

Batch cultures of purple-nonsulfur bacteria are perhaps the most ubiquitous gas 

collection method in literature. We chose to use batch cultures as a primary method for 

light comparisons because of the ease of replication. These culture vessels may be glass 

vials or flasks, and are usually plugged with a septum. To quickly establish an anaerobic 

environment, it is best to either sparge the culture media or flush out the headspace with 

nitrogen or argon before growing the bacteria.  

The primary concern with this method is that hydrogen may escape through the 

septa during the course of the experiment, especially if pressure builds up in the vessel. 

Thicker butyl rubber septa are often used in literature as one way to diminish this risk. 

The septa may be damaged if punctured multiple times during an experiment to acquire 

gas generation profiles. Additionally, all purple non-sulfur bacteria are capable of 
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utilizing hydrogen as an electron donor, so the hydrogen may be consumed at high 

concentrations. 

 

3.5.2 Biogas Collection Reactors 

Gas collection columns coupled to a photobioreactor can be used to collect 

hydrogen outside of the photobioreactor. Because hydrogen has a low solubility in water, 

the biogas generated can be bubbled into a water displacement column, and the volume 

of gas produced can be measured over time. The setup in Figure 3.9 shows the basic 

setup, although this particular setup was not sufficiently hydrogen impermeable to use for 

light comparison experiments. Future efforts could use inverted stoppered graduated 

cylinders to capture biogas, and more hydrogen impermeable Viton tubing to connect to 

the reactor28.   

One concern of this method is the quantification of other components of the 

biogas. CO2 can dissolve in water and build up carbonic acid, which may artificially 

increase the H2 content of the biogas. This can be addressed by either collecting over an 

acidic medium to retain CO2 or by passing the biogas through a strong basic solution to 

absorb CO2 before retaining the biogas.  

An example run of the gas collection setup can be seen in Figure 3.10, which was 

able to resolve a sharp increase in biogas production during the growth phase and 

decreased production as the media substrate was consumed.  
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Figure 3.9: Photobioreactor with Gas Collection Column 
 

 

Figure 3.10: Biogas Collection Reactor Trial 
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3.5.3 Continuous Gas Measurement Reactors 

Continuous measurement reactors use a carrier gas to push evolved hydrogen and 

CO2 towards a measurement device. The measurement source can either be a dedicated 

detector, such as an electrochemical sensor, or an auto-sampler to a GC. Continuous 

measurement of the gas stream from a bioreactor can potentially provide a great deal of 

information, but requires a more sophisticated reactor setup and is rarely used in 

literature.  

Electrochemical sensors can provide rapid hydrogen analysis within certain 

limitations. A typical scheme for an amperometric electrochemical sensor is shown in 

Figure 3.11. Hydrogen in a carrier stream diffuses across a membrane, and into an 

electrolyte. The sensing electrode is held at a constant voltage, and changes in current due 

to hydrogen oxidation are used to determine hydrogen concentration in the carrier stream. 

This offers fairly rapid analysis, but is sensitive to changes in the carrier gas temperature, 

pressure, and humidity. Additionally, cross sensitivity with other hydrocarbons can lead 

to varying results if the gas composition changes.29,30  
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Figure 3.11: Amperometric H2 sensor (Hubert 2011).  (reprinted with permission of the 
publisher) 
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CHAPTER 4. ENHANCEMENT OF HYDROGEN PRODUCTION FROM NEAR-
INFRARED ILLUMINATION 

4.1 NIR enhancement of Hydrogen Production 

We were interested in determining if the illumination of a NIR source alone results 

in increased hydrogen production for R. palustris. Shifting illumination into more 

preferentially absorbed portions of the spectrum should increase the amount of energy 

available to the bacteria. To determine the effect of shifting the wavelength of 

illumination, parallel batch cultures of 35mL in 40mL septa vials were grown using two 

different light sources; a broad tungsten source and a NIR LED array centered around 

850 nm, seen in Figure 4.1. The spectra and variance of intensity of these light sources 

can be found in Figure 3.6 and Figure 3.7. Culture media used for these experiments can 

be found under Defined Media 1 in Appendix 1, using 70mM acetate as a carbon source 

and 7mM glutamate as a nitrogen source.  

Cultures illuminated with NIR LEDs produced almost 3 times more hydrogen 

than those illuminated with a broad light source. This is expected at light intensities 

below a saturation limit; shifting illumination into preferentially absorbed regions of the 

electromagnetic spectrum should increase available energy and reductive potential within 

the bacteria and increase metabolic activity. Increased metabolic activity also resulted in 

an increase in cell density, with cultures illuminated with NIR LEDs reaching a final cell 

concentration 1.5 times higher than those illuminated with a broadband light source. 
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Figure 4.1: Enhancement of Hydrogen Production from NIR Illumination in Batch Vials  
Batch growth, 40mL PTFE/silicone septa vials illuminated with NIR LED array (850 nm) 
or a Tungsten Lamp (peak 660 nm, broad) for 90 hours at an intensity of 130 W/m2. n = 
4 vials per illumination source. All vials incubated at 30° C and shaken at 100 RPM in an 
orbital shaker. 

 

To further describe the efficacy of targeted illumination for increasing hydrogen 

production in PNSB we compared the effect of switching light sources on a single 

pregrown culture. Figure 4.2 shows the results of pregrowing a 300mL culture of R. 

palustris  in a cylindrical membrane reactor under broad illumination, switching to NIR 

LEDs of matched intensity, and switching back to broad illumination. Each measurement 

of hydrogen represents 3 samples from the headspace of one reactor after gas collection 

for 24 hours. The culture density increased 40% over the entire measurement period, but 
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hydrogen production was around 3.5-5x higher under NIR LED illumination. Increases 

are comparable to those in Figure 3a despite the increased culture size. This shows that 

the increases in hydrogen production efficiency under NIR LEDs was not solely due to an 

increase in culture density. 

 

Figure 4.2: Enhancement of Hydrogen by Switching Light Source of 300mL Culture.  R. 
palustris cultured in a 300 mL reactor using 70mM acetate as a carbon source under a 
broadband tungsten light source and then switched to illumination using an 850 nm LED 
array for 2 days and switched back to the broad light source. Illumination intensity for 
both sources was adjusted to the range of 82-91 W/m2, cultured at 22 °C. Hydrogen 
production accounts for headspace collection over 24h. n = 3 headspace measurements 
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Similar comparisons of using NIR illumination had varying results. Kawagoshi et 

al., using a 200 mL culture of Rhodobacter sphaeroides,  found that illumination with a 

2000 lux NIR LED resulted in a higher initial growth rate and hydrogen production rate 

compared to a 8000 lux tungsten bulb (about 2x more hydrogen production from NIR 

LED after the first 100 hours).6 This resulted in about 2x more hydrogen production for 

the NIR illuminated culture after the first 100 hour, but only 1.3x increase in cumulative 

hydrogen production over the entire course of the experiment.  

Our results are in contrast to those presented by Turon et al., who found that NIR 

illumination only resulted for around half of the total hydrogen production of a 1L culture 

of Rhodobacter capsulatus compared to incandescent (300-1100nm) illumination. They 

attributed the drop in performance to self-shading effects; the NIR light was 

preferentially absorbed at the illuminated surface of the container, leaving deeper parts 

the culture under-illuminated and decreasing the total hydrogen production.8 In contrast, 

our experiments used a smaller culture size, 30 mL compared to 1 L, and lower intensity 

illumination, 130 W/m2 compared to 1150 W/m2. A smaller culture size could diminish 

the effects of self-shading, and lead to the reversal in efficacy of NIR illumination shown 

in These results underscore that effective light distribution within the culture is critical 

for maintaining hydrogen production, particularly in dense cultures.  
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CHAPTER 5. ENHANCEMENT OF HYDROGEN PRODUCTION FROM 
PLASMONIC NANOPARTICLES 

5.1 Localized Surface Plasmon Resonance 

Localized surface plasmons are collective oscillations of free electrons that lead to 

charge oscillations on the surface of nanostructures.  These oscillations can be driven by 

optical photons, particularly those with wavelengths near the localized surface plasmon 

resonance (LSPR).  The resonance wavelength can be tuned by changing the geometry and 

optical properties of the nanoparticle as well as the properties of the surrounding media.14  

On resonance, localized surface plasmon oscillations enhance the electromagnetic near-

field around the particle and increase both absorption and scattering cross-sections.  In 

many cases, the absorption and scattering efficiencies, the ratio of optical to physical cross 

section, can exceed one.    Nanoparticles exhibiting LSPR have widely been studied for 

applications including solar cells, drug delivery, pollutant degradation, and affinity 

sensing.10,31-40  Both near-field enhancement and light trapping through efficient scattering 

from these nanoparticles can improve the efficiency of light harvesting systems.   

Our innovative approach utilizes nanoparticles with localized surface-plasmon 

resonance wavelengths around the NIR absorption maxima of bacteriochlorophylls.   

Specifically, we use nanoparticles with a silica core and a gold shell, an example of 

which is shown in cross section in Figure 5.1.41,42   These core-shell particles enhance the 

optical near-field potentially leading to more efficient coupling to light-harvesting 

complexes in the bacteriochlorophylls.  In addition, they offer relatively high scattering 

cross-sections with relatively low absorption cross-sections as discussed in the 
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supplementary information.  This property enhances light trapping in the reactor due to 

efficient scattering while reducing light lost to particle absorption.  

 

 

Figure 5.1: Gold-Silica Core-Shell Nanoparticle Cross Section.Shell thickness ~18nm. 

5.2 Nanoparticle Selection and Characterization 

Preliminary particle selection was based on Mie theory calculations of optimum 

extinction cross section area at the NIR region.43 The optimum particles were silica-gold 

core-shell structures (~160 nm silica core, ~18 nm gold shell). These particles have broad 

extinction peak around 850 nm that is primarily due to scattering, see Figure 5.2.   Other 

shapes of particles will also serve the purpose such as nano-rods44, rings45, and cages 46,or 

various passivated copper structures.47 The experiments conducted here used particles with 

a nominal silica core diameter of 120 nm ± 9 nm, a gold shell diameter of 16 nm, a 5kDa 

mPEG coating, and a total diameter of 151 nm ± 8 nm (NanoXact from nanoComposix 

Inc.)  The cross-sectional electron micrograph in Figure 5.1 reveals the core-shell structure. 
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Figure 5.2: Simulation of Absorption, Scattering, and Extinction Cross Section of Gold-
Shell Nanoparticles. FDTD simulation results for optimum silica-gold core-shell particles 
with resonance wavelength at 850 nm. The extinction cross section represents the sum of 
absorption and scattering. The diameter of the core is 120 nm and thickness of shell is 
18nm. 
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Figure 5.3: Simulated and Measured Extinction of Gold-Shell Nanoparticles.  Inset shows 
simulated near-field electric enhancement around the nanoparticle 

 
 
Figure 5.3 shows the calculated and measured extinction cross section of these 

particles which is dominated by scattering as noted above. Calculations were conducted 

using the finite difference time domain method and are detailed in the supplementary 

information.  As expected, the broad extinction maximum associated with the LSPR is 

centered at 800nm and spans both of the NIR bacteriochlorophyll absorption maxima.  The 

measured and calculated spectral shapes are similar and both the antisymmetric (~600 nm) 

and symmetric (~800 nm) resonances are apparent.  The experimentally measured 

resonances are broadened and damped compared to the calculated resonances likely 

because of geometric heterogeneity and aggregation of some particles in solution.  The 

calculated field enhancement around the particle is shown inset in Figure 5b.  The 
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maximum field enhancement is 7× and the near-field decays over a distance of 

approximately 30 nm from the particle’s surface.   

These particles exhibit the desired near-field enhancement and efficient scattering 

near the bacteriochlorophyll extinction maxima.  Thus, an experiments was conducted to 

quantify the enhancement of hydrogen production by R. palustris in the presence of gold 

nanoparticles.  In this experiment, nanoparticles were dosed into samples at a concentration 

of 4.6 µg/mL (equivalent to 2.6x108 particles/mL).  

 

5.3 Enhancement of Hydrogen using Gold-shell Nanoparticles 

Improvements to light utilization in prototrophic bacteria have in the past included 

efforts to augment the production of certain pigments or adding synthetic light harvesting 

complexes48. Plasmonic materials have been shown to be able to couple to extracted light 

harvesting complexes from plants and bacteria as well, usually using extended gold arrays 

49-51. The results of Tsargorodska et al.  are particularly interesting as they demonstrated 

strong coupling between extracted wild type light harvesting complexes of R. sphaeroides, 

another PNSB, and plasmonic gold nanostructure arrays.51 This does not usually include 

live bacteria, however, and plasmonic nanoparticles have not in the past been shown to 

increase light utilization in phototrophic bacteria. 

To test the efficacy of these nanoparticles for enhancing light absorption of R. 

palustris, cultures were gown under NIR LEDs with gold nanoparticles in solution, shown 

in Figure 5.4. The addition of nanoparticles resulted in similar cell growth, but more than 

2× increase in hydrogen production over 90 hours. This is in addition to enhancements 
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from illumination with NIR LEDs. Although gold nanoparticles have been studied as a 

means to kill cancer cells through photothermal conversion52,53,  cell growth was not 

impeded here from the addition of nanoparticles because the intensity of light used is small 

compared to light intensity typically used for cancer treatment. Additionally, the 5kDa 

mPEG coating serves as a barrier between the nanoparticles and bacteria.  

 

 

Figure 5.4: Enhancement of Hydrogen Production due to Light Enhancement by Gold-
Shell Nanoparticles.  
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CHAPTER 6. CONCLUSION 

Phototrophic hydrogen production from PNSB remains an interesting pathway for 

converting waste organic acids to clean energy, but low efficiencies in light conversion 

restrict the utility of the process. Here we have demonstrated the efficacy of NIR 

illumination for PNSB growth. Switching to NIR illumination compared to widely used 

tungsten light sources resulted in 3-fold increase in hydrogen production (60 ± 6 to 167±18 

μmol H2 at 130 W/m2). Further, the addition of plasmonic nanoparticles in solution resulted 

in an additional 2-fold increase in hydrogen production (167 ±18 to 398±108 μmol H2). 

Another key finding of our work established that part of the generated CO2 is 

simultaneously utilized by the bacteria resulting in a higher purity hydrogen gas.  

Here the use of gold silica core-shell nanoparticles in solution was able to augment 

light utilization of PNSB in solution, but future efforts to incorporate plasmonically 

resonant structures into photofermentation systems could utilize immobilization 

approaches to secure both the nanoparticles and bacteria. The immobilization of bacteria 

and nanoparticles in close proximity could more effectively exploit near field enhancement 

around the bacteria. 
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APPENDICES 

 

APPENDIX 1. MEDIA RECIPES 

Table A1.1: Media Recipes. Complex and defined media recipes used for bacterial growth. 

 

Component (g/L) Complex 127 Complex 227 Complex 354 Defined 155 Defined 256 

Sodium Acetate     2.74 5.74 5.74 

Sodium Glutamate       1.18 1.18 

Tryptic Soy Broth 15         

Yeast Extract   10 0.2     

K2HPO4   1       

MgSO4   0.5   0.12 0.24 

L-cysteine    0.6       

NH4Cl     0.65   1 

Na2HPO4       6.8 6.9 

KH2PO4       3 3 

NaCl       0.58 0.5 

CaCl2●2H2O       0.1 mM 0.015 

Thiamine HCl       1 mg/L   

Trace Metals Stock       10 mL/L   

 

Table A1.2: Trace Metals Stock. Used in Defined media 1. 

Trace Metals Stock (g/L) 

CaCl2●2H2O 0.729 

FeCl3●6H2O 1.666 

MnCl2 0.064 

ZnCl2 0.170 

CuCl2●2H2O 0.043 

CoCl●6H2O 0.060 

Na2MoO4●2H2O 0.060 
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APPENDIX 2.  MODIFIED GOMPERTZ FIT MATLAB CODE 

% import growth data table as growth_data,  

% column 1 ~ time (hours) column 2 

% column 2 ~ cell density DCM g/L 

%growth_data = table2array(growth_data); 

%X = growth_data(:,1); 

y = growth_data(:,3); 

 

modelfun = @(b,x) b(1)*exp(-exp(((b(2)*exp(1))/b(1))*(b(3)-x)+1)); 

 

%modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ... 

%    b(4)*x(:,2).^b(5); 

beta0 = [0.24 .0005 20]; 

mdl = fitnlm(X,y,modelfun,beta0) 

 

b1 = table2array(mdl.Coefficients(1,1)); 

b2 = table2array(mdl.Coefficients(2,1)); 

b3 = table2array(mdl.Coefficients(3,1)); 

X_model = linspace(0,200); 

Y_model = b1*exp(-exp(((b2*exp(1))/b1)*(b3-X_model)+1)); 

 

plot(X,y,'ro',X_model,Y_model,'k-');
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